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To solve the problem of low recognition accuracy caused by the C3D network limited by the large 

number of parameters, the study proposes an improved C3D network-based pose recognition model. 

The improvement of the C3D network is realized by using global average pooling instead of fully 

connected layer, and the attention residual network on the basis of improved C3D is further designed, 

and the attention staged residual network model is constructed by introducing the spatio-temporal 

channel attention mechanism. Comparative validation showed that the improved C3D network 

increased the accuracy by 13.49% over the C3D network on the HMDB51 dataset. When the various 

models were compared, it was found that the suggested model, which had an area under the receiver 

operating characteristic curve as high as 0.98, improved the study's accuracy over the two well-known 

networks by an average of 14.34%. The accuracy of the proposed model increased the accuracy of the 

study over the popular networks by an average of 14.50% for the recognition of the postures of all the 

swimming categories in the homemade swimming sports dataset. The findings show that the number of 

parameters in the enhanced C3D network proposed in the study has been successfully reduced, and 

that the attention residual network model based on the enhanced C3D network has a superior 

application value in sports pose recognition. It also offers some advantages in terms of 

fine-grainedness and recognition accuracy. 

Povzetek: Članek predstavlja izboljšan model omrežja C3D za prepoznavanje položajev v plavalnih 

športih. Izboljšave vključujejo zamenjavo popolnoma povezanih plasti z globalnim povprečnim 

združevanjem in uporabo omrežja preostale pozornosti, kar zmanjšuje število parametrov in povečuje 

natančnost modela. Eksperimentalni rezultati kažejo, da izboljšano omrežje C3D in model ASRNM 

dosegata visoko natančnost in robustnost v primerjavi z obstoječimi metodami.

1 Introduction 

The application of Human posture recognition (HPR) 

technology is expanding across diverse sectors and 

settings, particularly in sports, owing to the swift 

advancement of computer vision technology and 

associated hardware facilities [1]. Therefore, conducting 

research on HPR based on visual assistive technology is 

very important and has a lot of practical application value. 

Current research on gesture recognition mainly utilizes 

Deep learning (DL) algorithms, including 2-Dimensional 

(2D) convolution-based dual-stream networks, 

3-Dimensional (3D) convolution-based neural networks, 

and recurrent convolutional networks [2-3]. Among them, 

3D convolutional network can directly carry out 

spatio-temporal (ST) feature extraction without feature 

fusion, so scholars at home and abroad mostly utilize it 

for HPR technology design [4]. Convolutional 

3-Dimensional (C3D) networks, as the most commonly 

used method in 3D networks, have an increased time 

dimension compared to 2D convolution [5-6]. However, 

the excessive number of parameters and the relatively 

simple network structure lead to poor performance 

accuracy, which is difficult to meet the demand for high 

accuracy in HPR in current sports. Therefore, the study 

designed a novel network structure based on the C3D 

network. Attentional staged residual network modeling 

(ASRNM) for the improved C3D network was 

constructed on the basis of firstly replacing the fully 

connected layer (FCL) with global average pooling (GAP) 

and replacing the improved C3D network by utilizing 

Gaussian error linear unit (GELU) activation function, 

and then experimentally verified it in the HPR of the 

swimming motion. 

The study is divided into four main sections. The 

first section summarizes the findings of domestic and 

foreign research on HPR based on vision technology, as 

well as its drawbacks. In the second part, the swimming 

posture (S-Pos) recognition model based on the improved 

C3D network is studied and designed. In the third part, 

the proposed improved C3D network and S-Pos 

recognition model are experimented and analyzed. In Part 

IV, the experimental results are summarized and future 

research directions are indicated. 

As an important computer vision technology, HPR 

technology provides rich information about body 
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movement by recognizing and analyzing human posture. 

Researchers domestically and internationally have made 

notable advancements in HPR technology. This 

technology is currently extensively used in industries 

such as human-computer interaction, intelligent robotics, 

virtual reality, and medical diagnosis. [7] To realize 

higher precision 3D human posture reconstruction, 

Verma and Rajeev proposed a deep architecture model by 

combining traditional 2D network and 3D network. 

Additionally, they developed a stack-hourglass network 

for 2D keypoint heat map prediction, and on the MPII 

and Human 3.6M datasets, it performed similarly to 

state-of-the-art techniques [8]. To address the complexity 

of the convolutional neural network structure and the 

issue of extracting deep features that only provide global 

information, Sahoo et al suggested a two-stage residual 

convolutional network design for learning features from 

color gesture photos. Using a multi-class support vector 

machine classifier based on a linear kernel for gesture 

pose detection allowed for the avoidance of the need for a 

particular preprocessing step [9]. In an effort to lessen 

worker load and increase motion detection accuracy for 

construction industry workers, Chen et al suggested an 

inherited sensor fusion method for danger prevention. A 

multi-sensor-based construction site motion identification 

system was further created using a selective depth 

detection method based on ordinary depth optimization. 

The accuracy and effectiveness of body motion detection 

particular to construction sites was enhanced by merging 

various signal types to rectify and evaluate worker 

motion [10]. The ability to tele operate robots can be 

enhanced by recognizing and reproducing human-like 

behaviors, however current center-of-mass dynamic 

balancing is difficult to achieve. To address the issue of 

variable time series length, Balmik et al. developed a 

robot-oriented adaptive balancing technique that 

computes the robot joint angles using pitch and roll 

control algorithms and uses a proposed 7-layer 

one-dimensional convolutional neural network to 

recognize human actions [11]. 

