
https://doi.org/10.31449/inf.v49i14.5742 Informatica 49 (2025) 111–118 111

Improved Memory Efficient Computing Unit DWT Architecture For

Satellite Images

A. Azhagu Jaisudhan Pazhani, P. Gunasekaran and A. Rameshbabu

Department of ECE, Ramco Institute of Technology, Rajapalayam, India

E-mail: alagujaisudhan@gmail.com, mailtogunasekar@gmail.com, rameshbabu@ritrjpm.ac.in

Keywords: VLSI architecture, look-up table, distributed arithmetic, DWT, 2D, ROM, memory

Received: February 21, 2024

The 2D Discrete Wavelet Transform is a signal transform that is frequently used in picture and video

compression. It is a computationally costly signal transform. VLSI implementation of 2D DWT is

susceptible to a set of restrictions such as area and power consumption due to its increasing use in high

data rate communication and storage in portable and handheld devices. The Distributed Arithmetic

architecture is one of several architectures for constraint-driven VLSI implementation of 2D DWT that

have been developed in recent years. The Distributed Arithmetic architecture is used efficiently to execute

inner product computations, eliminating the need for multiplication and increasing computation speed.

Filtering is the most power-intensive process in DWT, and multipliers are more expensive, so in

Distributed Arithmetic architecture, multipliers are substituted with shifts and ROM lookup tables.

However, as the number of filter coefficients grows, the size of the ROM look-up table grows, which can

be decreased using the lookup table compression technique. In this paper, an Improved Memory Efficient

Distributed Arithmetic Architecture for DWT has been proposed. The look-up table is used to stock the

inner product values and then compressed. The performance of the improved LUT compressed algorithm

is superior than the existing technique.

Povzetek: Predlagana je optimizirana pomnilniško učinkovita VLSI arhitektura za 2D DWT pri obdelavi

satelitskih slik. Z uporabo porazdeljene aritmetike in stiskanja LUT zmanjša stroške računanja, izboljša

hitrost in učinkovitost za aplikacije z visoko hitrostjo prenosa podatkov.

1 Introduction
Wavelet-based approaches are used to tackle complicated

problems in math and engineering, with current

applications including data compression, signal

processing, image processing, pattern recognition,

computer graphics, aeroplane and submarine detection,

and other medical imaging technologies. A wavelet is an

orthogonal function that may be applied to a limited set of

data in the sense of the Discrete Wavelet Transform

(DWT).

Mohanty B.K. Meher P.K. introduced a distributed

arithmetic (DA) formulation for DWT computation

utilising 9/7 filters in 2009, and transferred it to bit-parallel

and bit-serial architectures for high-throughput and low-

hardware implementations, respectively. For low-

hardware solutions, the bit-serial structure processes the

input vector's bit-slices in a serial fashion, whereas the bit-

parallel structure processes all the bit-slices in parallel for

high-throughput computing. The hardware usage

efficiency of the bit-parallel structure is 100 percent. The

suggested DA DWT structure has a much greater

throughput rate and requires less area-delay product than

conventional multiplier-less arrangements.

To process N-bit input operands, the fundamental serial

architecture needs N clock cycles [3]. The primary

disadvantage of the serial DA design is that it consumes

more clock cycles and the filter's performance is slow. To

expedite the procedure, it is preferable to apply the DA in

parallel. The input data is separated into even and odd

samples based on their location in the parallel

implementation. Even samples convolve with even and

odd filter coefficients, while odd samples convolve with

the same set of coefficients at the same time [2]. The result

is achieved concurrently for both even and odd input

samples. The number of clock cycles is lowered, resulting

in faster processing and less memory.

Distributed arithmetic calculations are bit-serial

in nature in their most evident and direct form, i.e., each

bit of the input samples must be indexed before a new

output sample becomes available. When the input samples

are represented with B bits of accuracy, an inner-product

computation takes B clock cycles to complete. By

replicating the LUT and adder tree, a parallel realisation

of distributed arithmetic allows multiple bits to be

processed in one clock cycle. The odd bits are sent to one

LUT and adder tree in a 2-bit parallel implementation,

while the even bits are fed to an identical tree. To suitably

weight the outcome, the bit partials are left shifted and

added to the even partials before aggregating the

aggregate. All input bits can be calculated in parallel and

then concatenated in a shifting adder tree in the extreme

scenario [4].

