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Autonomous underwater robot has high flexibility and autonomy. Multi-autonomous underwater robot 

formation is its main research direction. In order to improve the application effect of this formation 

control method, event triggering mechanism and model predictive control are introduced in the 

experiment for method design. At the same time, neural network and filtering control are introduced in 

the experiment for the optimization of the method. The autonomous underwater robots 2A~5A were 

able to smoothly avoid the obstacles under the leader 1A, as demonstrated by the trial results. 

Autonomous underwater robots 1~5 had a maximum error of 3.8 m and a maximum velocity error of 

3.7 m/s. After a period of time, their position and velocity errors converged to 0. The proposed method 

had a maximum rms of 2.4233 and an average rms of 1.4015. It required the least number of triggers 

of all the methods for the optimization problem solution. The above results confirm that the 

multi-autonomous underwater robot formation control method based on event-triggered mechanism 

and model predictive control proposed in the study can realize efficient and accurate control, and can 

reduce the difficulty of computation and resource consumption. 

Povzetek: Algoritem za vodenje formacije več avtonomnih podvodnih vozil uporablja mehanizem 

proženja dogodkov in model napovedne regulacije, optimiziran z nevronskimi mrežami

1 Introduction 

Autonomous underwater vehicle (AUV) has high 

flexibility and autonomy, and has been well applied in the 

fields of environmental detection and underwater rescue 

[1]. However, the carrying space of a single AUV is 

limited and cannot adapt to some complex scenes. 

Therefore, multi-AUV collaboration mode is considered 

to work in practical applications. Multiple AUV 

collaboration can improve the efficiency, communication 

capability and flexibility of operation, which requires 

formation cooperative control. However, the existing 

methods have poor formation stabilization ability or are 

difficult to avoid obstacles, etc., so they also need to be 

improved. The operation system of AUVs involves the 

design of controllers, which belongs to the core part of 

AUVs. Adaptive control, neural network (NN) control 

and proportional-integral-derivative controllers (PID) are 

commonly used control methods [2]. However, these 

methods are computationally difficult and some of them 

can only be applied to certain fixed scenarios. For 

example, although the NN-based control method can 

realize more accurate control, it is computationally 

intensive and less effective in real-time control. Therefore, 

it is necessary to consider a suitable method for 

multi-AUV cooperative scenarios in the controller design 

of AUVs. Model predictive control (MPC) belongs to a 

closed-loop optimal control strategy. It shows strong 

robustness and has better control effect, so it can be used 

in path optimization of intelligent devices such as 

unmanned aerial vehicles [3]. However, it has a large 

amount of computation, so it is somewhat limited in 

practical applications. Event triggering mechanism (ETM) 

can reduce the computation of the control model [4]. 

Therefore, this work takes into account the combination 

of MPC and ETM in order to increase the efficiency and 

stability of multi-autonomous underwater vehicle 

formation (MAUVF) control. This is the innovation of 

the article. The article consists of five chapters. Firstly, 

the research of others is summarized. Secondly, the 

MAUVF control and its optimization based on MPC and 

ETM are described. The third section is the performance 

test of the method and the analysis of the application 

effect. The fourth section is a discussion and analysis of 

the results of the paper. Finally, the article is summarized 

as well as the outlook. It is hoped that the improvement 

of the MAUVF control method can improve the 

efficiency and safety of AUVs underwater. 

2 Related works 

AUV detection in the ocean needs to consider the 

accuracy and efficiency of information transmission. Liu 

et al. proposed to optimize the transmission scheduling of 

AUVs using an improved genetic algorithm and updated 

the communication network. After simulation and 

analysis, this method was able to improve the signal 

quality in the AUV formation and achieve efficient 

information exchange [5]. The formation of AUVs 

involved communication problems and needed to adjust 

the related parameters. Cao et al. utilized methods such as 
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factorial design to estimate measurement parameters such 

as signal-to-noise ratio. At the same time, they performed 

AUV formation based on the construction prediction 

method. This method can effectively avoid local 

optimization and reduce the dependence on parameters 

[6]. If multiple AUVs are to establish an appropriate 

obstacle avoidance strategy, then a reasonable planning 

path is needed. A variety of techniques, including an 

enhanced artificial potential field, were employed by 

Pang et al. for route planning and navigation. This 

method enabled multiple AUVs to realize real-time 

formation and pass-through obstacles smoothly according 

to the environment [7]. Yu et al. introduced some 

constraints in the formation control of AUVs for 

improving the accuracy of communication. They 

introduced different localization methods in the model 

and discussed the technical difficulties in applying 

acoustic and optical communication in the control model 

[8]. These studies provide a reference for realizing 

intelligent AUV formation. 

