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This paper introduces a novel optimization problem termed the Fixed Charged Transshipment Problem
(FCTP), which incorporates fixed charges for selected routes. A new formulation for this problem is
presented, aiming to address the combinatorial nature of the challenge. The study further introduces a
Modified Emperor Penguin Optimizer (EPO) algorithm designed to enhance the solution approach. To
evaluate the performance of the Modified EPO, a comparative analysis is conducted against the classical
EPO and Particle Swarm Optimization (PSO) algorithms. 19 problems, including various multi-modal
test optimization functions, serve as the testing ground. Results demonstrate the efficacy of the Modified
EPO, establishing its superiority over the classical EPO and PSO. Additionally, a heuristic procedure is
proposed for solving the combinatorial aspect of the FCTP. This heuristic is hybridized with both the
Modified EPO and PSO algorithms. 30 FCTP problems are generated using a code available at
https://github.com/MZakaraia/EPO_Transshipment/. Taguchi's orthogonal arrays are employed to
optimize parameter levels for both algorithms. The study concludes with the comparison of the Modified
Hybrid EPO and Hybrid PSO in solving the 30 generated FCTP problems. Remarkably, the Modified
Hybrid EPO algorithm outperforms the Hybrid PSO, showing its effectiveness in addressing the Fixed
Charged Transshipment Problem in terms of means and robustness.

Povzetek: Clanek predstavlja spremenjeni algoritem cesarskega pingvina za resevanje problema s
fiksnimi stroski prenosa, ki kaze premoc nad klasicnimi metodami z robustnostjo in ucinkovitostjo resitev.

1 Introduction

The fixed charged transshipment problem is a well-known
optimization problem in the field of logistics and supply
chain management. It involves determining the optimal
flow of goods through a network, considering fixed costs
associated with transshipments between various nodes.
Solving the FCTP efficiently is crucial for optimizing
supply chain operations, reducing costs, and enhancing
overall system performance. In recent years, nature-
inspired optimization algorithms have gained popularity
as effective tools for solving complex optimization
problems. One such algorithm is the Emperor Penguin
Optimizer (EPO), which is inspired by the behavior and
social interactions of emperor penguins in their natural
habitat. The EPO algorithm is known for its ability to
effectively handle continuous and discrete optimization
problems. This paper presents a modified version of the
Emperor  Penguin  Optimizer algorithm tailored
specifically ~for addressing the Fixed-Charged
Transshipment Problem. The main objective of this study
is to investigate the effectiveness and efficiency of the
modified EPO algorithm in finding high-quality solutions

for the FCTP. So, the contribution of this can be
summarized as follows:

e Proposing a new formulation for the fixed
charged transshipment problem by considering
fixed costs for the routes.

e Adapting a new modification of the population-
based metaheuristic EPO algorithm for solving
FTCP.

e  Generating a dataset of 30 problems for FTCP to
validate the proposed EPO algorithm for solving
FTCP.

The remainder of this paper is organized as follows:
Section 2 provides a literature review of related studies on
transshipment problems. Section 3 presents the
mathematical formulation of the Fixed Charge
Transshipment Problem with a discussion that shows the
novelty of the proposed formulation. Section 4 describes
the EPO algorithm in detail, while Section 5 introduces the
modified EPO and presents comparative results. Section 6
outlines the adapted EPO for solving FCTP. In this
Section the computational complexity of the proposed
EPO is presented. The experimental design is
implemented to optimize the parameters of the EPO and
adopted particle swarm optimization algorithm for solving
the problem. The computational results for 30 generated
problems are performed to compare between the hybrid
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EPO and PSO for solving the FCTP. Finally, Section 7
concludes the paper with a summary of the findings,
highlighting the advantages and potential applications of
the proposed algorithm for solving the Fixed Charge
Transshipment Problem.

2 Literature review

This section provides a literature review of prior research
on the transshipment problem, offering a comprehensive
overview of existing work and highlighting the motivation
behind the current study. Herer and Tzur [1] investigated
the strategy of transshipments in a dynamic, deterministic
demand environment over a finite planning horizon. Their
study considered a system of two locations replenished by
a single supplier, incorporating various costs and deriving
structural properties of optimal policies, leading to the
development of an efficient polynomial time algorithm for
obtaining the optimal strategy and motivating the adoption
of transshipments in replenishment strategies. Reyes [2]
used the Shapley value concept from cooperative game
theory to solve the transshipment problem and
demonstrated its efficacy through a numerical example.
Herer et al. [3] examined a supply chain with multiple
retailers and a supplier, where they established optimal
replenishment and transshipment policies to minimize
long-run average costs. Through a sample-path-based
optimization procedure, they calculated order-up-to
quantities using a linear programming/network flow
framework.