112 Informatica 49 (2025) 111–118 A.A.J. Pazhani et al.

An LUT, a cascade of shift registers, and a

scaling accumulator make up the distributed arithmetic

implementation of the Daubechies 8-tap wavelet FIR

filter. All potential sums of the Daubechies 8-tap wavelet

coefficients are stored in the LUT. The bit-wide output is

delivered to the bit serial shift register cascade, one bit at

a time, as the input sample is serialised. The input sample

is stored in a bit-serial format in the cascade, which is then

utilised to generate the requisite inner-product

computation. The shift register cascade's bit outputs are

utilised as address inputs to the LUT. The scaling

accumulator adds together partial LUT results to generate

a final result at the filter output port.

The benefit of utilising DA for a wavelet with a

greater number of coefficients, on the other hand, may be

lost over time due to a huge rise in memory size. The

needed number of table entries is 2n. As the number of

filter coefficients 'n' rises, the size of the look-up database

grows exponentially.

A recent 2D DWT implementation on the NVidia

GeForce GTX TITAN Black GPU was proposed in [7].

The authors of the paper [7] used a register-based

technique to propose their DWT algorithm, which they

claimed was four times quicker than existing GPU-based

software implementations of DWT.

Darji et al. [8] presented a lifting DWT-based

multiplier-less 1D/2D DWT architecture. They employed

an innovative z-scanning method to reduce the transposing

buffer size to 0 by using an innovative z-scanning method.

Their temporal buffer size, on the other hand, is

proportional to the number of input data points. Their

requirement for adders is likewise quite great. Other newer

methods may be able to outperform their architecture in

terms of real-time image decomposition. 9/7 and 5/3 filter

architectures were proposed by Meher et al. [9]. They

offered 9/7 and 5/3 architectures with and without

pipelines, as well as reconfigurable 9/7 and 5/3 systems.

They concentrated on drastically lowering the size of the

area and memory. Despite the fact that their design is

space-efficient and their working speed is sufficient, there

is still room to reduce their CP and thus increase the

maximum operating frequency, which is a critical design

component for real-time signal processing.

A multiplier-less lifting-based 2D DWT

architecture was proposed in the work [10]. A flipping-

based 2D DWT architecture was also presented in the

same paper [10]. The inherent low critical-path delay of

flipping-based architecture might be realised utilising

lifting-based DWT design, according to the paper [10]. To

validate the contributions, both designs were compared to

other existing works. Despite the fact that the designs

provided in [10] claim to greatly minimise critical-path

delays, the critical-path delays of both lifting- and

flipping-based architectures are significantly higher than

any convolutional DWT architecture. As a result, there is

plenty of room for improving timing performance.

In the work of Hegde et al. [11], the authors

proposed one lifting- and flipping-based DWT

architecture which is memory and power efficient. They

used area consumption, critical-path delay, and power

consumption as the main performance metrics. They

proposed ‘look-up table’ (LUT)-based multiplier to

reduce area and critical-path delay. They developed the

architecture using gate-level HDL language and provided

the ASIC implementation details. By proposing LUT-

based multiplier, they successfully achieved to reduce the

critical-path delay and area consumption of their

multiplier than any conventional popular multiplier.

However, they did not completely omit multipliers from

their designs. Therefore, their design’s critical-path delay

and power consumption are greater than any other

multiplierless design. Moreover, LUT-based design uses a

lot of registers or memory. Therefore, their design is also

memory extensive.

We are now concentrating on briefly mentioning

some of the most current works in the domain of DWT

architectural design, having discussed some of the most

recent and benchmark works in the subject. The authors

introduced 1D/2D DWT architectures based on floating-

point multiply and accumulator circuit' (MAC) units in

their paper [12]. The 45 nm CMOS technology was used

to implement the design. Though the validation and

verification of the work is commendable, the performance

in terms of critical-path delay, CT, and memory

consumption should be improved further.

