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A significant amount of digital archaeological data has emerged as a result of the recent increase in 

archaeological activity, which is crucial for the preservation of cultural heritage. However, redundant 

and repetitive archaeological data information often leads to difficulties in management. The study 

first enhances the Apriori algorithm, which is based on determining the artefact attributes of site 

archaeological data by applying the boosting degree with difference, in order to increase the 

effectiveness of archaeological research. A K-means algorithm with adaptive selection of initial 

clustering centres was then proposed as a means to generalise the archaeological data for analysis. 

The outcomes revealed that the enhanced Apriori algorithm's maximum runtime was only 0.33 seconds 

and its minimum runtime was 0.1 seconds. Due to the low impact of noise points on the dataset Flame, 

the revised K-means algorithm's standard deviation is only 2.537, with the majority of the error values 

being clustered around zero. After combining the two methods, the classification accuracy of the 

digitised resources of the site is concentrated around 92%, with high classification accuracy and data 

generalisation processing ability, which improves the processing efficiency and provides a more 

reliable method reference for site archaeological research efficiency improvement. 

Povzetek:  Študija uporablja izboljšan Apriori algoritem za določanje atributov artefaktov in 

prilagojen K-means algoritem za generalizacijo arheoloških podatkov.

1 Introduction 

Human society has left behind a vast amount of material 

materials in production and life, and with the changes of 

the times, these valuable heritages have become the 

witness of social development, providing an important 

basis for human beings to realise their cultural heritage 

[1,2]. In the process of scientific investigation and 

excavation, archaeology is an important driving force in 

historical research by systematically and completely 

revealing and collecting the relics buried deep in the 

ground and uncovering the historical and cultural values 

and artistic values they contain. Digital archaeology is 

continuing to progress, and digital resources are 

expanding rapidly due to the research and technological 

advances that are occurring so quickly. These digital 

resources are used throughout the archaeological 

excavation process, and not only have a huge amount of 

data, but also a great variety, which needs to be managed 

and utilised effectively. At the same time, the majority of 

archaeologists are still in the manual management and 

searching stage and are unable to keep up with the 

demand for the enormous amount of archaeological data 

[3,4]. How to integrate various archaeological data 

sources to boost archaeology's efficacy is a significant 

challenge for archaeologists in the information era. Data 

mining technology is capable of uncovering latent 

patterns, and its integration of database, machine learning 

and other multi-disciplinary techniques is one of the 

effective methods for conducting massive random data 

mining nowadays. Data generalisation for site 

archaeology can help archaeologists to view data at 

different levels in a customised degree of abstraction, 

greatly improving the efficiency of archaeological data 

analysis [5,6]. Applying data mining techniques to 

archaeological data generalisation analysis has a high 

degree of feasibility. To further increase the effectiveness 

of archaeological labor, the study suggests using the 

Apriori algorithm and K-means algorithm to generalize 

archaeological data by identifying the characteristics of 

site artifacts. 

2 Literature review 

Archaeologists have recently paid a lot of attention to the 

excavation of archaeological data from sites. Previtali and 

Valente developed a framework for sharing 

archaeological data in order to maximise the impact of 

archaeological data, which utilises digital technology for 

the collection of raw data and realises the processing of 

raw data through image processing and scan alignment, 

and the results show that the method enriches the raw 

assemblage data with a high degree of interoperability 
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[7]. 

Korf et al. developed a non-targeted data analysis 

method based on mass spectrometric detection of 

compounds in archaeological samples, which extracted 

more compounds through isotopic analysis of residual 

molecules in the samples, and showed that the method 

reduced the researcher's bias against extracting too few 

compounds and accelerated the overall analysis time [8]. 

Tronicke et al. developed a multi-scale, analysis and 

visualisation method to address archaeological practice 

and research. This method produces a discrete redundant 

wavelet transform (RWT) using a à trous algorithm and 

the cubic spline filter, then computes a multiscale 

decomposition of 2D data via a sequence of 1D 

convolutions. The results demonstrate that the approach 

simplifies the understanding of archaeological 

geophysical datasets and is computationally efficient [9]. 

Kansa and Kansa address the issue of digital data in 

archiving, modelling and other issues in archaeological 

practice, proposes a data management approach that 

incorporates multiple techniques and explores the 

creation of archaeological data for a wider range of needs, 

providing a new reference for the creation of 

archaeological information systems [10]. Otárola-Castillo 

et al. addresses archaeologists' frequent excavation and 

investigation of archaeological data through null 

hypothesis significance tests and probability distributions, 

proposing a method for accomplishing this using 

Bayesian statistics. It creates a Bayesian statistical 

framework for handling archaeological data and employs 

a collection of data for a particular site, and the findings 

show the method's viability in a real-world setting [11] 

The improvement of clustering algorithms has some 

reference value for site archaeological data excavation 

processing. In response to the sensitivity of the initial 

cluster center selection of the K-means algorithm, Li's 

team proposed an improved hybrid particle swarm 

optimisation algorithm for clustering centers. The 

outcomes demonstrated that the approach had a high 

accuracy rate and enhanced convergence speed [12,13]. 