Optimal control problems can be resolved with the help 

of MPC, a unique control technique. In the study of 

Angelov et al., the accuracy of the prediction results of 

MPC in open-loop control problems was low. To improve 

the solving ability of MPC in optimal control problems, it 

also needs to be improved by combining it with other 

methods. They confirmed that the improved MPC can 

accurately estimate the error in the open-loop problem 

and realize accurate prediction [9]. In the study of 

obstacle avoidance in robots, MPC was able to combine 

with other methods for reasonable path planning. Zhou et 

al. combined MPC with randomized tree algorithm to 

achieve path perception for robots. MPC improved the 

safe distance between the robot and obstacles. In 

simulation experiments, this method helped the robot to 

avoid obstacles successfully [10]. MPC can also be used 

in path optimization for AUVs. Liu et al. used MPC to 

design a path planning algorithm capable of avoiding 

obstacles. This method was able to generate path points 

and satisfy the set constraints. In real-world path planning, 

this method can enable the AUV to successfully avoid 

obstacles and obtain an optimal path [11]. Gong et al. 

designed a control model related to AUV trajectories 

using MPC. They incorporated backstepping control in 

the model and enabled convergence of the AUV 

trajectory. This approach improved the robustness and 

stability of the model, thus improving the tracking 

capability of the AUV [12]. Bian et al. designed a model 

that enables coordinated diving of multiple AUVs using 

distributed MPC. In this approach, they determined the 

stability conditions for multi-AUV diving and saved 

reduced communication costs. The stability, efficiency 

and economy of this approach were confirmed in 

simulation experiments [13]. 

The combination of ETM and NN can improve the 

security of communication. Zhang F et al. designed a 

security control model based on ETM. They introduced 

adaptive NN in this model for improving the time 

stability in closed-loop systems. Experiments confirmed 

the safety and effectiveness of this model [14]. In 

formation control of multiple AUVs, ETM can reduce 

ineffective communication and thus improve 

communication efficiency. According to Li, increasing 

the error threshold computation in ETM can boost the 

formation control model's computational effectiveness. 

Meanwhile, the introduction of Hungarian algorithm can 

solve the problem of model check-in failure. In 

simulation experiments, this method can significantly 

reduce the communication traffic and can perform 

accurate guidance [15]. Dynamic event triggering (DET) 

is capable of balancing communication frequencies in 

formation control of underwater multi-AUVs. Su et al. 

developed an error estimation model based on DET while 

introducing an adaptive approach. Simulation 

experiments confirmed the real-time and stability of this 

method [16]. Wang et al. used the artificial potential field 

approach with ETM and other factors to build a formation 

control model for numerous AUVs. Meanwhile, they 

introduced a fixed-time trigger mechanism in this model 

for communication efficiency optimization. In 

underwater simulation experiments, this method can 

effectively reduce the communication energy 

consumption but does not affect the quality of 

communication [17]. 

The above studies show that MPC and ETM exhibit 

better application in formation control of AUVs. Both of 

them can guarantee the stability of the control model and 

lessen communication loss in the formation. However, 

there are fewer studies on the joint application of the two 

in MAUVF control. Therefore, it is thought that the 

combination of MPC and ETM will be utilized in 

MAUVF control in the experiment in order to further 

increase the model's efficiency and decrease the loss. 

Table 1 summarizes the main work and shortcomings of 

the references. 