The study given in [13] is about the LeGall 5/3

DWT filter's DA-based DWT architecture. The work was

implemented on an Altera FPGA, and the design's quality

was compared to that of previous DWT-based works to

demonstrate its superiority. However, there is still a lot of

room for improvement in terms of area usage, power

consumption, and operation speed with the DWT

architecture. The authors of the paper [14] described a

LeGall 5/3 DWT filter with a 1D DWT architecture based

on 'canonical sign digit' (CSD)-based DA.

The authors used the CSD-based DA approach to

propose a hardware-efficient DWT architecture that only

required seven adders, a few shift registers, and

multiplexers. However, their clock period is 100 ns [14].

This means that the working frequency of their design is

only 10 MHz, which is far too low for many real-time

applications. The work of [15] offered another major and

current DWT architecture. A dual-memory controller-

based 2D DWT architecture with a focus on real-time

image processing was presented in the study [15]. The

design's memory requirements were said to be streamlined

to allow for real-time image processing.

 An architecture that reduces the number of

adders in a 1D Daub-4 filter module architecture and

enhances the conventional Daub-4 very large-scale

integration (VLSI) architecture design was proposed by

Tiancai Lan et al [16]. The input image has a size of N ×

N matrix, and the output result is saved in the TM. Four

sub-bands are obtained by reading the high and low

frequencies one at a time to the second Daub-4 filter

following the first Daub-4 filter's process.

Hussin et al. [17] proposed the 2D DWT and

Huffman encoding for image compression. Once the input

image has been chosen, the first step begins with RGB

layer division. Next, superfluous image data at each RGB

layer is eliminated using the lossy compression (DWT)

technique. The output of the DWT process is then encoded

Improved Memory Efficient Computing Unit DWT Architecture… Informatica 49 (2025) 111–118 113

and stored using lossless compression (the Huffman

encoding approach).

The major purpose of this study is to create a

DWT with a memory-efficient multiplier-less

architecture. In DWT filtering, the distributed arithmetic

architecture is used to produce multiplier-less computing.

The size of the ROM look-up table increases when the

filter coefficients rise in DWT with DA architecture,

which can be lowered by employing a more effective LUT

compression mechanism.

The size of the LUT can be lowered by counting

the number of toggles between each pair of entries and

compressing the result. The idea behind compressing the

table is to reduce the amount of bit transitions per column

as much as possible, then save the indices just where a bit

toggling occurs rather than the entire column. Using the

look-up table decoding approach, the needed inner

product value is created from the compressed look-up

table.

The following is a breakdown of the paper's

structure. The DA architecture for DWT implementation

was covered in part II. The suggested DA-based DWT

architecture with better compression algorithm is

described in Section III. In section IV, the findings and

debates are discussed. Section V brings the paper to a

close.

2 Distributed arithmetic

architecrure for dwt implementation

FPGA implementation may be difficult due to

their lack of arithmetic capabilities compared to general-

purpose DSP processors. The reprogrammable

configuration of FPGA is, nevertheless, its most

significant benefit. Field Programmable Gate Arrays

(FPGAs) are utilized in this study to implement DWT in

hardware. With a large reduction in calculation time,

DWT gives enough information for analysis and synthesis

of the original signal.

The DA-based DWT has several uses in science,

engineering, mathematics, and computer science. The use

of DWT as an analogue filter bank in biomedical signal

processing for the creation of low-power pacemakers, as

well as in ultra-wideband wireless communications, is

demonstrated.

To disguise the multiplications, DA is a bit level

rearrangement of a multiply accumulate. It's a useful

strategy for shrinking parallel hardware multiply

accumulates that's ideally suited to FPGA designs. Since

its introduction over two decades ago, DA has been

frequently employed in VLSI implementations of DSP

systems. The majority of these applications rely heavily

on computing, with multiplication and/or addition being

the most common operations. The key benefit of the

distributed arithmetic technique is that it speeds up the

multiply process by computing and storing all potential

medium values in a ROM. After that, the input data may

be used to address the memory and the result directly.