Belgasmi et al. [4] examined a multi-location
inventory system with centrally coordinated inventory
choices, allowing lateral transshipments within the same
echelon to reduce costs and improve service level. They
proposed a multi-objective model to optimize cost, fill
rate, and transshipment lead times. They utilized an
evolutionary multi-objective optimization approach to
approximate the optimal trade-offs between these
conflicting objectives. Sharma and Jana [5] developed a
transshipment planning model for the petroleum refinery
industry, aiming to minimize costs, maximize production,
and meet storage and demand requirements. They
employed a fuzzy goal programming (FGP) model with
integrated genetic algorithms (GA) to handle imprecision
and provide flexible solutions. A case example showcased
the effectiveness of this integrated technique in optimizing
transshipment operations. Khurana and Arora [6]
extended the standard transshipment model to include
inequality constraints. Their algorithm transformed the
problem into an equivalent transportation problem to
obtain the optimal solution. They discussed balanced and
unbalanced transshipment problems, emphasizing the
algorithm's applicability in addressing distribution
problems with mixed constraints and paradoxical
situations. Ozdemir et al. [7] investigated the coordination
of stocking locations considering lateral transshipments
and supply capacity in the transshipment model. They
formulated the capacitated supply scenario as a network
flow problem within a stochastic optimization framework.
They found that system behavior depends on production
capacity and highlighted the importance of capacity
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flexibility or transshipment flexibility for maintaining
desired service levels in a production-inventory system.

Khurana, et al. [8] developed an algorithm to solve a
transshipment problem with the objective of minimizing
transportation duration. They transformed the problem
into an equivalent transportation problem and obtained the
optimal solution. Their algorithm is easy to understand
and apply, making it suitable for addressing various
products distribution problems. In addition, balanced and
unbalanced time minimization scenarios were discussed
with numerical examples. Kumar, et al. [9] addressed the
challenges of uncertainty in transshipment problems by
representing parameters as intuitionistic fuzzy numbers.
Their proposed method is based on ambiguity and
vagueness indices to derive a fuzzy optimal solution
without the need for an initial basic feasible solution. The
technique demonstrated computational efficiency and
applicability to a wide range of transshipment problems,
supported by numerical illustrations. Garg et al. [10]
investigated a fuzzy fractional two-stage transshipment
problem, using the ratio of costs divided by benefits as the
objective function. They employed the extension principle
and Charnes-Cooper transformation method to find the
fuzzy objective value. The proposed formulation and
solution method demonstrated superior efficiency
compared to the existing literature.

Table 1 shows the literature review summary. To the
best of our knowledge, the fixed-charge transshipment
problem, which extends the fixed-charge transportation
problem by including transshipment nodes, has not yet
been investigated. Therefore, this paper presents a new
model for the transshipment problem that incorporates
both fixed costs and transportation costs.

Table 1: Literature review summary

Author Problem Approach

Herer and | Dynamic Heuristic

Tzur [1] transshipment approach
problem

Reyes [2] Classical Game theory
transshipment approach
problem

Herer et al. | Multi-location Linear

[3] transshipment programming and
problem network follow

Belgasmi et | Multi-objective Strength  Pareto

al. [4] multi-location evolutionary
transshipment algorithm
problem

Sharma and | Transshipment Fuzzy goal

Jana [5] management programming and
problem genetic algorithm

Khurana Unbalanced Liner

and Arora | transshipment Programming

[6] problem with
mixed constraints

Ozdemir et | Multi-location Random search,

al. [7] transshipment Simulation
problem with | applications, and
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capacitated sample average
production approximate

Khurana, et | Time minimizing | Heuristic

al. [8] transshipment approach
problem

Kumar, et | Fuzzy Heuristic

al. [9] transshipment approach
problem

Garg et al. | Fractional ~ two- | Charnes—Cooper

[10] stage transformation
transshipment method,  linear
problem under | programming
uncertainty

Given the combinatorial complexity of the problem,
the classical approaches listed in Table 1, primarily those
mentioned, are not well-suited to solving the fixed-charge
transshipment problem. Consequently, this paper adopts
one of the latest population-based metaheuristics, namely
the Emperor Penguin Optimizer Algorithm, to address this
challenge.

