https://doi.org/10.31449/inf.v48i20.5692

Informatica 48 (2024) 147-166 147

A Novel Approach for Detection of DoS / DDoS Attack in Network
Environment Using Hellinger Distance Technique

Sudhir Kumar Pandey, Ditipriya Sinha

Department of Computer Science Engineering, National Institute of Technology (NIT), Patna, India

E-mail: sudhirp.phd19.cs@hnitp.ac.in, ditipriya.cse@nitp.ac.in

Keywords: DoS/DDoS Attack, Hellinger distance, machine learning, intrusion detection system, NSL-KDD, UNSW-

NB15, real time dataset

Received: February 1, 2024

As the popularity of the Internet increases, the number of threats is also growing at a rapid pace. A DoS
attack is one such threat. DoS attacks deplete network bandwidth, thereby preventing genuine users from
accessing resources. These attacks exhaust the computing resources of their victims without advanced
warning. This paper proposes a novel framework that applies the Hellinger distance technique to han-
dle these attacks efficiently. The proposed framework demonstrates promising performance in detecting
a diverse range of DoS/DDoS attacks. The approach consists of three phases: data processing, threshold
generation, and anomaly detection. We collected traffic data via a created virtual environment and applied
feature selection methods such as the Chi-square test, Pearson correlation, and feature importance using
a tree classifier during the preprocessing phase. To generate a threshold, we calculated the probability
distribution of each profile collected and, after conducting sensitivity analysis, determined the threshold
value that provided the best accuracy. We tested the performance of our approach using real network traces.
The proposed model achieved an accuracy of 99.41% in detecting DoS attacks. Additionally, this paper
analysed and compared our own dataset with the standard NSL-KDD and UNSW _NB15 datasets, and it
was observed that our proposed model achieved better accuracy, with 85.29% and 81.42% for the NSL-
KDD and UNSW_NB15 datasets, respectively.

Povzetek: Razvit je nov pristop za zaznavanje DoS/DDoS napadov s tehniko Hellingerjeve razdalje. Model
vkljucuje faze obdelave podatkov, generacije praga in zaznavanja anomalij. Testiranje na realnih in stan-

dardnih podatkovnih zbirkah (NSL-KDD, UNSW-NB15) je pokazalo izboljsave pri zaznavi napadov.

1 Introduction

Confidentiality, integrity, and availability are the three es-
sential pillars of cybersecurity. DoS attacks aim to drain
resources (memory, CPU cycles, and network bandwidth)
and render them inaccessible to authorized users, thereby
jeopardizing one of the most crucial components of cyber-
security: availability [1]. A DoS attack makes a system
or network service unavailable to its intended or legitimate
users by flooding servers with enormous traffic. DoS at-
tacks deprive legitimate users of the services or resources
they expected from the machine or network servers.While
any system or network can be a target of DoS attacks, at-
tackers often focus on high-profile organizations in the IT
industry, banking sector, government websites, and simi-
lar sectors. Although DoS attacks typically do not result
in data leaks or loss of information, they can cost victims
significant time and money to recover from the disruption
[2].

The cybersecurity techniques of the modern era have
evolved to protect internet sites from DoS and DDoS at-
tacks. However, attacks involving multiple systems or
botnets remain a significant threat to organizations, gov-

ernments, websites, and other entities[3]. Companies are
continuously working to counter DDoS attacks and re-
duce their impact.DoS attacks are classified into three cat-
egories: application-layer attacks, protocol-based attacks,
and volume-based attacks. Protocol-based attacks exploit
weaknesses in the network and transport layers of the pro-
tocol stack [4]. These attacks deplete resources by target-
ing servers, firewalls, and load balancers. The two most
prominent protocol-based assaults are SYN Flood and Ping
of Death. SYN Flood attacks exploit vulnerabilities in the
TCP connection sequence. The attacker sends a large num-
ber of SYN packets to the target server. When the server
responds with a SYN/ACK packet to acknowledge the con-
nection, it does not receive the final ACK signal from the
client [5]. As a result, false connections are opened on the
server port, waiting for the final handshake from the client.
Once all the ports are occupied, the server’s functionality is
disrupted, preventing any new connections from being es-
tablished. SYN attacks can be either direct (without spoof-
ing) or involve IP address spoofing. Direct SYN attacks
are easier to mitigate. Volume-based attacks are the sim-
plest to generate. These attacks aim to consume all avail-
able network bandwidth by flooding the target server with

148 Informatica 48 (2024) 147-166

massive amounts of traffic. Common volume-based attacks
include NTP amplification, DNS amplification, UDP flood,
and TCP flood attacks [6].

This research utilizes the Hellinger distance technique
to analyze denial-of-service (DoS) attacks. DoS attacks
that exploit application-level vulnerabilities have recently
become an increasing threat to web applications. Unlike
network-level DoS attacks, these threats typically consume
minimal bandwidth, making them more challenging to de-
tect[7]. For instance, an attack that exploits the fact that an
authentication server must perform resource-intensive RSA
decryption operations requires only a few megabits per sec-
ond of bandwidth to take a website offline. Such an attack
rate could easily blend in with normal traffic.

Application-layer DoS attacks target web servers and
websites by exploiting vulnerabilities through GET/POST
floods [8]. The primary goal of these attacks is to crash
the web servers, making them a serious threat to web ser-
vices. Common application-layer attacks include HTTP
flood attacks and attacks on DNS servers. One notable
attack, Slowloris, enables attackers to take down a server
by maintaining multiple simultaneous HTTP connections.
Slowloris uses partial requests to keep these connections
open for extended periods. As a result, the server’s con-
nection pool becomes fully occupied, preventing legitimate
clients from establishing new connections. In an HTTP
flood DoS attack, the attacker uses seemingly legitimate
HTTP GET or POST requests to target a web server or ap-
plication. Unlike other types of attacks, the attacker does
not use erroneous packets, spoofing, or reflection tech-
niques, and the attack requires less bandwidth compared to
similar methods.

This attack is most effective when the server or applica-
tion is forced to allocate the maximum amount of resources
in response to each request. To maximize efficiency, at-
tackers often use botnets. An HTTP flood attack sends data
slowly but fast enough to prevent the server from timing
out and closing the connection. The mechanism of a DoS
attack is illustrated in Figure 1.

BatPC

Wy
iig)

Attacked Server

H
2
1
|

H |
H
i
0
L

Figure 1: Working mechanism of DoS attack

DoS attack techniques can be categorized into three

S.K. Pandey et al.

types, as shown in Figure 2: spoofing, resource exhaustion,
and vulnerability exploitation.

DOS Attack Techniques

- - v
Resource
Exhaustion

Vulnerability
Exploitation

Spoofing

v Yl
Device
(Application)

Network

¥ v 4 v v a

Flooding Amplification Reflection o CPU Cycles Memory

Figure 2: Taxonomy of DoS attack techniques

IP spoofing is one of the most commonly used techniques
for launching DoS attacks. In simple terms, IP spoofing oc-
curs when an attacker sends a request to the target with a
fraudulent source IP address in the IP header. This is possi-
ble because devices can be assigned any IP address. Flood-
ing, amplification, and reflection attacks all use IP spoofing
as a fundamental tactic.

In flooding attacks, the attacker exploits the TCP three-
way handshake process by sending a large number of SYN
packets to the target server with spoofed source IP ad-
dresses. The server then attempts to send ACK signals to
the nonexistent IP addresses, consuming resources and pre-
venting the server from processing legitimate connection
requests.

