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The logistics industry has made significant progress in recent years. However, there are still issues 

with low operational efficiency and high costs. Unmanned logistics vehicles have gained attention as 

an efficient and intelligent mode of transportation with the rapid development of the industry. The 

study utilizes an advanced path tracking control algorithm, in combination with model predictive 

control technology, to monitor and adjust the path, speed, and direction of unmanned logistics vehicles 

in real-time. The aim is to enhance the stability, safety, and efficiency of travel. The experiments 

revealed that the average accuracy of path deviation prediction of the proposed model on two different 

datasets is 88.33% and 82.1%, which is 3.96% and 4.72% higher than that of the control model, 

respectively. The control accuracy of the proposed model reached 94.19% on the KITTI Vision 

Benchmark Suite dataset and 95.61% on the CARLA Simulator dataset, which are both higher than the 

other control models. In addition, the study also tested the proposed model for energy consumption, 

controller switching frequency, lateral error and other indexes, and the findings revealed that the 

proposed model of the study exhibits high stability and efficiency. This research not only provides new 

ideas for the control of unmanned logistics vehicles, but also verifies the effectiveness of the control 

strategy through experiments. 

Povzetek:  Študija vpelje napredni algoritem za sledenje poti v kombinaciji s prediktivnim modelom 

za nadzor brezpilotnih logističnih vozil, kar izboljšuje stabilnost, varnost in učinkovitost prevoza z 

visoko kvaliteto nadzora.

1 Introduction 

In traditional logistics transportation, manual operation 

and scheduling are essential, but manual operation and 

scheduling have defects such as high labor cost, 

inefficient operation, prone to human error, and lack of 

real-time monitoring and data analysis [1-2]. With the 

rapid development of electronic, communication and 

computer technologies, unmanned logistics vehicles 

(ULV) control has become an important way to solve the 

efficiency and safety problems in the logistics industry 

[3]. Compared to traditional logistics, ULVs have 

improved in path tracking, speed control and safety, 

which improves logistics efficiency and reduces 

operational costs. ULV control refers to the use of path 

tracking control (PTC) technology and driverless 

technology to realize autonomous operation and control 

of logistics vehicles [4]. By introducing driverless 

technology and ULV algorithms, the transportation 

efficiency of logistics vehicles can be improved, the risk 

of accidents can be reduced, and the pressure on human 

resources can be alleviated. In addition, research on ULV 

algorithms has benefited from advances in computer  

 

vision, sensor technology and artificial intelligence [5].  

With the help of high-precision maps, LIDAR, cameras, 

and other sensors, ULVs can sense and understand their 

surroundings in real time to better plan their paths and 

avoid obstacles. There are two innovations in this 

research: first, the linear six-degree-of-freedom (L6DOF) 

vehicle dynamics model (V-MPC) is optimized based on 

variable structure control (VSC) to simplify the output 

structure of the dynamics model. The second point is that 

the objective function and output function of the model 

are optimized using model predictive control (MPC), 

which improves the stability of the model path tracking. 

The structure of this article is divided into six parts: The 

first part is related work, which will review the literature 

to summarize the development status, application 

scenarios, etc. of ULV technology. The second part is the 

methodology, which constructs the unmanned vehicle 

operation model through MPC and VSC algorithms. The 

performance test, which is the third section, is how this 

experiment verifies the suggested model's functionality. 

The fourth part is the discussion, which compares the 

design method with relevant literature and analyzes its 
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advantages. The study's weaknesses and findings are 

compiled in the conclusion, which makes up the fifth 

section. The sixth part is Ethical and Safety 

Considerations, which introduces the ethical and safety 

standards followed by the design method. 

ULV is the current hotspot in the research of 

driverless technology, and many researchers have 

explored for the realization method of ULV. Hang et al. 

