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Analysing x-ray images for detecting Covid-19 presents one cost-effective approach. To automate this task,
deep learning techniques have been suggested to reduce doctors workload. However, existing datasets
classify X-ray images into three categories: Normal, Pneumonia, and COVID-19, but it is crucial to dif-
ferentiate between bacterial and viral pneumonia due to their distinct treatment approaches. This paper
introduces three novel cascade systems designed to distinguish between COVID-19 and non-COVID-19
pneumonia, as well as to classify bacterial and viral pneumonia, using a newly compiled dataset. The
proposed Transferred Cascade Convolutional Neural Network (TCCNN) system enables the model to ef-
ficiently recognize complex concepts by combining various convolutional neural networks in two or three
stages. Furthermore, TCCNN incorporates transfer learning within the cascade structure, allowing each
convolutional neural network to exploit the trained model from the previous stage. The comparative anal-
ysis demonstrated the efficiency of the proposed systems, where the two-stage PN_CBV system achievd an
accuracy of 96.27% using the DenseNet201_DenseNet121 combination.

Povzetek: Prispevek predstavlja nov pristop za prepoznavanje COVID-19 iz rentgenskih posnetkov prsnega
koša z uporabo prenesenega kaskadnega sistema (TCCNN). Sistem razvršča slike v štiri kategorije: nor-
malno, bakterijsko pljučnico, virusno pljučnico in COVID-19 s pomočjo prenesenega učenja.

1 Introduction

Since December 2019, new pneumonia has been detected in
China and has affected a large number of people. This dis-
ease had a similar behaviour as severe acute respiratory syn-
drome (SARS). In March 2020, the World Health organiza-
tion (WHO) declared this pandemic as COVID-19 [1]. The
symptoms of COVID-19 include fever, cold, dry cough,
breathing difficulties, and acute respiratory syndrome [2].
Because of its high transmissibility, controlling the spread
of the virus has become urgent.
For the diagnosis of COVID-19, there are three main

clinical tools in use: Real-time polymerase chain reaction
(RT-PCR), computerized chest tomography (CT), and chest
X-Rays (CXR) scans. RT-PCR tests risk missing positive
cases due to various technical problems. Moreover, test-
ing kits and the long processing time (4–6 hours [3]) can
result in a rapid spreading rate of COVID-19. As an alter-
native and to control the Covid-19 spreading, radiological
images such as X-rays and CT-scans have been exploited.
While CT imaging presents several disadvantages, such as
high radiation doses and sensitivity to patient movements
[4], X-ray imaging is patient-friendly, fast, cheap, and can
detect the disease early. Additionally, X-ray scanners are
largely available. However, X-ray scans take a long time to
detect COVID-19 and require an expert radiologist. More-

over, their manual analysis is time-intensive and can be in-
fluenced by doctors’ subjectivity. To reduce the doctor’s
workload and avoid their subjective decisions, researchers
have proposed exploiting computer-aided diagnostic sys-
tems (CAD) for COVID-19 detection from X-rays.
Recent advances in machine learning (ML) and deep

learning (DL) techniques have enabled the development of
CAD systems for X-ray image analysis [5, 6, 7, 8]. Con-
volutional neural networks (CNNs) are the most popular
architectures due to their advantages for image analysis
[9, 10, 11, 12]. However, these architectures risk overfit-
ting due to the lack of data. To address this problem, many
efforts have been made to create large datasets from dif-
ferent sources [13, 14, 15, 16]. To the best of the authors’
knowledge, all voluminous datasets categorize X-rays into
three classes: Covid-19, Normal, and Pneumonia due to the
difficulty of multi-class classification systems.
The purpose of this contribution is to propose a four-

classification system that distinguishes between COVID-
19, normal, and viral and bacterial pneumonia. This classi-
fication helps to avoid misclassifying COVID-19 samples
due to their similar characteristics with other viral pneumo-
nia [17]. To simplify the multi-class classification task, we
proposed a cascade system that divides the classification
according to annotation complexity, starting with the eas-
iest and progressing to the most complex. TCCNN helps
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to quickly identify more complex concepts from data by
stacking CNNs sequentially. The main contribution is that
each model in our cascade system exploits the experience
of the previous model through transfer learning. This was
motivated by the advantages of transfer learning between
similar and non-distant classification tasks.
This paper presents several contributions, including the