Amplification and reflection attacks commonly exploit
applications that use the UDP protocol. The attacker sends
small UDP packets to vulnerable UDP servers with spoofed
source IP addresses. These servers then send response mes-
sages to the victim’s system at the spoofed IP address. This
strategy is known as a reflection attack. An amplification
attack occurs when the server’s response is significantly
larger than the initial fraudulent request, causing an over-
whelming amount of data to be sent to the target.

While some resource exhaustion attacks involve spoof-
ing, we distinguish between the two strategies because
not all resource exhaustion attacks use spoofing, and not
all spoofing is employed for resource exhaustion. Re-
source exhaustion methods rely on any tactic that can sat-
urate available bandwidth, CPU, memory, or system bus
throughput on end devices—not just spoofing. These tac-
tics may include overloading standard applications and ser-
vices on portable devices.

Vulnerability exploitation can be understood from the
perspective of protocol design, but in our taxonomy, we fo-
cus on flaws or vulnerabilities in application binaries. A
DoS attack can originate from a single device or multiple
devices using either spoofed or legitimate IP addresses.

Figure 3 illustrates DoS attacks from the perspective of
the source. The majority of modern DoS attacks employ a
combination of spoofed and legitimate IP addresses. The
most common type of attack is the Distributed Denial of

A Novel Approach for Detection of DoS / DDoS Attack...

Service (DDoS) attack, which is one of the most dangerous
and destructive threats on the Internet. [9], [10].

DOS Source

Single Multiple

L3 -

¥
Floodi i
ooding Reflection o Memory

Figure 3: Different DoS sources

1.1 Contribution highlights of the paper

The contribution of my proposed work can be summarized
as below:

1. A hellinger distance-based DoS attack detection
model is proposed. Proposed model consists of three
phases: (a) Data Processing Phase (b) Threshold gen-
eration phase (c) Anomaly detection phase.

2. The classifier was developed using a raw byte stream
of real-time network traffic that was recorded.

3. The performance of the model is evaluated on the tra-
ditional machine learning algorithms such as Logistic
Regression, Naive Bayes, SVM and KNN, using dif-
ferent performance metrics.

4. The Model is evaluated with our generated real
time dataset, standard NSL-KDD dataset and UNSW-
NBI15 Dataset. It is shown that the proposed
model gives higher accuracy compared to existing ap-
proaches.

5. The proposed model is also analyzed for threshold us-
ing sensitivity analysis based on the different threshold
value and window size trade off. .

1.2 Outline of the paper

The organization of the paper is as follows: Section 2 re-
views recent contributions by various authors in the field
of DoS attack detection. Section 3 outlines the initial con-
cepts required for designing the proposed work. Section 4
provides a comprehensive overview of the proposed frame-
work. Section 5 details the dataset collected for identify-
ing DoS attacks. Section 6 explains several performance
metrics and presents the results analysis. Finally, Section 7
concludes the paper by discussing the advantages and lim-
itations of the proposed framework.

Informatica 48 (2024) 147-166 149

2 Literature survey

DoS attack detection has recently gained significant atten-
tion. The most common types of DoS attacks aim to deplete
the target system’s network bandwidth, CPU cycles, or
memory, making services inaccessible to legitimate users
[11]. Various techniques have been proposed, including
behavioral and graph-based approaches, which are imple-
mented at the packet and kernel levels. Machine Learning
and Deep Learning methods also play a crucial role in pre-
venting DoS and DDoS attacks. This section reviews rele-
vant work that has been done in identifying DoS attacks.

The approach proposed by [1] treats traffic records as
images and frames DoS detection as a computer vision
problem. They developed a multivariate correlation analy-
sis method to accurately represent network traffic logs and
convert them into images. In their proposed DoS attack de-
tection system, these images are used as the observed ob-
jects, with detection based on the Earth Mover’s Distance
(EMD), a widely used dissimilarity metric. EMD performs
cross-bin matching and provides a more accurate assess-
ment of distribution dissimilarity compared to other well-
known metrics, such as Minkowski distance, Lp, and X 2
statistics. These distinguishing characteristics enable their
system to effectively detect attacks.

They conducted ten-fold cross-validation on the EMD-
based detection system using the KDD Cup 99 dataset and
the ISCX 2012 IDS Evaluation dataset. The results, pre-
sented in the system evaluation section, show that their de-
tection system achieves a detection accuracy of 99.95% on
the KDD Cup 99 dataset and 90.12% on the ISCX 2012 IDS
Evaluation dataset, with a processing capacity of approxi-
mately 59,000 traffic records per second.

[12] introduced an intelligent DoS detection system that
includes modules for data generation, feature ranking and
creation, and training and testing. The proposed frame-
work was evaluated in real-world IoT attack scenarios and
demonstrated greater accuracy than existing classification
algorithms. [13] presents a machine learning approach for
detecting flooding Denial of Service (DoS) attacks in IEEE
802.11 networks. The dataset used in this study was created
in a computer lab by the authors, consisting of 40 comput-
ers, with seven identified as attackers to launch DoS attacks.
Each legitimate node is connected to one of the five avail-
able access points (APs). The dataset was divided into two
parts: 66% for machine learning training and 34% for test-
ing. Using the WEKA application, the authors applied six
different classification ML algorithms in sequence: SVM,
Naive Bayes, Naive Bayes Net, Ripple-Down Rule Learner
(RIDOR), Alternating Decision Tree, and Adaptive Boost-
ing (AdaBoost). Based on accuracy and recall metrics, the
empirical data shows that AdaBoost outperforms the other
methods.

In a wireless video sensor network, [14] proposed an op-
timized deep neural network-based DoS attack detection
method. This approach was compared to the RAS-HO,
TMS, and SVM-DoS methods. The results of the tests sug-

150 Informatica 48 (2024) 147-166

gest that optimization techniques can enhance the perfor-
mance of the learning process. Additionally, it was found
that feature selection reduces the dataset’s dimensionality.
Parameters are selected using an adaptive particle swarm
optimization technique. The efficiency of the approach will
be evaluated based on metrics such as packet transmission
ratio, energy consumption, latency, network length, and
throughput.

[2] introduced a method for detecting SIP-based Denial
of Service attacks using a Dual Cost Formulation of Support
Vector Machine (SVM). They created SIP traffic in their
lab and empirically evaluated the performance of various
classifiers. The SVM performed well compared to other
classifiers, but it did produce some false positives and false
negatives according to the experimental data.The proposed
SVMBoost method was tested on both high-rate and low-
rate message flooding datasets. SVMBoost achieved a de-
tection accuracy of 99.9%, with a false positive rate of 0%
and a false negative rate of 0.27%. This method outper-
formed previous algorithms in high-rate flooding detection,
showing a maximum improvement of 35.97% a minimum
improvement of 0.28%, and an average improvement of
4.45% in low-rate flooding detection.

Based on machine learning approaches, [15] developed
a DoS attack detection system on the source side in the
cloud. This solution uses statistical information from both
the cloud server’s hypervisor and the virtual machines to
prevent network packets from being pushed out to the exter-
nal network. Their findings indicate that more than 99.7%
of four different types of DoS attacks can be effectively
identified. [3]proposed using machine learning (ML) and
neural network (NN) algorithms for DoS attack detection.
They focused on application layer DoS attacks and pre-
ferred these methods for detecting transport and network
layer DoS attacks. The study utilized the CICIDS 2017
dataset, the most recent DoS attack dataset. The dataset was
divided into multiple splits during the experiments, and the
optimal split was determined for each method. The results
showed that Random Forest (RF) provided better perfor-
mance compared to Multi-Layer Perceptron (MLP).