As an optimization of 3D convolutional network, 

C3D network brings new ideas to HPR research, and 

experts and scholars apply it widely in HPR, which 

promotes the value of HPR technology in real life to a 

certain extent. For 2D skeleton data, Weng et al. 

suggested a new 3D graph convolutional network model 

with ST attention mechanism. The C3D network 

successfully extracted the ST aspects of the skeleton 

descriptors, which included joint coordinates, frame 

differences, and angles, enabling the precise 

identification and categorization of persons crossing the 

street [12]. Many labeled data sets and labor are needed 

for the current skeleton-based recognition techniques, 

which mostly learn the ideal representation based on 

human-created criteria. In order to achieve this, Yu et al. 

presented an adaptive skeleton-based neural network that 

uses a data-driven methodology to automatically learn the 

best ST representation. This method effectively allowed 

memory blocks to learn long-term associations and 

short-term frame dependencies by encasing a C3D 

network in a unique attention model [13]. A human 

aberrant behavior recognition system based on 

dual-channel C3D and DL was developed by L. Jiang et 

al. to tightly regulate construction order, work efficiency, 

and quick response to emergencies at the infrastructure 

site. A better model was used to integrate this system 

with a convolutional neural network, yielding validation 

findings of 98.01% identification rate for particular 

angles, 97.27% for horizontal angles, and 95.68% for 

vertical angles [14]. For the challenging problem of 

recognizing complicated student behavior in films, Jisi 

and Yin suggested a new feature fusion network for 

student behavior detection in education. The method 

combined spatial affine transform network and C3D 

network with weighted sum method for ST feature fusion, 

which resulted in superior recognition accuracy over 

other state-of-the-art algorithms in a wide range of 

datasets [15]. The above related work is summarized in 

Table 1.

  

Table 1: Summary of related work 

Methodologies Data sets Results Reference 

Reconstruction of 3D poses 

based on early and late fusion 

strategies with the introduction 

of an enhanced 

stack-hourglass network 

MPII and Human 3.6M 

datasets 

Performance comparable to 

state-of-the-art methods 
[8] 

Reducing the number of CNN 

layers and fusing global and 

local information from 

different layers 

Ha-GRID 
The method overcomes the need 

for a specific pre-processing step 
[9] 

Image optimization using 

selective depth detection and 

construction of a construction 

site motion recognition system 

based on sensors 

Customized dataset (motion 

data of 5 adult males aged 

20-30 years) 

Improving the accuracy and 

efficiency of detecting 

construction site-specific body 

movements 

[10] 

NAO adaptive balancing 

technique based on 7-layer 

NAO behavior recognition 

dataset 

95% recognition accuracy 

compared to Hidden Markov 
[11] 



Improved C3D Network Model Construction and it’s Posture…                           Informatica 48 (2024) 1–18   3 

1D-CNN Models and Neural Networks 

A novel 3D graph 

convolutional network model 

with spatio-temporal attention 

mechanism 

Homemade dataset (ZCP's 

crosswalk pedestrian dataset); 

NTU RGB+D dataset 

This method outperforms 

2D-CNN in recognition results 
[12] 

Neural network based on 

adaptive skeleton to 

automatically learn the optimal 

spatio-temporal representation 

through a data-driven 

approach 

MSR-Action-3D dataset; SBU 

Kinect Interaction dataset; 

NTU RGB-D dataset; 

NW-UCLA dataset; UWA3D 

dataset 

State-of-the-art performance was 

achieved in five challenging 

benchmarks 

[13] 

DL and dual-channel C3D 

based human abnormal 

behavior recognition system 

Self-made dataset 
Abnormality recognition rate 

reaches over 95% 
[14] 

Fusion of spatio-temporal 

features through a combination 

of spatial affine transform 

networks and C3D networks 

with a weighted sum approach 

HMDB51 dataset; UCF101 

dataset; Real student behavior 

data 

Student behavior recognition 

results are effectively improved 

and superior to other algorithms 

[15] 

 

Combined with Table 1, it is evident that scholars 

both domestically and internationally have conducted 

extensive research on human gesture recognition 

technology based on DL. However, as the number of 

video frames and image pixels continues to increase, 

current human gesture recognition requires more 

advanced image features. Meanwhile, the conventional 

C3D network has a high number of parameters, hindering 

the effective extraction of deep features from large 

datasets. Therefore, this study proposes constructing a 

deep learning recognition model for sports gesture 

recognition based on an enhanced C3D network. To 

increase the recognition accuracy of the network model 

under the enormous number of parameters, the study 

creatively substitutes the GAP with a FCL and improves 

the C3D network by replacing the activation function. 

2 Swimming posture recognition 

model construction based on 

improved C3D network 

In order to improve the accuracy of HPR in swimming 

movement, the study proposes an improved C3D network 

and further designs an S-Pos recognition model based on 

the improved C3D network. Firstly, the FCL replacement 

as well as the activation function replacement are 

performed on the basis of the C3D network. Secondly, 

the improved convolutional network is further extended 

into a fully pre-activated residual structure network, and 

the ST channel attention focusing mechanism is 

introduced to construct the S-Pos recognition model. 