3 Mathematical formulation

Fixed Charge Transshipment Problem is a combinatorial
optimization problem in which a set of products or goods
is transported from source nodes to destination nodes
through a network of intermediate transshipment nodes. In
this problem, there is a fixed cost associated with using
each transshipment node, and a variable cost for
transporting each unit of product between the nodes. The
FCTP can be mathematically modeled as follows:
Notations:

i Set of sources
j Set of destinations
k Set of transshipment nodes
fr Fixed cost associated with transshipment node
k

Cij Unit cost of transporting a product from source
i to destination j via transshipment node k
Xij Amount of product transported from source

ito destination j directly (without
transshipment)
5; The available quantity produced by source i

d; The required demand by destination j
Amount of product transshipped at node
k from source i to destination j
Zy A binary variable representing whether
transshipment node k is used or not
Mathematical model:

minz frzi + Z Z Cij (xij + Z yl‘jk> (D

kek il jeJ kek
Subject to:
z<xij+2yijk)=si,w€l 2)
i3] kek
Z <xij + Z yijk) =d;,Vje] (3)
i€l kek
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ZZ"”’" < Qyz,VkEK (4)

i€l jeJ
x;j=0,Viel,je] %)
Viik 20,Viel,je]keK (6)
7z, € {0,1},Vk €K (7)

The fixed-charged transshipment problem, as shown
in the mathematical model, is a combinatorial
optimization problem known for its NP-hardness, making
it very difficult to solve using classical approaches.
Therefore, metaheuristics are the preferred choice for
tackling such problems. These approaches can be broadly
classified into two categories: single-based metaheuristics
(e.g., simulated annealing, Tabu search, and variable
neighborhood  algorithms) and  population-based
metaheuristics (e.g., particle swarm optimization, gray
wolf, genetic algorithm, and the proposed emperor
penguin optimizer algorithm (EPO) presented in this
paper) [11]-[14].

In this paper a new form of the transshipment problem
is presented, which considers fixed charges associated
with selected routes. To fill this gap, we propose a
hybridized EPO algorithm that incorporates a heuristic
procedure based on priority vectors to achieve solution
improvement. Before presenting the hybridized algorithm,
we propose a modified EPO algorithm and compare its
performance with both the classical EPO and a particle
swarm optimization algorithm.

4 Emperor
algorithm

The emperor penguin optimizer algorithm is a population-
based metaheuristic that was first proposed by Dhiman
and Kumar [15]. It mimics the emperor penguins’
huddling behavior. The steps of the algorithm include
generating the boundaries of the huddle, computing the
temperature of the huddle, the distances between specific
penguins, and finding the emperor penguins by obtaining
the effective mover. The proposed algorithm by Dhiman
and Kumar [15] consists of four phases:
e Generating positions based on
boundaries.
e Calculating the temperature around the huddle.
e Determining the distances between emperor
penguins.
e Relocating procedure.
The next subsections show these phases followed by
the full pseudo code of the basic POA algorithm.

penguin optimizer

huddle

4.1 Generating positions based on huddle
boundaries

In this phase, the positions of the penguins are to be
generated using the huddle boundaries, where they are
restricted by the lower bound (LB) and the upper bound
(UB). So, each penguin position is to be generated using
equation (8) for all n penguins in the huddle.
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Pos; = LB +rand(0,1)(UB — LB), Vi )
={1,..,n}

4.2 Calculating temperature profile
around the huddle

In this phase, the temperature profile of the huddle is to be
calculated using the radius of the huddle (R). If the radius
of the huddle is less than 1, then the temperature (T) equals
to 1, and T equals O if R greater than or equals 1. The
radius of the huddle in the algorithm is to be generated
randomly in each iteration from the interval [0,1]. So, the
new temperature profile around the huddle (T') can be
calculated according to equation (9).

I =T MaxItr ©)
B Ier_ Mélxltr
R <
r= {O,R <1

4.3 Determining the distance between the
emperor penguins
The distance between emperor penguins and the best
penguin can be calculated using two vectors that prevent
collision 4 and C, the position of the penguin iin the
current iteration (P,-(i)), a social force S, and the position
of the current optimal emperor penguin (P,,.). The
proposed equation by Dhiman and Kumar [15] to calculate
the distance (D) is presented in equation (10). The
calculations of the two collision vectors Aand C are
shown in equations (11) and (12), respectively. The
Pyriq Variable found in equation (13) is the absolute value
of the difference between the position of the best emperor
penguin and the current penguin i, where the equation of
the Py,.;q Is equation (13). The social force function can be
calculated using equation (14).

D = |S(A)Pyp: — CPyr ()] (10)
A=(2XT"+ Pgig xrand(01)) =T (11)
¢ = rand(0,1) (12)
Pgria = |Pope = Prer (D] (13)

Itr 2
S = (Jrand(ZB)efm - e"") (14)

4.4 Relocating procedure

In this phase, the position of each emperor penguin is to
be modified using the calculated distance (D) as found in
equation (15).

