
https://doi.org/10.31449/inf.v48i7.5711 Informatica 47 (2024) 79–94 79

A Modified Emperor Penguin Optimizer Algorithm for Solving

Fixed-Charged Transshipment Problem

Mohamed Meselhy Eltoukhy1*, Mohammad Zakaraia2
1Department of Information Technology, College of Computing and Information Technology at Khulais, University of

Jeddah, Jeddah, Saudi Arabia
2Faculty of graduate studies for statistical research, Cairo University

E-mail: mmeltoukhy@uj.edu.sa1, dr.mzakaraia@gmail.com2

*Corresponding author

Keywords: Fixed-Charged transportation problem, transshipment problem, metaheuristics, Emperor penguin optimizer

algorithm, Taguchi’s orthogonal arrays, design of experiments, Wilcoxon test, Friedman test

Received: February 8, 2024

This paper introduces a novel optimization problem termed the Fixed Charged Transshipment Problem

(FCTP), which incorporates fixed charges for selected routes. A new formulation for this problem is

presented, aiming to address the combinatorial nature of the challenge. The study further introduces a

Modified Emperor Penguin Optimizer (EPO) algorithm designed to enhance the solution approach. To

evaluate the performance of the Modified EPO, a comparative analysis is conducted against the classical

EPO and Particle Swarm Optimization (PSO) algorithms. 19 problems, including various multi-modal

test optimization functions, serve as the testing ground. Results demonstrate the efficacy of the Modified

EPO, establishing its superiority over the classical EPO and PSO. Additionally, a heuristic procedure is

proposed for solving the combinatorial aspect of the FCTP. This heuristic is hybridized with both the

Modified EPO and PSO algorithms. 30 FCTP problems are generated using a code available at

https://github.com/MZakaraia/EPO_Transshipment/. Taguchi's orthogonal arrays are employed to

optimize parameter levels for both algorithms. The study concludes with the comparison of the Modified

Hybrid EPO and Hybrid PSO in solving the 30 generated FCTP problems. Remarkably, the Modified

Hybrid EPO algorithm outperforms the Hybrid PSO, showing its effectiveness in addressing the Fixed

Charged Transshipment Problem in terms of means and robustness.

Povzetek: Članek predstavlja spremenjeni algoritem cesarskega pingvina za reševanje problema s

fiksnimi stroški prenosa, ki kaže premoč nad klasičnimi metodami z robustnostjo in učinkovitostjo rešitev.

1 Introduction

The fixed charged transshipment problem is a well-known

optimization problem in the field of logistics and supply

chain management. It involves determining the optimal

flow of goods through a network, considering fixed costs

associated with transshipments between various nodes.

Solving the FCTP efficiently is crucial for optimizing

supply chain operations, reducing costs, and enhancing

overall system performance. In recent years, nature-

inspired optimization algorithms have gained popularity

as effective tools for solving complex optimization

problems. One such algorithm is the Emperor Penguin

Optimizer (EPO), which is inspired by the behavior and

social interactions of emperor penguins in their natural

habitat. The EPO algorithm is known for its ability to

effectively handle continuous and discrete optimization

problems. This paper presents a modified version of the

Emperor Penguin Optimizer algorithm tailored

specifically for addressing the Fixed-Charged

Transshipment Problem. The main objective of this study

is to investigate the effectiveness and efficiency of the

modified EPO algorithm in finding high-quality solutions

for the FCTP. So, the contribution of this can be

summarized as follows:

• Proposing a new formulation for the fixed

charged transshipment problem by considering

fixed costs for the routes.

• Adapting a new modification of the population-

based metaheuristic EPO algorithm for solving

FTCP.

• Generating a dataset of 30 problems for FTCP to

validate the proposed EPO algorithm for solving

FTCP.

The remainder of this paper is organized as follows:

Section 2 provides a literature review of related studies on

transshipment problems. Section 3 presents the

mathematical formulation of the Fixed Charge

Transshipment Problem with a discussion that shows the

novelty of the proposed formulation. Section 4 describes

the EPO algorithm in detail, while Section 5 introduces the

modified EPO and presents comparative results. Section 6

outlines the adapted EPO for solving FCTP. In this

Section the computational complexity of the proposed

EPO is presented. The experimental design is

implemented to optimize the parameters of the EPO and

adopted particle swarm optimization algorithm for solving

the problem. The computational results for 30 generated

problems are performed to compare between the hybrid

mailto:dr.mzakaraia@gmail.com2
https://github.com/MZakaraia/EPO_Transshipment/

80 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

EPO and PSO for solving the FCTP. Finally, Section 7

concludes the paper with a summary of the findings,

highlighting the advantages and potential applications of

the proposed algorithm for solving the Fixed Charge

Transshipment Problem.

2 Literature review
This section provides a literature review of prior research

on the transshipment problem, offering a comprehensive

overview of existing work and highlighting the motivation

behind the current study. Herer and Tzur [1] investigated

the strategy of transshipments in a dynamic, deterministic

demand environment over a finite planning horizon. Their

study considered a system of two locations replenished by

a single supplier, incorporating various costs and deriving

structural properties of optimal policies, leading to the

development of an efficient polynomial time algorithm for

obtaining the optimal strategy and motivating the adoption

of transshipments in replenishment strategies. Reyes [2]

used the Shapley value concept from cooperative game

theory to solve the transshipment problem and

demonstrated its efficacy through a numerical example.

Herer et al. [3] examined a supply chain with multiple

retailers and a supplier, where they established optimal

replenishment and transshipment policies to minimize

long-run average costs. Through a sample-path-based

optimization procedure, they calculated order-up-to

quantities using a linear programming/network flow

framework.

Belgasmi et al. [4] examined a multi-location

inventory system with centrally coordinated inventory

choices, allowing lateral transshipments within the same

echelon to reduce costs and improve service level. They

proposed a multi-objective model to optimize cost, fill

rate, and transshipment lead times. They utilized an

evolutionary multi-objective optimization approach to

approximate the optimal trade-offs between these

conflicting objectives. Sharma and Jana [5] developed a

transshipment planning model for the petroleum refinery

industry, aiming to minimize costs, maximize production,

and meet storage and demand requirements. They

employed a fuzzy goal programming (FGP) model with

integrated genetic algorithms (GA) to handle imprecision

and provide flexible solutions. A case example showcased

the effectiveness of this integrated technique in optimizing

transshipment operations. Khurana and Arora [6]

extended the standard transshipment model to include

inequality constraints. Their algorithm transformed the

problem into an equivalent transportation problem to

obtain the optimal solution. They discussed balanced and

unbalanced transshipment problems, emphasizing the

algorithm's applicability in addressing distribution

problems with mixed constraints and paradoxical

situations. Özdemir et al. [7] investigated the coordination

of stocking locations considering lateral transshipments

and supply capacity in the transshipment model. They

formulated the capacitated supply scenario as a network

flow problem within a stochastic optimization framework.