proposition of three types of cascade systems based on six
CNN architectures: two types of two-stage cascade strate-
gies and a three-stage cascade system for covid-19 classi-
fication. Our study integrates a transfer learning strategy
within the proposed systems.
The remaining parts of this paper proceed as follows: the

first section details the related works to deep learning meth-
ods for COVID-19 classification. Section 2 explains the
proposed method. Section 3 presents and discusses the ob-
tained results. Finally, the last section concludes this work.

2 Related works

To address the COVID-19 epidemic, many efforts have
beenmade to design deep learning applications for COVID-
19 detection based on X-rays [18, 14, 19], and CT scans
[20] of the chest. Various deep learning architectures have
been exploited, such as CNNs [21] and Long short-term
memory (LSTM) [22]. CNNs attracted much interest in
detecting COVID-19 from X-rays due to their advantages
for image processing. Predictive models for these archi-
tectures can be generated by either training from scratch
[18] or using transfer learning techniques [14, 15, 19, 21].
Nayak et al. [21] highlighted the important results of trans-
fer learning from the ResNet−50 compared to the other
six CNN architectures. Chowdhury et al. [14] used a
transfer learning technique from 7 imageNet models and
one pre-trained on X-ray images (CheXNet). Their exper-
imental study revealed that CheXNet was more efficient
for binary classification, whereas, DenseNet201 was more
promising in the three-class classification scheme. In an-
other investigation [19], using the fine-tuned ResNet50 ar-
chitecture as a feature extractor with SVM was more ef-
ficient than other pre-trained models and a trained CNN
architecture from scratch. In [18], a new residual archi-
tecture was proposed to extract features at different ab-
straction levels. This approach uses two parallel convolu-
tions with different filter sizes to capture multi-scale fea-
tures. Another approach, suggested by Öksüza et al. [23],
proposes using fine-grained, coarse-grained, and coarser-
grained maps generated from three different networks:
SqueezeNet, ShuffleNet, and EfficientNet-B0. This en-
semble approach achieved promising results in detecting
COVID-19 from chest x-ray images.
To combine the decisions of several learners, Win et al.

[24] proposed an ensemble deep learning technique. Their
approach was evaluated using 11 types of CNNs. The au-
thors combined the five best models using soft and hard vot-
ing techniques. Similarly, Brunese et al. [25] proposed an

approach that combines various VGG16 models in a three-
fold binary classification framework. The first stage clas-
sified X-rays into normal or pulmonary cases, while the
second stage differentiated COVID-19 from non-COVID-
19 pneumonia. Finally, the third stage used the Gradient
Class Activation Map (Grad-CAM) to localize suspected
COVID-19 areas.
Our proposed contribution shares some similarities with

the approach presented in [26], which proposed a two-
cascade network. Their method first categorizes x-ray im-
ages into normal, pneumonia, or tuberculosis, and then dis-
tinguishes between normal pneumonia and covid-19 using
the most efficient network for each level. In contrast, our
contribution proposes three cascade strategies, including
two types of two-stage cascade systems and a three-stage
cascade strategy, with transfer learning applied within each
stage. Furthermore, our approach has also the capability
to classify other pneumonia diseases, such as bacterial and
viral infections.

3 Proposed method

The purpose of cascade systems in COVID-19 detection
from X-rays is to distinguish between normal and pneu-
monia classes or between pneumonia sub-classes at each
level. In these systems, the classification is divided based
on the complexity of annotations, starting from the easiest
to the most complex. Discriminating between normal and
pneumonia is less challenging than classifying pneumonia
sub-classes, such as COVID-19, viral, and bacterial. Divid-
ing the classification process into several stages reduces the
model’s classification load and can also help to reduce the
error rate. These cascade systems are sequential ensemble
learning strategies that combine the decisions of multiple
learners to improve generalization. The originality of our
ensemble learning system lies in the ability of each model
to use the previous model’s experience through a transfer
learning method within the cascade system. Figure 1 illus-
trates the general structure of the proposed cascade system.
For the two-stage cascade system, X-ray images are clas-