proposed a novel four-wheel steering electric vehicle as 

an automatic ground vehicle. To realize the automatic 

driving of this automatic ground vehicle, they constructed 

a linear variable parameter system model to adapt the 

ULV apparatus to different longitudinal speeds and road 

friction coefficients. The experimental results indicated 

that the linear variable-parameter system model 

constructed by the study exhibited better path tracking 

performance [6]. Path tracking is one of the main 

responsibilities of self-driving automobiles, as discovered 

by Chen et al. They consequently used deep neural 

network techniques to optimize path tracking. In this 

study, a combination of proximal policy optimization and 

pure optimization was chosen to build the vehicle 

controller architecture. The combination of the two 

algorithms makes the overall operation of the control 

system more robust and improves the additivity of the 

controller. The results indicated that the optimized 

control system's path tracking capability was significantly 

enhanced under low-speed driving conditions [7]. Lin et 

al. used the ULV algorithm to optimize a linear 

three-degree-of-freedom V-MPC and proposed an 

integrated control method combining the MPC and ULV 

algorithms. The MPC was typically used to avoid yaw, 

while the ULV algorithm maintains vehicle roll stability 

by controlling the braking force of each tire. The study's 

comparison of the suggested model with popular models 

like CarSim revealed that the enhanced control system, 

which uses the ULV algorithm, produces smoother 

outcomes [8]. Sun et al. proposed a fast non-singular 

terminal sliding mode control strategy with a double 

hidden layer output feedback neural network. The 

strategy improved the sliding mode control using 

feedback neural network and ULV algorithm, and 

constructed vehicle kinematics and dynamics models. 

Simulation experiments yielded that the control algorithm 

of the proposed model has significant advantages such as 

high tracking accuracy, fast convergence, and robustness 

compared with the traditional sliding mode controller [9]. 

MPC is one of the commonly used algorithms in 

current dynamics research, and more extended 

applications of this algorithm have emerged. Pan et al. 

proposed a new multilayer graph architecture based on 

the MPC algorithm to achieve scalability of interaction 

networks. The architecture established formation control 

laws for autonomous formation, formation maintenance, 

collision and obstacle avoidance using the MPC 

algorithm on the basis of multilayer graphs. Finally, the 

experiments adopted the proposed framework to 

accomplish the formation maintenance and trajectory 

tracking tasks in the constraint space, which verified the 

feasibility of the proposed framework [10]. Çimen et al. 

combined the MPC algorithm with the firefly 

optimization algorithm, thus proposing a new 

optimization algorithm. The optimization algorithm was 

used to study single-peak, multi-peak, composite and 

CEC-C06 2019 benchmark optimization and optimal 

design parameter determination problems. It was 

experimentally verified that the proposed model 

possesses lower loss and higher performance efficiency 

than the current common models of the same type [11]. 

Beus et al. proposed a load/frequency controller for 

hydraulic turbine governor based on MPC. This 

controller was updated by linearly predicting the 

operating points of the model parameters, thus greatly 

improving the stability and operating efficiency of the 

frequency controller. The proposed controller was 

experimentally compared with several state-of-the-art 

controllers such as particle swarm optimization-based PI 

controller. Additionally, the findings showed that the 

research's suggested model benefits from having a 

straightforward structure and quick calculation [12]. A 

hierarchical non-linear MPC method for cooperative 

control of vehicle-vehicle networks was proposed by Liu 

et al. The algorithm employs a multilayer structure and 

solves its optimization problem by 

continuous/generalized minimum residual method. To 

enhance tracking performance, the algorithm also 

included a controller with a double-loop structure. 

According to experimental findings, the suggested 

method outperforms the most advanced vehicle 

cooperative control models in terms of stability and error 

rate, proving its usefulness in real-world scenarios [13]. 

To clarify the advantages and disadvantages of PTC 

technology and MPC technology, the research 

summarized the literature review in Table 1. Further 

optimization is needed based on current research due to 

the low computational efficiency and implementation 

difficulties found in previous studies. 
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Table 1: Summary of related work content 

Reference Improvement/Application direction Results 

[6] 

This study was based on a linear variable parameter 

system model to modify four-wheel steering electric 

vehicles 

The linear variable parameter system 

model has better path tracking 

performance 

[7] 
This study utilized deep neural network technology to 

optimize path tracking algorithms 

Under low-speed driving conditions, the 

path tracking ability of the optimized 

control system is significantly improved 

[8] 
This study optimized the linear three degree of freedom 

V-MPC using the ULV algorithm 

The enhanced control system using ULV 

algorithm produces smoother results 

[9] 

This study was based on optimizing the path tracking 

algorithm using a dual hidden layer output feedback 

neural network 

The optimized control algorithm has the 

characteristics of high tracking accuracy 

and fast convergence speed 

[10] 
This study proposed a multi-layer graph architecture 

based on the MPC algorithm 

This architecture diagram completes 

formation maintenance and trajectory 

tracking tasks in the constrained space 

[11] 
This study optimized the MPC algorithm based on 

fireflies 

The optimized algorithm has lower loss 

and higher performance efficiency 

[12] 
This study proposed a load/frequency controller for a 

water turbine governor based on MPC 

Proposed model has a simple structure 

and fast computing power 

[13] 
This study proposed a hierarchical nonlinear MPC method 

for vehicle network collaborative control 

The effectiveness of this method in 

real-life scenarios has been verified 

through experiments 

 

In summary, ULV has now achieved greater results 

in small unmanned vehicle applications after recent years 

of development. However, the current commonly used 

ULV algorithms still have defects such as high 

computational complexity and difficult to realize. 