They found that system behavior depends on production

capacity and highlighted the importance of capacity

flexibility or transshipment flexibility for maintaining

desired service levels in a production-inventory system.

Khurana, et al. [8] developed an algorithm to solve a

transshipment problem with the objective of minimizing

transportation duration. They transformed the problem

into an equivalent transportation problem and obtained the

optimal solution. Their algorithm is easy to understand

and apply, making it suitable for addressing various

products distribution problems. In addition, balanced and

unbalanced time minimization scenarios were discussed

with numerical examples. Kumar, et al. [9] addressed the

challenges of uncertainty in transshipment problems by

representing parameters as intuitionistic fuzzy numbers.

Their proposed method is based on ambiguity and

vagueness indices to derive a fuzzy optimal solution

without the need for an initial basic feasible solution. The

technique demonstrated computational efficiency and

applicability to a wide range of transshipment problems,

supported by numerical illustrations. Garg et al. [10]

investigated a fuzzy fractional two-stage transshipment

problem, using the ratio of costs divided by benefits as the

objective function. They employed the extension principle

and Charnes-Cooper transformation method to find the

fuzzy objective value. The proposed formulation and

solution method demonstrated superior efficiency

compared to the existing literature.

Table 1 shows the literature review summary. To the

best of our knowledge, the fixed-charge transshipment

problem, which extends the fixed-charge transportation

problem by including transshipment nodes, has not yet

been investigated. Therefore, this paper presents a new

model for the transshipment problem that incorporates

both fixed costs and transportation costs.

Table 1: Literature review summary

Author Problem Approach

Herer and

Tzur [1]

Dynamic

transshipment

problem

Heuristic

approach

Reyes [2] Classical

transshipment

problem

Game theory

approach

Herer et al.

[3]

Multi-location

transshipment

problem

Linear

programming and

network follow

Belgasmi et

al. [4]

Multi-objective

multi-location

transshipment

problem

Strength Pareto

evolutionary

algorithm

Sharma and

Jana [5]

Transshipment

management

problem

Fuzzy goal

programming and

genetic algorithm

Khurana

and Arora

[6]

Unbalanced

transshipment

problem with

mixed constraints

Liner

Programming

Özdemir et

al. [7]

Multi-location

transshipment

problem with

Random search,

Simulation

applications, and

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 81

capacitated

production

sample average

approximate

Khurana, et

al. [8]

Time minimizing

transshipment

problem

Heuristic

approach

Kumar, et

al. [9]

Fuzzy

transshipment

problem

Heuristic

approach

Garg et al.

[10]

Fractional two-

stage

transshipment

problem under

uncertainty

Charnes–Cooper

transformation

method, linear

programming

Given the combinatorial complexity of the problem,

the classical approaches listed in Table 1, primarily those

mentioned, are not well-suited to solving the fixed-charge

transshipment problem. Consequently, this paper adopts

one of the latest population-based metaheuristics, namely

the Emperor Penguin Optimizer Algorithm, to address this

challenge.

3 Mathematical formulation
Fixed Charge Transshipment Problem is a combinatorial

optimization problem in which a set of products or goods

is transported from source nodes to destination nodes

through a network of intermediate transshipment nodes. In

this problem, there is a fixed cost associated with using

each transshipment node, and a variable cost for

transporting each unit of product between the nodes. The

FCTP can be mathematically modeled as follows:

Notations:

𝑖 Set of sources

𝑗 Set of destinations

𝑘 Set of transshipment nodes

𝑓𝑘 Fixed cost associated with transshipment node

𝑘

𝑐𝑖𝑗 Unit cost of transporting a product from source

𝑖 to destination 𝑗 via transshipment node 𝑘

𝑥𝑖𝑗 Amount of product transported from source

𝑖 to destination 𝑗 directly (without

transshipment)

𝑠𝑖 The available quantity produced by source 𝑖
𝑑𝑗 The required demand by destination 𝑗

𝑦𝑖𝑗𝑘 Amount of product transshipped at node

𝑘 from source 𝑖 to destination 𝑗
𝑧𝑘 A binary variable representing whether

transshipment node 𝑘 is used or not

Mathematical model:

 min∑𝑓𝑘𝑧𝑘 +∑∑𝑐𝑖𝑗 (𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑗∈𝐽𝑖∈𝐼𝑘∈𝐾

 (1)

 Subject to:

 ∑(𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑗∈𝐽

= 𝑠𝑖 , ∀𝑖 ∈ 𝐼 (2)

 ∑(𝑥𝑖𝑗 +∑𝑦𝑖𝑗𝑘
𝑘∈𝐾

)

𝑖∈𝐼

= 𝑑𝑗 , ∀𝑗 ∈ 𝐽 (3)

 ∑∑𝑦𝑖𝑗𝑘
𝑗∈𝐽𝑖∈𝐼

≤ 𝑄𝑘𝑧𝑘 , ∀𝑘 ∈ 𝐾 (4)

 𝑥𝑖𝑗 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (5)

 𝑦𝑖𝑗𝑘 ≥ 0, ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, 𝑘 ∈ 𝐾 (6)

 𝑧𝑘 ∈ {0,1}, ∀𝑘 ∈ 𝐾 (7)

The fixed-charged transshipment problem, as shown

in the mathematical model, is a combinatorial

optimization problem known for its NP-hardness, making

it very difficult to solve using classical approaches.

Therefore, metaheuristics are the preferred choice for

tackling such problems. These approaches can be broadly

classified into two categories: single-based metaheuristics

(e.g., simulated annealing, Tabu search, and variable

neighborhood algorithms) and population-based

metaheuristics (e.g., particle swarm optimization, gray

wolf, genetic algorithm, and the proposed emperor

penguin optimizer algorithm (EPO) presented in this

paper) [11]–[14].

In this paper a new form of the transshipment problem

is presented, which considers fixed charges associated

with selected routes. To fill this gap, we propose a

hybridized EPO algorithm that incorporates a heuristic

procedure based on priority vectors to achieve solution

improvement. Before presenting the hybridized algorithm,

we propose a modified EPO algorithm and compare its

performance with both the classical EPO and a particle

swarm optimization algorithm.

4 Emperor penguin optimizer

algorithm
The emperor penguin optimizer algorithm is a population-

based metaheuristic that was first proposed by Dhiman

and Kumar [15]. It mimics the emperor penguins’

huddling behavior. The steps of the algorithm include

generating the boundaries of the huddle, computing the

temperature of the huddle, the distances between specific

penguins, and finding the emperor penguins by obtaining

the effective mover. The proposed algorithm by Dhiman

and Kumar [15] consists of four phases:

• Generating positions based on huddle

boundaries.