Using the algorithm's pseudo-code and experimental 

validation on a standard dataset (Lris), to be sure that the 

K-value selection had no impact on the convergence of 

the K-means algorithm, four K-value selection strategies 

were investigated. The results demonstrate that different 

K-values can be selected to lessen the impact for various 

clustering ranges. Huang et al. established the 

FPK-mediterranean algorithm to find the most 

convergent results based on the iterative K-medoids 

clustering algorithm for immobile points, constructed 

immobile point equations for each cluster, and solved the 

set of equations. The findings revealed that this 

algorithm's clustering efficiency and clustering quality 

were much higher than those of the conventional 

K-medoids algorithm [14]. Qi et al. developed the 

FPK-medoids algorithm [15]. An adaptive kernel fuzzy 

C-mean algorithm based on the cluster structure was then 

proposed. The results show that this method has high 

converging efficiency. 

In summary, site archaeological data excavations 

have used algorithms to process archaeological raw data, 

and clustering algorithms have been used less in 

archaeological research. The overview of the research 

status is shown in Table 1. However, traditional 

clustering algorithms have significant limitations, and the 

improvement of clustering algorithms becomes important. 

Therefore, the study aims to further advance the process 

of site archaeology by improving traditional clustering 

algorithms and combining them with archaeological data 

excavation and classification. 

 

 
Table 1: Summary of the current state of research 

Methods or datasets Advantage Disadvantage Literature 

Archaeological Data Sharing 

Framework, Digital acquisition 

technology 

Semi automated workflow, 

Open Data, Interoperability 
High complexity Previtali M[7] 

Non target data mining 
Accelerate overall analysis 

time 

Suitable for mass 

spectrometry detection of 

compounds only 

Korf Ad[8] 

Cubic spline filter, à trous 

algorithm, RWT 

High computational 

efficiency 

Method construction is 

complex 
Tronicke J[9] 

Archaeological Information 

Systems 

Integrating multiple 

technologies 

Method construction is 

complex 
Kansa E[10] 

Bayesian statistics 

Plain language, assuming 

quantification, clarity, and 

transparency 

The inference efficiency 

and precision are low 

Otárola-Castillo E 

R[11] 

Improved hybrid particle 

swarm, K-means 

Improved convergence 

speed and accuracy 

Method construction is 

complex 
Li Y[12] 

K-means, Lris dataset 
Improved the selection 

method for K values 
Low clustering accuracy Yuan C[13] 

K-medoids, FPK-mediterranean 

algorithm 

Significant improvement in 

clustering efficiency and 

The method is relatively 

complex 
Huang X[14] 
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quality 

An adaptive kernel fuzzy 

C-mean algorithm 
High clustering accuracy Low clustering efficiency Qi G[15] 

 

3 Site archaeological data excavation 

and data generalisation based on 

attribute induction 

3.1 Site archaeological data excavation based 

on attribute induction 

Site excavation data is divided into three areas: heritage 

management information, heritage information and 

heritage excavation information. In heritage excavation 

information, mechanical means such as exploratory 

boreholes and machine drilling must be used in order to 

start the excavation, and the complete information can 

only be retained to the greatest extent possible if all types 

of data resources are recorded and preserved in detail. 

These data resources come from the entire process of 

heritage collection, including documentation, various 

types of photographs from the excavation, GIS data, 

exploratory hole stratification data, etc. There is historical 

and cultural information and physico-chemical 

information in the heritage information. The physical and 

chemical information is obtained and recorded with the 

help of measuring instruments, while 3D models, 

drawings and photographs provide a more accurate 

description of all the physical information that is difficult 

to record in writing, such as shape and colour, and 

historical and cultural information must be obtained 

through in-depth identification by archaeologists [16]. 

Heritage management information contains a number of 

important activities related to cultural objects and is an 

important basis for their excavation, archaeology and 

restoration. Based on the different types of data storage, 

the study has analysed the attributes of site archaeological 

data in terms of two types of structured and unstructured 

recorded data. Unstructured information is divided into 

two main categories: pictures and videos, both of which 

are important supplements to textual materials and 

provide a visual record of the shape, colour and other 

attribute information of the artefacts. Structured data 

primarily records textual information on the excavation 

process and other pertinent information on the 

management process [17], as well as information on the 

provenance, characteristics, management, and 

conservation of cultural items. Table 2 displays a 

summary of the fundamental details recorded for the 

items. 