 

Table 1: Summary of references 

Reference Key performance indicators Limitations 

[5] 
Improved signal quality in AUV formation and 

achieved efficient information exchange 

Insufficient detection capability in 

low-quality underwater acoustic channel 

detection 

[6] 
Avoiding local optima and reducing dependence on 

parameters 

In the case of fading channels, the 

stability of the model is poor 

[7] 

Enable multiple AUVs to achieve real-time 

formation and smoothly pass-through obstacles 

based on their environment 

Poor formation control of formation 

AUVs when passing through obstacle 

zones 
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[8] 
Introduced some constraints to improve 

communication accuracy 

The real-time control effect of the 

method is poor 

[9] Accurately estimating errors in open-loop problems 
The application scope of the method is 

limited 

[10] 
Improved safety distance between robots and 

obstacles 

The application scope of the method is 

limited 

[11] 
Capable of generating path points and meeting set 

constraints 

The method requires a large amount of 

computation 

[12] 
Combining backstepping control and ensuring the 

convergence of AUV operation trajectory 

The model exhibits dynamic uncertainty 

and is susceptible to external 

disturbances from ocean currents 

[13] 
Confirmed stability conditions for multi AUV diving 

and reduced communication costs 

Long triggering interval increases the 

computational burden of the model 

[14] Proved safety and effectiveness Stability needs to be improved 

[15] Significantly reduce communication traffic Low computational efficiency 

[16] Strong real-time and stability 
The accuracy of error estimation needs 

improvement 

[17] 
Effectively reducing communication energy 

consumption 

Communication efficiency is greatly 

affected by external factors 

 

3 Multi-AUV formation approach 

based on event-triggered and 

model-controlled prediction 

algorithms 
One major element influencing how well AUVs operate 

is the MAUVF control technique. As a result, it's 

essential to create a control strategy that's both practical 

and effective. In the first subsection, an MAUVF control 

model is developed using a combination of MPC and 

ETM. Then in the second subsection, improvements are 

made to address the shortcomings of this model in order 

to improve the practical use of this formation control 

method. 

3.1 Control methods for multi-AUV 

formations 
MPC is a component of the closed-loop optimal control 

strategy, which solves the open-loop optimum control 

issue to arrive at the current control action [18]. It 

exhibits strong robustness and has good control effect, so 

it can be used in path optimization of intelligent devices 

such as UAVs. A mathematical model is required to 

describe the overall changes in the system when using 

MPC in the MAUVF control approach [19]. It allows the 

control of input information based on current system 

information and future predictions to predict future output 

information. In Figure 1 the schematic diagram of MPC 

is shown. 
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Figure 1: Schematic diagram of model predictive control 

 

In Figure 1, there is a desired trajectory in the MPC as a 

reference. Taking the time as a starting point, the system 

performs feedback control through the established 

prediction model and the current state of the platform 
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during the [ , ]pk k N+  time period. This solves for the 

predicted output values. By solving the objective function 

under various constraints, one can obtain the actual inputs 

in the control sequence. Repeating these steps will lead to 

the realization of MPC. When applying it to MAUVFs, it 

is necessary to develop suitable mathematical models for 

analyzing the trajectories of the AUVs, among other 

factors. 

To realize the MAUVF control, the pilot-follower 

formation method is adopted in the experiment for 

cooperative control. However, it is easy to encounter 

obstacles such as reefs and buoys in actual navigation, so 

the specific environment also needs to be analyzed. 

Analyzing the force acting on the AUV in the coordinate 

system is vital for the MAUVF control to increase the 

efficacy of the formation movement control. A schematic 

depiction of the AUV's movement in three different 

coordinate system directions is displayed in Figure 2. 
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Figure 2: Schematic diagram of coordinate relationship 

during AUV motion 

 

In Figure 2, i  represents the number of AUVs. v  

represents the velocity information. q  represents the 

longitudinal angular velocity. u  represents longitudinal 

velocity. w  represents vertical velocity. p  represents 

position information.   represents heading angle.   

represents roll angle. , ,i i iX Y Z  is the inertial coordinate 

system in three directions. , ,B B BX Y Z  is the three 

directions carrier coordinate system. The AUV will move 

in and out, pan and float along the three different 

directions of , ,B B BX Y Z . If the MAUVF control system 

has a lead AUV and other following AUVs, each 

following AUV is equipped with sensors to receive 

position and orientation relative to neighboring AUVs. It 

can then use the inertial coordinate system for its own 

position and orientation determination. A schematic 

depiction of the pilot-follow formation with AUV1 as the 

pilot is shown in Figure 3. 
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Figure 3: Schematic diagram of navigation-following 

formation 

 

In Figure 3, the action trajectory of AUV1 is pre-set. lfid  

denotes the relatively safer desired distance between 

AUV1 and the following AUVi in formation control. The 

following AUVs follow AUV1 within a certain distance 

based on a controller combining MPC and ETM. The 

time needed to make the stabilizing signal arrive in this 

process. Therefore, equation (1) can be used to express 

the primary goal of MAUVF regulation. 
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In equation (1),   denotes the convergence time. 