• Calculating the temperature around the huddle.

• Determining the distances between emperor

penguins.

• Relocating procedure.

The next subsections show these phases followed by

the full pseudo code of the basic POA algorithm.

4.1 Generating positions based on huddle

boundaries

In this phase, the positions of the penguins are to be

generated using the huddle boundaries, where they are

restricted by the lower bound (𝐿𝐵) and the upper bound

(𝑈𝐵). So, each penguin position is to be generated using

equation (8) for all 𝑛 penguins in the huddle.

82 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

𝑃𝑜𝑠𝑖 = 𝐿𝐵 + 𝑟𝑎𝑛𝑑(0,1)(𝑈𝐵 − 𝐿𝐵), ∀𝑖
= {1,… , 𝑛}

(8)

4.2 Calculating temperature profile

around the huddle

In this phase, the temperature profile of the huddle is to be

calculated using the radius of the huddle (𝑅). If the radius

of the huddle is less than 1, then the temperature (𝑇) equals

to 1, and 𝑇 equals 0 if 𝑅 greater than or equals 1. The

radius of the huddle in the algorithm is to be generated

randomly in each iteration from the interval [0,1]. So, the

new temperature profile around the huddle (𝑇′) can be

calculated according to equation (9).

𝑇′ = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟
 (9)

𝑇 = {
1, 𝑅 < 0
0, 𝑅 ≤ 1

4.3 Determining the distance between the

emperor penguins

The distance between emperor penguins and the best

penguin can be calculated using two vectors that prevent

collision 𝐴 and 𝐶, the position of the penguin 𝑖 in the

current iteration (𝑃𝐼𝑡𝑟(𝑖)), a social force 𝑆, and the position

of the current optimal emperor penguin (𝑃𝑜𝑝𝑡). The

proposed equation by Dhiman and Kumar [15] to calculate

the distance (𝐷) is presented in equation (10). The

calculations of the two collision vectors 𝐴 and 𝐶 are

shown in equations (11) and (12), respectively. The

𝑃𝑔𝑟𝑖𝑑 variable found in equation (13) is the absolute value

of the difference between the position of the best emperor

penguin and the current penguin 𝑖, where the equation of

the 𝑃𝑔𝑟𝑖𝑑 is equation (13). The social force function can be

calculated using equation (14).

𝐷 = |𝑆(𝐴)𝑃𝑜𝑝𝑡 − 𝐶𝑃𝐼𝑡𝑟(𝑖)| (10)

𝐴 = (2 × 𝑇′ + 𝑃𝑔𝑟𝑖𝑑 × 𝑟𝑎𝑛𝑑(0,1)) − 𝑇
′ (11)

𝐶 = 𝑟𝑎𝑛𝑑(0,1) (12)

𝑃𝑔𝑟𝑖𝑑 = |𝑃𝑜𝑝𝑡 − 𝑃𝐼𝑡𝑟(𝑖)| (13)

𝑆 = (√𝑟𝑎𝑛𝑑(2,3)𝑒
−

𝐼𝑡𝑟
𝑟𝑎𝑛𝑑(1.5,2) − 𝑒−𝐼𝑡𝑟)

2

 (14)

4.4 Relocating procedure

In this phase, the position of each emperor penguin is to

be modified using the calculated distance (𝐷) as found in

equation (15).

𝑃𝐼𝑡𝑟+1 = 𝑃𝐼𝑡𝑟 + 𝐴𝐷 (15)
Now the pseudo code of the basic algorithm

developed by Dhiman and Kumar [15] can be summarized

as follows:

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅
𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒

𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑜𝑝𝑡)

𝐼𝑡𝑟 = 1

𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:

 𝑖 = 1

 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

 𝑇′ = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟

 𝐴 = 𝑀 × (𝑇′ + |𝑃𝑜𝑝𝑡 − 𝑃𝐼𝑡𝑟(𝑖)| × 𝑟𝑎𝑛𝑑(0,1)) − 𝑇
′

 𝑆 = (√𝑟𝑎𝑛𝑑(2,3)𝑒
−

𝐼𝑡𝑟
𝑟𝑎𝑛𝑑(1.5,2) − 𝑒−𝐼𝑡𝑟)

2

 𝐷 = |𝑆 . 𝑃𝐼𝑡𝑟(𝑖) − 𝑟𝑎𝑛𝑑 𝑃𝑜𝑝𝑡|

 𝑃𝐼𝑡𝑟+1(𝑖) = 𝑃𝐼𝑡𝑟(𝑖) − 𝐴𝐷

 𝑖𝑓 𝑓(𝑃𝐼𝑡𝑟+1(𝑖)) ≤ 𝑓(𝑃𝑜𝑝𝑡) 𝑡ℎ𝑒𝑛:

 𝑃𝑜𝑝𝑡 = 𝑃𝐼𝑡𝑟+1(𝑖)

 𝑖 = 𝑖 + 1

 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑝𝑡

5 Modified penguin optimizer and

comparative results
This section presents a modification of the EPO algorithm

to adapt it for solving FCTP. The new modification of the

algorithm considers adding an information vector

(𝑃𝐼𝑉(𝑖))[16]. Such information vector will be created

during the relocating procedure of the algorithm. The

creation of this vector is done using the positions of two

emperor penguins. The first position is associated with the

position of penguin (𝑖) at iteration (𝐼𝑡𝑟) in the population

(𝑃𝐼𝑡𝑟(𝑖)), while the second position is associated with the

relocated position of that penguin (𝑃𝐼𝑡𝑟+1(𝑖)). The

threshold herein is used as a predetermined number from

the interval [0,1]. It is used to determine whether to select

a component from the 𝑃𝐼𝑡𝑟(𝑖) or from 𝑃𝐼𝑡𝑟+1(𝑖). So, the

steps to create the information vector can be summarized

as follows:

𝑗 = 1

𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃𝐼𝑡𝑟(𝑖)) 𝑑𝑜:

 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:

 𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟+1(𝑖)[𝑗]

 𝑒𝑙𝑠𝑒:

 𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟(𝑖)[𝑗]

 𝑗 = 𝑗 + 1

The created 𝑃𝐼𝑉(𝑖) replaces the 𝑃𝐼𝑡𝑟(𝑖) if its fitness

value is better. Now, the modified version of the emperor

penguin optimizer can be summarized as follows:

𝐼𝑛𝑝𝑢𝑡 𝑡ℎ𝑒 𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑛 𝑠𝑖𝑧𝑒 (𝑁),𝑀𝑎𝑥𝐼𝑡𝑟, 𝑎𝑛𝑑 𝑅 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠
𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 83

𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑒 𝑒𝑎𝑐ℎ 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑖𝑛 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑠𝑡𝑜𝑟𝑒
𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 (𝑃𝑜𝑝𝑡)

𝐼𝑡𝑟 = 1
𝑊ℎ𝑖𝑙𝑒 𝐼𝑡𝑟 ≤ 𝑀𝑎𝑥𝐼𝑡𝑟 𝑑𝑜:

 𝑖 = 1
 𝑊ℎ𝑖𝑙𝑒 𝑖 ≤ 𝑁 𝑑𝑜:

 𝑇𝐴 = 𝑇 −
𝑀𝑎𝑥𝐼𝑡𝑟

𝐼𝑡𝑟 − 𝑀𝑎𝑥𝐼𝑡𝑟

 𝐴 = 𝑀 × (𝑇𝐴 + |𝑃𝑜𝑝𝑡 − 𝑃𝑖| × 𝑟𝑎𝑛𝑑) − 𝑇𝐴

 𝑆 = (√𝑓 . 𝑒−𝐼𝑡𝑟/𝑙 − 𝑒−𝐼𝑡𝑟)
2

 𝐷 = |𝑆 . 𝑃𝐼𝑡𝑟(𝑖) − 𝑟𝑎𝑛𝑑 𝑃𝑜𝑝𝑡|

 𝑃𝐼𝑡𝑟+1(𝑖) = 𝑃𝐼𝑡𝑟(𝑖) − 𝐴 . 𝐷
 𝑗 = 1

 𝑊ℎ𝑖𝑙𝑒 𝑗 ≤ dim(𝑃𝐼𝑡𝑟(𝑖)) 𝑑𝑜:

 𝑖𝑓 𝑟𝑎𝑛𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:
 𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟+1(𝑖)[𝑗]
 𝑒𝑙𝑠𝑒:
 𝑃𝐼𝑉(𝑖)[𝑗] = 𝑃𝐼𝑡𝑟(𝑖)[𝑗]
 𝑗 = 𝑗 + 1

 𝑖𝑓 𝑓(𝑃𝐼𝑡𝑟+1(𝑖)) ≤ 𝑓(𝑃𝑜𝑝𝑡) 𝑡ℎ𝑒𝑛:

 𝑃𝑜𝑝𝑡 = 𝑃𝐼𝑡𝑟+1(𝑖)

 𝑖 = 𝑖 + 1
 𝐼𝑡𝑟 = 𝐼𝑡𝑟 + 1

𝑅𝑒𝑡𝑢𝑟𝑛 𝑃𝑜𝑝𝑡

The information vector proves efficiency in the

proposed modification of the EPO algorithm that prevents

stagnation in local optima, especially in the multi-model

test optimization functions. EPO mainly uses a vector-

based methodology to deal with positions and modify

them using its relocating procedure and the new proposed

information vector creation process. In order to test the

performance of the algorithm, 19 test optimization

problems are selected from https://www.sfu.ca/~s

surjano/optimization.html to be solved using the EPO

algorithm.

Figure 1 and Figure 2 show the 3D plots of the 19

optimization functions. To evaluate the effectiveness of

the modified EPO, a comparison is done with the classical

EPO and particle swarm optimization (PSO) algorithms.

These algorithms are implemented in Python, and the

comparisons are conducted on a PC featuring a core-i5

3.40 GHz CPU and 4 GB of memory. Table 3 shows the

comparative results, where the highlighted values in the

table prove the effectiveness of the modified EPO in terms

of objective values and robustness. Furthermore, the

Friedman test [17] is applied to prove that the null

hypothesis is rejected, since the p-value for means is

0.00093, and for standard deviations is 0.00064. The

comparative results show that the modified EPO

outperforms the other algorithms in 15 problems in terms

of means and standard deviations.

Table 2: Test optimization problems

No. Function Name 𝑓(𝑥) Global Minimum

1 Ackley
20 (𝑒

−0.2 √
1
𝑑
∑ 𝑥𝑖

2𝑑
𝑖=1) − (𝑒

1
𝑑
∑ 𝑐𝑜𝑠(2𝜋𝑥𝑖)
𝑑
𝑖=1) + 20 + 𝑒, 𝑥𝑖

∈ [−33, 33]

𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

2 Bohachevsky
𝑥1
2 + 2𝑥2

2 − 0.3 𝑐𝑜𝑠(31𝜋𝑥1) − 0.4 𝑐𝑜𝑠(31𝜋𝑥2) + 0.7,
𝑥𝑖 ∈ [−100, 100]

𝑓(𝑥∗) = 0, 𝑥∗

= (0, 0)

3 Booth (𝑥1 + 2𝑥2 − 7)
2 + (2𝑥1 + 𝑥2 − 5)

2, 𝑥𝑖 ∈ [−10, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (1, 3)

4 Bukin 100√|𝑥2 − 0.01𝑥1
2| + 0.01|𝑥1 + 10|, 𝑥𝑖 ∈ [−15, 3]

𝑓(𝑥∗) = 0, 𝑥∗

= (−10, 0)

5 Cross-in-Tray −0.0001(|𝑠𝑖𝑛(𝑥1) 𝑠𝑖𝑛(𝑥2)𝑒
|100 −

√𝑥1
2+𝑥2

2

𝜋
|
| + 1)

0.1

,

𝑥𝑖 ∈ [−15,15]

𝑓(𝑥∗)
= −2.06261, 𝑥∗

= (1.3491,−1.3491)

6 Drop Wave −
1 + 𝑐𝑜𝑠 (12√𝑥1

2 + 𝑥2
2)

0.5(𝑥1
2 + 𝑥2

2) + 2
, 𝑥𝑖 ∈ [−5.12, 5.12]

𝑓(𝑥∗) = −1.5, 𝑥∗

= (0,0)

https://www.sfu.ca/~s

84 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

No. Function Name 𝑓(𝑥) Global Minimum

7 Discus 106𝑥1
2 +∑𝑥𝑖

2

𝐷

𝑖=2

, 𝑥𝑖 ∈ [0, 100]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

8 Easom −𝑐𝑜𝑠(𝑥1) 𝑐𝑜𝑠(𝑥2) 𝑒
(−(𝑥1−𝜋)

2−(𝑥2−𝜋)
2) , 𝑥𝑖 ∈ [−100, 100]

𝑓(𝑥∗) = −1, 𝑥∗

= (𝜋, 𝜋)

9 Eggholder

−(𝑥2 + 47) 𝑠𝑖𝑛 (√|𝑥2 +
𝑥1
2
+ 47|)

− 𝑥1 𝑠𝑖𝑛 (√|𝑥1 − (𝑥2 + 47)|) , 𝑥

∈ [−500, 500]