[5] proposed an empirical study on slow HTTP DoS at-
tacks and their detection. They made two key contributions
to this work. First, they conducted an empirical investiga-
tion on several HTTP servers to assess their vulnerability
to slow HTTP DoS attacks. Second, they proposed a tech-
nique for detecting these attacks. The suggested anomaly
detection method calculates the Hellinger distance between
two probability distributions generated during the training
and testing stages.

[16]introduced a method for detecting DoS attacks us-
ing a multilayer Deep Belief Network (DBN), consisting of
multiple Restricted Boltzmann Machines (RBMs). In this
approach, RBM training occurs early in the learning pro-
cess. The features learned by the RBMs are then used as
input for training the next layer of RBMs in the DBN stack.
The effectiveness of the DBN approach was evaluated us-
ing the KDD-CUP 1999 dataset, where it demonstrated su-

S.K. Pandey et al.

perior detection accuracy compared to SVM and ANN ap-
proaches.

[7] developed a trust-based DoS attack detection system
for secure data transfer in wireless sensor networks. This
paper introduces an effective trust-based module designed
to detect denial of service attacks, including selective for-
warding and flooding attacks. The proposed technique ex-
tracts and estimates multi-dimensional trust metrics to eval-
uate packet forwarding behavior from sensor nodes. Sim-
ulations were conducted to assess the performance of the
proposed model, with results indicating improvements in
throughput, energy usage, packet delay, and accuracy.

[6] presented a method for modeling and detecting
flooding-based Denial-of-Service attacks in wireless ad hoc
networks using Bayesian inference. Their work is divided
into three sections: 1) Bayesian inference-based mathe-
matical modeling of network SYN traffic, 2) demonstrat-
ing the equivalence of Bayesian inference with the expo-
nential weighted moving average, and 3) constructing a
Bayesian inference-based system for detecting SYN flood-
ing attacks. A comprehensive assessment, including math-
ematical modeling and simulation, shows that the proposed
strategy effectively prevents various types of flooding-
based DoS attacks in wireless ad hoc networks, offering
improved detection accuracy and an exceptionally low false
detection rate.

[8] introduced two modules for DoS and SPAM detec-
tion: a statistics-based DoS detection module and a call
behavior-based SPAM detection module. The statistics-
based module examines SIP traffic to detect potential DoS
attacks. If a DoS attack is detected, SIP packets are dis-
carded, and adaptive thresholds are adjusted for regular
traffic. The second module focuses on SPAM detection by
analyzing call establishment statistics. SIP packets are cat-
egorized by IP, Call-ID, URI, and request mechanism. The
collected data is compared to adaptive thresholds at each
time interval. If the data falls outside the specified thresh-
old range, an attack is identified.

[17]introduced a SIP parser designed to identify mal-
formed message DoS attacks. The proposed system begins
with a lexical analyzer that converts SIP messages into lex-
emes, stores them in a table, and discards syntactically in-
correct messages. Support Vector Machine (SVM) is then
used to classify the syntactically correct SIP messages as
either normal or malformed. Additionally, kernel tree anal-
ysis is employed to save processing time, as it does not re-
quire feature space representation. The system achieved a
detection accuracy of 99.89%.

According to [18] , machine learning can be employed
to analyze large volumes of offline VoIP log files and en-
hance detection accuracy for low-rate DoS attacks. Dur-
ing the feature extraction phase, they estimated the occur-
rences of six essential SIP headers within a window of 1000
messages. In the classification phase, five classifiers—
neural networks, naive Bayes, random forest, decision
trees, and sequential minimal optimization (SMO)—were
used to classify 15 distinct DoS and DDoS scenarios. Ad-

A Novel Approach for Detection of DoS / DDoS Attack...

ditionally, HMAC anonymization is applied to SIP headers
to protect user privacy. The classifiers demonstrated supe-
rior performance over Entropy and Hellinger Distance tech-
niques, particularly in terms of false negatives for DDoS
scenarios. However, the false positive rates for DDoS sce-
narios were higher compared to those for DoS scenarios.

Table 1: Comparison of different existing methodologies

Accuracy

Author & Technique Detection Key Summary Limitations
Year o Approach
(%)
R . Only a tiny dataset
Ma]vf/aru df:lcclmn 5 5000 SIP
is carried messages
out using static, o g
dynamic was used.
Machine leaming anditz,a e an;l sis
[17] approach- 99.89 DoS/DDoS telchii ues Y There are no
SVM Classifier ques. details
A strategy on DPOS
scenarios or
centered on classifier
the host based. .
fine-tuning.
They suggested
anew To research
Intrusion Detection amore
N System effective and
IDShbabi(i:;i on that utilizes a lightweight
fcaturgsclcction feature extraction technique for
[19] and 96.10 DS strategy that detecting
wo-level utilizes detection mistakes
classifior evolutionary and
. techniques to put our
and a classifier solution
based into practice.
on Random Forest.
Entropy estimation,
clustering,
information gain
ratio, To assess how
Trees ensemble and Extra-Trees well
[20] classifiers 97.40 DoS/DDoS ensemble it performs in
T classifiers are real-world
used dataset scenarios
in a semi-supervised
DDoS detection
Utilizing the well-
recognized N
Particle Swarm KDD99 dataset, (,onccttl}l;z\lcd on
21 Optimization the model ort’s use profile
(PSO)-based 96.5. 0-Day was used for the | POTS Useprotiie.
Fast Learning purpose R .
Network (FLN) of intrusion detection Al}auks witha
and high volume
subsequently verified
Creates a graph of
Based on the 5
attacks
frequency at certain time
A hybrid approach of exploits, the o
(22] using Snot IDS 982 0-Day ranking stamps
System provides e Attacks with a
likelihood of exploit. .
high volume

3 Preliminaries

The five preliminary techniques applied to detect DoS at-
tacks in our proposed approach are:

— Hellinger Distance

— Naive Bayes

— Support Vector Machine
— Logistic Regression

— K Nearest Neighbors

3.1 Hellinger distance

Hellinger Distance is a metric commonly used to measure
the similarity (or dissimilarity) between two probability

Informatica 48 (2024) 147-166 151

Table 2: Comparison of different existing methodologies

Accuracy

Author & Technique Detection Key Summary Limitations
Year Approach
(%)
Graphnodesare |y aitability of
made up
Bayesian networks of file, process. correct
23] 96.87 0-Day o > evidence is critical
-based approach and other instances. ©
It is Host-centric. performance.
GAN based on In order to identify Malwarcvdc!ccuon
[24] deep autoencoder 98.45 0-Day zero-day malware, with
P noise is added to it. a fixed duration
On the UNSW-
NBI5
Decision Tree. Signature NSL-KDD, dataset{spe;i‘i‘rmﬂnce
[25] ision ree, 97.77 gnature UNSW-NB15 poor.
Genetic Algorithm Based and KDDCup99
P Not based on
real-time
traffic analysis.
Aims to improve
classification
accuracy
Fuzziness based Anomal
[26] learning 99.21 Basedy NSL-KDD Uses an older
using FF-NN dataset.
Hasn’t been tested
on real-time traffic
A two-step SVM performance
\ec]lxli)rttie is On the CICIDS de endelnst on rule
prop(?sed 2018 dataset, pcorrecmess
127] which utilizes 97.53 Signature the propnsed
. Based technique .
binary . Dataset is older
. . produces credible
classification findings
and 88 Not tested on
MultiSVM. real-time traffic

distributions[28]. The value of the Hellinger Distance be-
tween any two probability distributions ranges from 0 to
1, where 0 indicates identical distributions and 1 indicates
completely divergent distributions. For two discrete proba-
bility distributions, P = (pg, p1, p2, ..., Pn) and Q = (qo, ¢1,
q2, ---» qn), the Hellinger distance is given as,

HPYPQ) = 3 SR VA)

which is directly related to the Euclidean norm of the dif-
ference of the square root vectors, i.e.