 

 
Table 2: Partial basic information of cultural relics records 

Field Data type Length Description 

RegNumber Integer 50 Total registration number 

Onname Text No limit 
Original name of the 

collection 

Name Text No limit Collection Name 

Source Text 20 Source 

Shape Text 1000 Morphological character 

Quality Text 50 Quality 

Grade Text 20 Collection level 

InDate Text 10 Date of storage 

CurrentStatus Text No limit Current situation 

 

The artefacts themselves contain attribute 

information divided into many aspects of information 

such as artefact type, texture, period, testing unit, testing  

 

 

person, and the name of the site where they are located. 

The study summarises the structured information of the 

artefacts and draws a structured schematic diagram of the 

artefacts' attributes, as shown in Figure 1. 
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Figure 1: A structured schematic diagram of the attributes of cultural relics 

 

The research is based on identifying the attributes of 

artefacts from site archaeological data and attribute 

generalisation through association rules. The association 

rule method has several uses in data mining and is 

capable of discovering useful associations in enormous 

amounts of data. The Apriori algorithm is straightforward 

and simple to use, making it one of the representative 

algorithms of association rules. Finding association rules 

that meet the minimal support and minimal confidence 

requirements for the frequent item set is the major 

objective [18]. The joining and trimming operations of 

the Apriori algorithm correspond to the identification of 

the frequent item set and the mining of association rules, 

respectively. In the join operation, the entire dataset is 

first traversed to obtain the frequent1 itemset 1L , and 

then the frequent 1k −  itemset is joined with itself to 

obtain the candidate itemset kC , to determine the final 

frequent k  itemset kL . In the pruning operation, since 

the candidate set kC  obtained under the concatenation 

contains elements that do not satisfy the condition, the 

frequent item set k  and kL  must be found by 

traversing kC  again and deleting item sets smaller 

than min_sup . After completing the above steps, the 

desired strong association rule is obtained by calculating 

the confidence of all items to remove items smaller than 

min_conf . Figure 2 depicts the Apriori algorithm's flow. 
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Figure 2: The basic process of Apriori algorithm 

 

The traditional Apriori algorithm tends to obtain a 

large candidate set and is inefficient. Therefore, the study 

introduces a boosting degree to improve it. The boosting 

degree is used as the ratio of the probability of the 

presence of the posterior term Y  to the probability of 

the occurrence of the posterior term X  without X  in 

the presence of the anterior term. Using the lift degree 

ensures that the association rules mined are positively 

correlated, as shown in equation (1). 

( ) ( )
( )

( ) ( ) ( )

Conf X Y P X Y
Lift X Y

P Y P X P Y

 
 = =  (1) 

In equation (1), the critical value of the lift is 1. 

( )Lift X Y  is less than 1, the association rule shows 

negative correlation, when the two item sets exclude each 

other. There is no correlation with the association rule 

algorithm when ( )Lift X Y  is equal to 1. The 

association rule is now of scientific interest when 

( )Lift X Y  is more than 1, which denotes that the 

association rule exhibits a strong positive connection. It is 

challenging to successfully discern between the 
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antecedent and consequent phrases of the rules and to 

compare various rules when using the lifting degree 

computation method. Therefore, the study designed a 

difference-based lifting degree to achieve association rule 

screening, as shown in equation (2). 

 

( ) ( )
( )

max ( ), ( )

Conf X Y Sup Y
Lift X Y

Conf X Y Sup Y

 −
 =


 (2) 

In equation (2), the determination of the influence of 

on X  Y  can be made by comparing the probability of 

the presence of the antecedent Y  with the probability of 

the presence of Y  itself when the antecedent X  is 

present.  max ( ), ( )Conf X Y Sup Y represents the 

normalisation factor, which makes the absolute value of 

( )Lift X Y  less than 1. As ( )Lift X Y  is closer to 

1, X  has great impact on Y  , and the closer it is to 0, 

the more useful the inverse rule of ( )X Y  is. The 

improved Apriori algorithm flowchart is shown in Figure 

3. 
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Figure 3: Improved apriori algorithm flowchart 

 

3.2 Data generalisation analysis based on the 

K-means algorithm 

The K-means algorithm is also used in the study to 

analyse site archaeological data in general. It is based on 

the introduction of a boosting degree improvement 

Apriori algorithm. To determine how similar the data are, 

the classic K-means approach largely analyses the 

distance between data points and the correlation 

coefficient between data indicators. In the process of 

effective clustering and ranking of data with high or low 

similarity, the correlation coefficient from the previous 

stage is also used as the basis for judging. In the 

assignment stage, the data with high similarity to the 

cluster centres are assigned to the same cluster [19-20]. 