𝑓(𝑥∗)
= −959.6407, 𝑥∗

= (512, 404.2319)

10 Griewank ∑
𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
) + 1

𝑑

𝑖=1

𝑑

𝑖=1

, 𝑥 ∈ [−600, 600]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

11 Holder Table −|𝑠𝑖𝑛(𝑥1) 𝑐𝑜𝑠(𝑥2)𝑒
(|1−

√𝑥1
2+𝑥2

2

𝜋
|)
| , 𝑥𝑖 ∈ [−10, 10]

𝑓(𝑥∗)
= −19.2085, 𝑥∗

= (8.05502,−9.66459)

12 Michalewicz −∑𝑠𝑖𝑛(𝑥𝑖) 𝑠𝑖𝑛
20 (

𝑖𝑥𝑖
2

𝜋
)

𝑑

𝑖=1

, 𝑥 ∈ [0, 𝜋]
𝑓(𝑥∗)
= −1.8013, 𝑥∗

= (2.20,1.57)

13 Modified Schwefel

418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

, 𝑧𝑖

= 𝑥𝑖 + 4.209687462275036𝑒 + 002, 𝑥𝑖
∈ [−500, 500]

𝑔(𝑧𝑖)

=

{

 𝑧𝑖 𝑠𝑖𝑛 (|𝑧|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

(500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)) 𝑠𝑖𝑛 (√500 − |𝑚𝑜𝑑(𝑧𝑖 , 500)|) −
(𝑧𝑖 − 500)

2

1000𝐷
, 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500) 𝑠𝑖𝑛 (√|𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500|) −
(𝑧𝑖 + 500)

1000𝐷
, 𝑖𝑓 𝑧𝑖 < −500

𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

14 Rastrigin 10𝑑 + ∑[𝑥2 − 10 𝑐𝑜𝑠(2𝜋 𝑥𝑖)]

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−5, 5]
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

15 Rosenbrock ∑[100(𝑥𝑖+1 − 𝑥𝑖
2)2 + (𝑥𝑖 − 1)

2]

𝑑−1

𝑖=1

, 𝑥𝑖 ∈ [−5, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (1,… , 1)

16 Schwefel 418.9829𝑑 −∑𝑥𝑖 𝑠𝑖𝑛 (√|𝑥𝑖|)

𝑑

𝑖=1

, 𝑥𝑖 ∈ [−500, 500]
𝑓(𝑥∗) = 0, 𝑥∗

= (420.9687,… , 420.9687)

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 85

No. Function Name 𝑓(𝑥) Global Minimum

17 six-hump
(4 − 2.1𝑥1

2 +
𝑥1
4

3
) 𝑥1

2 + 𝑥1𝑥2 + (−4 + 4𝑥2
2)𝑥2

2,

𝑥𝑖 ∈ [−3, 3]

𝑓(𝑥∗)
= −1.0316, 𝑥∗

= (0.0898,−0.7126)

18 Sphere ∑𝑥𝑖
2

𝑛

𝑖=1

, 𝑥𝑖 ∈ [−5, 5]
𝑓(𝑥∗) = 0, 𝑥∗

= [0,… , 0]

19 Zakharov ∑𝑥𝑖
2

𝑑

𝑖=1

+ (∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

2

+(∑0.5𝑖𝑥𝑖

𝑑

𝑖=1

)

4

, 𝑥𝑖 ∈ [−5, 10]
𝑓(𝑥∗) = 0, 𝑥∗

= (0,… , 0)

Table 3: The comparative results of the modified EPO with the classical EPO and PSO in 19 test optimization

problems

Functions EPO mean EPO Classical mean PSO mean EPO std EPO Classical std PSO std

Ackley 3.30 7.71 9.64 0.62 1.14 2.43

Bohachevsky 0.22 0.23 0.01 0.20 0.21 0.02

Booth 0.00 0.00 0.00 0.00 0.00 0.00

Bukin 0.89 1.62 0.29 0.44 0.57 0.22

Cross-in-Tray -2.06 -2.06 -2.06 0.00 0.00 0.00

Drop Wave -1.00 -0.97 -0.99 0.00 0.03 0.03

Discus 101.99 313.97 424.81 22.33 75.34 38.10

Easom -0.98 -0.59 -1.00 0.00 0.30 0.00

Eggholder -942.86 -933.63 -915.82 10.38 17.30 35.44

Griewank 1.48 35.68 6.07 0.24 15.66 1.96

Holder Table -19.21 -19.18 -19.21 0.00 0.01 0.01

Michalewicz -8.29 -5.92 -5.12 0.22 0.52 0.65

Modified

Schwefel
73.83 1574.72 1135.02 24.10 64.48 71.17

Rastrigin 6.59 25.61 40.20 2.68 7.23 9.12

Rosenbrock 11.81 49.92 2811.51 1.75 27.63 2926.26

Schwefel 263.11 1953.86 2114.75 142.06 109.59 338.20

six-hump -1.03 -1.03 -1.03 0.00 0.00 0.00

Sphere 0.01 0.01 1.70 0.00 0.00 0.79

Zakharov 2.58 11.62 50.02 1.27 6.37 24.62

86 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

Figure 1: The plots of the first 10 optimization functions

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 87

Figure 2: The plots of the 11 to 19 optimization functions

6 Modified EPO for solving FCTP
To adapt EPO for solving FCTP, a priority rule that uses a

weighted vector is developed in this paper. The length of

the weighted vector equals the ordered product which

consists of the set of all ordered pairs of supplies and

demands. The transshipment problem involves transient

nodes that can be considered for both supplies and

demands simultaneously. Hence, the number of supply

nodes (𝑆𝑁) is equal to the sum of the number of supplies

and the number of transient nodes, while the number of

demand nodes (𝐷𝑁) is equal to the sum of the number of

demands and the number of transient nodes. So, the

number of ordered pairs in our case herein can be

calculated using equation (16):

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑑𝑒𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 = 𝑆𝑁 × 𝐷𝑁 (16)

Each ordered pair consists of two components. The

first component is the supply node number, and the second

component is the demand node number. By arranging

these ordered pairs and solving the problem according to

this arrangement, a heuristic solution can be obtained. As

aforementioned, a proposed weighted vector is used to

88 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

generate a priority rule for these ordered pairs, where each

ordered pair has an associated weight, and the highest

weighted ordered pair will be assigned first. Table 4 shows

an example of the ordered product for a problem where the

number of supplies equals three and the number of

demands equals four.