 

2.1 Improvement of 3D Convolution-Based 

C3D network 

With the rapid development of the world's 

swimming sports, swimming is loved and welcomed by 

more and more people. How to accurately identify and 

evaluate swimming movements has emerged as a 

research hotspot in the field of sports monitoring in 

relation to the instruction and training of swimming 

sports. Among them, the DL algorithm has become a 

commonly used method in the research of S-Pos 

recognition. The C3D network in DL can realize the 

direct extraction of ST features, which effectively 

circumvents the defects of the dual-stream network that 

consumes a large number of resources in order to realize 

the extraction of the temporal features individually 

[16-17]. However, the huge number of parameters can 

cause the convolutional network to be difficult to extract 

ST features completely during the extraction process, and 

the effectiveness of feature extraction is limited by the 

narrow number of convolutional network layers. 

Therefore, to address the problem of low accuracy of 

C3D network for HPR, a novel C3D network is proposed 

in the study. C3D network extracts ST features more 

efficiently than 2D convolution. Traditional 2D 

convolution processes video frames by ignoring the 

relationship between video frame sequences, whereas 3D 

convolutional feature map (FM) contains not only the 

information between pixels within a single video frame, 

but also the correlation between the video frame motion 

data [18-20]. A comparison of the operational maps of 

the two convolutions is shown in Figure 1. 
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Figure 1: Comparison of two convolutional network operation graphs 

 

C3D network, as a classical network for 3D 

convolution, is able to synchronize the preservation of 

temporal and spatial information of the video action when 

it performs the convolution operation. Its main 

convolution formula is shown in equation (1). 
1 1 1

( )( )( )

( 1)

0 0 0

( )
i i iX Y Z

abc xyz a x b y c z

ij ijn i n ij

n x y z

f   
− − −

+ + +

−

= = =

 = + (1) 

In equation (1), 
abc

ij  denotes the convolution result 

of the j th convolution kernel (CK) of the i  layer in 

position ( , , )a b c . a , b  and c  denote the spatial 3D 

coordinates, and ( )f •  denotes the convolution function. 

iX  denotes the width of the CK in layer i , and iY  

denotes the height. iZ  denotes the depth, and 
xyz

ijn  

denotes the weight of the convolution operation of this 

layer with the n th FM of the previous layer at position 

( , , )x y z .   denotes the input value of the previous 

layer at the same position, and ij  denotes the amount 

of bias. The structure of the C3D network is relatively 

simple, consisting mainly of a FCL, 3D convolution, and 

maximum pooling. Since a time dimension is added to 

the 3D convolution, it requires a larger number of 

parameters than the 2D convolutional layers (CLs). This 

allows multiple 3D CLs to be stacked, driving the full 

number of parameters of the network to be 

correspondingly large. At the same time, the network 

training speed depends on the distribution of transmitted 

data in the CLs, but in C3D networks the CLs do not have 

data normalization processing, so the traditional C3D 

networks are not as effective for recognition in HPR 

[21-22]. Figure 2 depicts the precise structure of the C3D 

network. 
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Figure 2: C3D network structure diagram 

 

In Figure 2, the stochastic gradient descent 

technique optimizes the training of the entire network, 

and an FCL is used at the network's conclusion. In order 

for the classifier to classify the data, the extracted 

features must be mapped to the label space by the FCL. 

The FCL carries out the feature purification process, 

meaning that the number of one-dimensional feature 

vector inputs in the FCL represents a multiple of the 

number of neurons. The C3D network has an excessive 

number of parameters and is not suitable for network 

porting in embedded devices due to every node in the 

FCL being connected to every other node in the layer 

before it. Therefore, the study proposes to replace the 

FCL by utilizing GAP, which reduces the parameter 

computation by synthesizing the feature information of 

the weighted average of the FM. In this instance, Figure 3 

displays the FCL schematic diagram. 
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Figure 3: Fully connected layer diagram 

 

GAP itself does not require training parameter 

computation, by purifying the output features extracted 

from the CL [23]. Firstly, by sampling the images within 

each feature channel equally and ensuring that each 

channel has an output feature image of size 1×1×1. 

Secondly, the output feature images are transferred to the 

classification connectivity layer according to the 

corresponding feature channel. By collecting the spatial 

information of the feature image using average sampling, 

GAP's proposed FM may significantly retain the spatial 

information of the feature image. In addition, the process 

of transmitting the feature image to the classification 

layer according to the corresponding channel after GAP 

processing can effectively increase the mapping 

connection between the feature image and the 

classification and weaken the complexity of the FM being 

interpreted as a category confidence map. The GAP 

schematic is shown in Figure 4. 

n

[w,h]

[1，n×1×1]

[1，Classes]

 

Figure 4: Schematic diagram of GAP 

 

Obviously, only the replacement of FCL is not 

effective to achieve the improvement of C3D network, 

the study further introduces 3D dot convolution layer and 

batch normalization (BN) for enhancing the network's 

ability to combine features. On this basis, all the 

activation functions in the network are replaced with 

GELU functions. The 3D CL is responsible for ST 

feature extraction in the C3D network, which has an 

additional temporal dimension than the 2D convolution, 

and different features are extracted depending on the 

parameters of the convolutional kernel. Therefore, each 

CK corresponds to a FM affected by the input FM and the 

CK, which is calculated as shown in equation (2). 