HD(P,Q) = \%Wﬁf Vall» @

3.2 Naive Bayes

Nave Bayes is a classification technique based on Bayes’
theorem and the assumption that the existence of one at-
tribute does not imply the presence of another [29]. In other
words, the features are said to be independent. For instance,
given a class y and a dependent feature vector [x1, x2, ...,
xn], we have-

©)

And using the assumption that all the xi ’s are indepen-
dent,

P(xi|y, @iy oe... s — La; +1, ... ,Tn) = Plxily) (4)

On simplifying, following result is obtained

152 Informatica 48 (2024) 147-166

which is the result of Bayes’ theorem.

3.3 Support Vector Machine

Support Vector Machines (SVMSs) are a class of machine
learning algorithms grounded in statistical learning theory.
These techniques are commonly used for classification, re-
gression, and outlier detection [30] In recent years, SVMs
have also been extensively applied in pattern recognition.
One of the key strengths of SVMs is their ability to min-
imize empirical classification error while maximizing the
geometric margin. This characteristic is why SVMs are of-
ten referred to as Maximum Margin Classifiers. The SVM
approach is based on Structural Risk Minimization (SRM).

An SVM maps the input vector into a higher-dimensional
space where a maximum separating hyperplane is con-
structed. This hyperplane is flanked by two parallel hyper-
planes on either side. The goal is to position the separating
hyperplane so that the margin, or distance between the two
parallel hyperplanes, is maximized. An illustration of the
Support Vector Machine can be seen in Figure 4.

Support Vector(Class 2)

o
Hyperplane -
#m

. 4)'
Margin > Suport vector(Class 1)

Figure 4: Support Vector Machine illustration

3.4 Logistic Regression

Logistic Regression is a statistical approach for analyzing
data, commonly used for classification [31]. Often used for
binary classification, it can also be extended for multiclass
classification. It includes a logistic function that accepts a
real-world input y and returns a number between 0 and 1.
Often it is the sigmoid function. For example, if we have a
variable y which is linearly dependent on x as

y = PBo+ pix (6)

The logistic function may therefore be expressed as fol-

lows:
1

o) = (1+e Bo + piz)

which will scale the values of y between 0 and 1.

(7

3.5 K Nearest Neighbors

K Nearest Neighbors (KNN) is a simple, yet powerful,
instance-based machine learning algorithm used for both
classification and regression tasks. It operates based on
the principle of finding the closest data points in the fea-
ture space to make predictions.[32]. Then, majority voting

S.K. Pandey et al.

among the neighboring records is used to decide to which
class the record belongs to. In other words, the neighbors of
the record are used to classify it. The parameter K represents
the number of nearest neighbors considered when making
a prediction. The choice of K can significantly impact the
performance of the algorithm: Small K: The model may be
overly sensitive to noise and outliers, potentially leading to
overfitting. Large K: The model may smooth out the deci-
sion boundary, which can help with generalization but may
also blur the distinction between classes. illustration of lo-
gistic Regression can be shown in figure 5.

Category B

\ Category B .\

New data point MNew data point assigned

to Category 1

Category A -

Category A
P 31

» X1

Before KNN Afrer KNN

Figure 5: K Nearest Neighbor illustration

4 Proposed detection model

We have proposed an approach for detecting DoS attacks
using the Hellinger Distance method. DoS attacks aim to
overwhelm server resources, thereby preventing legitimate
clients from accessing the services. To better understand
the impact of such attacks, we can apply Little’s Law, which
is a fundamental principle in queuing theory. Little’s Law
states that the average number of items in a queuing sys-
tem (L) is equal to the average arrival rate multiplied by the
average time an item spends in the system (W) [33]

L=X\W 8)

Little’s Law describes the relationship in a queuing system
where L represents the average number of items in the sys-
tem, \ is the arrival rate of items into the system, and W is
the average time each item spends in the system. DoS at-
tacks aim to overload the system queue, thereby preventing
legitimate customers from receiving service. By introduc-
ing sophisticated computational tasks to the target device,
DoS attacks can either increase the packet arrival rate (\)
or extend the per-packet processing time (W).

In this section, we describe a method to detect the pro-
posed DoS attack using a statistical abnormality measure-
ment technique. This detection method is motivated by the
observation that various SYN messages have a strong cor-
relation between them.

For instance, every SYN message is typically followed
by an ACK message. This balance is disturbed when there
is an increased number of DECLINE messages, which often
occurs during a DoS attack. We exploit this deviation in
message patterns to detect the proposed DoS attacks.

Our detection method operates in two phases: the train-
ing phase and the testing phase. In the training phase, we

A Novel Approach for Detection of DoS / DDoS Attack...

collect and create a normal behavior profile of SYN oper-
ations. In the testing phase, we compare the profile of cur-
rent SYN operations with the previously generated profile
to detect DoS attacks. For this comparison, we opted for
methods that compute the distance between two probabil-
ity distributions. Some of the popular distance metrics used
are Bhattacharyya Distance[34], Total Variation Distance
[35], Mahalanobis Distance [35], Kullback-Leibler Diver-
gence[36], and Hellinger Distance [28]. In these equations,
w represents the mean of the corresponding vectors, o is
the standard deviation, and C~! is the covariance matrix
generated from training intervals (where each interval is a
probability distribution). Here, P and Q are N-dimensional
vectors. The proposed model for detecting DoS attacks is
comprised of three main phases, as illustrated in Figure 6:

Data Processing phase

[Da(a Capturi ng]

Extracl \cn & '
Prep!ccesslng :

Attack Data

Normal Data

Train and Test
set Division

’ Applying
Hellinger

[Class Probability] H
of Attack test |
Distance

i
'

'

'

' Applying

' Hellinger H
' - Distance. H
Apply Trained H
' Model to

'

'

aSeyd UORRIBUAY PloySaIYL

Calculate
Threshold

Probability

Distribution using

_Average _

Figure 6: Proposed model for DoS attack detection using
Hellinger distance

1. Data Processing Phase
2. Threshold Generation Phase

3. Anomaly Detection Phase.

The following subsections depict the proposed model in de-
tail.

4.1 Data processing phase

In the initial phase of our proposed model, we utilize the
Wireshark tool to capture all network traffic data. This step
is essential for gathering comprehensive packet data over a
span of approximately 20 days. We start by collecting nor-
mal traffic data and then proceed to launch a DoS attack on
the server, capturing traffic data during the attack.