Pitr41 = Piey + AD (15)
Now the pseudo code of the basic algorithm
developed by Dhiman and Kumar [15] can be summarized
as follows:
Input the Populatin size (N), MaxItr,and R
parameters
Generate the initial population
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Evaluate each solution in population and store
the best solution (Popt)
Itr=1
While Itr < MaxlItr do:

i=1

While i < N do:

Maxltr

~ Itr — Maxltr

A=M X (T"+ |Poye = Py (D] x rand(0,1)) = T’

2
Itr
S = (\/rand(z‘g)e_mnd(ms,z) — e—Itr)

D =|S. Py(i) — rand P,y|

Py i1 (D) = Py () — AD

if f(PItr+1(i)) < f(Popt) then:
Popt = Pery1 (D)

T'=T

i=i+1
Itr =1Itr +1
Return Py,

5 Modified penguin optimizer and
comparative results

This section presents a modification of the EPO algorithm
to adapt it for solving FCTP. The new modification of the
algorithm considers adding an information vector
(P (0))[16]. Such information vector will be created
during the relocating procedure of the algorithm. The
creation of this vector is done using the positions of two
emperor penguins. The first position is associated with the
position of penguin (i) at iteration (/tr) in the population
(P, (1)), while the second position is associated with the
relocated position of that penguin (Py-41(i)). The
threshold herein is used as a predetermined number from
the interval [0,1]. It is used to determine whether to select
a component from the P,.,-(i) or from Py, (i). So, the
steps to create the information vector can be summarized
as follows:

j=1
While j < dim(Py-(i)) do:
if rand > threshold:
Py (D1 = Prer+1 (D]
else:
Py D1 = Prer (D[]
j=i+1

The created P, (i) replaces the P,..(i) if its fitness
value is better. Now, the modified version of the emperor
penguin optimizer can be summarized as follows:

Input the Populatin size (N), MaxItr,and R parameters

Generate the initial population
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Evaluate each solution in population and store
the best solution (Pyp,t)
Itr=1
While Itr < MaxlItr do:
i=1
While i < N do:
MaxItr

TA=T———
Itr — MaxlItr

A=Mx(TA+ |P,p; — P;| X rand) — TA
S = (\/f.e—ltr/l _ e—1tr)2
D =|S. Pr(i) — rand Py
Piry1 (D) = Py () —A.D
j=1
While j < dim(Py,, (1)) do:

if rand > threshold:

Py (D] = Pier+1 (D]

else:
Py (D[] = Pier (D]
j=j+1

if f(PItr+1(i)) < f(Popt) then:
Popt = Pltr+1(i)
i=i+1
Itr =Itr +1
Return Py,
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The information vector proves efficiency in the
proposed modification of the EPO algorithm that prevents
stagnation in local optima, especially in the multi-model
test optimization functions. EPO mainly uses a vector-
based methodology to deal with positions and modify
them using its relocating procedure and the new proposed
information vector creation process. In order to test the
performance of the algorithm, 19 test optimization
problems are selected from https://www.sfu.ca/~s
surjano/optimization.html to be solved using the EPO
algorithm.

Figure 1 and Figure 2 show the 3D plots of the 19
optimization functions. To evaluate the effectiveness of
the modified EPO, a comparison is done with the classical
EPO and particle swarm optimization (PSO) algorithms.
These algorithms are implemented in Python, and the
comparisons are conducted on a PC featuring a core-i5
3.40 GHz CPU and 4 GB of memory. Table 3 shows the
comparative results, where the highlighted values in the
table prove the effectiveness of the modified EPO in terms
of objective values and robustness. Furthermore, the
Friedman test [17] is applied to prove that the null
hypothesis is rejected, since the p-value for means is
0.00093, and for standard deviations is 0.00064. The
comparative results show that the modified EPO
outperforms the other algorithms in 15 problems in terms
of means and standard deviations.

Table 2: Test optimization problems

No. Function Name f(x) Global Minimum
— lgad 2 1 )
20 (e 0.2 |gXizixi® | _ (eaz‘iizlcos(anl)) +20+ex; F(x*) =0,x*
1 Ackley = (0,...,0)
€ [-33,33] o
X2 + 2x,%2 — 0.3 cos(31mx;) — 0.4 cos(31mx,) + 0.7, fx*) =0,x*
2 Bohachevsky %; € [~100,100] = (0,0)
3 Booth (o + 2%, — )2+ (2%, + x, —5)%,  x; € [—10,10] ’;(’(‘1)5 0.x
. * = 0, *
4 Bukin 100y/|x, — 0.01x;2] + 0.01|x; + 10|,  x; € [-15,3] ];O(C_)lo o)x
01
ro0 25 fG)
. . s
5 Cross-in-Tray —0.0001} fsin(x;) sin(xz)e +1 ’ = —-2.06261,x*
= (1.3491, —1.3491
1+ cos (12 x2 + x2 (x*) = —1.5,x"
6 Drop Wave — E 21 Z)in € [-5.12,5.12] ]; (0,0)
0.5(x7 +x3) +2 ’
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No. Function Name f(x) Global Minimum
D * 0 *
7 Discus 106x2 +Zx~2,xi € [0,100] fGr)=0,x
i =(0,..,0)
i=2
8 Easom —cos(x1) cos(xy) e COn=—m?=(e-m?) x; € [-100,100] ];(3((”)7_; —Lx
. X1
—(xy +47) sm( |x2 +?+47|> Fx)