 

( 2 ) / 1

( 2 ) / 1

out in

out in

out

X X P F S

Y Y P F S

Z J

= + − +


= + − +
 =

 (2) 

The width, height, and depth of the output FM are 

indicated by the letters outX , outY , and outZ  in equation 

(2), respectively. The width and height of the input FM 

are indicated by inX  and inY , while the pixel padding 

value of the FM edge is indicated by P . The symbols 

F , S , and J  represent the CK size, step size, and 

number of CKs, respectively. During the convolution 

operation on an image, the FMs are locally linked in 

spatial dimension, all linked in depth, and the weights of 

neurons at the same depth are shared [24-25]. Therefore, 
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in order to be able to make the C3D network with a 

lighter degree of network structure, it is investigated to 

construct an asymmetric 3D CL by merging and splitting 

convolutional kernels. The schematic diagram of merging 

and splitting of CKs is shown in Figure 5. 

 

(a) Merging of convolution 

kernels
(b) Asymmetric splitting of 

convolutional kernels

 

Figure 5: Merging and splitting of convolutional kernels 

 

The study increases the convolutional kernels of all 

CLs other than the first in the original C3D network to 

3:3:3 3D CLs, and combines the three CLs with increased 

convolutional kernels into a CL with 3:7:7 convolutional 

kernels. The feature extraction capability of the CL is 

improved by increasing the region of the CL that affects a 

specific unit of the network in the input controls. Finally, 

the CL with 3:7:7 convolutional kernel is asymmetrically 

disassembled into two asymmetric 3D CLs with 

convolutional kernels of 3:1:7 and 3:7:1. The CL's weight 

parameters can be decreased to enhance the image's 

spatial information and lessen overfitting during network 

training. Based on the obtained non-stacked 3D CLs, the 

study further introduces 3D point CLs for cross-channel 

information fusion and transfers the fused feature 

information to the next set of asymmetric 3D CLs. 

Considering that the parameters change continuously 

during the network training process and the change of 

data distribution in the previous layer affects the 

subsequent data distribution, the study utilizes BN to 

process the input data in the 3D CL. Considering the BN 

processing as a network layer processing and with 

trainable parameters distributed between CLs, when the 

network learns and trains the data in small batches of data, 

the BN performs normalization with variance of 1 and 

mean of 0 based on the small batches of data. In this case, 

the expression formula for the input data is shown in 

equation (3). 

 2

i B

i

B

u


 

−


+
 (3) 

In equation (3), denotes the input data, and i B  

denotes the set of m  data entered in small batches. 
2

B  

denotes the variance,   denotes the tiny constant value 

that avoids the denominator equal to 0, and Bu  denotes 

the mean value. Equation (4) displays the formula for 

figuring out the mean value of the picture feature data. 

 
1

1 m

B i

i

u
m


=

   (4) 

The formula for calculating the variance of the 

image feature data is shown in equation (5). 
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1
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m
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u
m
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=
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The expression function of the output normalized 

result according to GN processing is shown in equation 

(6). 

 i i   +  (6) 

In equation (6), i  denotes the output result of i  

after BN processing.   denotes the learnable parameter 

of scaling and   denotes the learnable parameter of 

translation. The most widely used activation function in 

neural networks is the rectified linear unit (ReLU), which 

can handle difficult nonlinear issues and enhance the 

low-expression effect of linear functions for challenging 

issues [26]. Equation (7) displays the particular formula 

for the function expression. 

 
0 ( 0)

max(0, )
( 0)


 

 


= = 


 (7) 

In equation (7),   denotes the output. However, 

the ReLU function ignores the link between activation 

and regularization of the data. Again, the study utilizes 

the GELU function with regularization as the activation 

function of the improved C3D network [27]. Its specific 

expression formula is shown in Equation (8). 

 
1

[1 ( / 2)]
2

erf  =  +  (8) 

In equation (8), ( )erf •  denotes the Gaussian error 

expression function. The GELU function is an activation 

function that compresses the stochastic process, 

combining the activation ability of nonlinearity with data 

regularization to achieve a stochastic regularization effect. 

Combining the above, the overall network architecture of 

the improved C3D network proposed in the study is 

shown in Figure 6. 
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Figure 6: Overall structure of the improved C3D network 

 

Firstly, the input video is segmented into 

corresponding video frame images after data 

preprocessing and fed into a 3D CL consisting of 3:3:3 

convolutional kernels for comprehensive feature 

extraction. Next, the extracted data is normalized in small 

batches using BN, after which the redundant information 

is removed using the 3D deflation layer. Then, the ST 

feature information extraction is performed by the 

asymmetric 3D CL, and then input into the 3D point CL. 

Finally, all the feature data are passed through the GAP 

and classification connection layer for discriminative 

output value calculation, and the final classification result 

is output in the form of probability through the Softmax 

classifier. 

2.2 ASRNM Based on Improved C3D 

network 

In order to extract deeper ST features of feature images, 

the study further designs the ASRNM for S-Pos 

recognition based on the proposed improved C3D 

network. Firstly, the improved C3D network with fully 

pre-activated residual’s structure is further extended into 

a FPR network based on the C3D attention, and the 

Staged Residuals (SR) structure for network optimization. 

The FPR structure, unlike the original residual structure 

which can only achieve constant mapping connections on 

residual blocks, can combine regularization with an 

activation function as a pre-activation before the 

information enters the convolutional weights. Based on 

fully pre-activated residuals-C3D (FPR-C3D), which 

extends FPR to form a C3D basis in the network, the 

study replaces the maximum pooling of the network with 

soft pool (SP). SP obtains the weights of each FM 

activation value by Softmax exponential normalization, 

and the final SP output is achieved by weighted 

summation of the weights for each activation value 

within the pooling kernel [28]. The weight expression 

function of the activation values is shown in equation (9). 

