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With the rapid development of computer vision technology, the use of real-time target detection systems 

in scenic landscape management and services is increasingly widespread. To enhance the precision 

and efficiency of real-time target detection in scenic landscapes, this research integrates the fourth 

version of the You Only Look Once (YOLO) algorithm to construct an optimized real-time target 

detection system is introduced for scenic landscapes. First, adaptive spatial feature fusion to enhance 

the fourth version of the You Only Look Once algorithm. Then, the optimized algorithm was combined 

with OpenCV library, Python OS library, and other hardware and software to design a real-time image 

recognition system for scenic landscapes. The study results indicated that the proposed optimized 

algorithm had better recognition performance, and its precision value, recall rate, and F1 value were 

as high as 0.96, 0.97, and 0.98, respectively. The recognition system, which was developed using an 

optimization algorithm, demonstrated excellent practical application effect. It displayed stable system 

operation under four natural landscapes: sunrise, sea of clouds, maple forest, and stone monument, 

with a stability performance of 0.92, 0.93, 0.92, and 0.94, respectively. Moreover, the system operated 

remarkably fast, with low operational times of 2.3 s, 0.8 s, 2.9 s, and 1.2 s under these landscapes. In 

conclusion, the research institute's target detection algorithm has demonstrated excellent performance. 

Utilizing this algorithm in the detection system can offer technical aid for managing and intelligently 

detecting scenic landscape images. 

Povzetek: Raziskava predstavlja izboljšan sistem za zaznavanje tarč v realnem času v slikovitih 

krajinskih območjih, temelječ na algoritmu YOLOv4, s prilagodljivo prostorsko združitvijo značilnosti 

in uporabo knjižnic OpenCV in Python OS.

1 Introduction 

Under the present wave of digitization, intelligent 

management of tourist sites has become crucial in 

improving guest experience and ensuring safety [1-2]. 

The real-time Target Detection (TD) system plays a vital 

role by accurately identifying and locating various objects 

in the scenic area, such as tourists, natural landscapes, 

historical sites, and more. Furthermore, it provides 

technical support for image data management in the 

scenic area. In the field of TD, You Only Look Once 

(YOLO) and its derived network structures have achieved 

better detection results. Among them, the You Only Look 

Once Version 4 (YOLOv4) algorithm has received wide 

attention for its efficient detection speed and good 

accuracy [3-4]. Real-time TD of scenic landscapes is 

challenging due to various factors, including light 

variations, occlusion problems, complex backgrounds, 

and diverse target types. Therefore, relying solely on the 

traditional YOLOv4 for building recognition models is no 

longer sufficient to achieve high-precision TD tasks [5]. 

To address the aforementioned issues, this study 

optimizes the YOLOv4 algorithm and introduces a 

real-time landscape-based tourism demand system 

suitable for scenic locations. Building a real-time TD 

system for scenic spots enhances theoretical research on 

intelligent monitoring system applications in actual 

scenic spots and provides a practical technical solution. 

This solution is of great practical significance for 

promoting the development of intelligent tourism. This 

study is comprised of five sections. The initial section 

provides a concise overview of the study, while the 

subsequent section critically evaluates and summarizes 

prior research. The third section presents the research 

methodology, while the fourth section assesses algorithm 

performance. The fifth and final section offers a 

comprehensive summary of the entire study. 

2 Related Works 

Landscape image TD is a method in computer vision and 

deep learning designed to identify and locate specific 

features or objects within landscape photos or video 
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streams. A multitude of experts have researched this field, 

combining different models and algorithms to advance 

the technique. Jahani et al. study utilized three machine 

learning techniques, support vector machine, radial basis 

function neural network with multilayer perceptron, to 

simulate and evaluate landscape images of deciduous 

forests in northern Iran. By analyzing 13 landscape 

features, it was found that the multilayer perceptron 

model performed optimally in assessing the aesthetic 

quality of forest landscapes with a coefficient of 

determination of 0.878. In addition, the study identified 

the significant effect of factors such as tree species 

diversity and canopy density on landscape quality 

through the aforementioned models [6]. Peng et al. 

developed an image style conversion framework based on 

a recurrent generative adversarial network model, and 

used the framework to realize the transformation of 

landscape photos to Chinese landscape painting style. 

With the contour enhancement technique and edge 

detection operator, the conversion effect outperformed 

the traditional generative adversarial network model in 

both edge sensitivity and structural similarity. The 

outcomes demonstrated that the framework can enhance 

the landscape painting effect of landscape photographs 

with a comprehensive similarity score as high as 0.92. In 

the comparative analysis, the method outperformed 

several existing reference models in terms of visual 

quality [7]. Zhou et al. improved the traditional codebook 

modeling algorithm and proposed an improved codebook 

modeling algorithm. In addition to examining the origins 

and uses of the background modeling approach in motion 

TD, the paper also highlighted the shortcomings and 

suitability of the conventional approach, providing a 

framework for future studies on motion TD based on 

complicated background modeling. Furthermore, this 

study employed a combination of deep learning 

algorithms to examine the properties of fast-moving films 

and enhance their ability to identify features. According 

to study findings, the updated algorithm can analyze 

high-speed films efficiently and increase motion video 

frame feature detection [8]. Kikuchi et al. designed a 

method capable of performing real-time detection and 

virtual removal of existing buildings from a video stream, 

aiming to more intuitively demonstrate a future scene 

without these buildings. The results showed that the 

method was able to accurately perform real-time 

detection and building removal at 5.71 frames/sec when 

the complementary field of view was no more than 15%, 

which can effectively help users visualize the future 

environment on-site while reducing time and cost 

consumption [9]. 

