
Informatica 29 (2005) 409–421 409

On the Role of Environments in Multiagent Systems

Danny Weyns and Tom Holvoet
AgentWise, DistriNet, Katholieke Universiteit Leuven
Celestijnenlaan 200 A, B-3001 Leuven, Belgium
E-mail: {danny.weyns, tom.holvoet}@cs.kuleuven.be

Keywords: multiagent systems, environment, engineering environments

Received: June 30, 2005

For a long time, the role of the environment has been underestimated in multiagent systems research.
Originating from research on behavior-based agents and situated multiagent systems, the importance of
the environment is now gradually being accepted in the multiagent system community in general. In this
paper, we elaborate on the role of environments in multiagent systems. We present a model for multiagent
systems that puts forward agents and the environment as first-order abstractions. Starting from this model,
we elaborate on the logical functionalities of the environment. Competence in engineering environments
is a prerequisite to apply environments in practical multiagent system applications. We briefly discuss how
current agent-oriented methodologies deal with the environment, and we discuss an approach for engineer-
ing environments that puts forward artifacts as building blocks for environments. After that we present
the concern-based approach for engineering environments developed in our research group. This approach
models the environment as a set of modules that represent different functional concerns of the environment.
We illustrate how we have applied this approach in a real-world multiagent system application. The paper
concludes with a number of research challenges that are important for the further exploration of environ-
ments for multiagent systems.

Povzetek: Opisuje vlogo okolij v multiagentnih sistemih.

1 Introduction

Multiagent systems are an approach to build complex dis-
tributed applications. A multiagent system consists of a
population of autonomous entities (agents) situated in a
shared structured entity (the environment). One classic def-
inition of an autonomous agent is: an agent is a computer
system that is situated in some environment, and that is ca-
pable of autonomous action in this environment in order to
meet its design objectives [56]. This definition stresses the
importance of the environment, an agent is not an isolated
entity but exists in an environment in which it senses and
acts. In spite of the fundamental role of the environment in
agent systems, most researchers neglect to integrate the en-
vironment as a primary abstraction in models and tools for
multiagent systems, or minimize its responsibilities [49].
Typically, the responsibilities of the environment are re-
duced to a message transport system or broker infrastruc-
ture. Restricting interaction to inter-agent communication
neglects a rich potential of possibilities for the paradigm of
multiagent systems.

Opportunities that environments offer have been demon-
strated in the domain of behavior-based agents and sit-
uated multiagent systems. In behavior-based agent sys-
tems, interaction in the environment has been considered
as an essential feature for intelligent behavior for a long
time [9, 25, 1]. Originally, the main focus of this research
community was on systems where agents interact in a phys-

ical environment, such as robots. Gradually, this work
has influenced the software agent community. Today, re-
searchers working in the domain of what is known as sit-
uated multiagent systems consider logical environments as
essential parts of their multiagent systems [29, 10, 26, 47].
These researchers have shown that the environment can
serve as a robust, self-revising shared memory, and an ex-
cellent medium for indirect coordination of agents [49].
Several practical applications have shown how indirect in-
teraction trough the environment increases the power and
expressiveness of multiagent systems, enabling solutions
that would otherwise be impossible or at least impracti-
cally complex. There are examples in domains such as sup-
ply chain systems [41], network support [6], peer-to-peer
(P2P) systems [2], manufacturing control [37], and support
for automatic logistic services [55].

Originating from research on behavior-based agents and
situated multiagent systems, the importance of the envi-
ronment in multiagent systems is now gradually being ac-
cepted in the multiagent system community in general.
For example, [8] argues that the multiagent research com-
munity should not only focus attention on making agents
smarter but also on making the environment more capable
of managing and protecting the conditions in which agents
have to operate. Recently, the environment has begun to
emerge as the focus of research in its own right [14, 48, 34].

This paper is structured as follows. In Sect. 2, we present
a model for multiagent systems that puts forward agents



410 Informatica 29 (2005) 409–421 D. Weyns et al.

and the environment as first-order abstractions. Starting
from this model, we discuss logical functionalities of the
environment in Sect. 3. Section 4 discusses engineering
issues of environments and in Sect. 5 we illustrate a real-
world application in which the environment plays a cen-
tral role. Finally, in Sect. 7 we draw conclusions and list
a number of research challenges for the further exploration
of environments for multiagent systems.

2 The Environment Abstraction
In line with [49], we put forward agents and the envi-
ronment as first-order abstractions in multiagent systems.
This allows to clearly define the environment responsibili-
ties that differ from the agent responsibilities. A first-class
module can be defined as a program building block, an in-
dependent piece of software which [...] provides an ab-
straction or information hiding mechanism so that a mod-
ule’s implementation can be changed without requiring any
change to other modules1. Just as the agents, the envi-
ronment should therefore be an independent building block
that encapsulates its own clear-cut responsibilities in a mul-
tiagent system. Motivations to put forward the environment
as first-order abstraction include the following:

1. Several aspects of multiagent systems that conceptu-
ally do not belong to agents themselves should not be
assigned to, or hosted inside agents. Examples are in-
frastructure for communication and coordination, the
topology of a spatial domain, or support for the action
model.

2. The above (and other) aspects should be explicitly
considered. The environment is the natural candidate
to encapsulate these aspects.

3. The environment can be a creative part of a designed
solution of a multiagent system, helping to manage the
huge complexity of engineering complex real-world
applications.

One problem with the specification of environments is
the confusion between the logical entity of an environment
in the application and the underlying infrastructure of the
multiagent system. To unravel this confusion, we discuss a
model for multiagent-based applications that describes the
position of agents and the environment at three levels [54],
see figure 1:

– the multiagent system (MAS) application layer at the
top (i.e., the application logic);

– the execution platform (i.e., middleware infrastructure
and the operating system);

– and the physical infrastructure at the bottom (i.e., pro-
cessors, network, etc.).

1The Free Online Dictionary of Computing,
http://foldoc.doc.ic.ac.uk/foldoc/, 8/2005

Below we elaborate on each layer and illustrate that the
abstraction of the environment as well as the agents, cross-
cut the three layers in the model. Before that we intro-
duce a simple file searching system in a P2P network that
we use as a running example to illustrate the three-layer
model [53]. The idea of this application is to let mobile
agents act on behalf of users and browse a shared dis-
tributed file system to find requested files. Each user is
situated in a particular node (its base). Users can offer files
at their base and can send out agents to find files for them.
Agents can observe the environment, however, to avoid net-
work overload, agents can perceive the environment only to
a limited extent, e.g. two hops from the agent’s current po-
sition. An agent can perceive nodes and connecting links,
bases on nodes, and files available on nodes. Agents can
also sense signals. Each base emits such a signal. The
intensity of the signal decreases with every hop. Sensing
the signal of its base enables an agent to “climb up” the
gradient, i.e. move towards its base or alternatively “climb
down”, i.e. move away from it. Finally, agents can sense
pheromones. An agent can drop a file-specific pheromone
in the environment when it returns back to its base with
a copy of a file. Such a pheromone trail can not only
help the agent later on when it needs a new copy of the
file, it can also help other agents to find their way to that
file. Pheromones evaporate, thereby limiting their influ-
ence over time. This is an important property to avoid
that agents are misled when a file disappears from a cer-
tain node.