After gathering the data, we move on to preprocessing,
where we normalize the key features of both training and
testing datasets to ensure consistency. Next, we conduct
feature extraction to identify and select the most relevant
features using various extraction techniques.

Informatica 48 (2024) 147-166 153

We then apply different classification methods, such as
Logistic Regression and Support Vector Machine, to deter-
mine the probabilities for two categories: ”DoS Attack” and
”Normal.” The model is first trained on a subset of the data,
and then we use this trained model to compute probabilities
for the remaining data batches.

Following this, we calculate the Hellinger Distances for
these probabilities. We establish a threshold Hellinger Dis-
tance, which is used for comparison with other calculated
distances. If'a calculated distance is less than or equal to the
threshold, it suggests no attack is occurring; if it is greater
than the threshold, it indicates a potential attack.

4.1.1 Data capturing

In this subsection of the proposed model, traffic collection
methods observe the flow of data remotely and record ac-
cessible information for network quality monitoring, traffic
estimation, and attack detection and prevention. Traffic can
be collected via packets, flows, or logs. The HTTP proto-
col’s packet. Packets are commonly used in everyday net-
work administration processes for fault rectification, con-
figuration control, performance management, and security
monitoring. We gathered two weeks of normal HTTP traf-
fic from the web server set up in our testbed and used this
data for training purposes. The time interval size was set to
A T=10 minutes, resulting in a total of 2016 intervals. Us-
ing these intervals, we created a normal HTTP traffic pro-
file.For testing purposes, we generated an additional week
of typical traffic using the same setup. We repeated the ex-
periment, incorporating DoS attacks at various rates along-
side the regular requests generated by the script. This re-
sulted in two distinct scenarios (one for normal traffic and
one for attack instances), both consisting of 2,016 inter-
vals. We also used two traditional type of data set which
are NSL KDD Dataset and UNSW_NB15 dataset for com-
parison purpose.

Various convenient network packet capture techniques
are often employed for data gathering and later analysis.
TCPdump[37] and Wireshark[38] are two well-known ex-
amples. There are two methods for capturing packets: ac-
tive data collection and passive data collection. Active data
collection methods typically inject test data into traffic and
wait for replies to assess network quality, while passive data
collection methods monitor network traffic using software
or hardware monitoring tools. TCPdump and Wireshark are
examples of passive, software-based packet capture tech-
niques.

4.1.2 Preprocessing

Data preprocessing is a crucial stage in any approach or pro-
cess aimed at improving outcomes. Data gathered from var-
ious sources is often unstructured, leading to issues such as
out-of-range values (e.g., income: -100), impossible data
combinations (e.g., Gender: Male, Pregnant: yes), missing
information, and more. Analyzing data that has not been

154 Informatica 48 (2024) 147-166

thoroughly checked for such issues can lead to false conclu-
sions. As a result, processing techniques such as Min-Max
scaling, one-hot encoding, label encoding, and handling of
null values are applied to process datasets. Preprocessing
involves steps such as cleaning, normalization, transforma-
tion, feature extraction, and selection. Raw data often con-
tains noise, missing values, and inconsistencies, which can
affect the outcomes. To improve data quality and, subse-
quently, the results, raw data is preprocessed to enhance
efficiency. Data preprocessing is one of the most important
steps in data mining, as it deals with the preparation and
modification of the initial dataset. The four types of data
preparation procedures are data cleaning, data integration,
data transformation, and data reduction.

4.1.3 Feature extraction

Feature extraction is employed when an algorithm has a
large amount of input data, much of which may be redun-
dant or irrelevant. It is essential to accurately identify the
characteristics that determine whether an input is classified
as normal or an attack, as the feature extraction process or-
ganizes these features into a more manageable subset of
data. This process also reduces the amount of data that
needs to be processed, resulting in minimal computational
overhead [35]. The outcome of the feature extraction step is
a vector containing the frequencies of the extracted features.
These features are selected to achieve maximum classifica-
tion accuracy. The time required to extract features from a
dataset depends on the methods used. The feature extrac-
tion technique directly influences the system’s efficiency,
resilience, and accuracy.

1. Chi-squared test: A statistical hypothesis test, known
as the chi-square test, is used to determine whether
there is a significant difference between the ob-
served and expected frequencies of one or more cate-
gories[39]. The test requires the formulation of both a
null and an alternative hypothesis. The null hypothesis
asserts that there is no significant difference between
the expected and observed frequencies, while the alter-
native hypothesis suggests that the observed frequen-
cies significantly deviate from the expected ones. The
significance level is the threshold at which we can con-
fidently state that this difference is not due to chance.
For most scientific experiments, a significance level
of 0.05 is commonly considered. Equation 9 presents
the definition of the chi-square test statistic.

2\~ (0 — Ey)?
X? = nz::l z 9)
Where n is the number of categories, and O; and F; are
the observed and expected numbers of cases in the i*"
category, respectively. If O; and E; for each category
are closer to one another, the X2 value is relatively
small. The X2 value will increase in proportion to the
difference between O; and E;.

Feature

S.K. Pandey et al.

2. Pearson correlation: It measures the relationship be-
tween two features or variables. The Pearson Correla-
tion between two features is defined in equation 10 as
[40]:

oo 2@ —T)(y)
V(i =) 3 (v — 9)?

(10)

Where:

r = Correlation coefficient

x; = Values of the x variable in a sample.
T = Mean of the values of the x-variable
y; = Values of the yvariable in a sample.
y = Mean of the values of the y-variable

The value of r can range from -1 to 1. If r=0, it indi-
cates no relationship between the variables. >0 sig-
nifies a positive correlation, where an increase in the
value of one variable results in an increase in the value
of the other. Conversely, r<0 indicates a negative cor-
relation, where an increase in the value of one variable
leads to a decrease in the value of the other.

3. Feature importance using tree-classifier: In feature
selection, tree-based techniques are highly effective
[41]. Feature importance is determined by the reduc-
tion in node impurity, weighted by the probability of
reaching that node. The node probability is calculated
by dividing the number of samples reaching the node
by the total sample size. The relevance of a feature
is directly proportional to its importance value. The
feature importance for the UNSW_NBI15 dataset and
the NSL-KDD dataset is illustrated in Figures 7 and 8,
respectively.

dbytes
ct_srv_src
tCprtt
dmean
synack
ackdat
smean
dur
srv_dst
c_dst_src_itm

Feature
a
|
|
|

sbytes

rate

axtl

dload
ct_state_ttl
i

©0.00 0.02 004 0.06 008 010 012 014
Feature importance

9]

Figure 7: Feature importance of UNSW_NB15 dataset

dst_host_serror_rate
dst_host_count
dst_host_rerror_rate
dst_host_srv_diff_host_rate
dst_host_srv_serror_rate
dst_host_same_srv_rate
service
dst_host_same_src_port_rate
iogged_in
protocol_type
wunt
dst_host_srv_count
dst_host_diff_srv_rate
same_srv_rate
&ff_srv_rate

flag

level

0.00 0.02 004 0.06 o008 DiO 012
Feature importance

Figure 8: Feature importance of NSL-KDD dataset

A Novel Approach for Detection of DoS / DDoS Attack...