As the computational speed and detection efficiency 

of the YOLO algorithm continue to improve, it has 

become increasingly prevalent in numerous real-time 

application scenarios, including video surveillance, 

autonomous driving, drone monitoring, and various 

industrial vision systems. Along with advancements in 

artificial intelligence technology, experts have conducted 

vast research on the YOLO algorithm’s performance. To 

address the problem of degraded performance of deep 

learning techniques for cross-domain object detection in 

the presence of insufficient labeled data, Li et al. 

proposed a step-by-step domain-adaptive YOLO 

framework. The framework creatively constructed an 

auxiliary domain to narrow the gap between the source 

and target domains, and then utilized the newly 

developed domain-adapted YOLO algorithm for the 

cross-domain object detection task. Experimental results 

showed that the detection framework designed by the 

institute significantly improved the detection performance 

of the algorithm [10]. Lee and Hwang explored the 

service performance of the YOLO algorithm in real-time 

object detection in resource-constrained AI embedded 

systems. To address the poor performance of YOLO in 

webcam object detection, a novel YOLO architecture 

with adaptive frame control was proposed in the paper to 

effectively address these issues. The results showed that 

the proposed adaptive frame control YOLO scheme can 

reduce the service delay while maintaining the high 

accuracy and convenience of YOLO, overcoming the 

real-time processing limitations of pure YOLO systems 

[11]. Aiming at the real-time monitoring and assisted 

driving requirements in self-driving vehicles, Liang et al. 

proposed an edge-cloud cooperative object detection 

system called Edge YOLO. With the use of compressed 

feature fusion and pruned feature extraction networks, 

Edge YOLO developed a lightweight framework that 

may significantly increase multi-scale prediction 

efficiency while lowering the system’s reliance on CPU 

resources. The research results showed that Edge YOLO 

had high reliability and detection accuracy on 

COCO2017 and KITTI datasets [12]. 

 

 
Table 1: Summary of related work 

Researchers Year 
Technology 

methods 
Key Findings Limitations 

Literature 

number 

Jahani et al. 2023 
Machine learning 

techniques 

Using machine 

learning to assess 

the aesthetic quality 

of forest landscapes 

Limited to 

forested 

landscapes in 

specific areas, 

not covering a 

wider range of 

landscape types 

[6] 
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Peng et al. 2022 

Recurrent 

generative 

adversarial 

networks 

Realising the 

transformation of 

landscape photos to 

Chinese landscape 

painting style 

Conversion 

effects are 

dependent on 

specific styles 

with limited 

ability to 

generalise 

[7] 

Zhou et al. 2023 

Modified 

codebook 

modelling 

algorithms 

Improving feature 

recognition of 

fast-motion video 

sequences 

Needs further 

optimisation to 

deal with 

extreme lighting 

and complex 

backgrounds 

[8] 

Kikuchi et al. 2022 

Semantic 

segmentation and 

GAN 

Capable of 

detecting and 

virtually removing 

existing buildings 

from video streams 

in real-time 

Only applicable 

to specific 

landscape 

assessment 

scenarios 

[9] 

Li et al. 2022 

Progressive 

domain adaptation 

YOLO framework 

Significantly 

improves 

cross-domain object 

detection 

performance 

Requires 

ancillary domain 

data, limited 

applicability 

[10] 

Lee and Hwang 2022 

Adaptive frame 

control YOLO 

architecture 

Improved service 

performance of 

YOLO in real-time 

object detection. 

Primarily for 

resource-constra

ined 

environments, 

may not be 

applicable to all 

scenarios 

[11] 

Liang et al. 2022 
Edge YOLO 

system 

Enabling efficient 

real-time object 

detection in 

autonomous driving 

Dependent on 

edge-cloud 

co-operation, 

high 

implementation 

costs 

[12] 

 

In summary, Table 1 shows that numerous 

experts have conducted studies on image detection and 

YOLO algorithm performance testing. Additionally, 

many experts have applied the YOLO network model 

to image detection and achieved superior research 

results. The ongoing development of the tourism 

industry has led to the application of various 

intelligent technologies in tourism management. To 

enhance real-time detection and retrieval of landscape 

images in scenic spots, this study will optimize the 

YOLO network and develop a real-time TD system for 

the said images. By doing so, tourists can acquire 

landscape images swiftly and locate attractions 

efficiently, providing significant technical assistance 

to intelligent tourism management. 