 

exp( )

exp( )

g

g

h

h R

W




=

  (9) 

In equation (9), gW  denotes the weight assigned to 

each activation value within the pooling kernel. g  and 

h  denote the activation values within the pooling kernel 

of the activation FM, g  and h  denote the index 

numbers within the pooling kernel range, and R  

denotes the pooling kernel range. Equation (10) displays 

the final formula for the output of SP. 

 g g

g R

W


 =   (10) 

In equation (10),   denotes the output result after 

the final SP. Meanwhile, considering that the increase of 

network depth will negatively affect the BN small BN 

effect, the study utilizes group normalization (GN) to 

perform regularization operations on individual 3D CLs. 

The data normalization process is achieved by calculating 

the variance and mean used to normalize the features 

within the grouped channels. The normalization formula 

is shown in equation (11). 
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In equation (11), gQ  denotes the set of pixels with 

the mean and variance of the data. The gQ  expression 

function is shown in equation (12). 

,
/ /

C C

g D D

k g
Q k k g

C T C T

     
= = =    

     
 (12) 

C  and k  respectively stand for the channel 

dimension and the number of input data in equation (12). 

The batch size is shown by D , and the ability to 

compute each input data set's mean and variance using 

the ( , , )C X Y  axis is indicated by D Dk g= . T  denotes 

the number of groupings, •    denotes rounding down 

the data, and 
/ /

C Ck g

C T C T

   
=   

   
 denotes that both 

indexed data are in the same channel grouping. GN 

regularization computes the input data to circumvent the 

BN's dependence on memory consumption, which is 

conducive to improving the accuracy of the network 

model for HPR. However, before video clips can be 

classed and identified in the FPR-C3D network for the 

purpose of recognizing human posture, they must be 

processed into time-series video frames. Furthermore, the 

effectiveness of the attention module influences the 

network's recognition effect [29]. Therefore, the study 

proposes an improving convolutional block attention 

model (ICBAM) based on the convolutional block 

attention model (CBAM), which is extended to the ST 

domain by adding the temporal dimension, as shown in 

Figure 7. 
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Figure 7: ICBAM principle 

 

In Figure 7, ICBAM first inputs the FMs extracted 

by 3D convolution and obtains the Identity (ID) channel 

attention FMs through the attention module of the 

channels. After adaptive feature refinement, the channel 

attention FM is obtained by multiplying the ID channel 

attention FM by the original FM element by element. 

Equation (13), in particular, displays the calculation 

formula. 

 ( )LP V P P =   (13) 

In equation (13), P  denotes the input FM and 

( )LV P  denotes the ID channel attention FM. LV  

denotes the channel attention module and   denotes the 

element-by-element multiplication. P  denotes the FM 

obtained by multiplying ( )LV P  and P  element by 

element. Pass P  through the spatial attention module to 

obtain the 2D spatial attention FM ( )oV P , multiply 

( )oV P  with P  element by element to obtain the new 

adaptive feature refined channel attention FM P . 

Equation (14) displays the particular calculating formula. 

 ( )oP V P P  =   (14) 

The P  is then passed through the temporal 

attention module ( )V P
  in order to distinguish the key 

video frames. Thus the final obtained FM P  on the 

basis of temporal channel attention is shown in equation 

(15). 

 ( )P V P P
  =   (15) 

Combined with ICBAM, the proposed FPR-C3D 

network is further optimized as a full-domain activated 

residual (FPR-ICBAM-C3D) network based on the C3D 

attention network. However, FPR is not fully effective in 

solving the network degradation problem in a huge 
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number of network layers, and only normalizes the 

residual branches, which cannot normalize the data in the 

convolutional weight layer. Therefore, the study 

introduces SR without a point CL for network 

optimization. SR enables faster and more efficient 

transfer of information through the network and enables 

the synchronization of driving the network to parameter 

learning and training to optimize the deep network 

[30-31]. Therefore, the study finally proposes the 

ASRNM model as shown in Figure 8. 
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Figure 8: ASRNM network model 

 

The ASRNM model starts with feature extraction 

and normalization of the input data by the first 3×3 

convolutional and GN layers, and the first step of SR 

processing. Within the residual block of the initial stage, 

SP downscaling is performed, followed by feature 

extraction using asymmetric 3D CLs, GN regularization 

of the data, and then information extraction of key frames 

using ICBAM. The initial stage residual block processes 

the data and then enters the end residual block of SR. 

Based on the whole SR processed data obtained, the 

above processing operations are repeated in the next part 

of SR until all SRs are passed. Finally, the extracted 

feature information is passed through GAP, Classification  

Connection Layer and Softmax for the final recognition 

result output. 