9 Eggholder . = —959.6407,x"
—xy sin (VIx; = G, + 47)]) % = (512,404.2319)
€ [-500,500]

IR PE: Fx) = 0,x°

10 | Griewank Z"—n (—l> 1,x € [-600, X=X

riewan 2. 7000 | cos NG +1,x € [-600,600] = (0,...,0)
i=1 i=1
(‘1__M+x§) fx™)
11 Holder Table — [sin(x,) cos(x;)e T ,x; € [—10,10] = —-19.2085, x*
= (8.05502,—9.664
a 2 fx)
12 Michalewicz —Zsin(xi) sin?0 (—L>,x € [0, 7] = —-1.8013,x*
= T = (2.20,1.57)
D
418.9829 x D — Zg(zi),zi
i=1
= x; +4.209687462275036¢e + 002, x;
€ [-500,500]
e x*) =0,x"
13 Modified Schwefel 9(z) ) ];([0,).",0]
z; sin(lzlf), if |z;] <500
_ . (z;
= 1 (500 — mod(z, 500)) sin (1500 — [mod(z; 500)]) - =
(mod(]z;|,500) — 500) sin (\/Imod(lzil, 500) — 500|) —E
d * 0 *
14 Rastrigin 10d + Z:[x2 —10cos(2m x;)], x; € [-5,5] ];(D[CO) _ij
-
d-1 S
15 | Rosenbrock D 100G - 122+ (= D2, xi € [-5,10] e
-
d * *
16 Schwefel f(x) =0,x

418.9829d — Z x; sin (./ Ixil), x; € [=500,500]

i=1

= (420.9687, ...,42
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No. Function Name f(x) Global Minimum
4—21952+XL1L X124 x5 + (=4 + 4x,2)x,2 f&e)
17 six-hump B 3 /)7t 1+2 27720 —1.0316, x*

A

x; € [-3,3] (0.0898,—-0.712¢
= * *
18 Sphere inZ ,x; € [5,5] l:(x )=0,x
. =10,...,0]
i=1
d d 2 d 4 () = 0,
19 Zakharov x2 + Z 0.5ix; | + Z 0.5ix; | , x; € [-5,10] 1;9(50 = 0,)x
=1 i=1 i=1

i=

Table 3: The comparative results of the modified EPO with the classical EPO and PSO in 19 test optimization

problems

Functions EPO mean EPO Classical mean | PSO mean EPO std EPO Classical std PSO std
Ackley 3.30 7.71 9.64 0.62 1.14 2.43
Bohachevsky 0.22 0.23 0.01 0.20 0.21 0.02
Booth 0.00 0.00 0.00 0.00 0.00 0.00
Bukin 0.89 1.62 0.29 0.44 0.57 0.22
Cross-in-Tray -2.06 -2.06 -2.06 0.00 0.00 0.00
Drop Wave -1.00 -0.97 -0.99 0.00 0.03 0.03
Discus 101.99 313.97 424.81 22.33 75.34 38.10
Easom -0.98 -0.59 -1.00 0.00 0.30 0.00
Eggholder -942.86 -933.63 -915.82 10.38 17.30 35.44
Griewank 1.48 35.68 6.07 0.24 15.66 1.96
Holder Table -19.21 -19.18 -19.21 0.00 0.01 0.01
Michalewicz -8.29 -5.92 -5.12 0.22 0.52 0.65
g’(':mgfee‘: 73.83 1574.72 1135.02 24.10 64.48 7117
Rastrigin 6.59 25.61 40.20 2.68 7.23 9.12

Rosenbrock 11.81 49.92 281151 1.75 27.63 2926.26

Schwefel 263.11 1953.86 2114.75 142.06 109.59 338.20
six-hump -1.03 -1.03 -1.03 0.00 0.00 0.00
Sphere 0.01 0.01 1.70 0.00 0.00 0.79
Zakharov 2.58 11.62 50.02 1.27 6.37 24.62
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Figure 1: The plots of the first 10 optimization functions
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Figure 2: The plots of the 11 to 19 optimization functions

6 Modified EPO for solving FCTP

To adapt EPO for solving FCTP, a priority rule that uses a
weighted vector is developed in this paper. The length of
the weighted vector equals the ordered product which
consists of the set of all ordered pairs of supplies and
demands. The transshipment problem involves transient
nodes that can be considered for both supplies and
demands simultaneously. Hence, the number of supply
nodes (SN) is equal to the sum of the number of supplies
and the number of transient nodes, while the number of
demand nodes (DN) is equal to the sum of the number of

demands and the number of transient nodes. So, the
number of ordered pairs in our case herein can be
calculated using equation (16):
Number of odered pairs = SN X DN (16)
Each ordered pair consists of two components. The
first component is the supply node number, and the second
component is the demand node number. By arranging
these ordered pairs and solving the problem according to
this arrangement, a heuristic solution can be obtained. As
aforementioned, a proposed weighted vector is used to
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generate a priority rule for these ordered pairs, where each
ordered pair has an associated weight, and the highest
weighted ordered pair will be assigned first. Table 4 shows
an example of the ordered product for a problem where the
number of supplies equals three and the number of
demands equals four.