Equation (2) expresses it in relation to the formation 

control parameters, irrespective of the system's initial 

state. 

 max

1 2

1 1

(1 ) ( 1)
T T

   
 = +

− −
 (2) 

In equation (2), 1 2, , ,     is a constant. Equation (3) is 

a descriptive method for following AUVi. 

 
( )

( ) ( )
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i i i i i i
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
= 


 = − −  +

g
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In equation (3), M  is the inertia matrix.   represents 

the attitude quantity.   is the control input force 

moment. D  represent the damping matrix. ( )ig   

denotes the restoring force matrix. The experiment uses 

the inverse step approach with dynamic surface algorithm 

to construct the control algorithm based on the preceding 

formulas. This reduces the computational difficulty and 

avoids computational explosion. Fixed time and 

distributed ETM are introduced in this method. The MPC 

is triggered when the state error between the following 

AUV and the leader AUV1 satisfies the trigger condition. 

This can improve the convergence speed of MAUVF 

while reducing the energy consumption of the system. 

The primary purpose of the MPC controller for MAUVF 
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techniques is to minimize the discrepancy between the 

AUVs' operational route and reference route. This 

problem can be transformed into optimizing the 

constraints of states and inputs. The optimal inputs to the 

controller can be found in the experiments based on the 

current state the robot is in and the expected trajectory. 

The AUVs are then able to perform trajectory tracking 

based on the optimal inputs, ultimately realizing MAUVF 

control. 

The experiment utilizes the MPC model for feedback 

correction to overcome environmental interference and 

maintain closed-loop stability. Predictive models are 

often nonlinear and subject to unstable factors, such as 

disturbances and time-varying variations. This can result 

in a mismatch between the established predictive model 

and the actual controlled object, rendering MPC unable to 

accurately match the actual control process. Thus, a 

feedback loop is incorporated into the control process. At 

the start of each sampling interval, the output of the 

controlled object is detected, and the model's predicted 

results are adjusted based on the detection results. 

Subsequently, new optimizations are performed to 

achieve the desired control effect. 

Although the above MPC-based MAUVF control method 

can get better control effect, the computational amount of 

this method is relatively large. At the same time, it will 

reduce the accuracy of formation control when facing the 

underwater complex environment. Therefore, the method 

needs to be further improved in order to enhance the 

practical application of the method. In the next section, 

this formation control method is improved. 

3.2 Multi-AUV formation method based on 

improved event triggering mechanism 
Because of the uncertainty of the AUV model and the 

complexity of the underwater environment, MPC is more 

challenging to implement accurately in formation control. 

With its large capacity for nonlinear processing, NN can 

be applied to solve the MAUVF control non-deficiency 

problem. Radial basis function neural network (RBFNN) 

is introduced in the experiment to increase the system's 

robustness. It has strong learning ability and can 

approximate the nonlinear terms, equation (4) is the input 

and output of RBFNN. 
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r
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S Z
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



 −
= −




= +
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In equation (4), S  denotes the output vector. Z  

denotes the input of RBFNN. o  is the center vector of 

node i . W  denotes the ideal weight matrix.   

denotes the approximation error.   denotes the width 

parameter. In practical applications, the input and output 

moments of the AUV are limited because of physical 

conditions. However, the actuator saturation of the AUV 

is not taken into account in most of the control algorithms. 

Therefore, based on the previous section, the effect of the 

input saturation situation on the MPC formation is 

considered in the experiments. The improved MAUVF 

control method is depicted in Figure 4. 
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Figure 4: Improved multi-AUVs formation control method 

 

In Figure 4, 
:

 denotes the control input. di  denotes 

unknown external perturbation. z  denotes the error. 