 

3 Real-time TD system for 

landscape images of scenic spots 

based on YOLOv4-ASFE algorithm 

 

In today's digital era, the real-time TD system has a 

significant enhancement effect on both the 

management of tourist attractions and the experience 

of tourists. In this study, the traditional YOLOv4 TD 

algorithm is first optimized, and the TD accuracy of 

YOLOv4 is optimized by introducing Adaptive Spatial 

Feature Fusion (ASFF). On this basis, adaptive spatial 

feature optimization You Only Look Once version 4 

(YOLOv4-ASFF) for real-time images of scenic 

landscapes is designed, aiming at completing the 

real-time detection of landscape images by this system, 

so as to improve the image data management effect of 

the scenic management system. 

3.1 TD Algorithm design based on 

improved YOLOv4 

The traditional YOLOv4 is a popular real-time TD 
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algorithm commonly used for computer vision tasks. 

Compared to the previous three versions of YOLO 

algorithm, YOLOv4 brings several improvements and 

advantages [13]. Figure 1 depicts the conventional 

YOLOv4 network configuration.
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Figure 1: Traditional YOLOv4 network structure 

 

The input layer, the additional modules, the head 

network, the anchors, the loss function, and the backbone 

network make up the six key components of the classic 

YOLOv4 network topology shown in Figure 1. The input 

layer primarily prepares the incoming picture data. Cross 

Stage Partial (CSP) networks are frequently used to 

increase the backbone network's learning capacity while 

lowering the computational cost of the model. The 

backbone network is mostly used for feature extraction. 

The additional module is located behind the backbone 

network and enhances the sensory field through pooling 

operations, allowing the network to recognize features at 

different scales and increasing the model's adaptability to 

the input size. The header network is dedicated to the 

final TD task, and this part contains a target size 

prediction layer, a target category prediction layer, and a 

target frame prediction layer. In YOLOv4, anchor points 

are target boxes used to predict actual features. The 

dimensions of the anchor points are obtained by 

clustering and analyzing the bounding box dimensions in 

the training dataset. Finally, the loss function is mainly 

used to train the loss process so that the network can 

achieve the predetermined prediction through multiple 

training. In the YOLOv4 network structure, the loss 

function is mainly divided into two parts: classification 

loss and location regression loss. The common 

classification loss functions are cross-entropy loss 

function and Softmax loss function. Equation (1) is the 

mathematical expression of the cross-entropy loss 

function, which is frequently employed in classification 

loss [14]. 

 ( ) ( ) ( )
1

log 1 log 1i i i i

i

L y y y y y
N

= − + − −   (1) 

In equation (1), iy  denotes the probability that 

sample i  is predicted to be a positive class. The 

predicted probability of all samples is divided into two 

categories of labels, where the positive category labels 

are denoted by 1 and the negative category labels are 

denoted by 0. N  denotes the number of all labels. 

( )L y  denotes the cross-entropy loss function. The 

Softmax loss function is calculated as shown in equation 

(2). 

 ( )max log
i

i

x

C x

i

e
Soft x

e
= −


 (2) 

In equation (2), C  denotes the number of 

categories. ix  denotes the output of the correct category. 

( )maxSoft x  denotes the Softmax loss function. Smooth 

L1 is a kind of location regression loss function and its 

expression is shown in equation (3). 

 ( ) 2

1 0.5SmoothL x x=  (3) 

In equation (3), Smooth L1 uses the expression in 

equation (3) when 1x  . x  denotes the positional 

regression value. When the positional regression value 
1x  , equation (3) becomes equation (4). 

 ( )1 0.5SmoothL x x= −  (4) 

Based on equation (3) and equation (4), it is possible 

to obtain the border regression task loss calculation 

equation for real TD as shown in equation (5). 

 ( ) ( )
 

1

, , ,

,u u

loc i i

i x y w h

L t v SmoothL t v


= −  (5) 
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In equation (5), ( ),u

locL t v  denotes the loss value of 

the border regression task for the actual TD. ut  and v  

denote the predicted and actual coordinates, respectively, 

and their specific expressions are shown in equation (6). 

i  denotes the sample, whose coordinates are denoted by 

 , , ,x y w h . 

 
( )

( )

, , ,

, , ,

u u u u u

x y w h

x y w h

t t t t t

v v v v v

 =


=

 (6) 

In equation (6), ( ), , ,u u u u

x y w ht t t t  and ( ), , ,x y w hv v v v  

denote the true value coordinates and predicted value 

coordinates, respectively. Equation (6) is viewed as a 

whole for regression, and its calculation equation is 

obtained as shown in equation (7). 