Figure 4 depicts the fundamental flow of the conventional 

K-means algorithm. 
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Figure 4: The basic process of traditional K-means algorithm 

 

As can be apparent from equation (3), the Euclidean 

distance formula is used to determine how complex the 

data is. 

 ( )
2

, 1

n

x y i ii
d x y

=
= −  (3) 

In equation (3), x  represents the data 
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(  1 2, , , nx x x x= ) and y  is also the data 

(  1 2, , , ny y y y= ). As shown in equation (4), the 

squared value of the error is typically employed in the 

traditional K-means algorithm as a standard function to 

evaluate the quality of the data clustering. 

 
2

1

/
i k

i k

k i kx C

k

i kk x C

C x C

E x C



= 

 =



= −



 
 (4) 

In equation (4), kC  is the centre of clustering, 

which must ultimately be calculated to minimise the 

squared error. In this process, the final run of the 

algorithm ends when both the algorithm convergence and 

the minimum error squared conditions are satisfied, 

resulting in the desired classification result. According to 

equation (4), the traditional K-means algorithm has a 

relatively high probability of finding data values that fall 

into a local optimum solution [21-22]. Therefore, a 

method is devised that allows for the adaptive selection of 

initial clustering centres based on the distribution of 

different archaeological data features, in order to avoid 

local optima as much as possible. Figure 5 depicts the 

enhanced algorithm procedure. 
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Figure 5: Basic process framework for improving K-means algorithm 

 

The K clustering centres were first chosen by 

modified K-means algorithm for the input in Figure 4. 

Then, using the principle of proximity, it divides the data 

indicators into two groups: those with low similarity and 

those with high similarity. After a sample has been 

assigned, a resultant operation must be developed before 

the convergence of the data is judged and the output is 

finally obtained. The improved K-means algorithm runs 

in order to ensure that the gaps between the input data are 

small, and must be expanded pre-processing, as shown in 

equation (5). 

 

( ) ( )

( ) ( )

( )

2

1

*

1

1/

min / max min

1/

n

k ik ki

n

k iki

S n x x

X X

x n x

=

=

 = −



= − −


=






 (5) 

*X  represents the greatest data value, the minimum 

data value, and the normalisation result in equation (5). 

Following the completion of the pre-processing, the 

entropy calculation is performed on the data having 

values between 0 and 1. The archaeological data set is set 

to  , 1, 2,3, ,m

i iS x x R i n=  = , which gives the 

convergence criterion and metric for clustering between 

data objects in the algorithm as revealed in equation (6). 

 

( )

2

1

2

1

( , )

, ( )

i j

k

i j

j x c

n

i i

i

C d x o

d x y x y

= 

=


=





= −






 (6) 

In equation (6), n  stands for the overall number of 

data objects in the set, m  for the spatial data's 

dimensional value, ,x y  for the attribute vector, and d  

for the Euclidean distance.  1 2, , ,
T

j j j jnC c c c=  

represents the clustering centre. jc  represents the 

classification cluster, the average of all data points 

represented by jo in the cluster jc . The initial number 

of clusters is denoted by k . For the purpose of to 

determine the average distance of data objects in the data 
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set S  and to calculate the density of a data object ix  

in the set S , the study adds the idea of traffic density 

into the enhanced K-means algorithm, as indicated in 

equation (7). 

( ) ( ) ( )

( ) ( ) ( )( )

, 1,

1

2 / 1 ,

,

n

i j

i j i j

n

i i j

j

Mdts S n n d x x

D x u Mdts S d x x

= 

=


= −    



 =  −






 (7) 

In equation (7),   represents the radius factor, 

taking values in the interval [0.5, 2] and the function 

( )
1, 0

0, 0

x
u x

x


= 


. The mean density is then solved with 

the mean centres of the data points in the sub-clusters, as 

shown in equation (8). 

 

( )

( )

1

1

(1/ ) ( )

1/ ,
i

n

i

i

C

i i q q i

q

MD S n D x

x C x x C

=

=


= 



 =  






 (8) 

In equation (8), S  denotes the data set. ix  

denotes the mean centres and iC  denotes the number 

of objects clustered within the archaeological data in the 

cluster iC . Equation (9) demonstrates that the value of 

the minimal distance between the mean centres of the 

data items in each cluster is the distance between clusters 

over the entire data set. 