2.1 Multiagent System Application Layer

The Multiagent System Application layer contains the Ap-
plication Specific Logic, i.e. Application Agents (AAs) and
the Application Environment (AE) of the multiagent sys-
tem. The AAs are the autonomous entities in the multia-
gent system, the AE offers a domain specific abstraction to
AAs, hiding the complexity of resource access, interaction
handling, and consistency management. The AE imposes
the rules that regulate domain dynamics. Section 3 elabo-
rates on responsibilities of the AE.

The AAs in the P2P file searching system are the logical
entities that are created by the users to search for files in
the network. The AE is the logical entity that represents the
space in which the AAs perform their job. The AE offers
a representation to the AAs of the neighboring nodes and
connecting links of the network. The AE also represents
the available files, the gradient fields emitted by the bases,
and the file-specific pheromones dropped by the agents.

The application logic is typically deployed on top of
a Multiagent System Framework. The multiagent sys-
tem framework supports predefined multiagent systems ab-
stractions, such as a particular engine for agent’s decision
making, support for communication, a model for action,
etc. These abstractions can be reused over different appli-
cations. In the P2P file searching system, the multiagent
system framework layer should provide a pheromone in-



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 411

��������� 
����


����������

��
 ���
�����

�
��

��
���

�
�
��
���

�

�
�


�
��

���
��
��
�

�
��

��
��

��
��
��
��
��
��
��
�

�����

�����������

������� ����������������

�����

�� ����
���

�����������

����������

!�
�����
"����������� ����

�����������
�����

�����

�������� #����

$�% 
�&'�����

�����

������

(������

!�����������
�&���������

�����������
�����

�����������
�� ����
���

Figure 1: Three-Layer Model for Multiagent Systems.

frastructure and infrastructure for gradient fields. Another
example is support for mobility of the agents.

2.2 Execution Platform
The Execution Platform is composed by a Middleware on
top of an Operating System. Middleware serves as the
glue between (distributed) components. It provides support
for remote procedure calls, threading, transactions, persis-
tence, load balancing, generative communication, etc. In
general, middleware offers a software platform on which
distributed applications can be executed. The operating
system enables the execution of the application on the
physical hardware, it offers basic functionality to applica-
tions, hiding low-level details of the underlying physical
platform. The operating system manages memory usage
and offers transparent access to lower level resources such
as files, it provides network facilities, it handles the inter-
vention of the users, it provides basic support for timing,
etc.

An example of middleware support in the P2P file
searching system is a distributed tuple-space infrastructure
that provides a basic substrate for the pheromone and gra-
dient field infrastructure. The operating system provides
many basic functions, one example is the file system.

2.3 Physical Infrastructure

The Execution Platform runs on top of the Physical Infras-
tructure, which is composed of the Computer Hardware
with hosts and a network, and the Physical World, if present
in the application. In the P2P file sharing system, the phys-
ical infrastructure consists of a computer machine on each
node and a connecting network. Each machine is an access
point to the system for a user.

We refer the interested reader to [54] in which the three-
layer model for multiagent systems is applied to several
other practical applications.



412 Informatica 29 (2005) 409–421 D. Weyns et al.

2.4 Related Models

To our best knowledge, no deployment models for multia-
gent systems were previously proposed that explicitly dis-
cusses the position of agents and the environment. How-
ever, several layered models for multiagent system infras-
tructure are discussed in literature, prominent examples
are Retsina [44] and JADE [4]. Here we look at two other
examples, the spatial computing stack model applied to
TOTA [26], and a model with multiple environments for
multiagent systems proposed in [23].

TOTA. In [26], Mamei and Zambonelli introduce the no-
tion of “spatial computing stack” and apply it to the TOTA
middleware (Tuples On The Air). The spatial computing
stack defines a framework for spatial computing mecha-
nisms at four levels: the physical level at the bottom, the
structure level above it, then follows the navigation level,
and finally the application level at the top. The “physical
level” deals with how components find each other and start
communication with each other. In the case of TOTA, a
node detects in-range nodes via one-hop message broad-
cast. The “structure level” is the level at which a spa-
tial structure is built and maintained by components in the
physical network. In TOTA, a tuple can be injected from
a node. A TOTA tuple is defined in terms of a content
and a propagation rule. The content represents the infor-
mation carried on by the tuple and the propagation rule de-
termines how the tuple should be propagated across the net-
work. Once a tuple is injected it propagates and creates a
centered spatial structure in the network representing some
spatial feature relative to the source. At the “navigation
level” components exploit basic mechanisms to orient their
activities in the spatial structure and to sense and affect the
local properties of space. TOTA defines an API to allow
application components to sense TOTA tuples in their one-
hop neighborhood and to locally perceive the space defined
by them. Navigation in the space consists of agents acting
on the basis of the local shape of specific tuples. At the “ap-
plication level”, navigation mechanisms are exploited by
application components to interact and organize their ac-
tivities. TOTA enables complex coordination tasks in a ro-
bust and flexible way. An example is a group of agents that
coordinate their respective movements by following locally
perceived tuples downhill or uphill resulting in specific for-
mations.

The spatial computing stack model extends over the
three layers of the model presented in this paper. The phys-
ical level is situated in the Physical infrastructure, the struc-
ture and navigation level are situated in the Middleware
layer, and the application level finally is situated in the mul-
tiagent system Application layer.

Multiple Environments. In [23], Gouaich and Michel
make a statement to model different “aspects” of the en-
vironment with different environments. Essentially, the au-
thors consider different instances of an environment within

a single multiagent system. As an illustrative example they
refer to the three-layer model described in this paper and
associate with each layer in this model a separate envi-
ronment. The authors state that considering different en-
vironments for different aspects improves modularity and
extensibility of multiagent systems. Another example dis-
cussed in the paper is the AGRE [18] model. AGRE con-
siders a spatial, a temporal, and an organizational aspect
in one environment abstraction. Gouaich and Michel state
that when a new aspect is identified and must be integrated
in the AGRE model, the entire model must be revised.