Table 4: An example of an ordered pair for a problem of

three supplies and four demands

Supplies Demands Ordered Pairs

1 1 (1,1)

1 2 (1,2)

1 3 (1,3)

1 4 (1,4)

2 1 (2,1)

2 2 (2,2)

2 3 (2,3)

2 4 (2,4)

3 1 (3,1)

3 2 (3,2)

3 3 (3,3)

3 4 (3,4)

In the heuristic procedure, the arrangement of ordered

pairs is to be arranged according to the weighted vector,

which can be initially generated randomly for each

ordered pair. For illustration, Table 5 shows an example

of arranging these ordered pairs according to a weighted

vector.

Table 5: An example of using the weighted vector to

rearrange the problem’s ordered pairs.

Ordered Pairs Weights

(3,3) 0.99

(2,3) 0.90

(1,1) 0.83

(1,3) 0.71

(3,2) 0.44

(1,2) 0.43

(3,1) 0.43

(2,1) 0.37

(3,4) 0.10

(2,2) 0.05

(2,4) 0.05

(1,4) 0.00

The proposed heuristic procedure of the algorithm can

be implemented using the arranged ordered pairs, where it

considers assigning the quantities of the problem

according to the arrangement found by the weighted

vector. The heuristic procedure now can be illustrated

using the following pseudo code:

𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑
= 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑔𝑛𝑒𝑑 𝑜𝑟𝑑𝑟𝑒𝑑 𝑝𝑎𝑖𝑟𝑠 𝑤𝑖𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡
𝑡𝑜 𝑎 𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑣𝑒𝑐𝑡𝑜𝑟

𝑆𝑒𝑡 𝑆 = {𝑠𝑖|𝑖 ∈ 𝐼} 𝑎𝑛𝑑 𝐷 = {𝑑𝑗|𝑗 ∈ 𝐽}

𝐶𝑟𝑒𝑎𝑡𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥 𝑡ℎ𝑎𝑡 𝑖𝑠 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑏𝑦 𝑧𝑒𝑟𝑜𝑠 𝑤𝑖𝑡ℎ
𝑆𝑁 𝑟𝑜𝑤𝑠 𝑎𝑛𝑑 𝐷𝑁 𝑐𝑜𝑙𝑢𝑚𝑛𝑠
𝐼𝑛𝑑𝑒𝑥 = 0

𝑊ℎ𝑖𝑙𝑒 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦 𝑑𝑜:

 (𝑎, 𝑏) = 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑[𝐼𝑛𝑑𝑒𝑥]

 𝐼𝑓 𝑠𝑎 = 𝑑𝑏 𝑡ℎ𝑒𝑛:
 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑠𝑎

 𝑠𝑎 = 0

 𝑑𝑏 = 0

𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑
= {(𝑖, 𝑗)|𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑖 ≠ 𝑎, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 ≠ 𝑏}

 𝐸𝑛𝑑 𝑖𝑓

 𝐼𝑓 𝑠𝑎 < 𝑑𝑏 𝑡ℎ𝑒𝑛:
 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑠𝑎

 𝑑𝑏 = 𝑑𝑏 − 𝑠𝑎

 𝑠𝑎 = 0

 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼 𝑎𝑛𝑑 𝑖 ≠ 𝑎, 𝑗 ∈ 𝐽}

 𝐸𝑛𝑑 𝑖𝑓

 𝐼𝑓 𝑠𝑎 > 𝑑𝑏 𝑡ℎ𝑒𝑛:
 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑎, 𝑏) = 𝑑𝑏

 𝑠𝑎 = 𝑠𝑎 − 𝑑𝑏

 𝑑𝑏 = 0

 𝑂𝑃𝑎𝑟𝑟𝑎𝑛𝑔𝑒𝑑 = {(𝑖, 𝑗)|𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 𝑎𝑛𝑑 𝑗 ≠ 𝑏}

 𝐸𝑛𝑑 𝑖𝑓

𝐸𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

𝑅𝑒𝑡𝑢𝑟𝑛 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑎𝑛𝑑 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥

The proposed modified Penguin Algorithm can now

solve the problem by utilizing the previously mentioned

heuristic procedure and a weighted vector. These

weighted vectors represent the positions of the penguins.

By modifying the weighted vector, new solutions can be

obtained using the heuristic procedure. The heuristic

procedure can now serve as the optimization function that

needs to be optimized, with the weighted vectors

representing the positions of the penguins.

6.1 Computational complexity

The algorithm initializes with a number of priority vectors

equal to 𝑁 solutions with 𝑑 dimensions. So, the

initialization process requires 𝑂(𝑁 × 𝑑). The heuristic

procedure step count is less than 𝑑, since not all of the

ordered pairs are selected in the heuristic procedure. Thus,

the heuristic procedure requires 𝑂(𝑁 × 𝑑 ×𝑀𝑎𝑥𝐼𝑡𝑟),
hence it will repeat until the maximum number of

iterations is reached. The step count of the rest of the

functions required for calculating new positions in the

EPO equals 𝑁 with 𝑘 formulas. So, it this requires

𝑂(𝑁 × 𝑘). The total time complexity required for the

algorithm is 𝑂(𝑁 × 𝑑 ×𝑀𝑎𝑥𝐼𝑡𝑟 × 𝑘) and the space

complexity is 𝑂(𝑁 × 𝑑), since the algorithm only works

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 89

with population that initialized by 𝑁 solutions with 𝑑

dimensions.

6.2 Experimental design

In order to obtain the optimal settings of the algorithm, an

experimental design is done on both the hybrid EPO and

PSO algorithms for solving the fixed charged

transshipment problem. The code of the hybrid algorithms

and the other codes related to the problem are coded using

python and can be found in https://github.com

/MZakaraia/EPO_Transshipment/. The selected problems

for experimental design are generated using the generate

problem’s function found in previously mentioned GitHub

repository. The modified EPO algorithm has 3 parameters,

which are 𝑀𝑎𝑥𝐼𝑡𝑟, the population size (𝑃𝑜𝑝𝑆𝑖𝑧𝑒), and

𝑅𝑎𝑑𝑖𝑢𝑠. For each parameter, 4 levels are chosen as shown

in Table 6.

The full factorial design requires 43 × 5 = 320 trails

for 5 replicates. This number of experiments can be

reduced using Taguchi’s orthogonal arrays. In order to

select the convenient orthogonal array, the degrees of

freedom should be calculated. So, the degree of freedom

for such experiment is 1 of the overall mean and 3 for each

parameter, which means the total degrees of freedom

herein is 10. The most convenient orthogonal array for this

experiment is 𝐿16(4
3). The 16 runs of the experimental

design are implemented each 5 times to calculate the

signal to noise ratio (𝑆𝑁𝑅) using equation (17) after

normalizing the outputs. Figure 3shows the optimized

parameter levels for each parameter, which is 20

iterations, 20 penguins, and the radius should be equal 2.