sified into n categories using a pre-trained CNN on the
ImageNet dataset. Subsequently, the first class is parti-
tioned into m sub-categories, and the resulting dataset is
passed through a second CNN. This network can be ei-
ther a pre-trained CNN on ImageNet or the model devel-
oped in the first training stage. The purpose of transfer
learning from stage 1 is to exploit the extracted features
from dataset 1 to classify the sub-dataset which contains
m sub-classes (class1.1, class1.2, ..., class1.m). The three-
stage cascade strategy includes an additional step compared
to the two-stage cascade method, where subclass 1.1 of
class 1 is further divided into k sub-categories (class1.1.1,
class1.1.2, ..., class1.1.k). Finally, the resulting dataset is
passed through a pre-trained CNN from ImageNet or the
previously fine-tuned model from the second stage, and the
generated model is fine-tuned on this new dataset.
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Figure 1: The proposed cascade strategy

The first two-stage scheme denoted as pneumonia
COVID-19 normal_bacterial viral (PCN_BV), involves the
classification of three distinct classes, namely non-COVID-
19 pneumonia, COVID-19, and normal. Among these, the
non-COVID-19 pneumonia class is further divided into a
sub-group of m classes consisting of bacterial and viral cat-
egories. On the other hand, the second system pneumonia
normal_COVID-19 bacterial viral (PN_CBV) deals with
the classification of pneumonia and normal classes, and
the group of pneumonia sub-classes consists of COVID-
19, bacterial, and viral. The main difference between the
two-stage schemes is the classification level of the COVID-
19 class. The primary objective of this study is to de-
termine whether it is challenging to distinguish between
COVID-19, pneumonia, and normal classes in the first
stage or to classify COVID-19, viral, and bacterial im-
ages in the second stage. In the three-stage cascade system
pneumonia normal_pneumonia COVID-19_bacterial viral
(PN_PC_BV), the group of n classes includes normal and
pneumonia. The pneumonia class is further divided into
non-pneumonia COVID-19 and COVID-19 subcategories.
Finally, the last group of k classes presents subcategories
of non-pneumonia COVID-19, which include bacterial and
viral pneumonia.

In this study, we employed the transfer learning tech-
nique from ImageNet due to its extensive use in the lit-
erature and its efficiency. Additionally, we proposed to
perform transfer learning between different models in the
cascade system. This method aims to reuse previously ex-
tracted features by the CNN in the previous stage, as the la-
bel ”i” in stage k groups images that share similar features
and morphology to images in its subcategories in stage k+1.
In the cascade system, the trained network on dataset k was
used as a source model for transfer learning to dataset k+1.
The transfer learning method consists of three main steps.
First, the target CNN is initialized by the weights (P(Xs |
Ys)) of the source CNN, which was previously trained on
ImageNet or X-ray images. Then, the last fully connected
layers are removed and replaced by two fully connected lay-
ers and one softmax layer. The fully connected layers are
composed of 1024 and 512 neurons, respectively, while the
softmax layer contains C neurons, where C represents the
number of labels in the target domain. Finally, the new net-
work is fine-tuned on the target task. In this study, we used
six CNN architectures: VGG16, VGG19, Inception, Xcep-
tion, DenseNet201, DenseNet121. The fine-tuning process
was performed according to CNN’s nature.
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4 Experimental study
The experiments were conducted on a computer with an In-
tel i5-core processor, 8 GB RAM, and NVIDIA GeForce
GTX 1080 graphics processing unit (GPU), running on a
64-bit Ubuntu 16.04 operating system with Python.
We trained all CNNs based on the transfer learning strat-

egy in 20 epochs with a batch size of 64. We used the Adam
optimizer with a learning rate of 0.001. For evaluation, we
used the stratified hold-out method: 60% for training, 20%
for validation, and 20% for the test. To validate the effi-
ciency of the proposed systems, we used four evaluation
metrics, namely: accuracy, recall, precision, and F1-score.