Therefore, the research tries to use VSC algorithm and 

MPC algorithm to optimize the more complex L6DOF, 

aiming to construct a stable and efficient ULV control 

algorithm. 

 

2 Improved control of unmanned 

logistics vehicles based on VSC and 

MPC algorithms 
ULV has steadily come to dominate the logistics and 

transportation fields due to the industry's rapid 

development as well as the ongoing advancements in 

science and technology. The traditional manual driving 

logistics vehicles have some limitations in terms of 

efficiency, safety and environmental protection. To 

overcome these shortcomings, the study uses advanced 

control algorithms, such as MPC and vehicle stability 

control, to construct a stable and efficient ULV control 

model. This will help promote technological innovation 

and sustainable development in the logistics industry. 

 

 

2.1 Path tracking model based on VSC 
The VSC algorithm is a control strategy whose core idea 

is to utilize sliding modal hyperplanes to achieve fast, 

non-linear switching of the dynamic characteristics of the 

system [14-15]. This algorithm is robust in dealing with 

uncertainties and perturbations because the sliding modal 

hyperplane can be adaptively adjusted according to the 

changes in the system state. In ULV, the VSC algorithm 

is used to design controllers that enable the system to 

track the desired path quickly and accurately [16]. The 

VSC approach has garnered a lot of interest in the ULV 

sector because of its benefits, which include quick 

response times and insensitivity to changes an system 

parameters [17]. In order to better study the path selection 

condition of logistics vehicles on the way of transporting 

goods, it is necessary to construct a V-MPC. A L6DOF is 

used in this study. It is assumed that c  denotes the 

spacing from the right wheel of the vehicle to the center 

of mass and d  denotes the spacing from the left wheel 

to the center of mass. In order to facilitate the analysis in 

hand, the study establishes a new temporary coordinate 

system for each analysis point, and the temporary 

coordinate system is x y− . Then xF  denotes the force 

received in the direction of x  of the temporary 

coordinate system, and yF  denotes the force received in 

the direction of y  of the temporary coordinate system. 

The structure of the model is shown in Figure 1. 
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Figure 1: Hand analysis of linear six-degree-of-freedom vehicle dynamics model 

 

cF  in Figure 1 shows the lateral force on the vehicle 

tires, which has a significant impact on the handling, 

stability and safety of the vehicle. lF , on the other hand, 

denotes the longitudinal force, which acts similarly to the 

lateral force and are both forces that maintain stable 

vehicle motion. In addition, ,   is the center of mass 

and the lateral deflection angle of the tire in the figure, 

respectively, and   denotes the tire deflection angle. If 

the vehicle's power wheel deflection angle stays constant, 

the vehicle's motion will likewise be constant according 

to this model [18]. Currently, equation (1) displays the 

relationship between the steering wheel rotation angle 

and the transverse angular velocity at the vehicle's center 

of mass. This ratio can reflect the stability of the current 

state of the vehicle. 

( )21

x

sw x

v
G

i L v



=

+
       (1) 

In equation (1),   denotes the pendulum angular 

velocity at the center of mass, and L  denotes the 

horizontal distance between the front and rear axles of the 

vehicle. xv  denotes the velocity of the horizontal motion 

of the vehicle, and swi  denotes the ratio of the front 

wheel angle to the control angle. K  denotes the 

stabilization factor, and G  denotes the ratio of the 

pendulum angular velocity at the center of mass to the 

steering wheel turning angle. The value of K  is related 

to the mass of the vehicle, the distance between axles, etc., 

and its computational expression is shown in equation (2) 

in 2 2/s m . 

2

f r

m b a
K

C CL

 
= − 

 
 

       (2) 

 

 

In equation (2), fC  denotes the front tire lateral 

deflection stiffness and m  denotes the mass. b  stands 

for the distance between the vehicle's front axle and 

center, while rC  stands for the rear tires' stiffness in 

terms of lateral deflection. The a  represents the 

separation between the vehicle's center and rear axle. In 

addition, the vehicle center of mass lateral deflection 

(MLD) also has a large effect on vehicle stability, the 

center of MLD affects the stability of vehicle motion by 

increasing the steering wheel stability [19]. The gain 

coefficient of center of MLD on steering wheel stability 

is shown in equation (3). 