Unfortunately, the authors do not explain what the added
value is of considering different environments for different
aspects instead of dealing with different aspects in an disci-
plined manner in one environment abstraction. The authors
also keep silence on crosscutting issues related to different
aspects, and how the approach with multiple environments
deals with this problem.

Explicitly dealing with different concerns of a software
system is good software engineering practice. However, it
is unclear whether it is useful to associate separate envi-
ronments with different environmental concerns in a mul-
tiagent system. One way to match the approach of differ-
ent environments with the three-layer model is to consider
the environment as a multidimensional entity with differ-
ent dimensions for different aspects/concerns, rather than a
separate environment for each aspect/concern.

3 The Role of Environments in
Multiagent Systems

Having clarified how the agents and the environment are
first-order abstractions that span the application logic, the
execution platform and the physical infrastructure, we now
elaborate on the logical functionalities of the environment.

The functionalities of the environment we discuss in this
section are located in the multiagent system Application
layer, i.e. the top layer in Fig. 1. Several functionalities
may seem quite natural responsibilities of environments.
We want to stress, however, that in practice the functional-
ities we put forward are often dealt with in an implicit or
ad hoc way. Our goal is to make the logical functionali-
ties explicit, i.e. as concerns of environments as first-order
abstractions. Not every functionality we discuss is rele-
vant for every possible environment. In practice, it is up to
the designer to decide which functionalities should be in-
tegrated in the environment model for the domain at hand.
Finally, we want to underline that the proposed list of func-
tionalities is not intended to be complete but rather serves
as a start to explore the many-sided role of environments in
multiagent systems.

3.1 Structuring
The environment is first of all a shared “space” for the
agents, resources and services, which structures the whole



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 413

system. Resources are objects with a specific state. Ser-
vices are considered as reactive entities that encapsulate
functionality. The agents as well as resources and ser-
vices are dynamically interrelated to each other. It is the
role of the environment to define the rules which these re-
lationships have to comply to. As such the environment
acts as a structuring entity for the multiagent system. This
structuring can take different forms: it can be spatial, see
e.g. [10][3], but also organizational, e.g. [17][57], or the en-
vironment can be structured as a mediating entity as e.g. in
[20][24]. Specific properties can be defined separately for
each space, such as positions, locality, groups or roles.
Structuring is a fundamental functionality of the environ-
ment. The structure of the environment is a design choice
that depends upon the requirements of the domain at hand,
and the designer should deal with it explicitly.

3.2 Managing Resources and Services

Besides structuring, the environment is also in charge of
enabling and controlling the access to resources and ser-
vices. In general, resources can be read/perceived, writ-
ten/modified or consumed by agents. Services on the other
hand provide functionality to the agents on their request.

The extent to which agents are able to access a particu-
lar resource or service may depend on several factors such
as the nature of the resource or service, the capabilities
of the agent, the (current) interrelationships with other re-
sources, services or agents, etc. In general, the access to
the resources and services can be described by a set of laws
defined by the domain at hand, see e.g. [19][47].

3.3 Providing Observability

Contrary to agents, the environment must be observable,
i.e. agents must be able to inspect their neighborhood. Be-
sides the observation of resources and services, agents may
even be able to observe the actions of other agents [45]. In
general, agents should be able to inspect the environment
according to their current preferences. Examples of selec-
tive perception are [53] where “foci” are proposed to enable
agents to perceive their environment related to their current
tasks, and [24, 42] where “views” are proposed as selec-
tor for perception. Perception is constrained not only by
agents’ capabilities, but also by environmental properties
(which in fact reflect properties of the problem domain). In
[53] the environmental constraints are made explicit in the
form of “perceptual laws”.

Related to observability is the semantic description of
the domain. This can be done by defining an environment
ontology, see e.g. [12]. The ontology must cover the struc-
ture of the environment as well as the observable charac-
teristics of resources, services and agents, their interrela-
tionships, and possibly the regulating laws. In an open sys-
tem, it would be useful for agents to be able to understand
at run-time a new environment they are discovering. For
symbolically-oriented agents, an explicit ontology should

be available to the agents to enable them to interpret their
environment and reason about it. For reactive/behavior-
based/stigmergic agents, the designer/developer applies the
ontology to encode the agents’ internal structures. As such,
these kinds of agents have an implicit ontology that enables
them to make decisions.

3.4 Enabling Communication

Communication is inextricably bound up with multiagent
systems. The environment defines concrete means for
agents to communicate. Communication can take differ-
ent forms. The most used scheme is a message-passing
style from one agent to the other. In generative or indirect
communication, agents produce communication objects in
the environment and consume them to read them. Well-
known properties of generative communication are name,
space and time decoupling. [22] extends this list of prop-
erties with locality and non-intentionality. An important
other approach of communication is based on stigmergy
[36]. Each of these types of communication has its own
pros and cons. Designers should be aware of the potency
as well as the impact of each type of communication for
their solution. Selecting a particular type of communica-
tion should be an architectural choice, determined by the
requirements of the problem domain at hand.

3.5 Maintaining Environmental Processes

Besides the activity of the agents, the environment can as-
sign particular activities to resources as well. A digital
pheromone, for example, is a dynamic structure as it ag-
gregates with additional pheromone that is dropped, it dif-
fuses in space and it evaporates over time. Other examples
are a rolling ball that moves on, or the local temperature
that evolves over time. Maintaining such dynamics is an
important functionality of the environment, it is useful for
self-organization, see e.g. [10, 43].

3.6 Ruling the Multiagent System

The environment can define different types of rules or laws
on all entities in the multiagent system. Environment rules
are a powerful tool to express the capabilities an environ-
ment needs to ensure consistency in the system. Rules may
restrict access to specific resources or services to particular
types of agents, or determine the outcome of agents’ inter-
actions.

Dealing with interactions in multiagent systems in gen-
eral is a very complex matter. In [27], Minsky and Un-
gureanu point out the difficulties to control the activities
of agents operating in distributed systems and propose co-
ordination policies to deal with control. According to the
authors, coordination policies need to be formulated explic-
itly rather than being implicit in the code of the agents in-
volved and they should be enforced by means of a generic,



414 Informatica 29 (2005) 409–421 D. Weyns et al.

broad spectrum mechanism. The environment is the natural
candidate to embed such control mechanism.

In electronic institutions [28], agents interact through
agent group meetings that are called scenes. Interactions in
a scene have to follow a well-defined communication pro-
tocol. Scenes can be composed in a performative structure.
The specification of a performative structure contains a de-
scription of how the different roles can legally move from
scene to scene. Agents within a performative structure may
participate in different scenes at the same time with differ-
ent roles. Agent actions in the context of an institution may
have consequences that either limit or enlarge its subse-
quent acting possibilities. Such consequences will impose
obligations to the agents and affect its possible paths within
the performative structure. The environment can define and
enforce the rules imposed on the movements and interac-
tions of agents in an electronic institution.