4.1 Data compilation
The emergence of the COVID-19 pandemic has led re-
searchers to propose voluminous datasets. To the best of
the authors’ knowledge, all voluminous datasets such as
COVID-19 Radiography Database1, COVID-QU-Ex [27],
and COVIDx 2 classify CXR images into three classes:
Normal, Pneumonia, and COVID-19. In this context, the
pneumonia class groups viral, bacterial, and other pneumo-
nia variants.
It is crucial to distinguish between bacterial and viral

pneumonia since they require different forms of treatment.
Bacterial pneumonia can be treated with antibiotics, while
viral pneumonia requires supportive care [28]. There-
fore, our study aims to distinguish between COVID-19 and
non-COVID-19 pneumonia and classify bacterial and viral
pneumonia. To generate our multi-source dataset COVID-
QU-Ex_4C, we used three publicly available datasets:
COVID-QU-Ex 3 [27], Chest-Xray-Pneumonia 4 [28], and
Qata-cov19 5. Figure 2 highlights some samples from the
COVID-QU-Ex_4C dataset.
Table 1 provides an overview of the proposed COVID-

QU-Ex_4C dataset. The dataset includes normal and
COVID-19 samples selected from the COVID-QU-Ex
dataset, as well as bacterial and viral classes obtained by
merging bacterial and viral images from the Chest-Xray-
Pneumonia and Qata-cov19 (Control Group II) datasets.
To train the three cascade systems, namely PCN_BV,

PN_CBV, and PN_PC_BV. The first two-stage cascade
system, PCN_BV, requires two sub-datasets, namely
PCN_BV_D1 and PCN_BV_D2, where PCN_BV_D2 con-
tains sub-categories (viral and bacterial) of the Non-
Covid-19 Pneumonia class of PCN_BV_D1. Similarly,
the second system PN_CBV also uses two sub-datasets,
namely PN_CBV_D1 and PN_CBV_D2. PN_CBV_D2

1https://www.kaggle.com/tawsifurrahman/covid19-radiography-
database

2https://github.com/lindawangg/COVID-
Net/blob/master/docs/COVIDx.md

3https://www.kaggle.com/datasets/anasmohammedtahir/
covidqu

4https://www.kaggle.com/datasets/paultimothymooney/
chest-xray-pneumonia

5https://www.kaggle.com/datasets/aysendegerli/qatacov19-dataset

Table 1: The compiled COVID-QU-Ex_4C dataset
Source Class Number Total

COVID-QU-Ex Covid-19 11 956

31 175Normal 10 701

Chest-Xray-Pneumonia
+

Qata-cov19
(Control Group 2)

Bacterial 5540
Viral 2978

is a subset of PN_CBV_D1 and contains the pneumo-
nia sub-classes (COVID-19, bacterial, and viral). Be-
side, the three-stage cascade system PN_PC_BV re-
quires three sub-datasets: PN_CBV_D1, PN_PC_BV_D2,
and PCN_BV_D2. PN_CBV_D1 and PCN_BV_D2 are
also present in the first two cascade systems, while
PN_PC_BV_D2 is a new sub-dataset that differentiates
COVID-19 from other non-COVID-19 pneumonias.

4.2 Results of the two-cascade strategies
Table 2 presents the results obtained from the two-stage
cascade methods: PCN_BV and PN_CBV. It highlights all
possible combinations between the CNN models. At each
level, we fixed the first model in the first stage and var-
ied the second model in the second stage. For instance,
VGG16_VGG16 indicates that the VGG16 network was
used in both levels, while VGG16_VGG16t indicates that
the VGG16t model was obtained through transfer learning
from the used VGG16 model in the first stage.
The results indicate that the models were less efficient

when used independently compared to their combination
with other second-stage models. These findings highlight
the advantages of using cascade strategies, except for a few
cases (22 out of 84). Surprisingly, when combined with
other second-stage models using the PN_CBV method, all
results decreased for Xception, which we believe is due
to its low accuracy (96.31%) on the PN_CBV_D1 dataset
compared to the other architectures.
The comparative study between the two-stage cascade

methods PCN_BV and PN_CBV demonstrated the effi-
ciency of PCN_BV for Xception, VGG16, InceptionV3,
and DenseNet121. Specifically, accurate results were ob-
tained for VGG16, InceptionV3, and DenseNet121 us-
ing PCN_BV, except when combined with DenseNet121
in all cases and with DenseNet201 for DenseNet121 and
InceptionV3. In constract, PN_CBV was more accurate
for VGG19 and DenseNet201, except when combining
VGG19 with VGG16 or VGG19t and DenseNet201 with
VGG16.