4.2 Threshold generation phase

We selected time intervals of size AT = 10 minutes to eval-
uate the detection performance. As previously mentioned,
we calculate the Hellinger distance statistic for each time
interval using Equation 1, checking for any significant de-
viations from the expected testing profile. The detection
performance of the proposed scheme is assessed using re-
call and the false positive rate (FPR) as performance indica-
tors. The values for recall and FPR are given by Equations
11 and 12, respectively. In these equations, the variables
tp, tn, [p, and f, represent the number of attack intervals
correctly identified as attacks, the number of normal inter-
vals correctly identified as normal, the number of normal
intervals incorrectly identified as attacks, and the number
of attack intervals incorrectly identified as normal, respec-
tively.

Recall = j—f (1)
p n
_
FPR = o (12)
P n

The detection performance of the proposed scheme is
presented in Table 8. These results were obtained at a sig-
nificance level of 0.05. For a given time interval, the al-
ternative hypothesis (H_A) was accepted if the calculated
Hellinger Distance exceeded the threshold value. However,
the null hypothesis (H_N) was accepted if the Hellinger
Distance for that interval was below the minimum thresh-
old.

4.2.1 Hellinger distance computing

Hellinger distance[42] is a metric that is often used to deter-
mine the similarity (or dissimilarity) between two probabil-
ity distributions. The value of Hellinger Distance between
any two probability distributions lies between 0 and 1,
where 0 means absolutely equal distributions and 1 means
very different or divergent distributions. Hellinger distance

a statistical hypothesis testing technique used to deter-
mine if there is a significant deviation between two proba-
bility distributions of one or more categories. This test in-
volves proposing two hypotheses—the null hypothesis and
the alternative hypothesis. The null hypothesis states that
there is no significant difference between the two probabil-
ities, while the alternative hypothesis asserts that the two
probabilities deviate from each other for some reason.

The confidence with which we can conclude that this dif-
ference is not due to chance is known as the significance
level, denoted by a. Typically, a significance level of 0.05
is used in most scientific experiments. The Hellinger dis-
tance statistic is defined as shown in Equation 13. For two
discrete probability distributions, P = (p1, p2, p3, ---» Pn)
and =(q1, g2, g3, ---, @), the Hellinger distance is given as,

HD*(P,Q) = Z VB -VQ)E ()
11

Informatica 48 (2024) 147-166 155

where 7" pi=1land Y " ¢ =1

A Sensitivity Analysis graph can be used to determine the
threshold value. Ifthe obtained Hellinger distance value ex-
ceeds this threshold, we can reject the null hypothesis H N.
However, if the Hellinger distance value is below the pre-
defined threshold, we do not have enough evidence to reject
H_N and accept the alternative hypothesis H_A.

4.3 Anomaly detection phase

Our detection system operates in two key phases: the train-
ing phase and the testing phase. During the training phase,
we collect data and establish a profile of typical behavior,
which is then compared to the profile generated during the
testing phase to identify potential DoS attacks. In this study,
we employed techniques that measure the distance between
two probability distributions. Notable distance metrics, as
provided in Equations 14, 15, 16, 17, and 18, include Bhat-
tacharyya Distance[34], Total Variation Distance [35], Ma-
halanobis Distance [35], Kullback-Leibler Divergence[36]
, and Hellinger Distance [28]. In these equations, C 1! is
the covariance matrix created using training intervals, and
u is the mean of the corresponding vectors and ¢ is their
standard deviation (Each interval is a distribution of proba-
bilities.) P and Q are N-dimensional vectors in this case.

4a(P.Q) = Htoglog(1(Z5 + %) 1 L2 =202
B 909y 02 02" 4 (02+02)
(14)
ar(P,Q) = 5P~ Q| (15)
0 (P.Q) = /(@ -0,)'C-1(Q~0y)) (16)
k(P,Q) = Z(Ploglog(Q) (17)
1k 1
HD(P.Q) = 5 ~VQ)HE (18)
z:O

To identify a DoS attack, we selected the Hellinger dis-
tance to compare the training and testing probability dis-
tributions. In the following section, we provide theoreti-
cal justifications for choosing Hellinger Distance over other
metrics. Additionally, Part 4.4 presents experimental data
demonstrating why Hellinger Distance is the most suitable
distance metric for our requirements.

4.3.1 Picking the suitable metric for distance

We used Hellinger Distance to identify DoS attacks due to
following theoretical reasons listed below.

1. Lightweight Computation: Comparing two probabil-
ity distributions using the Hellinger Distance avoids
computationally intensive tasks, such as matrix inver-
sion or covariance calculations, which are required for
metrics like the Mahalanobis distance. Consequently,

156 Informatica 48 (2024) 147-166

the Hellinger Distance serves as a more efficient al-
ternative for Intrusion Detection Systems (IDS) and
Intrusion Prevention Systems (IPS) in detecting and
mitigating proposed DoS attacks.

2. Natural Lower and Upper Bounds: It is important to
note that the value of dy will always fall between
0 and 1, with 0 denoting perfect similarity and 1
denoting the greatest dissimilarity between P and Q.
As a result, Hellinger distance has natural lower and
upper bounds of 0 and 1, which are not present in
other distance measuring techniques.

3. Yielding Finite Distance Value: Hellinger Distance

does not require any such reliance between two proba-
bility distributions, in contrast to Kullback-Leibler Di-
vergence, which is only defined if (Q;=0)P;=0, 1.
In some circumstances, Kullback-Leibler Divergence
provides an infinite value, while Hellinger Distance
produces an appropriate finite distance value between
0 and 1.

4.4 Experimental reasons to choose
hellinger distance as distance metric

We conducted several tests that highlighted the Hellinger
Distance as superior to other metrics for measuring the gap
between two probability distributions. To detect the pro-
posed DoS attack, we evaluated each of the previously dis-
cussed distance metrics. Table 2 outlines the various meth-
ods used to measure distances between two probability dis-
tributions. From these evaluations, we ruled out the Ma-
halanobis Distance and the Kullback-Leibler Divergence—
the former lacked a natural bound, and the latter produced
an indeterminate distance if the probability of one or more
events during the testing period dropped to zero. After ex-
cluding these metrics, we tested 18 normal intervals and
identified the maximum distance value among them. We
then chose the method that showed the greatest difference
between the maximum and minimum distances measured
during normal intervals and the distance measured during
the proposed attack’s interval. For example, as shown in
Table 3, the maximum distance measured using the Bhat-
tacharyya Distance during normal intervals was 0.002132,
while the distance measured during the proposed attack’s
interval was 0.0936, resulting in a difference of 0.091468.
Similarly, the Total Variation Distance and Hellinger Dis-
tance showed differences of 0.129128 and 0.280757, re-
spectively. Since the Hellinger Distance demonstrated the
largest difference between distances measured during nor-
mal and attack intervals, we selected it as the most suitable
distance metric. This selection criterion assists network ad-
ministrators in easily defining a threshold distance and re-
duces the likelihood of false positives.

S.K. Pandey et al.