Formulation of algorithm

An illustration of normal Multiply Accumulate (MAC)

operation

1 1 2 2 i iy A X A X A X= + +

 (1)

Ai = Coefficient, Xi = Input

Distributed arithmetic implementation of DWT

Let Xk be a N-bits scrambled 2’s complement number

|Xk|<1

Xk: {bk0, bk1, bk2……, bk(N-1),

 Where bk0 is the sign bit

Xk is expressed as

 Xk = -bk0 + ∑ 9𝑁
𝑛 (2)

Substitute equation (2) in equation (1),

y = ∑ 𝐴𝑘
𝑘=1 𝑘

 + ∑ 9𝑁
𝑛

 𝑦 = ∑ 𝑏𝑘0𝐴𝑘 + ∑ 𝐴𝑘 ∑ (𝐴𝑘𝑏𝑘𝑛) 2−𝑛𝑁−1
𝑛=1

𝑘
𝑘=1

𝑘
𝑘=1

 𝑦 = − ∑ 𝑏𝑘0𝐴𝑘 +𝑘
𝑘=1

 ∑ ∑ (𝐴𝑘𝑏𝑘𝑛)2−𝑛 𝑁−1
𝑛=1

𝑘
𝑘=1 (3)

Expanding this part

𝑦 = − ∑ 𝑏𝑘0𝐴𝑘 + ∑ (𝐴𝑘𝑏𝑘1)2−1 +𝑘
𝑘=1

𝑘
𝑘−1

(𝐴𝑘𝑏𝑘2)2−2 + ⋯ + (𝐴𝑘𝑏(𝑁−1))2−(𝑁−1) (4)

𝑦 = −[𝑏10𝐴1 + 𝑏20𝐴2 + ⋯ + 𝑏𝑘0𝐴𝑘]
+ [(𝑏11𝐴1)2−1 + (𝑏12𝐴1)2−2

+ ⋯ + 𝑏1(𝑁−1)𝐴12−(𝑁−1)] + ⋯

+ [(𝑏𝑘1𝐴𝑘)2−𝑘 + (𝑏𝑘2𝐴𝑘)2−𝑘

+ ⋯ (𝑏𝑘(𝑁−1)𝐴𝑘)2−(𝑁−1)]

y = − ∑ 𝑏𝑘0
𝑘
𝑘=1 𝐴𝑘 + ∑ [𝑏1𝑛𝐴1 + 𝑏2𝑛𝐴2 +𝑁−1

𝑛=1

 … + 𝑏𝑘𝑛𝐴𝑘] 2−𝑛 (5)

y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 + ∑ [∑ 𝐴𝑘𝑏𝑘𝑛]𝑘−1

𝑘=1
𝑁−1
𝑛=1 2−𝑛

 (6)

Because each bkn can only take on values of 0 and 1, there

are only 2k potential possibilities. The memory holds the

result y after N such cycles.

Hardware reduction in DA method

Figure 2.1 gives the hardware realization of the

original equation (3) and for this original equation, the

hardware utilization is high. The DA approach decreases

hardware use, allowing the operation to run faster.

114 Informatica 49 (2025) 111–118 A.A.J. Pazhani et al.

y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 + ∑ ∑ (𝐴𝑘𝑏𝑘𝑛)𝑁−1

𝑛=1
𝑘
𝑘=1 2−𝑛

 (7)

Figure 2.1: Hardware utilization for original equation

Figure 2.2 shows the hardware utilization in bit level

rearrangement. In that hardware is reduced compared to

original equation

y = − ∑ 𝐴𝑘(𝑏𝑘0)𝑘
𝑘=1 + ∑ [∑ 𝐴𝑘𝑏𝑘𝑛]𝑘−1

𝑘=1
𝑁−1
𝑛=1 2−𝑛

 (8)

Figure 2.2: Hardware utilization in bit level

rearrangement

DA architecture

The LUT, Shift registers, and scaling

accumulator make up the DA architecture of a FIR filter.

Various sums of the four coefficients make up the LUT

data. The operands are loaded into the registers through a

register chain in the shift registers. Depending on whether

a serial or parallel architecture is used, the operands are

then shifted 'n' bits at a time. In the scaling accumulator,

the output of the DA LUT is added to the scaled output.

It's made with an M-bit adder and a N+M-bit shift register

at the output.