 ( )
1 1 ,
min ( , )i j

i k j k i j
dbs k d x x

    
=  (9) 

In equation (9), k  denotes the quantity of data in 

the class cluster, and ,i jx x  is the mean centres of the 

data points in the clusters iC  and jC . The intra-cluster 

distance of the whole set S  is the maximum of the 

intra-cluster distances of k , resulting in the calculation 

of the intra-cluster distance in the entire set as shown in 

equation (10). 

( ) ( )
11

1,

1
max min , , ,

1

i

i

C

j p j p i
j Ci k

p p ji

din k d x x x x C
C  

= 

    
=   

−    
 (10) 

In equation (10), ( )din k  refers to the intra-cluster 

distance. the gap between data objects in the set that 

belong to various clusters gets wider the bigger the 

resulting inter-cluster distance. In order to comply with 

the above requirements, the study further introduces the 

clustering effect determination function as shown in 

equation (11). 

 ( ) ( ) / ( )V k din k bds k=  (11) 

In equation (11), ( )V k  is the inter-cluster 

clustering of the set. The degree of similarity between the 

data objects in data set S  is at its highest when the 

discriminant function has a minimal value, which implies 

that the differences between the data items in various 

clusters also have a maximum value k . In these 

circumstances, it is possible to choose the cluster value 

that will have the best clustering effect by choosing an 

appropriate value as the minimum value of the 

discriminant function ( )V k . 

4 Effectiveness of site archaeological 

data excavation and generalisation 

analysis 
The work makes use of association rules to improve the 

K-means algorithm by generalising qualities to site 

archaeological data. This uses the Apriori algorithm, 

which is based on the lifting degree of differences, to 

filter association rules. First, it is confirmed that the 

revised Apriori algorithm is valid. This part of the 

experiment was carried out on different datasets. Three 

datasets were chosen from the University of California, 

Irvine (UCI) database for the study: The Agaricus-lepiota 

(poisonous mushroom) dataset, the groceries dataset, and 

Voting Records of the United States Congress in 1984. 

The Agaricus-lepiota dataset contains a total of 8124 

samples with 22 different attributes.The dataset describes 

different sample characteristics of mushrooms, such as 

color, odor, smoothness, etc.; as well as the sample's 

categorical labels, edible or poisonous.The Groceries 

dataset records a daily transaction record of a German 

supermarket, containing 9835 consumption records, 169 

different items, with each purchase transaction 

corresponding to a list of items purchased by the 

purchaser.The 1984 U.S. Congressional Voting Records 

record the results of legislators' votes on 16 different 

policy issues according to Republican versus Democratic 

parties, and the dataset contains 435 records. 

Table 3 shows that the Institute's revised Apriori 

algorithm does, however, include lift as a judgement 

criterion in terms of algorithm running time. The frequent 

item set obtained by this algorithm only includes the 

frequent item set of A, which accelerates the algorithm's 

processing speed. At the same time, the method is more 
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efficient than the traditional Apriori algorithm in terms of 

execution as the posterior term only contains the target 

term in the process of rule formation and no longer 

requires screening of redundant rules. In terms of the 

number of association rules, the traditional Apriori 

algorithm outputs all the rules in the same data set, while 

the improved Apriori algorithm obtains all the association 

rules whose back term is A. It has been discovered that 

the revised Apriori algorithm can eliminate the duplicate 

rules, resulting in a set of rules that are all tightly 

connected and positively correlated, increasing the 

method's effectiveness even more. 

 

 

Table 3: Comparison of results between apriori algorithm and improved apriori algorithm in three datasets 

Dataset name Support 
Confidence 

level 

Evaluating 

indicator 

Number of 

association 

rules 

Run time/s 

Groceries 0.2 0.02 
Sup-conf-lift  59 2.83 

sup-conf  341 2.95 

Agaricus-lepiota 0.9 0.4 
Sup-conf-lift  16 1.76 

sup-conf  718 1.78 

Integrated  0.9 0.3 
Sup-conf-lift  286 0.36 

sup-conf  2978 0.37 

 

Based on the data in Table 3, further comparison 

experiments were done, setting the boosting degree to 1 

and the minimum support degree to 0.02. Table 4 

displays the number of rules found by the two algorithms 

at various minimum levels of confidence. Table 4 

demonstrates an inverse link between the minimal 

confidence of the Apriori algorithm before and after the 

enhancement and the number of rules. At a minimum 

support of 0.1, the traditional Apriori algorithm obtains 

3556 rules, but the required target rules are only 583, 

indicating the existence of 2973 redundant rules. The  

 

number of rules for the original Apriori algorithm and the 

modified Apriori method are 1213 and 270, respectively, 

at a minimal confidence level of 1, and there are 943 

duplicate rules. In this case, applying the traditional 

Apriori algorithm to attribute summarisation for 

archaeological data excavation would require a 

significant amount of time to sift through the redundant 

rules. In contrast, the study's improved Apriori algorithm 

is able to cope with the generation of unnecessary rules in 

order to provide more objective association rules. 