A particular problem is the regulation of simultaneous
actions. If we allow multiple agents to act in the envi-
ronment in parallel, we need explicit models to deal with
actions that range far beyond the scope of state changes
based on simple individual manipulation of objects. [19]
and [47] discuss models for simultaneous actions. Central
to these models are (1) the distinction between the products
of the agents’ behavior on the one hand and the reaction of
the environment on the other hand, and (2) a set of explic-
itly defined laws that govern the effects of the actions of
the agents. These models resolve a number of fundamental
issues with respect to actions in multiagent systems, how-
ever, dealing with actions in multiagent systems needs ex-
tensive further research to grow into full maturity.

4 Engineering Environments

An important condition to apply environments in practical
multiagent system applications is competence in the en-
gineering environments. Disciplined design practices for
agents in general are in their infancy, and extending these
techniques to environments greatly increases the scope of
work to be done [49]. In this section, we first give a brief
overview how current agent oriented methodologies deal
with the environment. After that we discuss two proposals
for engineering environments.

4.1 Environments in Agent-Oriented
Software Methodologies

Popular methodologies such as Prometheus [35], Tropos
[21] or Adelfe [11] offer support for some basic elements
of the environment, however, they do not consider the en-
vironment as a first-order abstraction. Two methodologies
that explicitly cope with the environment are SODA [30]
and GAIA v.2. [57].

4.1.1 SODA

SODA takes the environment into account and provides
specific abstractions and procedures for the design of agent
infrastructures. In SODA, the environment is the space in
which agents operate and interact. SODA provides a re-
source model that models the application environment in
terms of the available services, associated with abstract re-
sources. The environmental model maps resources onto in-
frastructure classes. An infrastructure class is characterized
by the services, the access modes, the permissions granted
to roles and groups, and the interaction protocols associ-
ated to its resources. Infrastructure classes can be further
characterized in terms of other features: their cardinality
(the number of infrastructure components belonging to that
class), their location (with respect to topological abstrac-
tions), and their owner (which may be or not the same as
the one of the agent system, given the assumption of de-
centralized control).

4.1.2 GAIA v.2.

According to GAIA v.2. (hereafter GAIA), “modelling the
environment involves determining all the entities and re-
sources that the multiagent system can exploit, control or
consume when it is working towards the achievement of
the organizational goal” [57] pp. 12.

In GAIA, the identification of the environmental model
is part of the analysis phase and is intended to yield an
abstract, computational representation of the environment
in which the multiagent system will be situated. Dur-
ing the subsequent architectural design phases, the output
of the environmental model (together with a primary role
model, a preliminary interactions model, and a set of or-
ganizational rules) is integrated in the system’s organiza-
tional structure that includes the real-world organization
(if any) in which the multiagent system is situated. The
organizational structure is then used to complete the pre-
liminary role and interaction models. During the detailed
(and final) design phase, the definition of the agent model
and services model are derived from the completed role
and interaction models. GAIA does not commit itself to
specific techniques for modelling roles, environment and
interactions, etc. The outcome of the GAIA process is a
technology-neutral specification that should be easily im-
plemented using an appropriate agent-programming frame-
work or an object or a component-based framework. With
respect to the development of the environmental model,
[57] pp.23 states “it is difficult to provide general mod-
elling abstractions and general techniques because the en-
vironments for different applications can be very different
in nature and also because they are somehow related to the
underlying technology.” Therefore a “reasonable general
approach is proposed (without the ambition to be univer-
sal), that describes the environment in terms of abstract
computational resources, such as variables or tuples, made
available to the agents for sensing (e.g. reading their val-
ues), for affecting (e.g. changing their values) and for con-



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 415

suming (e.g. extracting them from the environment).” As
such the environmental model is represented as a list of
resources, each associated with a symbolic name, charac-
terized by the type of actions that the agent can perform
on it and possibly associated with additional textual com-
ments and descriptions. The authors of [57] confirm that in
realistic development scenarios, the analyst would choose
to provide a more detailed and structured view of environ-
mental resources.

4.2 Summary
Although SODA and GAIA explicitly put forward the envi-
ronment as a first-order abstraction in the methodological
process, the interpretation of what the environment com-
prises is meagre. Design support is limited to the repre-
sentation of resources and simple access control to the re-
sources.

4.3 Engineering Approaches for
Environments

In this section, we zoom in on two approaches to engineer
environments. The first approach is inspired by social sci-
ence, and models the environment as a set of mediating
artifacts that agents can use. The second approach models
the environment as a composition of modules that repre-
sent different functional concerns of the environment, such
as communication, perception, actions and interaction.

4.3.1 Artifacts as Building Blocks for Engineering
Environments

Inspired by Activity Theory [33], and building upon the
work on coordination artifacts [32, 39], the notion of ar-
tifact has been proposed as an abstract building block for
modeling and engineering environments [34, 46]. Contrary
to an agent that is basically an autonomous, goal-oriented
entity with social abilities, an artifact is a software entity
designed to provide some kind of function or service that
agents can use to achieve their goals. This characterization
fits the basic distinction made in Distributed Artificial Intel-
ligence [13] between goal-oriented entities (agents) which
pro-actively interact, and function-oriented entities (arti-
facts) designed with a clear interface and working modal-
ities to be used by goal-oriented entities to achieve their
objectives. An artifact can be specified by: (1) its func-
tion, i.e. what services the artifact provides; (2) its usage
interface, i.e. the set of the operations which agents can in-
voke to use the artifact and exploit its function; and (3) a
set of operating instructions, i.e. descriptions that explain
how the artifact can be used to exploit its functionality.

Artifacts can be useful from two different perspectives:
(1) analytical, i.e. as a way to describe, discuss, compare
existing environment models and approaches keeping a cer-
tain level of abstraction and uniformity; and (2) from an en-
gineering perspective, i.e. as a concrete way to design and

build multiagent systems. As a first rough classification, ar-
tifacts can be classified in three categories. A first class are
resource artifacts. A resource artifact mediates the access
to a specific resource, or directly represents a resource in
the multiagent environment. Resource artifacts provide a
representation of computational or physical entities (from
objects to services, such as a web service) at the abstrac-
tion level of the agents. A second class are coordination
artifacts. A coordination artifact provides a coordinating
function or service, it can be used by agents as a tool for
communication, coordination and, more generally, it sup-
port social activities in the multiagent system [33, 32]. Fi-
nally, a third class of artifacts are organization artifacts,
which have an organizational or security function. An ex-
ample of an organization artifact is a boundary artifact. A
boundary artifact can be used to characterize and control
the presence of an agent in an organization context, reify-
ing and enacting a contract between the agent and the or-
ganization. E.g., boundary artifacts can be used as “filters”,
allowing only agent actions that satisfy the contract for the
specific role(s) the agent plays in an organization.