( )

2

21

r

sw x

mv a
b

LC
G

i L Kv


+

=
+

         (3) 

In equation (3), G  denotes the gain coefficient of 

the center of MLD on steering wheel stability.   

denotes the center of MLD angle. If the vehicle 

transverse swing angle and the horizontal direction of the 

running state remain unchanged, at this time the 

instantaneous speed of the vehicle doing circular motion 

can be approximated as the tangential direction of the 

speed. At this time, the instantaneous velocity and motion 

path of the vehicle are shown in Figure 2. 
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Figure 2: Instantaneous velocity and motion path diagram 

of the vehicle 

 

In Figure 2, CGB  denotes the chordal tangent 

angle of the vehicle's trajectory, and therefore CGB  is 

equal to the 
1

2
 of the circumferential angle of the 

vehicle's trajectory. Therefore, the position of the vehicle 

in the direction of GY  changes as shown in equation (4). 

tan
2

G Gy x



 

= + 
 

      (4) 

In equation (4), Gy  represents the displacement in 

the GY  direction on the G GX Y− A coordinate system 

established with the vehicle's last moment of motion 

point G  as the origin, and Gx  represents the 

displacement in the GX  direction. When the vehicle is 

in the process of uniform speed steering, the relationship 

between the angles in equation (4) can be deduced from 

the ideal state of the steering wheel angle of rotation 

angle of the expression, which becomes larger as shown 

in equation (5). 

2arctan

2

x p

sw

P

f

v t

G t G 



 
  
 

=
+

     (5) 

In equation (5), f  denotes GCY  in Figure 2 and 

pt  denotes the time period. The kinetic model also serves 

to predict the vehicle motion deviation. The algorithm's 

prediction of the deviation is related to the projected 

distance agL  from the point of motion to the predicted 

point at the previous moment, and the expression for the 

calculation of the motion deviation is shown in equation 

(6). 

cos
cos arcsin

la la

la

ag

d d
f

d

L


 = =

   
    

  

 (6) 

 

In equation (6), lad denotes the spacing between the 

predicted path to the projection point. f  denotes the 

motion deviation of the vehicle, and   denotes the 

angle between the target path and the actual path. At this 

point, the non-L6DOF V-MPC is constructed, so the 

study needs to optimize this model according to the VSC 

algorithm. Convergence law design is an important task 

in the design of VSC algorithm. Convergence law is a 

control strategy designed to make the system state 

gradually converge to the target state or desired value 

[20]. The role of convergence law design is to improve 

the stability, tracking performance and robustness of the 

system by gradually adjusting the control signals so that 

the system state gradually converges to the target state. 

The study uses the exponential convergence law to 

optimize the model, and the mathematical expression of 

the exponential convergence law is shown in equation 

(7). 

( )sgns s ks= − −          (7) 

In equation (7), ( )sgn .  denotes the sign function, 

,k  both denote the parameters of the exponential 

convergence law, and both are rational numbers greater 

than zero. s  denotes the convergence law value. In 

addition, vibration elimination is also a more important 

part. Vibration elimination requires the definition of the 

saturation function, and the expression of the 

conservation function is shown in equation (8). 

( )
( )sgn ,| |

,| |

s s
sat s

s s





 
= 


     (8) 

In equation (8),   denotes the width of the 

boundary layer. | . |  denotes the absolute value taken. In 

the dynamics model, the setting of the boundary layer can 

affect the stability and convergence of the simulation. 

Reasonable setting of the boundary layer can reduce the 

numerical error and oscillation phenomenon, improve the 

simulation effect. 

 

2.2 Path tracking model construction based 

on MPC improvement 
Based on the above, the study constructed a non-L6DOF 

path-tracking model based on VSC, but the switching 

process of VSC usually introduces a control pulse, i.e., a 

sudden change of the control input on the sliding mode 

surface [21]. This impulse signal may lead to a non-ideal 

response of the system, and therefore new methods need 

to be introduced to further optimize the model. The MPC 

algorithm is an optimization control method that is 

widely used in fields such as industrial process control 

and motor vehicle control. Utilizing a dynamic model of 

the system, it makes predictions and solves an 

optimization problem in each control cycle to determine 

the ideal control inputs. Its basic steps include system 

modeling, prediction, optimization problem definition, 

optimization solution and application of control inputs 
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[22]. The algorithm is able to take into account the 

non-linear characteristics and constraints of the system as 

well as dynamic optimization during each control cycle. 