4.3 Results of the three-cascade strategy
For the two-stage cascade strategies, we generated 42 com-
binations for each method. However, for the three-stage
cascade method, a high number of combinations can be
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Figure 2: Samples from the COVID-QU-Ex_4C dataset

generated between the CNN architectures (294), which
can be computationally expensive. Therefore, to reduce
the number of combinations, we employed two strategies
to select the appropriate model at each level. The first
strategy combines CNNs based on transfer learning from
the previous stage in a cascade strategy, where a unique
architecture is used for each combination. The second
strategy selects the two best models on the appropriate
dataset at each level. For the first stage, we selected
DenseNet121 and DenseNet201 due to their high accu-
racy on the PN_CBV_D1 dataset. In the second stage,
we chose DenseNet121 and Xception, and in the third
stage, we selected DenseNet201 and InceptionV3. Table
3 presents the obtained results based on the two strate-
gies. In the first technique, DenseNet201 demonstrated
its efficiency compared to other combinations. However,
the results obtained by Xception were less promising. Be-
sides, for the second strategy, the comparative study, shows
that using Densenet201 in the first stage is more promis-
ing than DenseNet121. Additionally, in the second stage,
DenseNet121 is more efficient than Xception. Overall, the
ensemble’s efficiency depends on the models’ performance
at the first and second stages. In general, the best models
ensure the best combination.

4.4 Comparison and discussion

In the previous section, we conducted a comprehensive
comparative study between obtained results on the COVID-
QU-Ex_4C. Table 4 highlights the best strategy for each
dataset, and overall, the DenseNets architectures yielded
the best results. The obtained results demonstrate the chal-
lenges of distinguishing between pneumonia (92.31%) in
both binary (bacterial and viral) and multi-class (COVID-
19, bacterial, and viral) systems (96.80%). Whereas, CNNs
accurately classified almost all images for datasets that clas-
sify pneumonia and COVID-19 (99.88%) or pneumonia
and normal images (98.22%). These results confirm the
advantages of using a cascade system to separate the four-
class classification task based on annotation complexity,
starting from the easiest to the most complex.
The comparative analysis of two-stage cascade systems

indicates that PCN_BV is more suitable for Xception,
VGG16, InceptionV3, and DenseNet121 models in the
first stage, where it was less accurate in 16 among 42
cases. On the other hand, PN_CBV was more accurate
for both VGG19 and DenseNet201. This method achieved
the best result by DenseNet201_DenseNet121 architecture.
Overall, these findings suggest that we cannot assume that
PCN_BV presents the best strategy, as each technique has
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Table 2: The obtained results on the two-stage cascade methods (PCN_BV, PN_CBV ) in terms of accuracy (Acc), preci-
sion (P), recall (R), and F-measure (F1)

First
Network Hybridization PCN_BV (%) PN_CBV (%)

Acc P R F1 Acc P R F1

VGG16

VGG16 93.43 89.01 90.74 89.80 - - - -
VGG16_VGG16 95.56 93.81 92.68 93.16 94.77 93.05 91.09 91.80
VGG16_VGG16t 95.82 93.93 93.60 93.76 95.14 93.12 92.57 92.82
VGG16_VGG19 95.13 92.72 91.95 92.29 94.87 92.19 92.74 92.45
VGG16_InceptionV3 95.72 94.11 93 93.48 95.35 93.34 92.89 93.08
VGG16_Xception 95.61 93.64 93 93.29 95.27 92.81 93.13 92.97
VGG16_DenseNet121 95.37 93.10 92.47 92.76 95.80 93.69 94.47 94.06
VGG16_DenseNet201 95.77 93.92 93.44 93.66 95.70 94.25 93.55 93.85