Concrete examples of artifacts in the context of the gen-
eral purpose coordination infrastructure TuCSoN [26] are a
Tuple Centre [21] and a Agent Coordination Context [40].
A tuple centre is an example of a coordination artifact
which coordinating behavior can be specified dynamically
in a language called ReSpecT. An agent coordination con-
text is an example of a boundary artifact. An agent co-
ordination context enables (and filters) agent actions (and
patterns of actions) according to (1) the role(s) the agent
plays, and (2) the organizational rules of the organization
context where the agent is situated.

4.3.2 Concern-Based Engineering of Environments

The second approach models the environment as a set of
modules that represent different functional concerns of the
environment [47, 50]. Fig. 2 depicts a high-level module
view of the environment architecture.

The PerceptGenerator module is responsible for percep-
tion [53]. When an agenti is interested in perceiving its
neighborhood, it invokes a sensei command on the environ-
ment. Such a sense command contains one or more foci that
expresses the agent’s current interests of perception. The
PerceptGenerator then composes a representationi based
on the foci, the current state of the environment and a set
of perceptual laws. A perceptual law constrains the compo-
sition of a representation according to the requirements of
the modelled domain. An example is a perceptual law that
specifies how an area behind an obstacle is out of scope of
a perceiving agent.

The MessageDelivering module is responsible for mes-
sage transfer. When a message arrives, the MessageDeliv-
ering module passes the message to the list of addressees
indicated in the message. It is possible to provide com-
munication laws that are applied when messages are trans-
ferred. An examples is a communication law that specifies



416 Informatica 29 (2005) 409–421 D. Weyns et al.

������� ����	��
������� ����	��
�������
����	�
���

�

����


����� ��������


�����

��	�
������

��������������

�		�
�

�������

����� ��	
���
�

��	
���
�
�����

��	
���
��

�����

�����

�����

�

�
�

�

������� ����	��

�

��
����
����
���


�����

�

�

���

������

�		�
��

�����

Figure 2: Concern-based modularization of the environment.

the maximal distance that messages can be delivered. Com-
munication laws are interesting for simulation purposes,
but can also be a useful instrument for designers, e.g. to
regulate the message transfer.

The Collector–Reactor–Effector modules take care of
action handling. The action model is based on the
influence–reaction model of J. Ferber and J.P. Müller [19].
According to this model, agents produce influences into the
environment and subsequently the environment reacts by
combining the influences to deduce a new state of the world
from them. The reification of actions as influences enables
the environment to combine simultaneously performed ac-
tivity in the system. The Collector module collects the
influences of all simultaneously performed activity in the
multi-agent system and passes them to the Reactor module.
The simultaneity of activity can be based on transactional
semantics, or it can be determined by a synchronization
mechanism [16, 47]. The collector passed the influences
to the Reactor module that calculates, according to a set
of domain specific interaction laws, the reaction, i.e. state
changes in the environment and effects for the agents. An
example of an effect is an agent that receives a packet that
it has picked up. An example of an interaction law is a law
that determines the effects of two RoboCup football players
that kick the ball simultaneously. The reactor finally passes
the effects to the Effector module that applies the outcome
of the interaction, i.e. it updates the state of the environment
and passes the effects to the applicable agents.

Ongoing Activities correspond to environmental pro-
cesses as discussed in Sect. 3. An ongoing activity is
defined by an Operation that produces influences in the
environment according to the state of the world. Exam-

ples of ongoing activities are a moving ball, an evaporating
pheromone, a self-managing gradient field, or an automatic
garbage collector for objects.

It is important to notice that the module view of the en-
vironment architecture as depicted in Fig. 2 abstracts from
distribution. For a practical application, the state of the en-
vironment, the delivering of messages, ongoing activities,
etc. will be implemented according to the domain at hand,
i.e. centralized or distributed. Another important remark is
that the presented model also abstracts from real-word re-
sources, external to the multiagent system. The state of the
environment may represent external resources. Support to
keep the state of the representation consistent with exter-
nal resources is not covered by the presented model. In the
next section, we discuss an example where the state of the
environment represents resources in the physical world.

5 Applying the Environment in a
Real-World Application

In this section, we illustrate how we have applied the ap-
proach of concern-based engineering of environments to
an automated transportation system for warehouse logis-
tics. This real-world application is developed in a joint
R&D project between the AgentWise research group and
Egemin, a manufacturer of automating logistics services in
warehouses and manufactories [15, 52].

The automated transportation system uses automatic
guided vehicles (AGVs) to transport loads through a ware-
house. Typical applications are distributing incoming
goods to various branches, or distributing manufactured



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 417

���

��������
�	
����	

������	�
 ��
�
�

����
��
��
�����

�����	
��
���

���
���	���
���	�
��

�����
���


����
��
��
�����

�����	
��
���

�����
���


������	�
 ���


�	��� ���
��� �����	��
�
 �	��� ���
���
�����	��
�


���
���
�����	��
�


��� ��
�


���

����
��
��
�����

�����	
��
���

���
���	���
���	�
��

�����
���


�	��� ���
��� �����	��
�


��� ��
�


Figure 3: High-level model of the AGV transportation system.

products to storage locations. An AGV is provided with
a battery as its energy source. AGVs can move through a
warehouse, following fixed paths on the factory floor, typ-
ically guided by a laser navigation system, or by magnets
or cables that are fixed in the floor. The low-level con-
trol of the AGVs in terms of sensors and actuators (such as
staying on track on a path, turning, and determining the cur-
rent position, etc.), is handled by the AGV control software.
Fig. 3 depicts a high-level model of the situated multiagent
system. The situated multiagent system consists of two
kinds of agents, transport agents and AGV agents. Trans-
port agents are located at transport bases. AGV agents are
located in AGVs that are situated on the factory floor. The
communication infrastructure provides a wireless network
that enables mobile AGVs to communicate with each other
and with transport agents on transport bases.

A transport agent represents a transport that needs to be
handled by an AGV. AGV agents are responsible for ex-
ecuting the assigned transports. AGVs are situated in a
physical environment, however, this environment is very
constrained: AGVs cannot manipulate the environment,
except by picking and dropping loads. This restricts how
AGV agents can exploit their environment. Therefore, a
virtual environment was introduced for agents to live in.
This virtual environment offers a medium that agents can
use to exchange information and coordinate their behav-
ior. Besides, the virtual environment serves as a suitable
abstraction that shields the AGV agents form low-level is-
sues, such as the physical control of the AGV. The AGV
control software that deals with the low-level control of the
AGVs is fully reused. As such, the AGV agents control the
movement and actions of AGVs on a fairly high level.