Serial DA architecture

As illustrated in Figure 2.3, the basic serial

architecture requires N clock cycles to handle N-bit input

operands. The LUT, adder tree, and scaling accumulator

are all part of the critical path in the DA architecture,

which runs from the input shift register to the output. The

critical path delay is dominated by adder delays without

the pipeline registers. When the design is fully pipelined,

the significant fan-out loading delay incurred at the output

of the shift register feeding the DA LUT inputs entirely

masks the adder delays. If the loading factor is taken into

account, the adder delays dominate the critical route

latency, which may be considerably reduced by applying

the technique outlined in. However, there will be little

benefit from adopting quicker adder stages until the fan-

out delays are addressed.

Figure 2.3: Serial DA architecture

The implementation findings show that by using

parallelism with more than one bit at a time, the

performance of DA systems may go up virtually linearly.

Adding parallelism is the same as repeating the

fundamental structure as many times as needed, each of

which may function independently without clock

frequency deterioration caused by pipelining.

Due to pipelining, the frequency of both

operations stays the same. Furthermore, because each

stage of the DA calculation is only a single basic FPGA

element, the highest potential clock frequency for a

particular FPGA device may be exploited. The main

drawback of the serial DA architecture is, it requires more

clock cycles and the speed of filter is low.

Parallel DA architecture

The procedure will be slower because the DA

architecture is bit serial in nature. A parallel distributed

arithmetic architecture is built to speed up the procedure

[4]. Figure 2.4 depicts the parallel DA architecture. The

input data is separated into even and odd samples based

on their location in parallel implementation. Filter

coefficients are also divided into even and odd samples.

Even samples convolve with even and odd filter

coefficients, while odd samples convolve with the same

coefficients at the same time.

It is possible to receive results for both even and

odd samples of input at the same time. The number of

clock cycles is lowered, resulting in faster processing and

less memory. The registers are loaded with the input

Improved Memory Efficient Computing Unit DWT Architecture… Informatica 49 (2025) 111–118 115

values for each cycle, and then the reloading procedure to

registers is enabled for the following set of cycles. The

serial shift register, which must access the look-up table,

will receive the input x[n]. The old value will be moved

into the next register when the new input arrives in the first

register. Similarly, as new values enter registers, the old

values are removed from the registers.

Figure 2.4: Parallel DA architecture

Consider the bit locations and retrieve the values

of inputs from that bit position to get the address from the

input values. Consider the LSBs of all serial registers to

determine the initial address, for example. The initial

position value will be generated using this address. Obtain

all of the bit position addresses and the accompanying

values from the look-up table in the same manner. Shift

the values by the bit position value and provide them to

the adder during adding. Finally, the output, which is the

convolution of the filter coefficients and the inputs, will

be generated.

Both the high-pass and low-pass filters will be

built using the same design. If the input is 8 bits long, the

convolved value takes 8 clock cycles to compute. The

filter operations are stated using floating point arithmetic

while computing the wavelet coefficients. In practice,

though, integer arithmetic is employed. The filter

coefficients are shortened as a result. The precision of the

calculated coefficients suffers as a result of this reduction.

3 Proposed memory efficient da

architecture for dwt
Implementing DWT with DA architecture may

improve computation speed, but it will also increase

memory size as the number of wavelet coefficients grows.

The multi-level decomposition requires a high level of

DWT implementation complexity. As a result, the benefit

of employing DA will be effectively gone. The size of the

look-up table in the DA architecture for DWT is reduced

using a novel way. A table compression approach, as

shown in Figure 3.1, can be used to minimize the size of

the look up table required to record all possible

combinations of input in DA architecture. The algorithm

for compressing the LUT is the same as that used to save

a processor's assembly language instructions [5]. A similar

approach can be used to reduce the number of LUTs in DA

architecture [1].

After going through high pass and low pass

filters, the DWT coefficients are created. The filter

coefficients are convolved with inputs to perform the filter

operation with N input variables. The coefficients are

fixed in this case. Binary can be used to represent inputs.

The inputs are scaled to have absolute values less than one.

In ROM look-up tables, the inner product for several

inputs can be computed and saved in advance. If there are

n wavelet coefficients, the look-up table will be 2n. All

LSBs are assumed to be the first to receive data. Similarly,

all bit positions are determined, and the look-up database

is used to determine the appropriate values.