 

 

 

 

3 Experimental analysis of 

swimming posture recognition 

model based on improved C3D 

Network 

To validate the effectiveness of the proposed S-Pos 

recognition technique in the study, the proposed 

improved C3D network is firstly tested for comparison in 

the dataset. Based on this, additional performance 

validation of the ASRNM model is carried out in order to 

assess its efficacy in comparison with the currently in use 

network models in the sports dataset. Finally, swimming 

action pose recognition experiments are conducted in the 

dataset of swimming sports. 
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3.1 Improved C3D network validation 

The study used the adaptive moment estimation algorithm 

for the network model training optimization algorithm 

and set the network iteration period to 50 times, the initial 

learning rate to 0.00001, the number of groups for the 

normalized grouping to 32, the weight decay parameter to 

5×10-4, and the batch size during the training process to 

8 in order to experimentally validate the performance of 

the improved C3D network. The HMDB51 dataset and 

Sports-1M dataset are pre-processed based on the above 

parameters, and then the improved C3D network model is 

used to compare the validity with the traditional C3D 

model. The HMDB51 dataset is mainly derived from 

movie clips and short videos uploaded online by netizens, 

with a total of 6,766 video data, most of which suffer 

from camera jitter, poor shooting angles, and low-quality 

video frame defects, and the use of which better 

demonstrates the reliability of the network model 

proposed in the study. The Sports-1M dataset is a 

collection of sports video clips classified into 487 action 

categories, totaling 1,100,000 clips. It is a useful tool for 

validating the effectiveness of the network model 

proposed in the study. Figure 9 displays the accuracy and 

F1 value change curves for both datasets. 
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Figure 9: Comparison of accuracy and F1 score in HMDB51 dataset and Sports-1M dataset 

 

In Figure 9(a), the accuracy of both testing and 

training of the improved C3D network is improved in 

different ways compared to the traditional C3D network. 

Compared to the unimproved C3D training, the improved 

C3D training improved the accuracy by 15.15% after 50 

iterations, while the test accuracy improved by 13.49%. 

Figure 9(b) presents a comparison of the F1 values of the 

two convolutional networks. Testing and training results 

indicate that the upgraded C3D network's F1 values 

outperform the C3D network. This suggests that the 

model's performance can be enhanced by the enhanced 

C3D network that the study suggests. After 10 iterations, 

the improved C3D network model shows a leveling off 

trend earlier than the C3D network, which indicates that 

the improved C3D network model can find the optimal 

solution quickly. The improved C3D network model's 

superiority is evident when comparing the accuracy and 

F1 values of both networks in the Sports-1M dataset, as 

shown in Figures 9(c) and 9(d). The study also compares 

the C3D network with the enhanced C3D network's 

receiver operating characteristic (ROC) and precision 

recall (PR) curves; the comparison's findings are 

displayed in Figure 10. 
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Figure 10: Comparison of ROC and PR curve 

 

As compared to C3D, the revised C3D network 

model's area under the ROC curve in Figure 10(a) rises 

by 4.71%, indicating an improvement in the model's 

accuracy. Better model accuracy is shown by a greater 

mean average precision (mAP) of the area under the PR 

curve. The mAP value of the enhanced C3D network 

model in Figure 10(b) is 0.68, a 11.48% increase over 

C3D. Figure 10(c) shows the ROC curves of the two 

network models in Sports-1M. The improved C3D 

network model has a higher curve area than C3D. Figure 

10(d) illustrates that the improved C3D network model 

has a 14.81% increase in mAP value over C3D. The 

sample data distribution has less of an impact on the ROC 

curve, and the PR curve more accurately represents the 

performance of the model with a broader sample data 

distribution. This suggests that the study's enhanced C3D 

network can successfully address the shortcomings of the 

conventional C3D network, which has an inadequate 

classification impact because of an excessive number of 

characteristics. Finally, the study further compares the 

training time overhead of the two models, the improved 

C3D network and the traditional C3D network, in the two 

datasets, as shown in Figure 11. 
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Figure 11: Comparison of the training time overhead of the two network models in the dataset 
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Figure 11(a) shows that the training time overhead 

of the improved C3D network model is significantly 

lower than that of the C3D network model in the 

HMDB51 dataset. As the number of samples increases, 

the time overhead of both network models also increases, 

but the increase is smaller for the improved C3D network 

model. Figure 11(b) shows that the time overhead of the 

improved C3D network model is slightly higher than that 

of C3D when the sample data is at 2000. This may be due 

to the fact that the improved C3D network takes some 

time to adapt to the computation of the samples after the 

reduction of the number of references. However, as the 

data samples increase, the increase in the time of the 

improved C3D network model decreases. By improving 

the number of parameters and the activation function of 

the C3D network, the use of GELU as the activation 

function facilitates the generalization of the model. This  

results in a reduction in the model time overhead, leading 

to faster and more accurate recognition of the swimming 

action. 

3.2 Verification of ASRNM based on 

improved C3D network 

The improved C3D network demonstrated its good 

classification performance in the HMDB51 dataset, but 

considering the one-sidedness of a single dataset and the 

effectiveness of S-Pos identification, the study utilized 

the kinetic400 dataset and the UCF101 dataset to build a 

sports action (SA) dataset for the performance validation 

of the FPR-C3D network, ASRNM model. performance 

validation. 5302 video clips in all, broken down into 43 

categories with 108 clips in each, make up the SA dataset. 