Equation (5) shows the mathematical expression of the 

improved formation control method. 
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1 ( ) ( )i ix t p t=  and 
2 ( ) ( )i ix t p t=

g

 are defined in the 

experiment, then equation (6) can be obtained. 
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In equation (6), 1( ) ( )i i it JM t 
−

−= , it denotes a nonlinear 

control input with input saturation characteristics. From 

the saturation characteristic, it is known that the input 

signal will change abruptly when certain conditions are 
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satisfied. Meanwhile, the functions involved in the 

backstepping method and the designed formation control 

method are smooth. In order to approximate the 

saturation function, a smooth function must also be 

created; in the experiment, the tanh hyperbolic tangent 

function is used. This function improves the ability of the 

formation control method to cope with unknown 

perturbations under input saturation constraints. To 

achieve the control objective stated in equation (1), the 

experiment utilizes a combination of filtered control and 

fixed-time methods resulting in the improved 

event-triggered formation-based control method shown in 

Figure 4. This method achieves a steady state with a fixed 

time and is not affected by the initial state of the 

formation model, thus avoiding Zeno behavior. Equation 

(7) shows the position error of the formation control 

method. 

 1 1( ) ( ) ( )i i d aiz t x t x t x= − −     (7) 

In Equation (7), aix  denotes the safe distance between 

AUV1 and the follower. dx  denotes the desired position 

signal. The combination of second order command filter 

and backstepping is carried out in the improved method, 

which reduces the difficulty of designing the MPC 

controller. Equation (8) shows the calculation of this 

filter. 
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2 1 1

( ) ( )
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i i

i i i

t t

t t t

 

    


=


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g

g
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In equation (8), ,   denotes the constant. 1 ( )i t  

denotes the input signal of the filter. Equation (9) shows 

the velocity error of the improved formation method. 

 2 2( ) ( ) ( )i i ciz t x t x t= −      (9) 

According to the calculation in equation (8), a filtered 

error is given in equation (10). 

 1 1( ) ( ) ( )i ci it x t t = −V    (10) 

The error in equation (11) is derived from equation (7). 

 
1 1 2( ) ( ) ( )i i d i dz t x t x x t x= − = −
g g g g

   (11) 

Based on equation (9) and (10), equation (12) can be 

obtained. 

 2 2 1 1( ) ( ) ( ) ( )i i i ix t z t t t = + +V    (12) 

Equation (13), obtained by substituting equation (12) into 

equation (11). 

 
1 2 1 1( ) ( ) ( ) ( )i i i i dz t z t t t x = + + −
g g

V  (13) 

Combining the above formulas, the virtual controller in 

equation (14) can be obtained. 
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g
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In equation (14), ,p q  is a constant. According to the 

above equation (8) and (14), an auxiliary system of 

filtering is used in the experiment to compensate its error, 

which is expressed in equation (15). 
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The aforementioned filters and RBFNN are integrated in 

the ETM-based formation control method in the 

experiments. By introducing dynamic variables, the 

improved flexibility and practical operability of the 

triggering mechanism can be realized. Mathematical 

derivation can verify that the formation control 

mechanism designed in the experiment is stable and 

capable of autonomously adjusting the required 

parameters. At the same time, this method is able to 

obtain a stable fixation time. 

The experiment introduces both distributed static ETM 

and fixed time theory to research multi AUV formation 

control. A triggering function is constructed, and a 

formation controller based on distributed static event 

triggering is designed to achieve global fixed time 

convergence of the system. The design parameters are the 

only factors related to this convergence. The algorithm 

enhances the convergence speed of the formation system 

while reducing the number of controller triggers and 

signal transmission frequency. This improves the 

utilization of limited resources, reduces system energy 

consumption, and eliminates Zeno behavior. Additionally, 

the dynamic surface technology introduced in the 

backstepping method effectively avoids the issue of 

computational explosion and simplifies the controller 

design process. 

 

4 Simulation analysis of multi-AUV 
formation control based on 
event-triggered and model 
predictive control 

In order to verify the performance of the above-designed 

MAUVF control method, it is applied in MATLAB 

R2019a for simulation analysis in the experiment. The 

experimental environment includes Windows 10 system, 

Intel® Core TM i5-1 0400F* processor, and running 

memory of 8GB. The formation control simulation is 

analyzed by placing multiple AUVs in the obstacle 

environment in the experiment. The main focus of the 

study is to verify whether this method can successfully 

plan smooth obstacle avoidance paths. The path planning 

results of this formation control method in the presence of 

obstacles are shown in Figure 5. In the figure, AUV1A 

denotes the leader and its position coordinates are (0,22), 

AUV2A~AUV5A are the followers and their coordinates 
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are (0,19), (0,16), (0,6) and (0,1) respectively. 