 
( )

( )

sec ,
ln

,

gt pre

gt pre

Inter tion box box
IoULoss

Union box box
= − (7) 

In equation (7), gtbox  and prebox  denote the true 

and predicted frames, respectively. When there is no 

overlapping region between the real and predicted boxes 

in equation (7), it will lead to equation (7) being equal to 

0, which does not reflect the distance between the 

predicted and real values in depth. Based on this, the 

distance measurement equation is introduced as shown in 

equation (8). 

 
c

c

A U
GIoULoss IoU

A

−
= −  (8) 

In equation (8), IoU  is an abbreviation for 

IoULoss , which denotes the intersection and merger 

ratio loss. cA  denotes the area of the smallest closed 

region shared by the two boxes. U  denotes the 

concatenation of the two boxes. Based on equation (8), 

the distance between the centroids of the two boxes is 

further considered to obtain the DIoULoss  loss 

function in equation (9). 

 
( )2

2

,pre gtc c
DIoULoss IoU

d


= −  (9) 

In equation (9), prec  and gtc  denote the centroid 

positions of the prediction frame and the real frame, 

respectively.   denotes the Euclidean distance between 

the two centroids. d  denotes the diagonal distance 

between the prediction frame and the real frame. A 

penalty factor is added to equation (9) to obtain equation 

(10). 

 
( )2

2

,pre gtc c
CIoULoss IoU v

d


= − −  (10) 

In equation (10), v  denotes the penalization 

factor. Where   and v  denote the weight function and 

aspect ratio measurement parameters, respectively. The 

specific equation for the weight function is shown in 

equation (11). 

 
( )1

v

IoU v
 =

− +
 (11) 

In equation (11), IoU  denotes the cross-merger 

ratio loss. The equation for the aspect ratio measurement 

parameter is shown in equation (12). 

 

2

2

4
arctan arctan

gt pre

gt pre

w w
v

h h

 
= − 

 
 (12) 

In equation (12), gtw  and gth  denote the width 

and length of the true frame, respectively. prew  and 
preh  denote the width and length of the predicted frame, 

respectively. According to the above equation (10) is able 

to calculate the loss function of YOLOv4. 

In the scenic landscape TD problem, since the 

distant buildings may be very small and the near 

sculptures may be very large therefore the traditional 

YOLOv4 cannot better detect the real-time landscape. 

Furthermore, the study incorporates the ASFF to enhance 

the stability and detection precision of the conventional 

YOLOv4 in light of the potential impact of shifting 

lighting conditions, dynamic target objects, and complex 

terrain backgrounds on its detection. ASFF enables 

effective information exchange at the feature layer and 

enhances the model's recognition ability for targets at 

different scales by intelligently adjusting weights 

between multi-scale feature maps. The ASFF mechanism 

dynamically adjusts fusion weights by learning weight 

parameters between different feature maps, allowing the 

algorithm to adaptively strengthen the response to 

important features. In addition, ASFF can simultaneously 

suppress background noise, significantly improving 

YOLOv4's ability to detect small targets in complex 

landscapes and accurately recognize large targets. The 

incorporation of ASFF into the YOLOv4 model enhances 

the feature extraction process and improves the model's 

recognition accuracy in various and challenging 

landscapes. This is particularly true when dealing with 

scenes that have strong lighting variations and significant 

differences in target size. Figure 2 depicts the ASFF's 

organizational structure.
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Figure 2: ASFF structure diagram 

 

In Figure 2, ASFF is mainly composed of 

multi-scale feature maps, adaptive weight learning, and 

special fusion mechanism. With the use of ASFF, feature 

maps with varying scales will be able to communicate 

information more effectively, which will enhance tiny TD 

performance and preserve high identification accuracy for 

large targets. In ASFF, the input features are fused 

through three layers of adaptive fusion to increase the 

richness of information, and the fusion process is shown 

in equation (13). 

 
1 2 3l l l l l l l

ij ij ij ij ij ij ijy x x x  → → →= + +  (13) 

In equation (13), 
l

ij , 
l

ij , 
l

ij  denote the weight 

parameters of the first, second, and third layers, 

respectively. 
1 l

ijx →
, 

2 l

ijx →
, 

3 l

ijx →
 denote the features of 

the first, second, and third layers, respectively. 
l

ijy  

denotes the fused features. The structure of 

YOLOv4-ASFF is obtained by adding ASFF into 

YOLOv4 as shown in Figure 3.
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Figure 3: YOLOv4-ASFF structure diagram 

 

In Figure 3, the optimized YOLOv4-ASFF is mainly 

composed of input layer, feature fusion layer, and 

decoupling header module. Different from the traditional 

path aggregation network, YOLOv4-ASFF adopts the 

ASFF network, which fuses and weights the three layers 

of features output from the backbone network, thus 

further enriching the feature information of the scenic 

landscape image, and avoiding the introduction of too 

many parameters. To further increase the model's 

detection accuracy, the decoupled detection header is also 

adopted by the model to optimize edge regression and 

classification, respectively. 

3.2 Design of Real-time Image Recognition 

System for Scenic Landscapes 
In addition to optimizing YOLOv4 to improve the 

detection accuracy of the target, it is necessary to further 

combine various types of hardware and software to build 

a complete scenic landscape image recognition system. 