The suggested network model is evaluated in terms of 

accuracy and F1 value performance against the currently 

in use networks using the SA dataset; the comparison 

results are displayed in Figure 12. 
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Figure 12: Comparison of accuracy and F1 score in SA dataset 

 

In Figure 12(a), the research-proposed ASRNM 

model has the fastest and largest increase in accuracy 

during training, and the accuracy after 50 iterations is the 

highest among all compared models. The FPR-C3D 

network model has the lowest accuracy among the four 

methods, which confirms the need for the study to 

propose optimized convolutional networks using the SR 

residual structure. Res3D and R(2+1)D-18, the more 

popular networks, had higher accuracy than the FPR-C3D 

network, but the accuracy of the ASRNM model training 

increased by 24.37% and 4.31% over the two popular 

networks, respectively. The F1 values of the four models 

are compared in Figure 12(b), which demonstrates that 

the ASRNM model continues to be the most superior in  

 

 

 

terms of both speed and magnitude of improvement. The 

F1 curves of the four models in the SA dataset improve 

more quickly, and the change in their F1 values tends to 

stabilize when the iteration is 10 times. When the training 

went through 50 iterations, the ASRNM model increased 

the F1 value by 38.67% over the FPR-C3D network. The 

change in accuracy and F1 value curves also shows that 

the ASRNM model has less fluctuation, which indicates 

its superior generalization. The four models' AUC, mAP, 

number of model parameters (Params), and floating-point 

perations per second (Flops) are compared in order to 

further demonstrate the superiority of the model 

suggested in the study. The precise findings are displayed 

in Table 2. 
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Table 2: Comparison of experimental results of different models on the SA dataset 

Model AUC mAP Params (×106) Flops (×109) 

C3D 0.92 0.64 78.21 38.66 

Improved C3D 0.94 0.69 26.98 40.85 

FPR-C3D 0.95 0.72 47.95 45.34 

ASRNM 0.98 0.88 47.95 45.37 

Res3D 0.97 0.79 33.20 37.54 

R(2+1)D-18 0.96 0.86 33.31 38.75 

 

It is evident from comparing the models' AUC and 

mAP values that the ASRNM model performs the best on 

the SA dataset. Its mAP value rises by 2.33%-37.50% 

across multiple approaches, and its AUC value reaches as 

high as 0.98. This suggests that in the SA dataset, the 

ASRNM model performs better overall than the Res3D 

and R(2+1)D-18 networks. The ASRNM model 

outperforms the other two models in terms of 

computational complexity and parameter count due to the 

inclusion of a ST channel attention mechanism in the 

network. This mechanism increases the number of 

parameters, which in turn increases the computing 

complexity and Flops value. However, comparing with 

the traditional C3D network, the ASRNM model 

parameter computation is reduced by 38.69% and the 

computational complexity is only increased by 17.36%. 

Furthermore, the study examines how the ASRNM 

model's loss value changes after 1000 iterations in the 

HMDB51 and SA datasets. The precise findings are 

displayed in Figure 13. 
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Figure 13: Loss curves of ASRNM model in HMDB51 dataset and SA dataset 

 

In the HMDB51 dataset, the ASRNM model 

converges after 900 iterations, as shown in Figure 13(a), 

and the loss value tends to be near 0. The loss value of 

the SA model is almost equal to 0.01 after 800 iterations, 

but as the number of iterations rises, it gets closer and 

closer to 0. On the whole, the initial loss value of the 

ASRNM model is relatively low, which indicates that its 

model classification performance is better and has 
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superior classification effect in sports pose recognition. 

When the aforementioned information is combined, it 

becomes clear that the study's ASRNM model has a 

strong classification capability for sports gesture 

identification. As a result, the research produced a visual 

representation of the prediction outcomes for the SA 

dataset based on the confusion matrix of the ASRNM 

model, as seen in Figure 14. 
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Figure 14: Visualization of prediction results 

 

Figures 14(a) and (b) demonstrate the recognition of 

the butterfly and breaststroke, respectively. When there is 

intra-image reference blurring or video blurring, the 

ASRNM model detects it correctly. 

3.3 Experimental validation of gesture 

recognition in swimming 

Based on the above validation results, the study further 

compares the fine-grained recognition effects of the 

ASRNM model and the R(2+1)D-18 network in the 

swimming motion (Swim) dataset, which is a dataset 

constructed from four swimming motions, namely, 

breaststroke, butterfly, backstroke, and freestyle in the 

SA dataset, with 494 video clips, and utilizes this dataset 

to perform the fine-grained recognition of swimming 

motions. The reliability and accuracy of the model's 

classification in environments such as light and water 

refraction can be verified, as well as the recognition 

accuracy of gestures with similar movements. The 

recognition results of the two algorithms on the Swim 

dataset are shown in Figure 15. 
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Figure 15: Matrix plot for Swim datasets 

 

Figure 15(a) displays the confusion matrix results 

produced by the R(2+1)D-18 network on the Swim 

dataset, whereas Figure 15(b) displays the confusion 

matrix results produced by the ASRNM model on the 

same dataset. The comparison shows that the ASRNM 

model increases the accuracy of pose recognition for the 

four swimming categories by an average of 14.50% over 

the R(2+1)D-18 network. This suggests that the study's 

ASRNM model can recognize swimming poses with 

greater fine-grainedness. In the meantime, the study 
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examines the two approaches' variations in loss values on 

the Swim dataset in more detail. The comparative results 

are displayed in Figure 16. 
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Figure 16: Comparison of loss values between the two methods in the Swim dataset 

 

The loss curve of the R(2+1)D-18 network for 1000 

iterations in the Swim dataset is shown in Figure 16(a). A 

comparison of the ASRNM model's loss curves in Figure 

16(a), (b) reveals that, at 1000 iterations, the R(2+1)D-18 

network's loss value is near to 0.03, whereas the ASRNM 

model's loss value is close to 0 at roughly 300 iterations. 

This suggests that the study's proposed ASRNM model 

performs better and needs fewer iterations. 