Figure 3.1: Memory reduced DA architecture

LUT encoding algorithm

 The size of the LUT can be lowered by counting

the number of toggles between each entry and

compressing them [1]. The idea behind compressing the

table is to reduce the amount of bit transitions per column

as much as possible, then save the indices just where a bit

toggling occurs rather than the entire column. Figure 2

displays an example of a LUT with seven symbols, each

with eight bits. The table is 56 bits in size (before

compression). There are 8 distinct binary words in the

table, with an index length of 3 bits. As a result, if the

column contains no more than two transitions, it can be

compressed. Seven columns will be compressed in this

example, but one column will remain uncompressed. After

compression, the table's size is reduced to 34 bits (from 56

bits before). FPGA RAM blocks are used to hold the

compressed table.

 If the lookup table compression is modified using

the following steps auxiliary compression can be

achieved. The steps to be incorporated in the modified

lookup table compression are as follows:

Total number of locations: LUT size: 2n

if index< 2n/2

 use rep with (n-1)-bits

else

 n-bits

Using the above steps the table is further compressed as

shown in Figure 3.2. Hence the LUT compression of 28

bits can be achieved.

116 Informatica 49 (2025) 111–118 A.A.J. Pazhani et al.

 (a) (b)

(c)

Figure 3.2: a) Uncompressed LUT b) Existing

Compressed LUT c) Improved LUT Compression

Using the LUT compression methodology and

the improved LUT compression, the size of the

compressed LUT is decreased by 39.28% and 50%,

respectively. Thus the modified LUT can be an efficient

method for compressing the DWT coefficients.

LUT decoding algorithm

The needed inner product value is created from

the compressed look-up table in this decoding process.

When a certain input to a look-up table comes, it

determines its location in each compressed table column.

• If the input is greater or equal to the compressed

look-up table value, then generate ‘1’

• If the input is lesser to the compressed look-up

table value, then generate ‘0’

The uncompressed table columns' original bits are

received straight from the ROM.

DA DWT architecture

 The parallel implementation of DA architecture

is exposed in Figure 3.3. The input data is separated into

even and odd samples based on their location in parallel

implementation. As a result, even samples convolve with

even and odd filter coefficients, whereas odd samples

convolve with the same set of coefficients. The results for

both even and odd samples of input are obtained. Here

number of clock cycles are abridged which results in

increased speed and decreased memory.

 To access the LUT, the same number of registers

must be used for accessing filter quantities. The data will

be sent into a serial shift register, which will need to

consult the look-up table. The old value will be moved into

the next register when the new input arrives in the first

register.

Similarly, when new values enter registers, the

old values are removed from the registers by examining

bit positions and determining the values of inputs based on

that bit position. Finally, all bit position addresses are

obtained from the look-up table and are given as input to

adder by shifting its values. Finally, the result, which is

the convolution of the filter coefficients and the inputs,

will be achieved.

The DA architecture speeds up the operation by

lowering memory use, but as the size of the look-up table

grows larger, the decoding process becomes more time

demanding.

Figure 3.3: DA DWT architecture

4 Results and discussion
In this work, the distributed arithmetic

architecture for DWT is designed and simulated using

Verilog in MODEL SIM 0.61xd. Simulation verifies the

functionality of both high pass and low pass filters. Then

it is synthesized into Spartan3E FPGA platform using

Xilinx ISE Design Suite 13.2.

Simulation and synthesized results for single level

DWT

The synthesized results for the suggested design

are presented in Figure 4.1 for the low pass and high pass

filters. The Parallel DA-DWT Architecture reads input

vectors from a ROM. The shredded outputs are saved, and

simulated waveforms are used to illustrate them.

Improved Memory Efficient Computing Unit DWT Architecture… Informatica 49 (2025) 111–118 117

 Figure 4.1: Synthesized result of single level DWT

Comparison of uncompressed and compressed DA

ROM Size

The Table I give the memory size of the look-up

table for low pass and high pass filter with uncompressed

DA is reduced to 60% and 40% compared to compressed

DA respectively. The proposed technique gives the

compression efficiency of 50% for low pass and 72% for

high pass filter whereas the existing technique gives the

compression efficiency of 60% for low pass and 63% for

high pass filter.