The control schematic of the MPC algorithm is shown in 

Figure 3. 
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Figure 3: MPC algorithm control principal diagram 

 

The MPC algorithm redefines the instantaneous 

states, control parameters, and outputs of the above 

V-MPC, which are shown in equation (9). 

( ) ( ) ( )( )

( ) ( ) ( )( )

,

,

t f t u t

t h t u t

 

 

 =


=

      (9) 

In equation (9), ( )t  is the state vector of the 

model and ( )t  denotes the output of the model. t  

denotes the time and ( )u t  denotes the control vector of 

the model. Discreteization of the dynamics model is also 

required when instantaneous states, control parameters, 

and outputs have been redefined. The original non-linear 

model is to be transformed into a discrete linear 

time-varying model using the discretization method. 

Equation (10) displays the state vector expression 

following the discretization process. 

( ) ( ) ( )A t B t Cu t = +      (10) 

In equation (10), , ,A B C  are all discretized process 

variables, and the specific value of , ,A B C  can be 

derived by solving equation (9) in a generalized way. 

Moreover, the discretized state vector of 1t +  moment 

is calculated as shown in equation (11). 

( ) ( ) ( )1 tt B t C u t d  + = + +   (11) 

In equation (11), ,B C   is the discretized process 

variable and td  is the special solution of equation (9) at 

moment t . The kinetic model can be iterated after 

discretization so as to calculate the discrete values at each 

moment. Objective function design, constraint design, 

and prediction function design are needed after the model 

is discretized. Among them, the objective function design 

plays a key role, and the reasonable selection and 

definition of the objective function can clarify the 

problem objective, guide the problem modeling, provide 

measures and constraints, and affect the behavior and 

final results of the optimization algorithm [23]. Assuming 

that pN  denotes the prediction step and pY  denotes the 

output prediction value. Equation (12) displays the 

expression for the MPC algorithm's objective function. 

( ) ( )( )

( ) ( ) ( )2 2 2

1 1

, ,

|| || || ||
p c

N N

p ref Q R

i i

J t U t

Y k i Y k i u k i

 


= =

 =

+ − + +  + + 
(12) 

In equation (12), cN  denotes the control step size 

and   denotes the relaxation factor. || . ||  denotes the 

Euclidean paradigm operation, refY  denotes the control 

output ideal, and , ,Q R   denotes the corresponding 

weight matrix. Path tracking accuracy and stability can be 

increased by the system by tracking the intended path 

more precisely and by decreasing the goal function. In 

addition to guaranteeing that the state of the system is 

always within the safety range, the model constraints also 

ensure the viability of the control inputs and state 

variables [24]. The performance of the model and its 

ability to adapt to different demands can be effectively 

improved by setting constraints reasonably. The 

constraints of the model of this research are mainly for 

four aspects: output, control weight, weight change rate, 

and relaxation factor. The specific constraints are shown 
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in equation (13). 

( )

( )

min max

min max

min max

min max

Y Y t Y

u u t u

U U U

  

 


 

    
  

    (13) 

In equation (13), ( )Y t  denotes the vehicle output 

quantity and ( )u t  denotes the core control quantity of 

the model. U  denotes the weight change of the 

control quantity and   denotes the relaxation factor. 

The wrong iteration loop will end earlier after the model 

is given the constraints, so the computational efficiency 

of the model is further improved.  

 

 

Currently, the model's output function differs from the 

pre-optimization, and equation (14) displays the 

optimized prediction function's expression. 

( ) ( ) ( ) ty t t U t  = +  +    (14) 

In equation (14), t  denotes the amount of model 

control at the current moment, and the acquisition of the 

( )t  value relies on the sensors of the simulation model. 

The introduction of the MPC algorithm allows the model 

to perform a comprehensive path deviation analysis and 

correct the route in a timely manner through multi-point 

prediction. The structure of multi-point deviation 

prediction is shown in Figure 4. 
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Figure 4: Structure diagram of multi-point deviation prediction 

 

After the optimization of VSC algorithm and MPC 

algorithm, the V-MPC can be improved in terms of 

control performance, stability, tracking performance and 

energy consumption optimization. These optimizations 

can improve the vehicle handling, safety and energy 

efficiency performance. The flow chart of the optimized 

V-MPC operation is shown in Figure 5. 
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Figure 5: V-MPC model operation flow chart 

 

In practical logistics scenarios, the proposed model 

addresses the issue of low accuracy in traditional PTC 

algorithms by enhancing the path tracking algorithm. 