In the AGV application, the only physical infrastructure
available to the AGVs is a wireless network for communi-
cation. In other words, the virtual environment is necessar-
ily distributed over the AGVs and transport bases. In effect,
each AGV and each transport base maintains a local vir-

tual environment, which is a local manifestation of the vir-
tual environment. Local virtual environments are merged
with other local virtual environments opportunistically, as
the need arises. In other words, the virtual environment as
a software entity does not exist; rather, there are as many
local virtual environments as there are AGVs and transport
bases. Some of these local virtual environments may have
been synchronized recently with each other, while others
may not. From the agent perspective, the virtual environ-
ment appears as one entity. The synchronization of the state
of neighboring local virtual environments is supported by
the ObjectPlaces middleware [42].

We now illustrate the use of the virtual environment with
a couple of examples.

Routing. For routing purposes, the virtual environment
has a static map of the paths through the warehouse. This
graph-like map corresponds to the layout used by low-level
AGV control software. To allow agents to find their way
through the warehouse efficiently, the virtual environment
provides signs on the map that the agents use to find their
way to a given destination. These signs can be compared to
traffic signs by the road that provide directions to drivers.
At each node in the map, a sign in the virtual environment
represents the cost to a given destination for each outgoing
segment. The cost of the path is the sum of the static costs
of the segments in the path. The cost per segment is based
on the average time it takes for an AGV to drive over the
segment. The agent perceives the signs in its environment,
and uses them to determine which segment it will take next.

Traffic Information. Besides the static routing cost as-
sociated with each segment, the cost is also dependent on
dynamic factors, such as congestion of a segment. To warn
other agents that certain paths are blocked or have a long
waiting time, agents mark segments with a dynamic cost on
a traffic map in the virtual environment. Agents mark the



418 Informatica 29 (2005) 409–421 D. Weyns et al.

traffic map by dropping pheromones on the applicable seg-
ments. When AGVs come in each others neighborhood, the
information of the traffic maps is exchanged and merged to
provide up-to-date information to the AGV agents. Since
pheromones evaporate over time, outdated information au-
tomatically vanishes over time. AGV agents take the in-
formation on the traffic map into account when they decide
how to drive through the warehouse.

Collision Avoidance. AGV agents avoid collisions by
coordinating with other agents through the virtual environ-
ment. AGV agents mark the path they are going to drive
in their environment using hulls. The hull of an AGV is
the physical area the AGV occupies. A series of hulls then
describes the physical area an AGV occupies along a cer-
tain path. If the area is not marked by other hulls (the
AGV’s own hulls do not intersect with others), the AGV
can move along and actually drive over the reserved path.
Afterwards, the AGV removes the markings in the virtual
environment. [51] discusses collision avoidance through
the virtual environment in detail.

In summary, the virtual environment serves as a flexible
coordination medium, which hides much of the distribution
of the system from the agents: agents coordinate by putting
marks in the environment, and observing marks from other
agents. The virtual environment creates opportunities be-
yond a physical environment that situated AGV agents can
exploit.

6 Conclusions and Challenges
There is a growing awareness in the multiagent research
community that the environment plays a crucial role in
multiagent systems. In this paper, we discussed the role
of environments in multiagent systems. Important respon-
sibilities of the environment are: (1) the environment struc-
tures the multiagent system as a whole; (2) the environment
is in charge to managing resources and services; (3) con-
trary to agents, the environment must be observable; (4) the
environment must define concrete means for the agents to
communicate; (5) the environment is responsible to main-
tain ongoing processes in the system; and finally (6) the
environment can define different types of rules on all the
entities in the multiagent system.

The research track on environments is still young and
many issues are open for future research, we have just
started to explore the possible responsibilities of environ-
ments in multiagent systems. The term “environment” is
vague and ill-defined in relation to multiagent systems. An
ongoing research challenge will be developing a clearer un-
derstanding of what we mean by an “environment.” In this
paper we have discussed an initial model for multiagent
systems that considers agents and the environment as first-
order abstractions. These abstractions span the application
logic, the execution platform and the physical infrastruc-
ture of the mutiagent system. However, the exact nature of

the relationship between the agent software, the environ-
ment software, and the software and hardware that make up
the computational substrate needs further clarification. Re-
cent initiatives tackle these and related research questions,
see [14, 34].

The engineering of environments is still in its infancy.
In this paper, we discussed two initial models for engi-
neering environments: artifacts and concern-based modu-
larization. Study of agent-oriented methodologies shows
that current methodologies offer little support for design-
ing environments, a whole domain of work is waiting to be
tackled. From a methodological point of view, the environ-
ment should be considered as a first-order abstraction in de-
sign models and description languages. Initial work in that
direction has been conducted, e.g. [5]. Agent-oriented pro-
gramming has led to the proliferation of frameworks and
development platforms for agents. Recognition of the im-
portance of environments will stimulate extensions to these
tools, or even the development of new tools that can support
environments within which agents from different platforms
can interact. Exploring work in that direction is on its way,
see e.g. [7].

Besides the research work, we have to apply environ-
ments in real-world multiagent system applications. In this
paper, we discussed a practical application and showed how
a virtual environment creates opportunities for agents to ex-
change information and coordinate their behavior in a way
that would be impossible in the physical environment. En-
countering the complexity of real applications will urge us
to invent new ways to exploit environments.

Acknowledgement
We would like to express our appreciation to the attendees
of the workshops on Environments for Multiagent Systems
in New York, 2004 and Utrecht 2005, and the AgentLink
III Technical Forum in Ljubljana, 2005 for the inspiring
discussions that have considerably contributed to the work
presented in this paper. A word of appreciation also goes
to the anonymous reviewers for their usefully comments to
improve this paper.

References
[1] R.C. Arkin. Behavior-based robotics. Massachusetts

Institute of Technology, MIT Press, Cambridge, MA,
USA, 1998.

[2] O. Babaoglu, H. Meling, and A. Montresor. Anthill:
A framework for the development of agent-based
Peer-to-Peer systems. In Proceedings of the 22nd
International Conference on Distributed Computing
Systems, pages 15–22, Vienna, Austria, 2002. IEEE
Computer Society, Digital Library.

[3] S. Bandini, S. Manzoni, and G. Vizzari. A spatially
dependent communication model for ubiquitous sys-
tems. In Weyns et al. [48], pages 74–90.



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 419

[4] F. Bellifemine, A. Poggi, and G. Rimassa. Develop-
ing multi-agent systems with a FIPA-compliant agent
framework. Software - Practice and Experience,
31(2):103–128, 2001.