Table 4: An example of an ordered pair for a problem of
three supplies and four demands

Supplies Demands Ordered Pairs
1 1 (1,1)
1 2 (1,2)
1 3 (1,3)
1 4 (1,4)
2 1 (2,1)
2 2 (2,2)
2 3 (2,3)
2 4 (2,4)
3 1 3.1
3 2 (3,2
3 3 (3,3)
3 4 (3,4

In the heuristic procedure, the arrangement of ordered
pairs is to be arranged according to the weighted vector,
which can be initially generated randomly for each
ordered pair. For illustration, Table 5 shows an example
of arranging these ordered pairs according to a weighted
vector.

Table 5: An example of using the weighted vector to
rearrange the problem’s ordered pairs.

Ordered Pairs Weights
(3.3) 0.99
(2,3) 0.90
(L1) 0.83
(1,3) 0.71
(3,2) 0.44
(1,2) 0.43
(3.1) 0.43
2,1) 0.37
(3.4) 0.10
(2,2) 0.05
(2,4) 0.05
(1,4) 0.00

The proposed heuristic procedure of the algorithm can
be implemented using the arranged ordered pairs, where it
considers assigning the quantities of the problem
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according to the arrangement found by the weighted
vector. The heuristic procedure now can be illustrated
using the following pseudo code:

OParranged
= the arragned ordred pairs with respect
to a weighted vector
Set S ={s;li € I}and D = {d;|j € J}
Create Solution matrix that is initialized by zeros
SN rows and DN columns
Index =0
While OPgrrangeq s not empty do:
(a,b) = OPgrranged [Index]
If sq = dj then:
Solution(a,b) = s,
Sq =0
db = 0
OParranged
={@,j)lielandi+a,j€]andj+ b}
End if
If s, < dj then:
Solution(a,b) = s,
db = db — Sq
Sq=0
OPurrangea = {(LDli € land i # a,j € J}
Endif
If s, > dj then:
Solution(a,b) = d,
Sqg =Sqg—dp
db = 0
OParranged = {(l:])ll € I:j E] andj * b}
Endif
End while
Return total cost and solution matrix

The proposed modified Penguin Algorithm can now
solve the problem by utilizing the previously mentioned
heuristic procedure and a weighted vector. These
weighted vectors represent the positions of the penguins.
By modifying the weighted vector, new solutions can be
obtained using the heuristic procedure. The heuristic
procedure can now serve as the optimization function that
needs to be optimized, with the weighted vectors
representing the positions of the penguins.

6.1 Computational complexity

The algorithm initializes with a number of priority vectors
equal to N solutions with d dimensions. So, the
initialization process requires O(N X d). The heuristic
procedure step count is less than d, since not all of the
ordered pairs are selected in the heuristic procedure. Thus,
the heuristic procedure requires O(N X d X Maxltr),
hence it will repeat until the maximum number of
iterations is reached. The step count of the rest of the
functions required for calculating new positions in the
EPO equals N with k formulas. So, it this requires
O(N x k). The total time complexity required for the
algorithm is O(N x d X MaxItr X k) and the space
complexity is O(N x d), since the algorithm only works
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with population that initialized by N solutions with d
dimensions.

6.2 Experimental design

In order to obtain the optimal settings of the algorithm, an
experimental design is done on both the hybrid EPO and
PSO algorithms for solving the fixed charged
transshipment problem. The code of the hybrid algorithms
and the other codes related to the problem are coded using
python and can be found in https://github.com
IMZakaraia/EPO_Transshipment/. The selected problems
for experimental design are generated using the generate
problem’s function found in previously mentioned GitHub
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select the convenient orthogonal array, the degrees of
freedom should be calculated. So, the degree of freedom
for such experiment is 1 of the overall mean and 3 for each
parameter, which means the total degrees of freedom
herein is 10. The most convenient orthogonal array for this
experiment is L;4(4%). The 16 runs of the experimental
design are implemented each 5 times to calculate the
signal to noise ratio (SNR) using equation (17) after
normalizing the outputs. Figure 3shows the optimized
parameter levels for each parameter, which is 20
iterations, 20 penguins, and the radius should be equal 2.