AUV1B~AUV5B denote the reference trajectories. The 

results in the figure show that AUV2A~AUV5A are able 

to avoid the obstacles successfully under the lead of the 

pilot AUV1A. Meanwhile, the motion trajectories of 

AUV1A~AUV5A have a high degree of overlap with the 

reference trajectory. Therefore, under this control method, 

the multi-formation AUV is able to perform path 

planning and obstacle avoidance smoothly. 
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Figure 5: Path planning results for multiple AUV formation 

 

It is put in working condition 1 for simulation and 

analysis in the study to confirm the efficacy of using the 

control approach suggested in the experiment. In Figure 6, 

the motion trajectories of AUV1~AUV5 in three 

directions in the presence of unknown external 

perturbations are shown. From the figure, the followers 

AUV2~AUV5 are able to keep a certain safe distance to 

move under the leadership of the navigator AUV1. At the 

same time, the motion trends of AUV1~AUV5 maintain 

relative consistency and finally reach the end point 

smoothly. 
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Figure 6: Formation position status of multiple AUV systems 

 

In Figure 7, the formation positions of AUV1~AUV5 in 

three directions in the working condition 1 environment 

are shown. During the 50-second moving trajectory, 

AUV1~AUV5 only produced position errors within the 

beginning 3 seconds. The maximum error is 3.8 meters. 

When the movement trajectory is larger than 3 s, the 

position error of AUV1~AUV5 is infinitely close to 0. 

This result indicates that under the leadership of the pilot 

AUV1, the followers AUV2~AUV5 can reach the 

designated position smoothly within a safe distance. 
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Figure 7: Formation position error of multiple AUV systems 

 

In Figure 8, the velocity information of AUV1~AUV5 

during their movement in the working condition 1 

environment is demonstrated. From the figure, it can be 

observed that in the 50-second moving trajectory, the 

running speeds of AUV1~AUV5 have more obvious 

fluctuations when the time is lower than 4 seconds. 

However, when the time is greater than 4 seconds, their 

speeds in different directions have some fluctuations, but 

the whole is in a stable state. Combining the results in 

Figures 7 and 8, under the leadership of the pilot AUV1, 

the followers AUV2~AUV5 are able to reach the 

designated position smoothly and steadily within a safe 

distance. 
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Figure 8: Formation speed status of multiple AUV systems 

 

In Figure 9, the velocity error components of 

AUV1~AUV5 during the motion in the working 

condition 1 environment are demonstrated. 

AUV1~AUV5 have some error fluctuations in the 

beginning of the motion process. However, their error 

ranges are small, and the maximum velocity error is 3.7 

m/s. After a period of motion, the velocity errors of 

AUV1~AUV5 converge to 0. The MAUVF achieves 

greater formation control during motion, as this result 

attests. 
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Figure 9: Formation velocity error of multiple AUV systems 

 

The control effect of the MAUVF control method is 

further tested in the experiment when it is subjected to an 

unknown external disturbance in Case 1. Figure 10 

displays the composite disturbance along with its 

estimated value for the MAUVF control method in the 

presence of the disturbance. In this figure, the composite 

disturbance of the experimentally proposed formation 

control method and its estimated value are in overall 

agreement over the 50-second measurement time. 

Although there is some prediction error, it is able to 

satisfy the actual interference detection and realize 

accurate formation control. 
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Figure 10: Composite interference and estimated values of multiple AUV systems 

 

Figure 11 shows the timing diagram of AUV1~AUV5 for 

event triggering in Case 1. From this figure, 

AUV1~AUV5 have independent triggering times. This 

can confirm that the method designed in the experiment 

belongs to the distributed ETM. This triggering method 

effectively reduces the triggering frequency of the MPC 

controller, which in turn reduces the energy consumption 

of the MAUVF control method. This can improve the 

utilization time and reduce the cost of AUVs in real 

applications. This result further confirms the feasibility of 

the experimentally proposed ETM-based MAUVF 

control method. 
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Figure 11: Event triggered timing diagram of multiple AUV systems 

 

The suggested approach is experimentally contrasted with 

Method 1 based on RBFNN with adaptive control using 

distributed ETM (Method 2) and backstepping in order to 

confirm the proposed method's superiority [20-21]. The 

metrics for the comparison are the Mean Square Error 

(MSE) of the error signal and its average value. The  

 

 

 

 

outcomes of several algorithms are displayed in Table 2. 