4 Discussion 

The development and application of artificial intelligence 

have led to the emergence of HPR, which involves 

interdisciplinary disciplines for automatic extraction of 

human feature poses in video images via DL technology. 

However, the traditional C3D network model requires a 

large number of parameters in the process of feature 

extraction, which can lead to a decline in model 

recognition accuracy. Therefore, this study proposes an 

improved C3D network model. The validation of the 

model's performance indicates that the accuracy and F1 

value of the enhanced C3D network proposed in the study 

are significantly higher than those of the original C3D 

network. This finding was consistent with the results 

reported in literature [8] and [15]. Then, the accuracy and 

F1 value of the model varied depending on the validation 

dataset used. When comparing the validation results of 

literature [15] in the HMDB51 dataset, the accuracy of 

the proposed improved C3D network model was lower. 

This may be due to the fact that the study's recognition 

performance was affected to some extent by reducing the 

number of parameters in the network model. However, 

the validation resulted from the Sports-1M dataset further 

confirm the feasibility of the improved C3D network 

model for recognizing swimming sport poses. 

The practical value of gesture recognition 

technology in sports applications is significant. In this 

study, an S-Pos recognition model was constructed based 

on the improved C3D network, combined with the SR 

structure of the ST channel attention mechanism. The 

recognition model achieved a high mAP value of 0.88 

and an AUC of 0.98 in the homemade SA dataset. While 

previous HPR studies achieved up to 95% accuracy in 

some benchmark datasets, the validation of the mAP 

value was not analyzed further. However, when 
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comparing AUC, the study showed that the ASRNM 

model is superior for recognizing sports. Additionally, the 

confusion matrix validation results for the R(2+1)D-18 

network on gesture recognition of swimming actions 

further affirmed the value of the ASRNM model in sports 

applications such as swimming. 

However, recognizing SA poses can be limited by 

factors such as video quality, illumination, and the 

distance between the athlete and the camera. The 

ASRNM model construction is performed based on the 

improved C3D network. The model is then validated 

from different perspectives using the HMDB51 dataset, 

Sports-1M dataset, and SA dataset. The HMDB51 dataset 

comprises 6,849 videos with a video resolution in the 

range of 320*240 and includes 51 types of actions, such 

as general facial actions, human body actions, and 

general body actions. The dataset's performance 

validation confirms the effectiveness of the proposed 

model for recognizing human gestures in low-quality 

videos. The Sports-1M dataset consists mainly of videos 

from YouTube, which vary in quality, shooting 

background, lighting, and camera distance. The proposed 

improved C3D network shows an average improvement 

of 25% compared to the original C3D network. This 

suggests that the improved C3D network has potential 

applications in sports. The ASRNM model proposed still 

demonstrates superior performance in studying the 

homemade SA sports dataset and recognizing swimming 

actions. 

5 Conclusion 

The paper suggests a pose recognition model based on the 

enhanced C3D network in an effort to address the issue of 

the unsatisfactory recognition impact of the network 

under the large number of parameters. Firstly, the FCL as 

well as the activation function are replaced to improve the 

C3D network, and the improved C3D network is further 

extended into the FPR-C3D network, and the S-Pos 

recognition model is constructed by utilizing the ST 

channel attention focusing mechanism and the SR 

structure. The validation of the improved C3D network 

revealed that its training and testing accuracies in the 

HMDB51 dataset increased by 15.15% and 13.49%, 

respectively, compared to the traditional C3D network. 

The accuracy of the ASRNM model in the SA dataset 

increased by 24.37% and 4.31% over the two popular 

networks, respectively, according to a comparison of the 

performance of the various models. Its AUC value was as 

high as 0.98 and its mAP value increased by 

2.33%-37.50% over several methods. The confusion 

matrix results for the Swim dataset revealed that the 

ASRNM model increased the accuracy of pose 

recognition for the four swimming categories by an 

average of 14.50% over the R(2+1)D-18 network. The 

aforementioned findings demonstrate that the study's 

improved C3D network has successfully had its 

parameter count reduced. Additionally, the ASRNM 

model, which is based on the improved C3D network, is 

much lighter than the traditional C3D model and 

performs better in terms of accuracy and fine-grainedness 

when it comes to sports pose recognition. 

6 Limitations and future work 

Experimental validation on various datasets confirms the 

effectiveness of the improved C3D network model and 

the ASRNM model for SA recognition, such as 

swimming. However, the study's shortcoming is the low 

validation accuracy and F1 value scores for large datasets, 

although it is still superior to the C3D network. 

Additionally, the ASRNM model proposed in the study 

could not be pre-trained on large datasets due to hardware 

limitations. As a result, the number of networks capable 

of effectively recognizing contrasts is limited. This is a 

crucial aspect to improve and optimize in the next step of 

the study. To improve the accuracy of period human pose 

recognition, further reducing the number of network 

participants and using larger computer equipment for 

pre-training the recognition model will be considered. 

The next step of the research will be to design a 

visualization system for swimming sport recognition 

based on the ASNRM model. Conducting research on the 

recognition of various sports movements is not only 

conducive to the development of sports, but also helps to 

promote the intelligence, science, and rationality of 

physical exercise. The utilization of DL and other 

technologies for researching movement recognition is 

significant for sports. This data can be used to plan 

athlete training and recuperation. Additionally, 

implementing intelligent technology to recognize human 

movement postures can improve incorrect national 

movement postures, promoting the healthy development 

of national sports and achieving the ambitious goal of 

strengthening the national body. 
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