The designed real-time image recognition system for 

scenic landscapes can not only support real-time image 

recognition, but also process static images, so as to 

provide tourists with instant and rich scenic area 

information, enhance the tourists’ experience, and also 

support the digital management of scenic areas. By 

building a real-time image recognition system for scenic 

landscapes, the cultural value and natural beauty of scenic 

spots can be better demonstrated, and at the same time 

provide a scientific basis for the protection and 

management of scenic resources [15]. The traditional 

scenic landscape recognition system has shortcomings 

such as insufficient recognition accuracy, slow processing 

speed, poor generalization ability, limited real-time 

monitoring ability, and poor user interactivity, etc. The 

combination of optimized YOLOv4-ASFF algorithm to 

build a real-time image recognition system for scenic 

landscapes can effectively improve the above 

shortcomings. The structure of the scenic landscape 

image recognition system designed in this research is 

shown in Figure 4.
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Figure 4: Structural diagram of scenic landscape image recognition system 

 

In Figure 4, the designed landscape image 

recognition system for scenic spots mainly consists of 

four modules: model construction, data acquisition and 

input, model recognition, and recognition result output. 

The core of the model building module is to create an 

accurate landscape recognition model. First, a large 

amount of scenic landscape image data collection is 

carried out. These images need to contain a variety of 

landscapes in the scenic area, such as natural landscapes, 

buildings, sculptures, and so on. Next, these images were 

accurately labeled using an annotation tool, including the 

categories and locations of the objects. Then, these 

labeled data are trained using the YOLOv4-ASFF 

algorithm. The model’s parameters are adjusted during 

training to increase recognition speed and accuracy. The 

model is retained for use in later courses once the training 

is over. The data acquisition and input module mainly 

uses the OpenCV library to realize the acquisition of 

real-time video streams, which can acquire real-time 

images from cameras set up in scenic spots. For 

non-real-time image recognition, an interface is provided 

to allow users to upload image files, and Python’s os 

library is used to process file paths and read image data. 

In the model recognition module, it is first necessary to 

import the previously trained YOLOv4-ASFF model. 

When image data is received from the data acquisition 

module, the model detects and recognizes the landscapes 

in the image. The recognition process involves extraction 

of image features, inference using the model, and 

deriving category and location information for each 

landscape in the image. The recognition result output 

module focuses on visualizing the recognition results of 

the model on the user interface, such as marking the 

recognized landscapes on the image through a bounding 

box and displaying the category name next to it. At the 

same time, the recognition results, including the images, 

the recognized landscape information and the associated 

confidence level, are stored in a local folder for further 

analysis or archiving. Figure 5 depicts the precise 

workflow of the landscape image recognition system.
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Figure 5: Flowchart of scenic landscape image recognition

In Figure 5, firstly, a complete landscape image 

dataset needs to be built in the designed landscape image 

recognition system, and then the image dataset is labeled. 

Then the optimized YOLOv4-ASFF algorithm is used to 

build a recognition model to detect the input landscape 

images. The model’s confidence can be computed by 
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comparing the difference between the actual and expected 

confidence values, provided that the detected content 

includes the target landscape. If the detected content does 

not contain the target landscape, then the image needs to 

be saved in the computer and labeled as unrecognized. 

When the actual confidence value is greater than the 

expected value, this image can be saved in the 

corresponding landscape file, thus completing the whole 

image recognition process. Continuously repeating the 

above steps, then the performance of the YOLOv4-ASFF 

algorithm can be optimized, so that the output value of 

this algorithm is getting closer and closer to the preset 

value, and then all TD tasks can be completed. The final 

recognition content will be displayed in the UI 

visualization page, as shown in Figure 6.

Step 1: Open the identification 

website

Step 2: Select pictures for testing

Step 3: Display the visualization 

results

 

Figure 6: Visual page diagram 

 

In Figure 6, the user is able to get the recognition 

visualization result of the image through the designed 

scenic landscape image recognition system. Users first 

need to enter the browser to open the recognition website, 

and then open the image to detect the image, when the 

recognition system completes the detection will be 

displayed in the UI visualization page to detect the 

results. 

 

4 Evaluation of performance and 

application effect of scenic landscape 

image detection algorithm based on 

improved YOLOv4-ASFF 
In order to prove that the algorithms and recognition 

systems designed in this research have better performance 

and application results, three different detection 

algorithms were selected to compare their performance, 

so as to find that the YOLOv4-ASFF algorithm's 

detection accuracy and stability in TD are better than the 

other compared algorithms. In addition, the application of 

YOLOv4-ASFF algorithm to the recognition system can 

also achieve better recognition results. 