 

 

 
Table 4: Number of rules obtained by two algorithms under different minimum confidence levels 

Minimum confidence Improved Apriori algorithm Apriori algorithm 

0.1 583 3556 

0.2 583 3556 

0.3 583 3556 

0.4 583 3556 

0.5 547 3378 

0.6 369 2203 

0.7 314 1958 

0.8 297 1732 

0.9 288 1520 

1.0 270 1213 

 

To further validate the improved Apriori method, the 

FP-growth algorithm and Node-list Pre-order Size Fuzzy 

Frequent (NPSFF) Algorithm Based on Fuzzy 

Association Rule Mining [23] was included to the 

experiment for comparison. Figure 6 displays the running 

times of FP-growth algorithm, NPSFF algorithm and 

before and after the improvement of Apriori algorithm. 

Figure 6 illustrates how the overall runtime of the four 

techniques decreased as the confidence level rose. The  

 

highest value of the traditional Apriori algorithm is close 

to 1.0 s, the highest value of the FP-growth algorithm is 

close to 0.75 s, the highest value of the NPSFF algorithm 

is close to 0.55 s, and the lowest values of both are 0.22 s, 

0.25 s and 0.23 s, respectively, while the highest value of 

the runtime obtained by the improved Apriori algorithm 

is only 0.33 s and the lowest value is 0.1 s, which is lower 

than the other three methods. It can also be found that the 

improved Apriori algorithm is lower than the other three 
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methods in the whole process of confidence increase, and 

the execution efficiency has been significantly improved. 
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Figure 6: Comparison of running time of FP-growth, apriori algorithm and improved priori algorithm 

 

The study subsequently evaluated the enhanced 

K-means algorithm after completing the performance 

validation of the revised Apriori algorithm. Figure 7 

displays the findings of the study, which first contrasted it 

with the conventional K-means algorithm and assessed it 

using the metrics of data detection rate and error rate. 

Figure 7(a) and (b) display the outcomes. It has been 

discovered that as the value of K increases, the detection 

rate and error rate of the K-means algorithm before and 

after the improvement show varying degrees of increase. 

Figure 7(a) shows that the modified K-means algorithm 

greatly improves upon the classic K-means clustering 

algorithm in terms of data detection rate. With a detection 

rate of 98.21% at K=60, the upgraded K-means 

algorithm's detection rate starts to stabilise. The 

traditional, enhanced K-means algorithm had a 93.92% 

detection rate at K=70. Figure 7(b) demonstrates that the 

modified algorithm has reduced false alarm rate than the 

conventional algorithm. The enhanced algorithm's error 

rate at K=70 was 0.402%. The classic algorithm had an 

error rate of 0.623%. The comparison demonstrates that 

the optimised research approach can achieve the global 

ideal answer by having a high detection rate and a low 

error rate. 

 

(a) Comparison results of detection rates

80

100

D
et

ec
ti

o
n
 r

at
e/

%

K value

75

85

90

95

0 30 40 50 70 8060

K-means

Improved K-means 

70

(b) Error rate comparison

0.4

1.2

E
rr

o
r 

ra
te

/%

K value

0.2

0.6

0.8

1.0

0 30 40 50 70 8060

K-means

Improved K-means 

0

 

Figure 7: Comparison of detection and error rates of K-means algorithm before and after improvement 

 

Figure 8 illustrates how the study contrasts the error 

of the upgraded K-means algorithm's clustering results 

with those of the conventional K-means method. The 

error histogram of the conventional K-means algorithm is 

shown in Figure 8(a), and the results of the upgraded 

K-means algorithm's error histogram are shown in Figure 

8(b). While there are significant swings in the error range 

in Figure 8(a), the standard deviation of the K-means 

method is 4.498. The revised K-means algorithm's 

standard deviation in Figure 8(b) is 2.537, and a large 

portion of the error is clustered around 0, with a reduced 

range of error fluctuation. The upgraded K-means 

algorithm provides greater classification accuracy and 

stability as compared to the pre-improvement. 
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Figure 8: Histograms of prediction error distribution for different algorithms 

 

The study included the Mean Shift clustering 

method to compare with the enhanced K-means algorithm 

in order to further demonstrate its superior performance. 