[5] C. Bernon, M. Cossentino, and J. Pavón. An
Overview of Current Trends in European AOSE Re-
search. In this volume.

[6] E. Bonabeau, F. Henaux, S. Guérin, D. Snyers,
P. Kuntz, and G. Theraulaz. Routing in telecommu-
nications networks with ant-like agents. In Proceed-
ings of the 2nd International Workshop on Intelligent
Agents for Telecommunication a Applications, pages
60–71, Paris, France, 1998. Springer, London, UK.

[7] R. Bordini, L. Braubach, A. El Fallah-Seghrouchni,
M. Dastani, J. Gomez-Sanz, J. Leite, G. O’Hare,
A. Pokahr, and A. Ricci. A survey on languages and
platforms for MAS implementation. In this volume.

[8] J. M. Bradshaw, N. Suri, A. Ca nas, R. Davis,
K. Ford, R. Hoffman, R. Jeffers, and T. Reichherzer.
Terraforming Cyberspace. Computer, 34(7):48–56,
2001.

[9] R. Brooks. Intelligence without representation. Arti-
ficial Intelligence, 47:139Ű–159, 1991.

[10] S. Brueckner. Return from the ant, Synthetic ecosys-
tems for manufacturing control. Ph.D Dissertation,
Humboldt University, Berlin, Germany, 2000.

[11] S. Peyruqueou G. Picard C. Bernon, M. P. Gleizes.
ADELFE: A methodology for adaptive multiagent
systems engineering. In P. Petta, R. Tolksdorf, and
F. Zambonelli, editors, Engineering Societies in the
Agents World III, volume 2577 of Lecture Notes in
Computer Science, pages 156–169, Madrid, Spain,
2003. Springer, Berlin, Heidelberg, Germany.

[12] P. Chang, K. Chen, Y. Chien, E. Kao, and V. Soo.
From reality to mind: A cognitive middle layer of en-
vironment concepts for believable agents. In Weyns
et al. [48], pages 57–73.

[13] R. Conte and C. Castelfranchi, editors. Cognitive and
social action. UCL Press, University College, Lon-
don, UK, 1995.

[14] E4MAS. International workshop series
on Environments for Multiagent Systems.
http://www.cs.kuleuven.ac.be/∼distrinet/
events/e4mas/, 8/2005.

[15] Egemin Modular Controls Concept. EMC 2 project,
Flemish Institute for the Advancement of Scientific-
Technological Research in the Industry, IWT, Bel-
gium. http://emc2.egemin.com/, 8/2005.

[16] J. Ferber. An introduction to distributed artificial in-
telligence. Addison-Wesley, London, UK, 1999.

[17] J. Ferber, O. Gutknecht, and F. Michel. From agents
to organizations: An organizational view of multi-
agent systems. In P. Giorgini, J. P. Müller, and
J. Odell, editors, Agent-Oriented Software Engineer-
ing IV, volume 2935 of Lecture Notes in Computer
Science, pages 214–230, Melbourne, Australia, 2003.
Springer, Berlin, Heidelberg, Germany.

[18] J. Ferber, F. Michel, and J. Baez. AGRE: Integrating
environments with organizations. In Weyns et al. [48],
pages 48–56.

[19] J. Ferber and J. P. Müller. Influences and reac-
tion: A model of situated multiagent systems. In
M. Tokoro, editor, Proceedings of the 2th Interna-
tional Conference on Multi-agent Systems, pages 72–
80, Kyoto, Japan, 1996. American Association for
Artificial Intelligence, AAAI Press, Menlo Park, Cal-
ifornia, USA.

[20] D. Gelernter and D. Carrierro. Coordination lan-
guages and their significance. Communications of the
ACM, 35(2), 1992.

[21] F. Giunchiglia, J. Mylopoulos, and A. Perini. The
TROPOS software development methodology: Pro-
cesses, models and diagrams. In C. Castelfranchi and
W. L. Johnson, editors, Proceedings of the 1st Joint
Conference on Autonomous Agents and Multiagent
Systems, pages 35–36, Bologna, Italy, 2002. ACM
Press, New York, NY, USA.

[22] D. Goldin and D. Keil. Toward domain-independent
formalization of indirect interaction. In Proceedings
of the 13th IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative
Enterprises, pages 393–394, Modena, Italy, 2004.
IEEE Computer Society, Digital Library.

[23] A. Gouaich and F. Michel. Towards a unified view
of environment(s) within multiagent systems. In this
volume.

[24] C. Julien and G. C. Roman. Egocentric context-aware
programming in ad hoc mobile environments. In
Proceedings of the 10th Symposium on Foundations
of Software Engineering, pages 21–30, Charleston,
South Carolina, USA, 2002. ACM Press, New York,
NY, USA.

[25] P. Maes. Modeling adaptive autonomous agents. Ar-
tificial Life, 1(1-2):135–162, 1994.

[26] M. Mamei and F. Zambonelli. Programming per-
vasive and mobile computing applications with the
TOTA middleware. In Proceedings of the 2nd In-
ternational Conference on Pervasive Computing and
Communications, pages 263–276, Orlando, Florida,
2004. IEEE Computer Society, Washington, DC,
USA.



420 Informatica 29 (2005) 409–421 D. Weyns et al.

[27] N. Minsky and V. Ungureanu. Law-governed interac-
tion: a coordination and control mechanism for het-
erogeneous distributed systems. ACM Transactions
on Software Engineering Methodologies, 9(3):273–
305, 2000.

[28] P. Noriega and C. Sierra. Electronic institutions: Fu-
ture trends and challenges. In Proceedings of the 6th
International Workshop on Cooperative Information
Agents, volume 2446 of Lecture Notes in Computer
Science, pages 14–17. Springer-Verlag, London, UK,
2002.

[29] J. Odell, V. Parunak, M. Fleischer, and S. Breuck-
ner. Modeling agents and their environment. In
F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-
Oriented Software Engineering III, volume 2585 of
Lecture Notes in Computer Science, pages 16–31,
Bologna, Italy, 2003. Springer, Berlin, Heidelberg,
Germany.

[30] A. Omicini. SODA: Societies and infrastructures
in the analysis and design of agent-based systems.
In P. Ciancarini and M. Wooldridge, editors, Agent-
Oriented Software Engineering, volume 1957 of Lec-
ture Notes in Computer Science, pages 185–193,
Limerick, Ireland, 2001. Springer, Berlin, Heidel-
berg, Germany.

[31] A. Omicini and E. Denti. From tuple spaces to
tuple centres. Science of Computer Programming,
41(3):277–294, 2001.