Table 6: Parameter levels for the modified EPO

algorithm

𝑀𝑎𝑥𝐼𝑡𝑟 𝑃𝑜𝑝𝑆𝑖𝑧𝑒 𝑅𝑎𝑑𝑖𝑢𝑠

20 20 0

50 50 -1

70 70 1

100 100 2

Figure 3: The main effect plots of signal to ratio of EPO

𝑆𝑁𝑅 = 10 log (
𝜇2

𝜎2
)

(17)

For the hybridized PSO algorithm, there are 5

parameters, which are 𝑀𝑎𝑥𝐼𝑡𝑟, 𝑃𝑜𝑝𝑆𝑖𝑧𝑒, Inertia weight,

personal weight, and the global weight. The proposed

levels for each parameter are found in Table 7.

Table 7: Parameter levels for the PSO algorithm

𝑀𝑎𝑥𝐼𝑡𝑟 𝑃𝑜𝑝𝑆𝑖𝑧𝑒
Inertia
weight

personal
weight

global
weight

20 20 0.1 0.1 0.1
50 50 0.3 0.3 0.3
70 70 0.5 0.5 0.5

100 100 0.6 0.6 0.6

The required number of trails for the full factorial

design for the hybrid PSO according to the levels in Table

7 is 45 × 5 = 5120 trails. The Taguchi’s orthogonal

arrays again can be used to reduce this number using the

𝐿16(4
5), where the number of trails is 80 trails for 5

replicates. Figure 4 shows the optimized parameter levels

for the hybrid PSO algorithm, which are 20 iterations, 20

particles, 0.1 for the inertia weight, 0.6 for personal

weight, and 0.6 for global weight. The optimized

parameter levels are to be used in the computational

results section to show the comparative results between

the EPO and PSO algorithms.

Figure 4: The main effect plots of signal to ratio of PSO

https://github.com/

90 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

6.3 Computational results

This section presents the implementation of the modified

EPO algorithm for solving 30 generated problems, which

can be found at https://github.com/MZakaraia/EPO_T

transshipment. The problem sizes cover three different

forms of transshipment problem sizes: 3 × 3 × 2, 4 × 4 ×
3, and 5 × 5 × 4. All these problems are generated using

the generate problems function in the Transshipment.py

file. This function allows for generating more fixed-

charge transshipment problems with different sizes.

Therefore, the included problems are considered

benchmarks for future comparisons.

Both the EPO and PSO algorithms were implemented

to solve the 30 problems using the optimized parameter

levels found through the experimental design. The

convergence curves for the problems are shown in Figure

5, 6, and 7. Table 8 presents the comparative results. The

Wilcoxon test [18] was performed on selected metrics

(mean, standard deviation, maximum, minimum) between

the EPO and PSO results. The p-value for each metric

indicates rejection of the null hypothesis since the p-value

for means is 1.89 × 10−9 and for standard deviations is

0.00046. Therefore, the comparative results in Table 8

conclude that the proposed EPO algorithm outperforms

the PSO algorithm in terms of mean results and robustness

for solving fixed-charge transshipment problems.

Table 8: The comparative results of the 30 fixed charged transshipment problems between the modified EPO and PSO

Problem
EPO

Mean

PSO

Mean
EPO Std PSO Std

EPO

Max

PSO

Max

EPO

Min

PSO

Min

3X3X2_0 41797 42206.3 92.29084462 508.4504007 42031 43136 41719 41719

3X3X2_1 40680.5 41229.8 267.1895395 567.3982376 41237 42530 40547 40547

3X3X2_2 33693.5 34348.6 88.86534758 572.6377913 33960 35163 33663 33663

3X3X2_3 29758.4 30133 144.9497844 424.4848643 30117 30874 29688 29688

3X3X2_4 42124.7 42336.3 153.5689096 240.9514681 42445 42713 42030 42030

3X3X2_5 37551 37904.9 184.3805847 383.2465134 37908 38456 37432 37432

3X3X2_6 38157 38436.7 23.37947818 247.5019394 38198 38968 38142 38180

3X3X2_7 33565 34001.8 0 411.3178333 33565 34920 33565 33565

3X3X2_8 30994 31619.5 0 645.4463959 30994 32779 30994 30994

3X3X2_9 31027.1 31353.8 102.3 298.0412052 31334 31873 30993 30993

4X4X3_0 47553.3 49048.4 632.032602 1151.657953 49443 50903 47324 47324

4X4X3_1 58361.5 59400.7 128.9234269 351.1797403 58663 60087 58217 58880

4X4X3_2 60169.8 60771.1 813.7788152 594.8965372 61489 61697 59351 59667

4X4X3_3 71064.5 72923.7 1106.743895 620.5789313 73668 73803 70269 71847

4X4X3_4 65386 67792.3 762 1303.083961 67672 71176 65132 65740

4X4X3_5 64932.1 65240.9 945.1474435 811.3807306 66407 67011 63926 64370

4X4X3_6 56582.9 57742.8 95.05519449 869.7954702 56853 59901 56538 56634

4X4X3_7 64673.8 65989.4 242.1808415 599.2033378 65260 66880 64432 65080

4X4X3_8 64801.4 66226.3 598.4196187 632.1170857 66091 67494 64249 65245

4X4X3_9 64173.9 65578 452.4350672 450.8871256 65236 66499 63846 64718

5X5X4_0 99127 101002 525.5029971 1238.38217 99858 103173 98290 98948

5X5X4_1 103558.6 105635.4 971.9633944 1316.379824 105953 107749 102571 104127

5X5X4_2 118153.9 120260 500.3739502 1535.788136 119108 123992 117548 118137

5X5X4_3 100174.3 103129.5 222.7321486 1607.177977 100741 107405 99905 100916

5X5X4_4 105533.9 107772.6 563.3280483 1053.34811 106665 110543 104657 106575

5X5X4_5 101425.3 103906.4 165.7950844 1003.615285 101794 105193 101214 102351

5X5X4_6 97936.6 100878.4 1137.296901 2000.878567 100376 104848 96986 97753

5X5X4_7 106153.2 107832.2 1274.031224 757.3083652 108707 108989 105099 106449

5X5X4_8 86597.7 87972.9 1604.486089 1036.310229 89020 89773 84759 86412

5X5X4_9 92603.3 94816.2 307.2627703 1282.450217 93358 97327 92113 92515

https://github.com/MZakaraia/EPO_T

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 91

Figure 5: The convergence curve of the 3 × 3 × 2 problems

Figure 6: The convergence curve of the 4 × 4 × 3 problems

92 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

Figure 7: The convergence curve of the 5 × 5 × 4 problems

7 Conclusion
In conclusion, this paper introduced a modified

Emperor Penguin algorithm tailored for solving FCTP.