This improvement concept also has implications for other 
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map recognition and automation control. However, it 

should be noted that this research method still has 

limitations in more precise motion control scenarios. 

Consequently, the proposed enhanced PTC algorithm is 

unable to handle path control tasks with low accuracy, 

such as subways and light rail. 

 

3 Testing and analyzing the effect of 

V-MPC model application 
The performance test of the V-MPC model is conducted 

on a desktop computer with i7-13700K CPU, GeForce 

RTX 3090 GAMER OC graphics card, and CentOS 7. 

The experiment utilizes the KITTI Vision Benchmark 

Suite (KITTI) and CARLA Simulator (CARLA) data sets, 

which contain sensor data from autonomous vehicles 

collected on real roads, including camera images and 

laser radar data. Although the KITTI and CARLA 

datasets provide a wealth of sensor and environmental 

data, there are some limitations to both datasets. KITTI 

data sets are mainly collected under clear weather 

conditions, which may limit their applicability in severe 

weather conditions such as rain and snow. Because 

CARLA is a simulation environment, its data may not 

fully simulate the complexity and variability of the real 

world. Therefore, to ensure control of experimental 

variables, all models participating in the performance 

analysis experiment will undergo a 2-hour pre-training 

session. The pre-training dataset will consist of randomly 

selected data samples from KITTI, while ensuring 

consistency between the pre-training system environment 

and hardware environment. 

The control models used in this experiment are the 

particle swarm optimization-based PI controller model 

(PSO-PI) and the L6DOF. The double-shifted reference 

trajectories of the L6DOF model and the V-MPC model 

on the CARLA dataset are shown in Figure 6. Figure 6(a) 

represents the double-shifted line reference trajectory of 

the L6DOF model, from which it can be seen that the 

transverse position of the L6DOF model has a large 

magnitude of variation, indicating that the stability of the 

L6DOF model is poor. Figure 6(b) represents the 

double-shifted line reference trajectory of the V-MPC 

model, and the transverse position variation of the 

V-MPC model is smaller, indicating that the model is 

more stable. 

 

20 40 60 80 1000
-2

2

0

4

120

H
o

ri
zo

n
ta

l 
p

o
si

ti
o

n
/m

Vertical position/m
(a) L6DOF model double shift line reference trajectory

 

20 40 60 80 1000
-0.4

0

-0.2

120

(b) V-MPC model double shift line reference trajectory

0.2

H
o
ri

zo
n
ta

l 
p
o
si

ti
o
n

/m

Vertical position/m

 

Figure 6: Reference trajectories of double moving lines 

for different models 

 

 

 

Figure 7 compares the transverse errors of the 

V-MPC model and the L6DOF model at various speeds 

using the KITTI dataset. The lateral error findings of the  

L6DOF model and the V-MPC model are shown in 

Figures 7(a) and 7(b), respectively. The error variation in 

the first half of the route is essentially the same for the 

two models, according to the data; nevertheless, the 

V-MPC model's error value is lower than the L6DOF 

models. Moreover, the error variation of V-MPC model 

in the second half of the journey is obviously better than 

the control model. 
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Figure 7: Comparison of lateral errors of different models 

 

The comparison of path deviation prediction 

accuracy of PSO-PI model and V-MPC model is shown 

in Figure 8. The accuracy of each model's path deviation 

prediction using the CARLA dataset is shown in Figure 

8(a). On this dataset, the V-MPC model's average 

accuracy is 88.33%, greater than the PSO-PI model's 

84.64%. Figure 8(b) represents the path deviation 

prediction accuracy of different models on the KITTI 

dataset. Based on Figure 8(b), the V-MPC model has an 

average accuracy of 82.1%, which is 4.72% greater than 

the PSO-PI model. 
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Figure 8: Comparison of accuracy of path deviation 

prediction among different models 

 

The energy consumption metrics are employed to 

assess the optimized kinetic models' energy usage 

efficiency. Figure 9 shows a comparison of the PSO-PI 

and V-MPC models' energy consumption across various 

datasets. The energy usage of the models using the KITTI 

dataset is shown in Figure 9(a). The energy usage of the 

two models on the CARLA dataset is shown in Figure 

9(b). In Figure 9, the change in energy consumption of 

V-MPC model with increasing distance traveled is 

smoother, so it is concluded that V-MPC model has better 

stability during operation. 
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Figure 9: Comparison of energy consumption of different 
models 

 