Table 6: Parameter levels for the modified EPO

- o : algorithm
repository. The modified EPO algorithm has 3 parameters, - -
which are MaxItr, the population size (PopSize), and Maletr i OgSlze Radius
Radius. For each parameter, 4 levels are chosen as shown 0 0 0
in Table 6. 20 20 -1
The full factorial design requires 43 x 5 = 320 trails 70 70 1
for 5 replicates. This number of experiments can be 100 100 2
reduced using Taguchi’s orthogonal arrays. In order to
80 80 807
70 1
70 4 70 1
60
60 60 1
T T T T T T T T 50 E T T T T
20 70 100 50 70 30 20 100 1 -1 2 0
MaxItr PopSize Radius

Figure 3: The main effect plots of signal to ratio of EPO

2
u (17)
SNR = 10log (—02>

For the hybridized PSO algorithm, there are 5
parameters, which are MaxItr, PopSize, Inertia weight,
personal weight, and the global weight. The proposed
levels for each parameter are found in Table 7.

Table 7: Parameter levels for the PSO algorithm

The required number of trails for the full factorial
design for the hybrid PSO according to the levels in Table
7 is 4°x5=5120 trails. The Taguchi’s orthogonal
arrays again can be used to reduce this number using the
L,(4%), where the number of trails is 80 trails for 5
replicates. Figure 4 shows the optimized parameter levels
for the hybrid PSO algorithm, which are 20 iterations, 20

) Inerti ! lobal . L .
MaxlItr | PopSize nertia | personat | glova particles, 0.1 for the inertia weight, 0.6 for personal
weight weight | weight . ; L
20 20 01 01 0.1 weight, and 0.6 for global weight. The optimized
50 50 0'3 0'3 0'3 parameter levels are to be used in the computational
0 70 0'5 0'5 0'5 results section to show the comparative results between
: - : the EPO and PSO algorithms.
100 100 0.6 0.6 0.6
50 | 80 4 65 65
80 1
70 . 707 o0 007
55 55 A
60 60 60
T T T T T T T T T T T T 50 T T T 50 - T T T T
20 70 100 50 70 50 20 100 0.5 0.1 0.6 0.3 0.5 0.3 0.1 0.6 0.5 0.6 0.1 0.3
MaxItr PopSize Inertia weight Personal weight Global weight

Figure 4: The main effect plots of signal to ratio of PSO
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6.3 Computational results

This section presents the implementation of the modified
EPO algorithm for solving 30 generated problems, which
can be found at https://github.com/MZakaraia/EPO_T
transshipment. The problem sizes cover three different
forms of transshipment problem sizes: 3 X 3 X 2,4 X 4 X
3,and 5 x 5 x 4. All these problems are generated using
the generate problems function in the Transshipment.py
file. This function allows for generating more fixed-
charge transshipment problems with different sizes.
Therefore, the included problems are considered
benchmarks for future comparisons.
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Both the EPO and PSO algorithms were implemented
to solve the 30 problems using the optimized parameter
levels found through the experimental design. The
convergence curves for the problems are shown in Figure
5, 6, and 7. Table 8 presents the comparative results. The
Wilcoxon test [18] was performed on selected metrics
(mean, standard deviation, maximum, minimum) between
the EPO and PSO results. The p-value for each metric
indicates rejection of the null hypothesis since the p-value
for means is 1.89 x 10~° and for standard deviations is
0.00046. Therefore, the comparative results in Table 8
conclude that the proposed EPO algorithm outperforms
the PSO algorithm in terms of mean results and robustness
for solving fixed-charge transshipment problems.

Table 8: The comparative results of the 30 fixed charged transshipment problems between the modified EPO and PSO