4.1 Performance test of scenic landscape 

image detection algorithm 
To comprehensively evaluate the performance of the 

improved YOLOv4-ASFF algorithm in real-world 

application scenarios, this study carefully selects and 

processes two types of datasets, namely the publicly 

available cityscapes dataset and the homemade scenic 

landscape image dataset collected specifically for the 

needs of this research. During the data pre-processing 

stage, the data quality is first ensured through a series of 

standardized steps, including image resizing, contrast 

enhancement, and denoising, in order to simulate the 

various environmental factors that  

may be encountered in TD in scenic landscapes. The 

Cityscapes dataset is selected for the dataset selection 

criteria because of its rich urban street view images and 

accurate pixel-level annotation, in order to test the 

algorithm's ability to detect targets in complex urban 

environments. The homemade scenic landscape image 

dataset, on the other hand, covers a wide range of natural 

landscapes, reflecting the specific application scenarios of 

scenic landscape TD, ensuring the practicality and wide 

applicability of the experimental results. The two datasets 

are partitioned randomly into training and validation sets 

in a 9:1 ratio after preprocessing to ensure fairness in the 

training process and reliability in the validation results. 

Performance evaluation in this study comprehensively 

considered several metrics, such as precision, recall, and 

F1 score, chosen based on their wide application and 

recognition in the field of TD. The precision metric 

reflects the model's ability to recognize positive class 

samples, while the recall measures the proportion of 

positive class samples recognized by the model to the 

total positive class samples. The F1 score is the 

reconciled average of precision and recall, providing a 

comprehensive performance evaluation. These 

performance metrics allow for a thorough evaluation and 

demonstration of the YOLOv4-ASFF algorithm's 

performance under various conditions and its superiority 

over other algorithms. Table 2 displays the precise 

makeup of the two datasets.

Table 2: Data set information 

Data set composition Cityscapes Scenic spot landscape image data set 
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category 50 different street scenes 8 different natural landscapes 

Number of samples 3100 6500 

Source 
Images taken in different urban street view 

environments 

Image taken at a tourist attraction in the 

city 

Annotation 

information 
19 categories annotated for image detection Image detection 

Data Format JPEG JPEG 

 

In Table 2, the specific information of the dataset is 

given, including the number of dataset samples,  

 

 

categories, labeling information and so on. The specific 

hardware and software environment of the experiment is 

shown in Table 3.

 

Table 3: Experimental environment  

Environment Set up Parameter configuration 

Hardware environment 
CPU AMD Ryzen7 4800H 

GPU NVIDIA GeForce RTX2060, 6GB RAM 

Software Environment 
Programming system Pytorch 

Operating system Windows 10, 64-bit 

 

In Table 3, the specific hardware environment and 

software environment for this experiment are given. The 

variation of loss function of YOLO, Single Shot 

MultiBox Detector (SSD), YOLOv4-ASFF, and  

 

You Only Look Once version 5 (YOLOv5) is tested 

under the dataset information in Table 1 and the 

experimental environment in Table 2 as shown in Figure 

7. 
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(c) Loss function curve of YOLOv4-ASFF algorithm
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Figure 7: Loss function curve changes of each algorithm 

 

Figure 7 shows the variation of loss function curves 

for the four detection algorithms. Figure 7(a), Figures 

7(b), (c), (d) show the loss function curves of the four 

algorithms YOLO, SSD, YOLOv4-ASFF, and YOLOv5, 

respectively. Taken together, the training loss curve of 

YOLOv4-ASFF can overlap well with the actual loss 

curve, and when the value of epoch is 7, the training loss 

curve of YOLOv4-ASFF starts to stabilize. On the 

contrary, YOLO, SSD, and YOLOv5 need to traverse 17, 

12, and 9 epochs, respectively, in order to reach a stable 

training loss value. 
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Figure 8: Detection accuracy, recall rate and F1 value changes of each algorithm 

 

 

The detection precision, recall and F1 value 

variation of the four detection algorithms are shown in 

Figure 8. From Figure 8(a), when the number of samples 

is 500, the detection precision values of the four 

algorithms YOLO, SSD, YOLOv4-ASFF, and YOLOv5 

are 0.69, 0.78, 0.96, and 0.91, respectively. From Figure 

8(b), when the number of samples is 500, the detection 

recall values of the four algorithms YOLO, SSD, 

YOLOv4-ASFF, and YOLOv5 algorithms have detection 

recall values of 0.71, 0.77, 0.97, and 0.90, respectively. 

From Figure 8(c), when the number of samples is 500, 

the four algorithms YOLO, SSD, YOLOv4-ASFF, and 

YOLOv5 have detection F1 values of 0.70, 0.78, 0.98, 

and 0.90, respectively. 

The variation of frames per second for the four 

detection algorithms is shown in Figure 9. In Figure 9(a), 

the four algorithms, YOLO, SSD, YOLOv4-ASFF, and 

YOLOv5, are finally able to achieve frame rate values of 

22, 25, 29, and 34 under the training dataset, respectively. 