Table 1: Comparison of distributed arithmetic schemes

Architecture

Memory

size (ROM)

Lowpass

filter

Memory size

(ROM)

Highpass

filter

Uncompressed DA

[1]
80 bits 256 bits

Existing Compressed

DA [8]
48 bits 96 bits

Proposed Improved

DA
40 bits 72 bits

Performance comparision

The performance comparison of different architecture for

DWT is given in Table II.

Table 2: Performance comparison of various DWT

architecture

Scheme Level = 1

Filter implementation [9] 16 multipliers

Lifting implementation [8] 6 multipliers

Serial DA based

implementation [14]
43 adders

Compressed DA based

implementation

4 adders

4 subtractors

The Table II gives the requirement of adder and

multiplier for different architectures to design DWT. The

filter based implementation involves direct multiplication

for inner product calculation in the filter, which requires

more number of multipliers. The filter based

implementation of DWT for single level requires 16

multipliers. The lifting scheme is implemented to reduce

the arithmetic computation which requires 6 multipliers to

implement the DWT for single level. The serial DA based

architecture involves multiplier less operation for inner

product calculation; it requires 43 adders to design single

level DWT. The proposed method reduces up to 4 adders

and 4 subtractors.

Hardware utilization comparision

The Table III gives the device utilization of DA

architecture. It is less compared to convolution based

architecture. The DA architecture uses LUT instead of

multiplier for MAC unit to get inner product calculations.

Table 3: Hardware utilization comparison

LOGIC

UTILIZATION

CONVOLUAT

ION BASED

ARCHITECT

URE (one

level) [6]

DA BASED

ARCHITECT

URE (one

level)

Number of slices

Flip Flops
47 102

Number of 4

input LUTs
294 115

Total number of

occupied slices
209 91

Number of

bonded IOBs
91 35

Number of

BUFGMUXs
1 1

Images transform comparisons using 2D-DWT

(a) Input image (b) DWT Processed image (c) Output

 image

5 Conclusion
The memory efficient DA architecture for

discrete wavelet transform is implemented using Spartan

3E FPGA. The DA architecture is built on the Look-up

table technique for effective inner product computation.

When using DA architecture to implement DWT, the size

of the ROM look-up table grows as the filter coefficients

grow. The revised look-up table compression technique

reduces the size of the LUT up to 115. The compressed

LUT is kept in the FPGA's ROM. Data can be decrypted

by decompressing the table while conducting DWT

calculation. The memory-based method enables the

Parallel DA-DWT to achieve high computation speeds

118 Informatica 49 (2025) 111–118 A.A.J. Pazhani et al.

while using a little silicon area by replacing multipliers

with compact ROM tables. Saving adders, quick

processing time, regular flow of data, and minimal control

complexity are all advantages of the suggested

architecture, making it suited for image compression

systems. The proposed method reduces the memory size

from 80 bits to 40 bits for LPF and 256 bits to 72 bits for

HPF, but the decoding process will be time consuming

while increasing the filter coefficients. The focus of future

research will be on improving the speed of retrieval from

LUTs and quick decoding.

Author contributions statement
"All authors contributed to the study conception and

design. Material preparation, data collection and analysis

were performed by [A. Azhagu Jaisudhan Pazhani], [P.

Gunasekaran] and [A. Rameshbabu]. The first draft of the

manuscript was written by [A. Azhagu Jaisudhan

Pazhani]. All authors read and approved the final

manuscript.”

Conflict of interest
 There is no conflict of interest in this paper regarding

publication.

Data availability statement
The data that supports the findings of this study are

available within the article.

Funding
No funding was received for this study.

References
[1] Remya Ajai A S, Nithin Nagaraj (2012), “A Novel

methodology For Memory Reduction in Distributed

Arithmetic Based DWT” International Conference on

Communication Technology and System Design

procedia Engineering 30, pp. 226-233.

[2] K.B. Sowmya, Dr. SavitaSonoli and M.

Nagabushanam (2012), “Implementation of Parallel

DA Technique for DWT-IDWT on FPGA for Image

Compression”, International Journal of Power

Systems and Integrated Circuits, Vol. 2, pp 143 – 148.