Figure 10 represents the variation of front wheel 

deflection angle and deflection increment versus time 

when the driverless car equipped with the V-MPC model 

is doing uniform circular motion. Figure 10(a) shows the 
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front wheel deflection angle versus time at different 

vehicle speeds, while Figure 10(b) shows the angular 

increment of front wheel deflection at different vehicle 

speeds. The sub-experiment tests the stability of the 

model steering by circular motion. In Figure 10, the curve 

fluctuation is minimized at a speed of 20km/h. Therefore, 

it is concluded that the steering stability of the vehicle 

segment is optimal when the initial speed is 20km/h in 

the experimental environment, while the speed is too fast 

or too slow will lead to the reduction of stability. 
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Figure 10: Changes in the relationship between front wheel deflection angle and deflection increment with time 

 

For the VSC algorithm, the controller switching 

frequency is an important index, and the controller 

switching frequency affects the response speed, stability 

and energy consumption. Figure 11 displays the findings 

of this study, which analyzes the controller switching 

frequencies of the three models—PSO-PI, V-MPC, and 

L6DOF—using various datasets. The controller switching 

frequencies of the three models on the KITTI and 

CARLA datasets are shown in Figures 11(a) and 11(b), 

respectively. The figures demonstrate that there is a 

considerable difference in switching frequency between 

the KITTI and CARLA datasets. It can also be concluded 

that the controller switching frequency decreases 

gradually when the speed is too large or too small, and 

peaks at a speed of 3-4 m/s. 
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Figure 11: Comparison of switching frequencies of different model controllers 

 

The control accuracy indicates the accuracy of the 

optimized dynamics model for the control inputs. Figure 

12 displays a comparison of the three models' control 

accuracy using the KITTI and CARLA datasets: PSO-PI, 

V-MPC, and L6DOF. The control accuracy of the 

V-MPC model in Figure 12(a) is 94.19%, which is 8.73% 

higher than the L6DOF model and 4.70% higher than the 

PSO-PI model. Figure 12(a) shows the control accuracy 

of the three models on the KITTI dataset. Figure 12(b) 

represents the control accuracy of the three models on the 

CARLA dataset. Based on the experimental findings, the 

V-MPC model has a higher control precision with an 

accuracy of 95.61%, compared to the PSO-PI model with 

an accuracy of 91.76% and the L6DOF model with an 

accuracy of 81.62%. 
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Figure 12: Comparison of control accuracy of different 

models 

To assess the complexity of the V-MPC, PSO-PI, and 

L6DOF algorithms, the KITTI and CARLA datasets are 

used as inputs, and the output time of the corresponding 

models can intuitively reflect the complexity of different 

algorithms. Figure 13 illustrates a comparison of the 

output times for each algorithm. Figure 13 (a) compares 

the complexity of the V-MPC, PSO-PI, and L6DOF 

models on the KITTI dataset, while Figure 13 (b) 

compares the complexity of different models on the 

CARLA dataset. The figures show that the V-MPC model 

has a shorter output time on both datasets (0.856s and 

0.818s, respectively) compared to the PSO-PI and 

L6DOF models. Therefore, the proposed model is more 

progressive in terms of algorithm complexity. Based on 

the experiment results, it is evident that the proposed 

model has high control accuracy, making it suitable for 

scenarios with long driving times and high path accuracy 

requirements, such as unmanned express delivery. 

Additionally, the proposed model exhibits strong 

scalability. The MPC algorithm can introduce dynamic 

parameter optimization algorithms to accelerate the 

convergence speed and computational efficiency of the 

model because it predicts through a system dynamic 

model. 
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Figure 13: Schematic diagram of comparing the 

complexity of path tracking control using different 

algorithms 

 

The study analyzes and compares errors generated 

by different models on the KITTI dataset. To eliminate 

accidental errors, the experiment is repeated three times. 

The results of the error comparison are presented in 

Figure 14, which shows that the V-MPC model has the 

lowest path judgment error rate among the three models. 

Additionally, the V-MPC model had an average error rate 

of 1.17% across all three experiments, while the PSO-PI 

model had an average error rate of 1.55%, and the 

L6DOF model had an average error rate of 1.69%. Based 

on the error analysis results, it can be concluded that the 

proposed model has minimal errors and is suitable for 

high-accuracy automated path selection scenarios. 
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Figure 14: Comparison diagram of error analysis for 

different models 

 

Based on the experiment results, it is evident that the 

proposed model has high control accuracy and energy 

utilization efficiency, making it suitable for scenarios 

with long driving times and high path accuracy 

requirements, such as unmanned express delivery. 