The algorithm demonstrated its effectiveness in finding

high-quality solutions by utilizing new benchmarks

specifically designed for the problem. The computational

results presented in this study provide valuable insights

into the algorithm's performance. The mean results

showcased the algorithm's ability to achieve competitive

solutions for the FCTP, while the standard deviation and

Relative Standard Deviation offered measures of its

robustness. The findings of this research contribute to the

field of logistics and supply chain management by

offering an optimized algorithmic approach for addressing

the FCTP. The modified Emperor Penguin algorithm, with

its robustness and improved solution quality, holds great

potential for enhancing supply chain operations and

optimizing transshipment processes.

Future research directions may involve further fine-

tuning of the modified algorithm and expanding the

benchmark suite to encompass a wider range of real-world

scenarios. Additionally, investigating the algorithm's

performance on larger-scale instances and exploring its

applicability to other related optimization problems would

be beneficial. The future research also may include

extending the formulations of the transshipment problem

to cover:

• The solid transshipment problem by including

constraints related to the type of transportation

and products.

• The capacitated fixed charged transshipment by

considering capacity constraints related to each

transshipment node.

In conclusion, this paper's findings highlight the

promising capabilities of the modified Emperor Penguin

algorithm for tackling the Fixed Charged Transshipment

Problem, providing a valuable tool for optimizing supply

chain operations and fostering efficiency in logistics

management.

Acknowledgement

This work was funded by the University of Jeddah,

Jeddah, Saudi Arabia, under grant No. (UJ-02-068-DR).

The authors, therefore, acknowledge with thanks the

University of Jeddah technical and financial support.

References

[1] Y. T. Herer and M. Tzur, “The dynamic

transshipment problem,” Nav. Res. Logist., vol. 48,

no. 5, pp. 386–408, 2001, doi: 10.1002/nav.1025.

[2] P. M. Reyes, “Logistics networks: A game theory

application for solving the transshipment problem,”

Appl. Math. Comput., vol. 168, no. 2, pp. 1419–1431,

A Modified Emperor Penguin Optimizer Algorithm for Solving… Informatica 48 (2024) 79–94 93

2005, doi: 10.1016/j.amc.2004.10.030.

[3] Y. T. Herer, M. Tzur, and E. Yücesan, “The

multilocation transshipment problem,” IIE Trans.

(Institute Ind. Eng., vol. 38, no. 3, pp. 185–200,

2006, doi: 10.1080/07408170500434539.

[4] N. Belgasmi, L. Ben Saïd, and K. Ghédira,

“Evolutionary multiobjective optimization of the

multi-location transshipment problem,” Oper. Res.,

vol. 8, no. 2, pp. 167–183, 2008, doi:

10.1007/s12351-008-0015-5.

[5] D. K. Sharma and R. K. Jana, “A hybrid genetic

algorithm model for transshipment management

decisions,” Int. J. Prod. Econ., vol. 122, no. 2, pp.

703–713, 2009, doi: 10.1016/j.ijpe.2009.06.036.

[6] A. Khurana and S. R. Arora, “Solving transshipment

problems with mixed constraints,” Int. J. Manag. Sci.

Eng. Manag., vol. 6, no. 4, pp. 292–297, 2011, doi:

10.1080/17509653.2011.10671176.

[7] D. Özdemir, E. Yücesan, and Y. T. Herer, “Multi-

location transshipment problem with capacitated

production,” Eur. J. Oper. Res., vol. 226, no. 3, pp.

425–435, 2013, doi: 10.1016/j.ejor.2012.11.014.

[8] A. Khurana, T. Verma, and S. R. Arora, “Solving

time minimising transshipment problem,” Int. J.

Shipp. Transp. Logist., vol. 7, no. 2, pp. 137–155,

2015, doi: 10.1504/IJSTL.2015.067848.

[9] A. Kumar, R. Chopra, and R. R. Saxena, “An

Efficient Algorithm to Solve Transshipment

Problem in Uncertain Environment,” Int. J. Fuzzy

Syst., vol. 22, no. 8, pp. 2613–2624, 2020, doi:

10.1007/s40815-020-00923-9.

[10] H. Garg, A. Mahmoodirad, and S. Niroomand,

“Fractional two-stage transshipment problem under

uncertainty: application of the extension principle

approach,” Complex Intell. Syst., vol. 7, no. 2, pp.

807–822, 2021, doi: 10.1007/s40747-020-00236-2.

[11] H. Zhao and A. Sharma, “Logistics Distribution

Route Optimization Based on Improved Particle

Swarm Optimization,” Inform., vol. 47, no. 2, pp.

243–252, 2023, doi: 10.31449/inf.v47i2.4011.

[12] M. Khetatba and R. Boudour, “A modified binary

firefly algorithm to solve hardware/software

partitioning problem,” Inform., vol. 45, no. 7, pp. 1–

12, 2021, doi: 10.31449/inf.v45i7.3408.

[13] A. A. Almazroi and M. M. Eltoukhy, “Grey Wolf-

Based Method for an Implicit Authentication of

Smartphone Users,” Comput. Mater. Contin., vol.

75, no. 2, pp. 3729–3741, 2023, doi:

10.32604/cmc.2023.036020.

[14] M. F. Mohamed, M. M. Eltoukhy, K. Al Ruqeishi,

and A. Salah, “An Adapted Multi-Objective Genetic

Algorithm for Healthcare Supplier Selection

Decision,” Mathematics, vol. 11, no. 6, 2023, doi:

10.3390/math11061537.

[15] G. Dhiman and V. Kumar, “Emperor penguin

optimizer: A bio-inspired algorithm for engineering

problems,” Knowledge-Based Syst., vol. 159, pp. 20–

50, 2018, doi: 10.1016/j.knosys.2018.06.001.

[16] A. Serag, H. Zaher, N. Ragaa, and H. Sayed, “A

Modified Emperor Penguin Algorithm for Solving

Stagnation in Multi-Model Functions,” Inform., vol.

47, no. 10, pp. 71–78, 2023, doi:

10.31449/inf.v47i10.5273.

[17] H. Kaur and A. Kaur, “An Empirical Study of Aging

Related Bug Prediction Using Cross Project in Cloud

Oriented Software,” Inform., vol. 46, no. 8, pp. 105–

120, 2022, doi: 10.31449/inf.v46i8.4197.

[18] I. Salman and J. Vomlel, “Learning the Structure of

Bayesian Networks from Incomplete Data Using a

Mixture Model,” Inform., vol. 47, no. 1, pp. 81–94,

2023, doi: 10.31449/inf.v47i1.4497.

94 Informatica 48 (2024) 79–94 M.M. Eltoukhy et al.