In Figure 9(b), the four algorithms YOLO, SSD, 

YOLOv4-ASFF, and YOLOv5 are finally able to achieve 

frame rate values of 23, 25, 30, and 35 under the 

validation dataset, respectively. Compared to YOLO and 

SSD, YOLOv4-ASFF and YOLOv5 are able to reach 

stable frame rate values faster, thus indicating that these 

two algorithms are more efficient in detecting images. 
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Figure 9: Changes in frames per second for each algorithm 

 

4.2 Scenic landscape recognition system 

application effect analysis 
In addition to verifying that the YOLOv4-ASFF 

algorithm has a better performance advantage in image 

detection, the study further utilized the above detection 

algorithms to build a real-time recognition system for 

scenic landscape images respectively, and compared the 

image recognition effect of each system in practical 

applications (see Figure 10).
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Figure 10: Operation stability and identification time of each system 

 

Figures 10(a), (b) show the operation stability and 

recognition time of the four recognition systems, 

respectively. Four natural landscapes, namely sunrise, sea 

of clouds, maple forest and stone monument, are selected 

as test objects. In Figure 10(a), the recognition system 

built by the YOLOv4-ASFF algorithm has an operational 

stability as high as 0.92, 0.93, 0.92, 0.94 under the four 

kinds of natural landscapes, which is much higher than 

that of the recognition system built by the other three 

algorithms. In Figure 10(b), the recognition time of the 

recognition system built by the YOLOv4-ASFF 

algorithm under the four natural landscapes is 2.3s, 0.8s, 

2.9s, and 1.2s, respectively, which is much lower than 

that of the recognition system built by the other three 

algorithms. 

The recognition of three natural landscape images by 

the traditional YOLO recognition system and the 

recognition system built by the YOLOv4-ASFF 

algorithm are shown in Figure 11, respectively. 

Combined with Figure 11(a), (b), the optimized 

recognition system is able to better recognize the details 

in the natural landscape images, including sunrise, 

inscription text, pedestrians, and so on. The recognition 

system constructed using the YOLOv4-ASFF algorithm 

has better practical application results.

(a) Optimized recognition effect of landscape 

recognition system

(b) Recognition effect of traditional landscape 

recognition system

 

Figure 11: Actual landscape recognition situation of the two-recognition system 
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5 Discussion 

To enhance the accuracy of detecting landscape images in 

scenic areas, this study optimized the traditional 

YOLOv4 TD algorithm by introducing ASFF. The 

optimized YOLOv4 algorithm is then combined with 

ASFF to create the fourth generation of adaptive spatial 

feature optimization primary TD system for real-time 

images of scenic landscapes, known as YOLOv4-ASFF. 

This approach improves the TD accuracy of YOLOv4. 

The system's ability to detect and manage landscape 

images in scenic areas is confirmed by its real-time 

detection capabilities. In the comparative analysis, the 

YOLOv4-ASFF proposed in this study demonstrates 

significant performance advantages compared with 

existing related work. The optimized YOLOv4 algorithm 

achieved not only higher scores in terms of precision, 

recall, and F1 value through the introduction of ASFF, 

but also provided a significant improvement in real-time 

performance when dealing with complex landscape 

environments. The YOLOv4 algorithm achieved high 

precision, recall, and F1 scores of 0.96, 0.97, and 0.98, 

respectively. In comparison, Jahani A et al. achieved a 

coefficient of determination of 0.878 in assessing the 

aesthetic quality of forest landscapes using machine 

learning techniques, and Peng X et al. achieved a 

composite similarity score of 0.92 in transforming 

landscape photos based on recurrent generative 

adversarial network models. Although these studies 

performed well in their respective domains, the precision 

and recall rates are lower than those of the algorithm 

proposed in this study for the complex task of detecting 

scenic landscapes. Additionally, this study demonstrated 

exceptional performance in the frame rate test, achieving 

processing speeds of up to 30 fps without compromising 

detection accuracy. This was critical for real-time 

surveillance systems. Compared to the other two 

approaches in the related work, YOLOv4-ASFF 

outperformed mainly because the ASFF mechanism and 

the efficient network architecture design significantly 

improve the algorithm's ability to detect multi-scale 

targets, especially in complex scenic environments, 

which enables more accurate identification and 

localization of targets of different sizes. In addition, 

optimizing the YOLOv4 algorithm improved not only the 

accuracy of TD, but also significantly increased the 

processing speed, enabling the algorithm to meet the dual 

requirements of speed and accuracy for real-time TD 

systems.  

In this study, three comparison models (YOLO, SSD, 

and YOLOv5) were introduced to test the performance of 

YOLOv4-ASFF. The YOLOv4-ASFF algorithm-based 

recognition system for scenic landscape images achieved 

an operational stability of 0.92, 0.93, 0.92, and 0.94 under 

four natural landscapes, namely sunrise, cloud sea, maple 

forest, and stone monument, and a recognition time of 2.3 

s, 0.8 s, 2.9 s, and 1.2 s, respectively, surpassing the 

performance of the other three models. The analysis 

below explained why YOLOv4-ASFF outperforms other 

models in specific usage scenarios. YOLOv4-ASFF 

optimized the YOLOv4 framework with ASFF, which 

significantly improves the model's recognition ability for 

targets of different sizes. The ASFF mechanism can 

dynamically adjust the weights of feature fusion 

according to the target sizes, which is especially 

important in multi-scale TD in scenic landscapes. 