The dataset used is Flame, which is an artificial dataset 

and has clusters with ambiguous boundaries, which can 

verify the effectiveness of the algorithm for noisy data 

processing. The Flame dataset is a forest fire detection 

dataset based on aerial images made public by Northern 

Arizona University and others, and contains 177 different 

categories. Figure 9 displays the outcomes of the three 

techniques on the dataset Flame. Figures 9(a) and (b) 

show that the Mean Shift clustering algorithm and the 

K-means algorithm both provide outputs that contain a 

significant amount of noisy and ambiguous data points. 

And there is a more complex relationship between the 

real clusters, both fail to accurately identify the basic 

shape of the clusters, and the clustering effect is poor. In 

Figure 9(c), the enhanced K-means algorithm 

accomplishes accurate clustering of this dataset with a 

better clustering effect and better performance while 

being minimally impacted by the noise points. 

 

(a) Mean Shift (b) K-means

(c) Improved K-means

 

Figure 9: The clustering performance of three algorithms in the artificial dataset flame 

 

The current advanced clustering models Attribute 

Spectral Clustering (ASC) [24] and Fuzzy decision 

tree-based clustering algorithm (FDTC) [25] are selected, 

and Xie Beni (XB) and Davies-Bouldin Index 

(Davies-Bouldin Index, DB) indicators for evaluation, 

and the experimental results are shown in Figure 10. As 
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seen in Figure 10(a), the DB value of the improved 

K-means algorithm shows a decreasing trend with the 

increase of the number of iterations and is at the lowest 

level of 0.07. As seen in Figure 10(b), the XB value of 

the different clustering methods shows a decreasing trend, 

and the improved K-means algorithm shows a more 

obvious advantage of taking the value of the XB, and the 

clusters of the clustering results have the smallest 

intraclass distances and the largest interclass distances. 
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Figure 10: Comparison of statistical results of evaluation indicators of different clustering models 

 

In order to evaluate the scalability and noise 

tolerance of different clustering methods, the study 

selects the distributed processing ability, clustering 

stability and noise point misclassification rate indexes for 

evaluation, and the experimental results are shown in 

Figure 11. From Fig. 11 (a), it can be seen that the 

improved K-means algorithm has the optimal distributed 

processing ability, and the processing ability evaluation 

value rises the fastest with the increase of iteration 

number. As seen in Figure 11(b) and (c), the clustering 

stability and noise point misclassification rate of the 

improved K-means algorithm perform optimally. The 

highest value of clustering stability reaches 92.56%, and 

the clustering results still have high consistency in the 

presence of noise. The noise point misclassification rate 

of the improved K-means algorithm converges to the 

lowest value of 19.85%, and the lower noise point 

misclassification rate improves the accuracy of the 

algorithm. 
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Figure 11: Scalability and noise tolerance of different clustering methods 
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The study assessed the enhanced Apriori algorithm 

and the enhanced K-means algorithm and showed that 

both performed better than expected. They are now 

jointly applied in practice to validate the results of site 

archaeological data generalisation analysis. The study 

selected the digitized resources of Liangzhu Culture Site, 

one of the southeast Chinese Neolithic culture, Hongshan 

Site, a noble burial site of the Yue State in Wuxi City, 

Jiangsu Province, and Sanxingdui Site, a site of the Late 

Neolithic to Bronze Age in Guanghan City, Sichuan 

Province, as experimental objects. The heritage data 

processing of this site was done using the combined 

technique, and the average results of the data processing 

for the three different sites are shown in Figure 12. The 

results of the overall classification accuracy of 

archaeological data is represented by Figures 12(a) and (b) 

before and after the combined application of the two 

methods, respectively. As can be seen from Figure 12, 

before the joint application of the methods, the 

classification accuracy of the archaeological data was 

overwhelmingly below 85% and concentrated at around 

75%. After the joint application, the classification 

accuracy was mostly over 84% and concentrated around 

92%, which is a significant increase compared to the 

pre-application period, proving the effectiveness of the 

method. 
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Figure 12: Accuracy of archaeological data classification before and after joint application 

 

5 Discussion 

The integration of archaeological digital resources can 

help researchers access, analyze and compare 

archaeological resources more conveniently, and 

understand and excavate the development patterns of 

ancient civilizations, cultural changes and the laws of 

human activities. The traditional manual management, 

electronic documents, shared files and other methods 

have gradually failed to meet the needs of archaeological 

work, and the integration of archaeological digital 

resources needs to adapt to the development of the times 

and gradually change in the direction of 

informationization and intelligence. The process of data 

mining involves a series of steps from data collection to 

visualization, aiming to accurately search for effective 

information from massive information. Data mining 

technology can be used for the description and prediction 

of target data sets, classification and clustering of data, 

and identification of abnormal data. Therefore, in the face 

of massive archaeological data information, the use of 

data mining can be used to realize the classification and 

clustering of data, according to the characteristics of 

cultural relics and sites, mining the connection between 

different cultural relics and sites, and discovering the 

trend and cyclical changes of cultural evolution. 