[32] A. Omicini, A. Ricci, M. Viroli, C. Cristiano, and
L. Tummolini. Coordination artifacts: Environment-
based coordination for intelligent agents. In N. Jen-
nings, M. Tambe, C. Sierra, L. Sonenberg, S. Par-
sons, and E. Sklar, editors, 3rd Joint Conference on
Autonomous Agents and Multiagent Systems, pages
286–293, New York, NY, USA, 2004. IEEE Com-
puter Society, USA.

[33] A. Omicini and F. Zambonelli. Coordination for In-
ternet application development. Autonomous Agents
and multiagent systems, 2(3):251–269, 1999.

[34] AgentLink Technical Forum Group on En-
vironments for Multiagent Systems.
http://www.cs.kuleuven.ac.be/∼distrinet/
events/e4mas/tfg2005/, 8/2005.

[35] L. Padgham and M. Winikoff. Prometheus: A
methodology for developing intelligent agents. In
F. Giunchiglia, J. Odell, and G. Weiß, editors, Agent-
Oriented Software Engineering III, volume 2585 of
Lecture Notes in Computer Science, Bologna, Italy,
2003. Springer, Berlin, Heidelberg, Germany.

[36] V. Parunak. Go to the ant: Engineering principles
from natural agent systems. Annals of Operations Re-
search, 75:69–101, 1997.

[37] V. Parunak. The AARIA Agent architecture: From
manufacturing requirements to agent-based system
design. Integrated Computer-Aided Engineering,
8(1), 2001.

[38] A. Ricci, A. Omicini, and E. Denti. Activity theory
as a framework for MAS coordination. In P. Petta,
R. Tolksdorf, and F. Zambonelli, editors, Engineer-
ing Societies in the Agents World III, volume 2577 of
Lecture Notes in Computer Science, pages 96–110,
Madrid, Spain, 2003. Springer, Berlin, Heidelberg,
Germany.

[39] A. Ricci and M. Viroli. Coordination artifacts: A
unifying abstraction for engineering environment-
mediated coordination in MAS. In this volume.

[40] A. Ricci, M. Viroli, and A. Omicini. Agent coordi-
nation context: From theory to practice. Cybernetics
and Systems, 2:618–623, 2004.

[41] J. Sauter and V. Parunak. ANTS in the supply chain.
In Proceedings of the Workshop on Agent-Based De-
cision Support Managing Internet-Enabled Supply
Chain, pages 1–9, Seattle, WA, USA, 1999.

[42] K. Schelfthout and T. Holvoet. Views: Customiz-
able abstractions for context-aware applications in
MANETSs. In A. Garcia, R. Choren, C. Lucena,
A. Romanovsky, T. Holvoet, and P. Giorgini, ed-
itors, Software Engineering in Large-Scale Multi-
agent Systems, St. Louis, USA, 2005. ACM Press,
Digital Library.

[43] G. Di Marzo Serugendo, M. P. Gleizes, and A. Kara-
georgos. Self-organisation and emergence in MAS:
An overview. In this volume.

[44] K. Sycara, M. Paolucci, M van Velsen, and J. Gi-
ampapa. The Retsina MAS infrastructure. Au-
tonomous Agents and Multi-Agent Systems, 7(1-
2):29–48, 2003.

[45] L. Tummolini, C. Castelfranchi, A. Omicini, A. Ricci,
and M. Viroli. “Exhibitionists” and “Voyeurs” do it
better: A shared environment for flexible coordina-
tion with tacit messages. In Weyns et al. [48], pages
215–231.

[46] M. Viroli, A. Ricci, and A. Omicini. Engineer-
ing MAS environment with artifacts. In D. Weyns,
V. Parunak, and F. Michel, editors, Proceedings
of 2nd International Workshop on Environments
for Multiagent Systems, pages 1–16, Utrecht, The
Netherlands, 2005.

[47] D. Weyns and T. Holvoet. Formal model for situated
multiagent systems. Fundamenta Informaticae, 63(2-
3):125–158, 2004.



ON THE ROLE OF ENVIRONMENTS IN. . . Informatica 29 (2005) 409–421 421

[48] D. Weyns, V. Parunak, and F. Michel, editors. Pro-
ceedings of the 1st International Workshop on Envi-
ronments for Multi-Agent Systems, volume 3374 of
Lecture Notes in Computer Science, Berlin, Heidel-
berg, Germany, 2005. Springer.

[49] D. Weyns, V. Parunak, F. Michel, T. Holvoet, and
J. Ferber. Environments for multiagent systems,
State-of-the-art and research challenges. In Weyns
et al. [48], pages 1–47.

[50] D. Weyns, K. Schelfthout, and T. Holvoet. Archi-
tectural design of a distributed application with auto-
nomic quality requirements. In D. Garlan, M. Litoiu,
H. M’́ller, J. Mylopoulos, D. Smith, and K. Wong, ed-
itors, Design and Evolution of Autonomic Computing
Software, St. Louis, USA, 2005. ACM Press, Digital
Library.

[51] D. Weyns, K. Schelfthout, and T. Holvoet. Exploit-
ing a virtual environment in a real-world application.
In D. Weyns, V. Parunak, and F. Michel, editors, Pro-
ceedings of 2nd International Workshop on Environ-
ments for Multiagent Systems, pages 1–18, Utrecht,
The Netherlands, 2005.

[52] D. Weyns, K. Schelfthout, T. Holvoet, and T. Lefever.
Decentralized control of E’GV transportation sys-
tems. In M. Pechoucek, D. Steiner, and S. Thompson,
editors, 4th Joint Conference on Autonomous Agents
and Multiagent Systems, Industry Track, pages 67–
75, Utrecht, The Netherlands, 2005. ACM Press, New
York, NY, USA.

[53] D. Weyns, E. Steegmans, and T. Holvoet. Towards
active perception in situated multiagent systems. Ap-
plied Artificial Intelligence, 18(9-10):867–883, 2004.

[54] D. Weyns, G.. Vizzari, and T. Holvoet. "Environ-
ments for multiagent systems: Beyond infrastructure.
In D. Weyns, V. Parunak, and F. Michel, editors, Pro-
ceedings of 2nd International Workshop on Environ-
ments for Multiagent Systems, pages 1–17, Utrecht,
The Netherlands, 2005.

[55] Whitestein Technologies, Living Systems.
http://www.whitestein.com/pages/index.html, 8/2005.

[56] M. Wooldridge and N. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering Re-
view, 10(2):115–152, 1995.

[57] F. Zambonelli, N. Jennings, and M. Wooldridge. De-
veloping multiagent systems: The GAIA method-
ology. Transactions on Software Engineering and
Methodology, 12(3):317–370, 2003.