The table shows that, out of all the algorithms, the 

suggested technique has the lowest mean and MSE. Its 

average MSE is 1.4015 and its maximum MSE is 2.4233. 

This outcome demonstrates how the suggested approach 

successfully outperforms the comparison method in terms 

of control performance for the MAUVF control method.  

 

 

 

 

 

Table 2: Mean square error and its mean for different methods 

MSE This paper Method 1 Method 2 Backstepping 

z1i_x 1.8244  1.9175  2.6898  2.7447  

z1i_y 1.0671  1.1215  2.0024  2.0433  

z1i_z 0.5906  0.6208  1.0846  1.1067  

z2i_u 0.7306  0.7679  1.7863  1.8228  

z2i_v 1.4694  1.5444  1.7791  1.8155  



138   Informatica 48 (2024) 127–142                                                                     X. Qi 

z2i_w 2.4233  2.5469  2.9532  3.0135  

Average MSE This paper Method 1 Method 2 Backstepping 

z1i_x 1.0486  1.0800  1.8656  1.8096  

z1i_y 0.6640  0.6839  1.5892  1.5415  

z1i_z 0.5957  0.6136  1.0741  1.0418  

z2i_u 0.5192  0.5348  1.4504  1.4069  

z2i_v 0.8731  0.8993  1.2923  1.2536  

z2i_w 1.4015  1.4435  2.3939  2.3221  

 

The number of triggers required by different methods to 

perform the solution of the optimization problem is 

compared in Table 3. In the table, the proposed method 

requires the least number of triggers among all the 

methods to perform the solution of the optimization 

problem. For AUV1~AUV5, Pilot AUV1 has the least 

number of triggers. These results confirm that the 

proposed method requires less computation than other 

methods for solving the optimization problem. This 

effectively saves the computational cost of MAUVF 

control methods. At the same time, the leader AUV1 is 

able to derive the optimal solution the fastest, thus 

effectively leading the other AUVs to meet the realistic 

operational requirements. Table 3 shows that the DET 

mechanism reduces the number of controller triggers and 

update frequencies compared to the distributed static 

event triggering mechanism by introducing dynamic 

variables. This is because the  

 

fixed time distributed static event triggering mechanism 

is designed with a corresponding formation controller, 

which achieves global fixed time stability of the system. 

This approach ensures that the convergence time of the 

formation is not affected by the initial state. Reducing the 

triggering frequency of the controller and the 

communication frequency between AUVs can accelerate 

the convergence speed of the formation. Additionally, 

unnecessary energy consumption of the system can be 

effectively reduced, thus avoiding Zeno behavior. The 

backstepping dynamic surface control algorithm is 

designed to avoid the problem of 'computational 

explosion' and simplify the controller design process. 

This method can effectively reduce system energy 

consumption and improve the utilization of limited 

resources in multi-AUV systems. 

 

Table 3: Trigger times of different methods 

Working condition 1 This paper Method 1 Method 2 Backstepping 

AUV1 1002 1242 1302 1503 

AUV2 1287 1595 1673 1930 

AUV3 1379 1709 1792 2068 

AUV4 1314 1629 1708 1971 

AUV5 1385 1717 1800 2075 

Working condition 2 This paper Method 1 Method 2 Backstepping 

AUV1 701 841 833 999 

AUV2 900 1070 1081 1297 

AUV3 965 1158 1146 1376 

AUV4 919 1092 1103 1324 

AUV5 969 1163 1151 1382 

 

The experiment's proposed formation method will be 

used to verify performance in real-world scenarios. The 

research primarily aimed to determine whether this 

method can effectively plan an obstacle avoidance path. 