[3] Mohanty B.K. Meher P.K (2009), “Efficient

multiplier less designs for 1-D DWT using 9/7 filters

based on distributed arithmetic”, Dept. of Electronics

and Communication Engineering., Jaypee Inst. of

Eng. & Technol., Guna district, India, vol 1.1, no 6,

pp 364 – 367.

[4] Al-Haj AM (2005), “An FPGA-Based Parallel

Distributed Arithmetic Implementation of the 1-D

Discrete Wavelet Transform,” Informatica vol. 29, no

2, pp 241-247.

[5] Xixin Cao, QingqingXie, ChunganPeng, Qingchun

Wang (1996), “An Efficient VLSI Implementation of

Distributed Architecture for DWT” IEEE Transaction

VLSI System, vol. 2, no 6, pp. 521-543.

[6] Basant kumar mohanty, Pramod kumar (2013),

“Memory-Efficient High-Speed Convolution-Based

Generic Structure for Multilevel 2-D DWT” IEEE

Transaction on circuits and systems for video

technology, vol. 23, No. 2.

[7] Enfedaque, P, Auli-Llinas F, Moure J.C (2014),

“Implementation of the DWT in a GPU through a

register-based strategy” IEEE Trans. Parallel Distrib.

Syst. 26(12), 3394–3406.

[8] Darji A, Arun R, Merchant S.N, Chandorkar A

(2015), “Multiplierless pipeline architecture for

lifting-based two-dimensional discrete wavelet

transform” IET Comput. Dig. Tech. 9(2), 113–123.

[9] Meher P.K, Mohanty B.K., Swamy M.M.S (2015),

“Low-area and low-power reconfigurable

architecture for convolution-based 1-D DWT using

9/7 and 5/3 filters” 28th International Conference on

VLSI Design, Bangalore, pp. 327–332.

[10] Mohanty B.., Meher P.K, Srikanthan T (2015),

“Critical-path optimization for efficient hardware

realization of lifting and flipping DWTs” IEEE

International Symposium on Circuits and Systems

(ISCAS), Lisbon, pp. 1186–1189.

[11] Hegde G, Reddy K.S, Ramesh, T.K.S (2018), “A new

approach for 1-D and 2-D DWT architectures using

LUT based lifting and flipping cell”, AEU Int. J.

Electron. Commun. 97, 165–177.

[12] Mohamed Asan Basiri M, Noor Mahammad S (2018),

“An efficient VLSI architecture for convolution-

based DWT using MAC”, 31st International

Conference on VLSI Design and 2018 17th

International Conference on Embedded Systems,

Pune, pp. 271–276.

[13] Aziz, F, Javed S, Iftikhar Gardezi S.E, Jabbar Younis

C, Alam M (2018), “Design and implementation of

efficient DA architecture for LeGall 5/3 DWT”,

International Symposium on Recent Advances in

Electrical Engineering (RAEE), Islamabad, pp. 1–5.

[14] Gardezi S.E.I, Aziz F, Javed S, Younis C.J, Alam M,

Massoud Y (2019), “Design and VLSI

implementation of CSD based DA architecture for 5/3

DWT”, 16th IEEE International Bhurban Conference

on Applied Sciences and Technology (IBCAST),

pp.548–552.

[15] Naik P, Guhilot H, Tigadi A, Ganesh P (2019),

“Reconfigured VLSI architecture for discrete wavelet

transform”, Soft Computing and Signal Processing.

Springer, Singapore, pp. 709–720.

[16] Tiancai Lan, Chih-Hsien Hsia, Po-Ting Lai, Hsien-

Wei Tseng and Cheng-Fu Yang (2022), “Memory

efficient Very Large-Scale Integration Architecture of

2D Algebraic-integer-based Daubechies Discrete

Wavelet

 Transform”, Sensors and Materials, Vol. 34, No. 9

3623–3636.

[17] M.A. Hussin, F.A. Poad, A. Joret (2021), “A

comparative study on the performance of DWT and

huffman compression technique on a 2D signal”, J.

Electron. Voltage Appl. 2 (1) 11–19.