Furthermore, YOLOv4-ASFF utilized efficient backbone 

network and feature fusion techniques, including CSPNet 

and PANet, to improve both detection speed and accuracy. 

In comparison, SSD was less accurate in processing 

small-size targets due to its limited method of detecting 

directly on feature maps at different scales, especially in 

complex landscape environments. YOLOv5, while 

improved in speed and accuracy, lacked the adaptive 

feature fusion mechanism found in YOLOv4-ASFF and 

did not perform as well as YOLOv4-ASFF for highly 

complex backgrounds and multi-scale targets. The 

YOLOv4-ASFF architecture had been optimized to 

provide a significant performance advantage in real-time 

TD scenarios in scenic landscapes, particularly in dealing 

with multi-scale TD tasks under changing light and 

complex background conditions. 

In summary, this study has improved the YOLOv4 

algorithm, achieving breakthrough performance in 

real-time TD in scenic landscapes. It also outperforms 

existing related work in key performance metrics, such as 

precision, recall, F1 value, and frame rate. This result 

demonstrates the superiority of the improved algorithm 

and provides a new direction for subsequent research on 

real-time TD in complex environments. It has important 

academic value and practical application potential. 

6 Conclusion 

To enhance the detection effectiveness of scenic 

landscape images, this study utilizes the upgraded 

YOLOv4 algorithm to optimize and evaluate the 

real-time TD system intended for scenic landscapes. The 

study's results indicated that by comparing the changes in 

the loss function curves of YOLO, SSD, YOLOv4-ASFF 

and YOLOv5 algorithms, it was found that the 

YOLOv4-ASFF algorithm performed the best, and its 

training loss started to stabilize at the 7th epoch, while the 

other algorithms required 17, 12 and 9 epochs, 

respectively. When the sample size was 500, 

YOLOv4-ASFF achieved high scores of 0.96, 0.97, and 

0.98 for detection accuracy, recall rate, and F1 value, 

respectively, outperforming the other algorithms 

significantly. Furthermore, YOLOv4-ASFF and YOLOv5 

demonstrated exceptional performance in the frame rate 

test, achieving 29 fps and 34 fps, respectively. 

Conversely, YOLO and SSD exhibited a lower frame rate 

of 22 fps and 25 fps, respectively. During the analysis of 

the scenic landscape recognition system's performance, it 

was found that the system developed using the 
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YOLOv4-ASFF algorithm demonstrated high operational 

stability rates of 0.92, 0.93, 0.92, and 0.94 for four natural 

landscapes: sunrise, sea of clouds, maple forest, and stone 

monument. Moreover, the recognition time for these 

landscapes was low, ranging from 0.8 s to 2.9 s, with an 

average of 1.6 s. Furthermore, the enhanced recognition 

system demonstrates the ability to detect landscape image 

attributes with greater accuracy than the conventional 

recognition solution. To summarize, the TD algorithm 

developed in this research presents superior proficiency 

and yields improved outcomes in real-world scenarios. 

However, there are still some limitations in this study, 

such as the need for improved recognition performance 

under extreme lighting and complex backgrounds, and 

the absence of coverage for all possible types of natural 

landscapes in the current test. Future research should 

expand its focus onto more landscape types. 

7 Future work 

The optimization model YOLOv4-ASFF, designed in this 

research, has achieved significant results in real-time TD 

in scenic landscapes. However, the significance of this 

research extends beyond the field of intelligent 

monitoring of scenic landscapes. Future work will 

explore the algorithm's potential in other areas, such as 

intelligent transport systems, unmanned surveillance 

security, automated agricultural monitoring, and rapid 

response to natural disasters. These areas require efficient 

and accurate real-time TD techniques. The challenge of 

balancing computational efficiency, real-time 

performance, and resource consumption of algorithms is 

particularly relevant for practical deployments. This is 

especially true in resource-constrained environments, 

such as the use of UAVs for on-site monitoring during 

natural disasters. Ensuring algorithm performance while 

reducing energy consumption is a major challenge. In 

addition, future research should focus on improving the 

model's generalization ability in diverse environmental 

conditions and complex backgrounds through in-depth 

adaptive improvements. Furthermore, future research is 

planned to investigate the utilization of multimodal data 

sources, such as infrared and radar fusion techniques, to 

further improve the model's ability to detect targets in 

extreme weather conditions and low-light environments. 

Additionally, the latest advances in deep learning, such as 

self-supervised learning and meta-learning strategies, can 

be combined with model training methods that require 

only a small amount of labeled data. This approach can 

help reduce the cost of large-scale data labeling and 

improve the adaptability of models. Finally, with the 

importance of AI ethics and privacy protection in mind, 

future research will focus on ensuring the interpretability 

and fairness of algorithms to promote the sustainability 

and social responsibility of the technology. In summary, 

the improved YOLOv4 algorithm and related 

technologies will play an important role in a wider range 

of fields, promoting the development of intelligent 

monitoring technologies and bringing positive impacts in 

practical applications. 
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