Figure 12 displays the path planning results of this 

formation control method in the presence of obstacles. It 

is evident from the figure that, under the guidance of 

navigator AUV1, AUV2~AUV5 successfully navigated 

through obstacles and reached their destination. The path 

planning from AUV1 to AUV5 is stable, confirming that 

the proposed formation method can achieve good results 

in practical scenarios. 
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Figure 12: Path planning in real-world scenarios 

 

Taking the above results together, the MAUVF control 

method based on ETM and MPC proposed in this 

experiment can realize efficient and accurate control. At 

the same time, it can reduce the difficulty of computation 

and resource consumption. 

5 Discussion 

To enhance the efficiency and stability of multi-AUV 

formation control, this study proposes combining MPC 

with ETM. During the experiment, the MPC model was 

utilized for feedback correction to overcome 

environmental interference and maintain closed-loop 

stability. Predictive models are often nonlinear and 

influenced by unstable factors, hence the addition of a 

feedback loop during the control process. At the start of 

each sampling period, the controlled object's output was 

detected, and the model's prediction results were 

corrected based on the detection results. Afterward, new 

optimizations were performed to achieve the desired 

control effect. Simultaneously, the experimental research 

of multi-AUV formation control introduced both 

distributed static ETM and fixed time theory, and 

constructed a triggering function. In the experiment, a 

distributed static event-triggered formation controller was 

designed to achieve global fixed time convergence of the 

system, which depends solely on the design parameters. 

The experiment compared the proposed method with 

adaptive control based on RBFNN, distributed ETM, and 

backstepping. In the experiment, the proposed method 

exhibited the lowest MSE and average value compared to 

all other algorithms. Additionally, it required the fewest 

number of triggers to solve the optimization problem 

when compared to the other methods. These results 

demonstrated that the proposed method is 

computationally more efficient than the other methods for 

solving the optimization problem. This method 

effectively reduced the computational cost of various 

AUV formation control methods. Additionally, 

navigation AUV1 can quickly obtain the optimal solution 

and effectively guide other AUVs to meet practical work 

requirements. Compared to the methods in references [5, 

7, 12], it was evident that these methods have drawbacks 

such as high computational complexity, limited 

application scope, susceptibility to external 

environmental influences, and poor real-time control 

performance. This method had a limited range of 

applications and may be influenced by the research 

environment, making it ineffective in other scenarios. 

6 Conclusion 

AUVs are less efficient when operating underwater due 

to their own resource carrying capacity. MAUVF can 

make up for its shortcomings when working underwater. 

However, the existing MAUVF control methods are 

computationally large, while some methods are only 

suitable for specific scenarios. To improve the application 

of MAUVF control methods, ETM and MPC are 

introduced in the experiment for the design of formation 

control methods. To reduce the difficulty of computation, 

the methods were optimized in the experiments using 

methods such as RBFNN and filter control. The above 

experimental results confirmed that AUV2A~AUV5A 

were able to avoid obstacles smoothly under the lead of 

the pilot AUV1A. The motion trajectories of 

AUV1A~AUV5A had a high degree of overlap with the 

reference trajectory. AUV1~AUV5 produced a position 

error within 3 seconds of motion, and it had a maximum 

error of 3.8 meters. When the motion trajectory was 

greater than 3 seconds, the position errors of 

AUV1~AUV5 tended to be infinitely close to 0. 
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AUV1~AUV5 showed some error fluctuations at the 

beginning of the motion. But their error ranges were 

small, and the maximum velocity error was 3.7 m/s. After 

a period of motion, the velocity errors of AUV1~AUV5 

were converged to 0. The proposed method had the 

lowest MSE and its average value among all the 

algorithms. Its maximum MSE was 2.4233 and its 

average MSE was 1.4015. The proposed method required 

the least number of triggers for AUV1~AUV5 to perform 

the solution of the optimization problem among all the 

methods. For AUV1~AUV5, Pilot AUV1 had the least 

number of triggers. The aforementioned results confirm 

that the proposed MAUVF control method based on ETM 

and MPC is able to realize efficient and accurate control 

and reduce the difficulty of computation and resource 

consumption. Although the experiments show that the 

MAUVF control method has been effectively improved, 

there are still some problems. For example, the 

experiments have not yet been analyzed by simulation in 

complex environments. This may limit the application of 

MAUVF. It is necessary to further deepen the 

experiments to improve the application of MAUVF in 

future research. Due to limitations in experimental 

conditions, it is currently not possible to simulate 

experiments in real environments and complex scenes, 

which can serve as a direction for future research. 
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