VGG19

VGG19 94.21 90.50 92.48 91.26 - - - -
VGG19_VGG19 94.36 91.18 91.69 91.41 94.66 91.82 92.71 92.23
VGG19_VGG19t 94.95 92.23 92.95 92.57 94.87 92.38 92.59 92.48
VGG19_VGG16 94.87 92.49 92.62 92.51 94.53 92.67 90.94 91.54
VGG19_InceptionV3 95 92.50 92.86 92.65 95.11 92.86 92.77 92.78
VGG19_Xception 94.92 92.20 92.91 92.54 95.05 92.49 93.03 92.75
VGG19_DenseNet121 94.68 91.78 92.41 92.08 95.53 93.03 94.30 93.61
VGG19_DenseNet201 95.05 92.40 93.26 92.82 95.46 93.67 93.44 93.52

InceptionV3

InceptionV3 94.87 92.80 93.01 92.90 - - - -
InceptionV3_InceptionV3 95 93.24 92.85 93 94.69 92.49 92.56 92.50
InceptionV3_InceptionV3t 95.11 93.13 93.46 93.29 95 92.82 93.17 92.97
InceptionV3_VGG16 94.79 92.96 92.41 92.62 94.10 92.29 90.69 91.23
InceptionV3_VGG19 94.33 91.75 91.60 91.64 94.28 91.54 92.52 91.99
InceptionV3_Xception 94.94 92.90 92.94 92.90 94.63 92.07 92.80 92.43
InceptionV3_DenseNet121 94.68 92.38 92.40 92.37 95.10 92.70 94.07 93.33
InceptionV3_DenseNet201 95.02 92.98 93.15 93.05 95.03 93.32 93.19 93.22

Xception

Xception 95 93.17 92.92 93 - - - -
Xception_Xception 95.21 92.73 93.24 92.97 93.78 90.54 92.26 91.31
Xception_Xceptiont 95.27 92.89 93.29 93.07 93.88 90.13 92.14 91.01
Xception_VGG16 95.06 92.79 92.70 92.69 93.27 90.84 90.16 90.22
Xception_ VGG19 94.60 91.62 91.89 91.73 93.36 89.80 91.87 90.69
Xception_InceptionV3 95.22 92.86 93.03 92.91 93.85 90.77 92.01 91.31
Xception_DenseNet121 94.94 92.22 92.66 92.43 94.26 90.91 93.53 92
Xception_DenseNet201 95.24 92.77 93.34 93.04 94.21 91.39 92.69 91.96

DenseNet121

DenseNet121 95.43 92.56 93.05 92.80 - - - -
DenseNet121_DenseNet121 95.59 93.03 93.14 93.07 96.11 93.76 94.74 94.22
DenseNet121_DenseNet121t 95.99 93.47 94.27 93.85 95.56 93.18 93.04 93.07
DenseNet121_VGG16 95.74 93.62 93.23 93.37 95.05 93.18 91.33 91.98
DenseNet121_VGG19 95.21 92.33 92.27 92.27 95.16 92.28 93.06 92.64
DenseNet121_InceptionV3 95.86 93.70 93.46 93.54 95.66 93.33 93.23 93.25
DenseNet121_Xception 95.80 93.47 93.57 93.51 95.62 93.05 93.56 93.30
DenseNet121_DenseNet201 95.88 93.56 93.82 93.68 96.04 94.34 93.93 94.09

DenseNet201

DenseNet201 95.45 92.75 93.71 93.20 - - - -
DenseNet201_DenseNet201 95.75 93.50 93.69 93.59 96.22 94.57 93.97 94.21
DenseNet201_DenseNet201t 95.64 93.09 93.40 93.24 95.98 93.60 93.85 93.72
DenseNet201_VGG16 95.61 93.55 93.10 93.27 95.26 93.50 91.45 92.18
DenseNet201_VGG19 95.11 92.29 92.21 92.22 95.42 92.65 93.26 92.93
DenseNet201_InceptionV3 95.75 93.69 93.38 93.49 95.83 93.57 93.28 93.39
DenseNet201_Xception 95.69 93.38 93.51 93.43 95.75 93.18 93.49 93.33
DenseNet201_DenseNet121 95.48 92.94 93.06 92.99 96.27 93.84 94.79 94.28

its advantages depending on the specified architecture.