Additionally, the proposed model exhibits strong 

scalability. The MPC algorithm can introduce dynamic 

parameter optimization algorithms to accelerate the 

convergence speed and computational efficiency of the 

model because it predicts through a system dynamic 

model. 

4 Discussion 

In recent years, with the rapid development of the 

logistics industry, there has been a great deal of interest in 

free vehicles due to their high efficiency and intelligence. 

Firstly, in terms of PTC, existing research has 

predominantly employed algorithms based on deep neural 

networks and sliding mode control, which have yielded 

satisfactory tracking outcomes, such as the deep neural 

network optimization control system proposed by Chen et 

al [7]. and the fast nonsingular terminal sliding mode 

control strategy proposed by Sun et al [9]. Secondly, 

previous studies have demonstrated the efficacy of MPC 

as a control strategy. This included the multi-layer graph 

architecture based on MPC proposed by Pan et al [10]. 

and the load/frequency controller based on MPC 

proposed by Beus et al [12]. By optimizing the objective 

function and constraint conditions of the MPC algorithm, 

the control system can operate in an efficient manner. 

Finally, existing research has demonstrated the 

advantages of the ULV algorithm in improving vehicle 

roll stability and control smoothness. For instance, the 

integrated control method combining MPC and ULV 

algorithm proposed by Lin et al [8] has been shown to be 

effective. However, current research still faces challenges 

in terms of computational complexity and 

implementation. Consequently, the research combines the 

VSC and MPC algorithms and optimizes the 

6-degree-of-freedom vehicle dynamics model in order to 

overcome the shortcomings of existing research and 

achieve more stable and efficient ULV control. The 

optimized model has improved significantly in terms of 

computational complexity, output time, and control 

accuracy. This is due to the VSC algorithm simplifying 

the model's structure, which avoids unnecessary 

calculations. Additionally, the MPC algorithm optimizes 

the objective and output functions of the model, allowing 

for accurate analysis and path selection. After introducing 

the VSC and MPC algorithms, the performance of the 

linear six-degree-of-freedom vehicle dynamics model has 

significantly improved. This model can be applied to 

industries such as unmanned logistics and unmanned food 

delivery due to its fast output capability, which enhances 

its adaptability and expands its application space. 

5 Conclusion 

This research delves into ULV control based on ULV 

algorithms. High-precision navigation and control of 

ULVs is achieved through advanced ULV algorithms and 

dynamics modeling techniques. The technique not only 

offers a fresh approach to ULV control, but it also 

establishes the framework for the automated and 

intelligent creation of next-generation logistics systems. 

The experimental findings showed that on two distinct 

datasets, the suggested model performed better than the 

control model. In terms of path deviation prediction, the 

average accuracy of the proposed model on the two 
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datasets was 88.33% and 82.1%, which was 3.96% and 

4.72% better than the control model, respectively. This 

result proved the advantage of the proposed model in 

terms of prediction accuracy. Also the control accuracy of 

the proposed model reached 94.19% on the KITTI dataset 

and 95.61% on the CARLA dataset, both of which are 

higher than other control models. In addition to the above 

two metrics, the study also tested other aspects of the 

model, including energy consumption, controller 

switching frequency and lateral error. The experimental 

results verify that the suggested model exhibits a decent 

level of sophistication and performs comparably across 

various criteria. 

Furthermore, in consideration of the complex and 

unpredictable nature of real-world logistics scenarios, the 

study employed a substantial number of data samples to 

train Jupiter, ensuring that the training data samples 

encompass the majority of potential scenarios in 

real-world logistics. Concurrently, in actual unmanned 

logistics workshops, the range of activities performed by 

different transfer vehicles is relatively limited. 

Consequently, the study employs path tracking 

algorithms to ensure that the model possesses the 

requisite dynamic and unpredictable capabilities to cope 

with real-world scenarios following autonomous 

selection. 

6 Ethical and safety considerations 

The use of UAVs or drones in modern logistics is 

becoming increasingly prevalent. As such, it is of 

paramount importance to ensure that their use is safe and 

ethical. Research in this field adheres to the highest 

ethical standards in order to minimize the potential risks 

that UAVs may face in their autonomous 

decision-making process. Throughout the entire 

development process of UAVs, relevant safety protocols 

have been developed to prevent potential accidents. At 

the same time, a protection mechanism is set up in UAVs, 

which can switch to manual control in case of system 

failure, ensuring safety during transportation. Finally, the 

study will implement rigorous privacy protection 

measures in accordance with global data security 

standards. 
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