In this regard, the study takes data mining as the 

technical core, adopts the difference enhancement degree 

improvement Apriori algorithm, and utilizes this method 

to complete the mining of archaeological data. 

Meanwhile, the K-means algorithm with adaptive 

selection of initial clustering centers is designed to further 

realize the generalization analysis of archaeological data. 

The improved Apriori algorithm and the improved 

K-means algorithm perform better in terms of 

computational efficiency, clustering accuracy, clustering 

effect, as well as scalability and generalization. The 

clustering accuracy of the research-designed method is 

improved by 7.3 percentage points compared to the 

adaptive kernel fuzzy C-mean clustering algorithm 

studied by Qi et al [15]. Huang et al [14] designed 

K-Medoids clustering algorithm based on the immobile 

point iteration fluctuates in the range of values of the 

normalized mutual information metrics between 0.7 and 

0.8, and the similarity level between clustered labeled 

clusters is average. In contrast, the research-designed 

method has reached the optimal value level on DB and 

XB metrics, and the interclass and intracluster distance 

status of the clustered clusters has reached the optimal 

status, and the advantages of the research's improved 

clustering method are obvious. In conclusion, the study 

synthesizes the advantages of existing research shown in 

Table 1 and considers the necessity of information 

technology in processing large-scale archaeological data. 

At the same time, the study embodies the research idea of 

integrating multiple techniques with reference to the 

current research status quo, and introduces the ideas of 

difference enhancement degree, adaptive selection, and 

flow density to improve the traditional Apriori algorithm 

and K-means algorithm. Compared with the K-means 

algorithm that introduces intelligent optimization 
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algorithm, the model complexity is reduced to a certain 

extent, the model computation is reduced, and the model 

complexity and computational efficiency are improved. 

Comprehensively, the improved Apriori algorithm 

and improved K-means algorithm proposed by the study 

perform better in archaeological data mining and greatly 

improve the management of archaeological data. Based 

on the analysis and clustering results of data mining, 

archaeologists can discover more hidden patterns and 

correlations of cultural relics and sites, providing deeper 

insights into the study of historical civilizations and 

promoting the development of the field of archaeology. 

Considering the development needs of the archaeological 

industry, on the basis of the research results, future 

research can introduce more informatization and 

automation technologies to realize the intelligence of 

archaeological excavation work, such as the use of 

computer vision technology to realize the identification 

and detection of cultural relics, the construction of 

knowledge maps of cultural relics and sites, and the 

prediction and extrapolation of cultural relics' historical 

periods. The development of the field of archaeology will 

be promoted through in-depth cross-disciplinary 

cooperation. 

6 Conclusion 

The large-scale application of digital archaeological data 

has facilitated the further development of archaeological 

research. The study summarises the corresponding types 

of artefact attribute induction for the problem of 

extensive and complex archaeological data at sites, and 

applies the improved Apriori algorithm with the K-means 

algorithm to archaeological data management. This result 

show that with a minimum support of 0.1, the traditional 

Apriori algorithm obtained 3556 rules, but the required 

target rules were only 583, proving that the improved 

Apriori algorithm can cope with the generation of 

unnecessary rules. As the confidence level increases, the 

traditional Apriori algorithm approaches a maximum of 

0.1 s, the FP-growth algorithm approaches a maximum of 

0.75 s, and the improved Apriori algorithm achieves a 

maximum runtime of only 0.33 s. In the performance test 

of the improved K-means algorithm, the data detection 

rate of the algorithm starts to stabilise when K=60, at 

which point the detection rate is 98.21%. When K=70, 

the error rate of the improved K-means algorithm was 

0.402%. The error rate for the conventional K-means 

algorithm was 0.623%. In the error comparison, the 

standard deviation of the K-means algorithm was 4.498 

and that of the improved K-means algorithm was 2.537. 

With the joint application of the two improved methods, 

the classification accuracy of archaeological data was 

mostly over 84%, concentrated around 92%, which 

greatly improved the management of archaeological data. 

However, when the proposed method was validated, the 

study only analysed one selected excavated Neolithic 

culture site, which may have some errors, and therefore 

needs to be further optimised by extending the actual 

validation scope. 
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