Figures 3 and 4 compare the results obtained from
transfer learning from ImageNet and transfer learning
within the three cascade systems: PCN_BV, PN_CBV, and
PN_PC_BV. In general, transfer learning within the cas-

cade systems based on PCN_BV was more promising, ex-
cept for DenseNets, where transfer learning from ImageNet
based on PN_CBV yielded accurate results. The compar-
ative study between the used methods for transfer learning
within the cascade systems also highlights the efficiency
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Table 3: The obtained results based on the three-stage cascade strategy PN_PC_BV in terms of accuracy (Acc), precision
(P), recall (R), and F-measure (F1)

Network Acc (%) P (%) R (%) F1 (%)

VGG16_VGG16t_VGG16t 95.21 92.97 92.74 92.84
VGG19_VGG19t_VGG19t 94.76 92.22 92.14 92.15
InceptionV3_InceptionV3t_InceptionV3t 94.77 92.74 92.70 92.68
Xception_Xceptiont_Xceptiont 93.75 90.94 91.62 91.16
DenseNet121_DenseNet121t_DenseNet121t 95.62 92.90 93.71 93.29
DenseNet201_DenseNet201t_DenseNet201t 96.12 93.86 94.08 93.96

Densenet201_ Densenet121_DenseNet201 95.99 93.63 93.83 93.72
Densenet201_ Xception_DenseNet201 95.96 93.64 93.77 93.70
Densenet201_ Densenet121_InceptionV3 95.98 93.79 93.47 93.59
Densenet201_ Xception_InceptionV3 95.94 93.80 93.42 93.56
Densenet121_ Densenet121_DenseNet201 95.78 93.49 93.71 93.59
Densenet121_ Xception_DenseNet201 95.75 93.47 93.65 93.55
Densenet121_ Densenet121_InceptionV3 95.80 93.67 93.42 93.51
Densenet121_ Xception_InceptionV3 95.77 93.64 93.36 93.46

Table 4: The best results for each dataset
Dataset Method Accuracy(%)
COVID-QU-Ex_4C DenseNet201 95.45
PCN_BV_D1 DenseNet121 98.11
PCN_BV_D2 VGG19, InceptionV3 92.31
PN_CBV_D1 DenseNet201 98.22
PN_CBV_D2 DenseNet201 96.80
PN_PC_BV_D2 VGG16 99.88

of PCN_BV over both PN_CBV and PN_PC_BV. In con-
clusion, the transfer learning strategy within the two-stage
cascade systemwas not suitable for DenseNets and was less
efficient for the three-stage cascade systems.
Figure 5 presents a comparative analysis of the best com-

binations for each network and strategy. For the PCN_BV
strategy, the most accurate results were obtained by merg-
ing models with their transferred versions and employ-
ing DenseNet201 in the second stage. The transfer learn-
ing within the cascade systems was observed to be more
promising for the PCN_BV strategy. Conversely, for
PN_CBV, combining models with DenseNet121 was more
accurate. Based on these findings, we propose that using
transfer learning from multi-class classification problems
in two-stage cascade systems is more promising.
Table 5 displays the best results for each strategy, high-

lighting the efficiency of two-stage cascade systems com-
pared to the three-stage cascade system. It’s worth noting
that while PCN_BV and PN_PC_BV achieved the same re-
sult, PCN_BV is more storage-efficient as it only requires
storing two models instead of three for prediction. Ac-
cording to the best results of two-stage cascade systems,
we can conclude that the performance of the first-stage
models influences the accuracy of the two-stage cascade
strategies. For PCN_BV, DenseNet121_DenseNet121t

achieved the best result due to the high performance
of DenseNet121 in the first stage on the PCN_BV_D1
dataset. Similarly, for PN_CBV, the interesting results of
DenseNet201 in the first stage generated the best combina-
tion (DenseNet201_DenseNet121).