Problem 55;1 ,\F/’Iign EPOStd | PSO Std E/Ipa(i IF\’AS;)J( SRO | PO
3X3X2 0 | 41797 | 42206.3 | 92.20084462 | 508.4504007 | 42081 | 43136 | 41719 | 41719
3X3X2_1 | 40680.5 | 41229.8 | 267.1895395 | 567.3982376 | 41237 | 42530 | 40547 | 40547
3X3X2 2 | 336935 | 34348.6 | 88.86534758 | 572.6377913 | 33960 | 35163 | 33663 | 33663
3X3X2 3 | 297584 | 30133 | 144.0497844 | 424.4848643 | 30117 | 30874 | 29688 | 29688
3X3X2 4 | 421247 | 42336.3 | 1535689096 | 2409514681 | 42445 | 42713 | 42030 | 42030
3X3X2 5 | 37551 | 37904.9 | 184.3805847 | 3832465134 | 37908 | 38456 | 37432 | 37432
3X3X2 6 | 38157 | 38436.7 | 23.37947818 | 2475019394 | 38198 | 38968 | 38142 | 38180
3X3X2 7 | 33565 | 340018 0 411.3178333 | 33565 | 34920 | 33565 | 33565
3X3X2 8 | 30994 | 316195 0 6454463950 | 30994 | 32779 | 30994 | 30994
3X3X2 9 | 310271 | 313538 | 1023 | 298.0412052 | 31334 | 31873 | 30993 | 30993
AXAX3_0 | 475533 | 490484 | 632.032602 | 1151657953 | 49443 | 50903 | 47324 | 47324
AX4X3_1 | 583615 | 59400.7 | 128.0234269 | 3511797403 | 58663 | 60087 | 58217 | 58880
AX4X3 2 | 60169.8 | 607711 | 813.7788152 | 594.8965372 | 61489 | 61697 | 59351 | 59667
AX4X3 3 | 710645 | 729237 | 1106.743895 | 6205789313 | 73668 | 73803 | 70269 | 71847
AXAX3 4 | 65386 | 67792.3 762 1303.083961 | 67672 | 71176 | 65132 | 65740
AX4X3 5 | 64932.1 | 65240.9 | 9451474435 | 811.3807306 | 66407 | 67011 | 63926 | 64370
AX4X3 6 | 56582.9 | 57742.8 | 95.05519449 | 8697954702 | 56853 | 59901 | 56538 | 56634
AXA4X3 7 | 64673.8 | 65989.4 | 242.1808415 | 5992033378 | 65260 | 66880 | 64432 | 65080
AX4X3 8 | 648014 | 662263 | 598.4196187 | 632.1170857 | 66091 | 67494 | 64249 | 65245
AX4X3 9 | 641739 | 65578 | 452.4350672 | 450.8871256 | 65236 | 66499 | 63846 | 64718
5X5X4 0 | 99127 | 101002 | 5255029971 | 123838217 | 99858 | 103173 | 98290 | 98948
5X5X4_1 | 103558.6 | 1056354 | 9719633944 | 1316.379824 | 105953 | 107749 | 102571 | 104127
5X5X4 2 | 118153.9 | 120260 | 500.3739502 | 1535.788136 | 119108 | 123992 | 117548 | 118137
5X5X4_3 | 100174.3 | 1031295 | 222.7321486 | 1607.177977 | 100741 | 107405 | 99905 | 100916
5X5X4_4 | 105533.9 | 107772.6 | 563.3280483 | 1053.34811 | 106665 | 110543 | 104657 | 106575
5X5X4_5 | 101425.3 | 1039064 | 165.7950844 | 1003.615285 | 101794 | 105193 | 101214 | 102351
5X5X4_6 | 97936.6 | 100878.4 | 1137.296901 | 2000.878567 | 100376 | 104848 | 96986 | 97753
5X5X4_7 | 106153.2 | 107832.2 | 1274.031224 | 757.3083652 | 108707 | 108989 | 105099 | 106449
5X5X4 8 | 865977 | 87972.9 | 1604.486089 | 1036.310229 | 89020 | 89773 | 84750 | 86412
5X5X4 O | 926033 | 94816.2 | 307.2627703 | 1282.450217 | 93358 | 97327 | 92113 | 92515
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Figure 5: The convergence curve of the 3 x 3 x 2 problems
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Figure 6: The convergence curve of the 4 x 4 x 3 problems
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Figure 7: The convergence curve of the 5 X 5 x 4 problems

7 Conclusion

In conclusion, this paper introduced a modified
Emperor Penguin algorithm tailored for solving FCTP.
The algorithm demonstrated its effectiveness in finding
high-quality solutions by utilizing new benchmarks
specifically designed for the problem. The computational
results presented in this study provide valuable insights
into the algorithm's performance. The mean results
showcased the algorithm's ability to achieve competitive
solutions for the FCTP, while the standard deviation and
Relative Standard Deviation offered measures of its
robustness. The findings of this research contribute to the
field of logistics and supply chain management by
offering an optimized algorithmic approach for addressing
the FCTP. The modified Emperor Penguin algorithm, with
its robustness and improved solution quality, holds great
potential for enhancing supply chain operations and
optimizing transshipment processes.

Future research directions may involve further fine-
tuning of the modified algorithm and expanding the
benchmark suite to encompass a wider range of real-world
scenarios. Additionally, investigating the algorithm's
performance on larger-scale instances and exploring its
applicability to other related optimization problems would
be beneficial. The future research also may include
extending the formulations of the transshipment problem
to cover:

The solid transshipment problem by including
constraints related to the type of transportation
and products.

The capacitated fixed charged transshipment by
considering capacity constraints related to each
transshipment node.

In conclusion, this paper's findings highlight the
promising capabilities of the modified Emperor Penguin
algorithm for tackling the Fixed Charged Transshipment
Problem, providing a valuable tool for optimizing supply
chain operations and fostering efficiency in logistics
management.
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