Table 5: The best results of the cascade strategies

Strategy Accuracy (%)

PCN_BV 95.99
PN_CBV 96.27
PN_PC_BV 95.99

Table 6 presents the average computational complexity
of each model when combined with the remaining models
in the second stage. It compares the computational com-
plexity of the non-cascade system with the average compu-
tational complexity of the PCN_BV and PN_CBV strate-
gies. Overall, the comparative study highlights that in the
non-cascade strategy, InceptionV3 and Xception are more
computationally expensive compared to the other models,
with DenseNet121 being the fastest, with a training time of
40 minutes. On the other hand, the study shows that the
PCN_BV and PN_CBV strategies are more computation-
ally expensive compared to the non-cascade system, except
for InceptionV3. In general, the training time of PCN_BV
is slightly closer to that of the non-cascade system. How-
ever, the PN_CBV strategy took longer compared to both
the PCN_BV strategy and the non-cascade system.
Table 7 highlights the training time of the PN_PC_BV

strategy, showing its high complexity compared to the two
cascade strategies, except in a few cases where the Xcep-
tion_Xceptiont_Xceptiont and VGG19_VGG19t_VGG19t
strategies required 2 hours for training.
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Figure 3: Comparison between transfer learning from ImageNet and transfer learning within the three cascade systems (1)

5 Conclusion

In this study, we proposed three cascade systems based
on six CNN architectures for COVID-19 classification:
two types of two-stage cascade strategies (PCN_BV and
PN_CBV) and a three-stage cascade system (PN_PC_BV).
To improve results, we integrated transfer learning strate-
gies within the proposed systems. We validated the pro-

posed methods on a newly generated dataset (COVID-QU-
Ex_4C) that contains four classes: COVID-19, normal,
bacterial, and viral. The comparative study showed that
the two-stage cascade systems were more efficient than the
three-stage cascade system. Furthermore, the results of
the two-stage cascade systems revealed that PCN_BV was
more accurate and faster in training inmost cases, and trans-
fer learning within the cascade systems was more effective
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Figure 4: Comparison between transfer learning from ImageNet and transfer learning within the three cascade systems (2)

for PCN_BV than PN_CBV.
As a future perspective, we plan to introduce more vari-

ability into the proposed dataset and address the data imbal-
ance issue. We propose to explore additional data augmen-
tation techniques, such as generative adversarial networks
(GANs), to tackle this problem. Additionally, we suggest
introducing Gradient-weighted Class Activation Mapping
(Grad-CAM) to visualize activated features during detec-

tion.
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Figure 5: The two best combinations for each network and strategy

Table 6: The average training time of the two-stage cascade
strategies (Hours:Minutes:Seconds).
First Network Non cascade PCN_BV PN_CBV

VGG16 00:59:45 01:08:04 01:34:13
VGG19 01:08:04 01:16:14 01:40:31
InceptionV3 01:32:18 01:05:51 01:18:36
Xception 01:11:55 01:20:26 01:44:37
DenseNet121 00:40:47 00:50:36 01:09:58
DenseNet201 00:56:35 01:11:02 01:30:22

Table 7: Training time of the three-stage cascade strategy
PN_PC_BV (Hours:Minutes:Seconds)
Network PN_PC_BV

VGG16_VGG16t_VGG16t 01:53:37
VGG19_VGG19t_VGG19t 02:02:49
InceptionV3_InceptionV3t_InceptionV3t 01:16:46
Xception_Xceptiont_Xceptiont 02:10:01
DenseNet121_DenseNet121t_DenseNet121t 01:11:15
DenseNet201_DenseNet201t_DenseNet201t 01:48:39
Densenet201_Densenet121_DenseNet201 01:36:02
Densenet201_Xception_DenseNet201 01:54:36
Densenet201_Densenet121_InceptionV3 01:37:50
Densenet201_Xception_InceptionV3 01:56:24
Densenet121_Densenet121_DenseNet201 01:16:50
Densenet121_Xception_DenseNet201 01:35:24
Densenet121_Densenet121_InceptionV3 01:18:38
Densenet121_Xception_InceptionV3 01:37:12
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