Table 3: Distance measured between two probability distri-
butions using different methods

Maximum | Distance

Minimum distance
Method distance measured

(Normal)

(Normal) | (Attack)

Bhattacharyya

0.0000197 0.002132 | 0.0936
Distance
Total
Variation 0.00615 0.059072 | 0.1882
Distance
Mahalanobis

0.2432 0.5922 1.9912
Distance
Kullback-
Leibler 0.0000758 0.008459 | 0.1872
Divergence
Hellinger

0.004381 0.046143 | 0.3269
Distance

4.4.1 Adapting Hellinger distance for DoS attack
detection

The described detection system has the following two com-
ponents

1. Probabilistic Distribution of Training Data: To de-
velop a profile of normal traffic, we observe and gen-
erate a distribution profile over a series of n obser-
vation intervals, each lasting AT. The profile, cre-
ated during the training phase, includes ten attributes:
src_ip, dst_ip, protocol, length, src port, dst port,
seq_no, len, win_size, and flags. These attributes re-
flect the probability of occurrence of each type of traf-
fic. To calculate the probability P; for each attribute,
we use Equation 6, where N; represents the total num-
ber of occurrences of attribute i during the training pe-
riod (nAT), and Ny is the total number of occur-
rences of all ten attributes over the same period.

Pi :Ni/Ntotal (19)

2. Probabilistic Distribution of Testing Data: The sys-
tem is used to identify DoS attacks starting from the
(n + 1)*" period of duration AT, once it has been
trained and P has been generated. Equation 6 is used
to produce a probability distribution Q at every period
of duration AT, once it has been trained and P has been
generated. Equation 6 is used to produce a probability
distribution Q at every A T-interval. In this instance,
N; stands for the count of events of type i in the in-
terval under examination, and N, for the sum of

A Novel Approach for Detection of DoS / DDoS Attack...

events of all 10 categories in the same interval. Q pro-
duced in this manner is contrasted with P using the
Hellinger distance. A DoS attack is detected if the gap
between the two distributions is greater than a thresh-
old.

5 Dataset

We have used 2 types of datasets:
1. Traditional dataset

2. Real time dataset

5.1 Traditional dataset

Among available traditional datasets, we have used 2 of its
types [43]:

5.1.1 NSL KDD dataset

KDD 99’ Dataset is the predecessor of NSL-KDD Dataset.
It serves as an effective Benchmark dataset to help scholars
compare among different types of intrusion systems [44].

Table 4: Description of NSL KDD Dataset

S.No. | Name of File Number of | Number of Labels
Features Samples
5 [DoS,
. U2R,
1 KDD Traint | 5 125972 | R2L,
.csv file .
Probing ,
Normal]
5 [DoS,
U2R,
2, | KDDTestr g 20542 R2L,
.csv file .
Probing,
Normal]

5.1.2 UNSW NBI15 dataset

It is one of the most used datasets to examine intrusion de-
tection systems. It is developed in the Cyber Range Lab of
the Australian Center for Cybersecurity [45].

Table 5: Description of UNSW_NBI15 Dataset

S.No. | Name of File | \mber of | Number of Labels
Features Samples
UNSW_NBIS5 10 [DoS, Fuzzers,
1. 43 82332 Analysis, Backdoor,
_training.csv Normal etc.]
UNSW_NBI15 10 [DoS, Fuzzers,
2 43 175341 Analysis, Backdoor,
_testing.csv Normal etc. |

Informatica 48 (2024) 147-166 157

5.2 Real time dataset

We collected the real-time dataset, which is divided into
the following subsections: network topology used, packet
sniffing tool employed, and simulation of the DoS attack.

5.2.1 Network topology used for data collection

As an initial configuration, a server with five nodes was em-
ployed: three nodes were responsible for generating normal
traffic, while the remaining two were designated for attack
traffic generation. One system functioned as the server,
equipped with a firewall and the Wireshark packet-sniffing
tool to analyze incoming and outgoing traffic. Figure 9 il-
lustrates the network topology used for data collection in
our system.

Rkl

;E ;ﬂ Laptop Laptop
PC PC
ATTACKER

Laptop

ATTACKER

Figure 9: Network topology for data collection

5.2.2 Packet sniffing tool used for data collection

Wireshark was utilized as the packet-sniffing tool for data
gathering. Itis a free, open-source, and user-friendly packet
analyzer with features such as filters and color-coding to
differentiate between various types of packets. The data
captured by Wireshark can easily be exported to a CSV file.
Figure 10 shows a snapshot of the Wireshark tool capturing
traffic data during the collection process.

5.2.3 Data collection description

Packet capturing can be accomplished through various
methods, with active and passive data collection techniques
being the most common. Active data gathering techniques
typically inject test data into network traffic and wait for
a response, while passive methods monitor traffic using
software or hardware tools. Wireshark, a software-based
packet capture tool, was used as a passive technique in our
approach. During this phase, we employed Wireshark on
the server and Kali Linux software to record all traffic data.
For our proposed model, data was collected over a span of
three weeks. Normal traffic was gathered during the first
two weeks, followed by a DoS attack on the server, dur-
ing which we collected traffic data for the final week. The

158 Informatica 48 (2024) 147-166

description of the real-time dataset and its attributes are pre-
sented in Table 4 and Table 5, respectively. A snapshot of
the collected dataset is shown in Figure 11.

5.2.4 Simulation of DoS attack

We used the Hping program to send modified packets. This
tool allowed us to control the size, quantity, and fragmenta-
tion of packets in order to overwhelm the target and bypass
the firewall. Command Used : sudo hping3 —rand -source
target-ip-address -S -p 80 —flood

Where :—rand-source : It is used to hide attacker’s ip ad-
dress (IP spoofing)

-S : it specifies SYN packets

-p 80 : it specifies an attack is to be made against port 80

—flood : repeatedly send the packets to destination

Platform used : Kali-Linux (Ubuntu), Oracle VM Virtual
Box

Table 6: Description of Real Time Dataset

Name of | Number of | Number of
S.No.
file features samples
Real time 2 [Attack,
L. dataset 10 1241759 Normal]

Table 7: Candidate Attributes of Real time Dataset with de-

scription
Attributes Description Type
. IP address .
src_ip of source Numeric
. IP address .
dst_ip of destination Numeric
The network .
protocol Numeric
layer protocols
Length of .
length packet Numeric
src_port (})’fo f}i:lslcr)?ll;z:: Numeric
Port number of .
dst_port the destination Numerie
Sequence number .
seq_no of the packet Numeric
Win_size Window size Numeric
Length of .
len TCP packet Numeric
Shows whether
label the data is Character
attack or
normal

6 Result analysis and performance
evaluation
In this section, we discuss the tests conducted to evaluate

the performance of the proposed detection scheme. The fol-
lowing subsections cover the generation of traffic for train-

S.K. Pandey et al.

sre_ip dst_ip protocol length src_port dst_port seqno win_size lem
53420 172160288 119459169 6 s8p 800 187460 o0 2m000 o0
53421 172160248 25012023674 6 580 800 18747.0 o0 2000 00
53422 172100248 24815111041 6 580 800 187480 00 792000 00 TC

534235 172160288 147.121.185241 [580 800 187480 00 292000 00 TCP_syn_flox
5324 172160248 115121241123 6 580 800 187300 00 292000 00
4751 7412516481 1921681104 6 1430 80.0

12030 6168920 122840 13800

6475z 74125164 192,168,104 6 14300 800 12930 6183720 122940 13800

64753 292.168.1.104 6 14310 800 12930 61978

122940 13800

64754 74, 192.168.1.104 6 14340 800 12930 6211320 122940 13800

04755 7412516481 1921681104 6 14310 800 12930 6225120 122540 13800

L0nn e 10 oo

Figure 10: A batch of dataset

ing and testing, the experimental evaluation of DoS attack
detection, detection performance, and sensitivity analysis
of the proposed technique at various significance levels and
time interval sizes. The result analysis and performance
section will present the overall effectiveness of our model
based on performance metrics from four machine learning
algorithms using the Hellinger distance technique. We im-
plemented our model on a custom dataset, achieving excel-
lent results in all three cases of analysis. The outcomes of
these cases are discussed below:

6.1 Architecture of testbed

To assess the detection performance of the proposed tech-
nique, we set up a testbed similar to the one illustrated in
Figure 8. We designated one computer as a web server, con-
necting it to the internet. This server ran the Ubuntu 16.04
LTS operating system and was configured with Apache
2.4.23 software to handle HTTP requests. Apache was cho-
sen for our testbed due to its status as the most widely
used web server software globally [35]. The web server
was equipped with an Intel Core 2 Duo Processor and 4GB
of physical memory. We hosted a sample website on this
server, consisting of 25 web pages that provided brief tuto-
rials for an online course. One of these web pages included
an image upload field, allowing users to upload an image of
617 Kilobytes to the server. This page also outlined certain
conditions (such as image size and format) that needed to be
met for successful uploading. Another computer was desig-
nated as a traffic generator, simulating the behaviour of web
users and sending legitimate HTTP traffic to the web server.
This computer ran the Linux Mint operating system, was
powered by an AMD Athlon X2 270 Dual-core processor,
and had 4GB of physical memory. The behaviour of web
users was simulated using a Python program. We also des-
ignated another computer as the malicious client, respon-
sible for generating anomalous traffic during different in-
tervals of the testing phase. This computer was equipped
with 4GB of physical memory, a dual-core processor, and
ran the Ubuntu 16.04 LTS operating system. Both the mali-
cious client and the traffic generator were connected to the
internet as well.

A Novel Approach for Detection of DoS / DDoS Attack...

]

Client equipped with
CUI Browser

L

Malicious client generating
attack flows

8

Internet HTTP enabled

Apache Server

Figure 11: Architecture of testbed

6.2 Traffic generation for training

We collected 14 days of typical HTTP traffic from the web
server set up in our testbed and used it for training. A time
interval size of AT = 10 minutes was used, resulting in a
total of 2,016 intervals. These intervals were then used to
develop the normal traffic profile.

6.3 Traffic generation for testing

For testing purposes, we generated an additional week of
typical traffic using the same setup. We repeated the exper-
iment, incorporating DoS attacks at various rates alongside
the regular requests generated by the script. This resulted
in two distinct scenarios (one for normal traffic and one for
attack instances), both consisting of 2,016 intervals.

6.4 Experimental evaluation of DoS attack
detection

We created the distribution profile P using traffic from the
first two week as training data for detection purposes. For
our experiments, we selected a time interval of 10 minutes.
The two weeks of training data generated a total of 2,016
such intervals. We estimated the probability distribution
for each of these interval datasets. For testing purposes,
we generated an additional week’s worth of normal traffic
using the same setup. Like the training phase, we used in-
tervals of AT=10 minutes during the testing phase. This
resulted in 1,008 intervals over the course of one week’s
worth of normal HTTPS traffic. As previously mentioned,
we evaluated the distance between the normal and testing
interval probability distributions. From the third day’s data,
18 such intervals met this requirement. Table 6 presents
the estimated Hellinger distances and the clock times of
these 18 intervals. We launched the proposed DoS attack
between 3:00 and 3:10 p.m. and 3:10 and 3:20 p.m. Ad-
ditionally, Table 6 highlights in red the Hellinger distances
calculated for these intervals compared to the training pro-
file. It is clear that the Hellinger distances estimated dur-
ing DoS attack scenarios are significantly higher than those
during normal traffic.

Informatica 48 (2024) 147-166 159

Table 8: Detection of normal and DoS attack scenarios

Scenario Interval Hellinger | Detection | Detection
v Distance Result Rate
S:00pm= 16 6045 | Normal 100%
5:10pm
3A0pm-1 4 5037 | Normal 100%
5:20pm
3:20pm= 16 6043 | Normal 100%
5:30pm
3:30pm- 6 6027 | Normal | 100%
5:40pm
5:40pm- o
Normal 5:50pm 0.0055 Normal 100%
5:50pm- o
6:00pm 0.0063 Normal 100%
10:00am- o
10:10am 0.0021 Normal 100%
10:10am- o
10-20am 0.0230 Normal 100%
10:20am- o
10-30am 0.0410 Normal 100%
10:30am- o
10-40am 0.0077 Normal 100%
10:40am- o
10:50am 0.0557 Normal 100%
10:50am- 0
11:00am 0.1022 Normal 100%
Z00pm= | 0200 | Normal | 100%
2:10pm
2:10pm- 0
2:20pm 0.0083 Normal 100%
Z20pm- | 0333 | Normal | 100%
2:30pm
2:30pm- 0
2:40pm 0.0099 Normal 100%
ZA0pm- | 533 | Normal | 100%
2:50pm
2:30pm= | 5081 | Normal 100%
3:00pm
3:00pm- . o
DoS Attack | 3:10pm 0.7623 Anomaly 100%
3:10pm- o
3:20pm 0.6772 Anomaly 100%

6.5 Sensitivity analysis

The effectiveness of the proposed approach in detecting
objects depends on the threshold set for the Hellinger dis-
tance value and the time window used for monitoring vari-
ous parameters. To minimize false positives and maximize
true detections, selecting the appropriate Hellinger distance
threshold value and the time interval size AT is both crucial
and imperative. In this section, we explore the impact of ad-
justing the time interval AT size and the threshold Hellinger
distance value on the detection accuracy of the proposed
scheme.

To investigate the sensitivity of the scheme to these two
parameters, we conducted an experiment by varying the
threshold Hellinger distance value and the time interval size
AT. For this experiment, we generated an additional two
weeks of traffic by injecting DoS attacks at a rate of one
flow or attack every 300 seconds.

160 Informatica 48 (2024) 147-166

6.5.1 Performance v/s window size

In the first case, we have kept the constant threshold value
while varying the window size. We took two values at seven
different significance levels a o = 0.005, 0.01, 0.025, 0.05,
0.1, 0.25 and 0.50 then varied the time intervals in steps
of 5 minutes, ranging from 5 to 25 minutes. Recall rate
increases with increase in both A T size and significance
level. We observed that regardless of a value, 100% Recall
rates were attained for A T= 25 minutes, whereas the poor-
est recall rates were attained for A T = 5 minutes and o =
0.005.

Performance vs Window Size

FPR VS Window Size

Recall vs Window Precision vs

Figure 12: Performance vs window size

6.5.2 Performance v/s threshold

In the second case we have kept the constant window size
while varying the threshold value. We varied the threshold
value, ranging from 0.45 to 0.75. Recall rate increases with
increase in both A T size. We observed that in our tests, the
worst FPR was found for A T =25 minutes and « = 0.5.

Accuracy vs Threshold Threshold vs Recall

Threshold vs Precision

Figure 13: Performance vs threshold

This analysis allows us to determine the optimal time in-
terval size and threshold significance level. A smaller time
interval can negatively impact the recall rate (especially at
lower significance levels), despite resulting in a very low
false positive rate (FPR). Conversely, a larger time interval
improves the recall rate but tends to increase the FPR (es-
pecially at higher significance levels), which is undesirable.
Therefore, choosing the appropriate time interval size and

S.K. Pandey et al.

Hellinger distance threshold is critical for achieving opti-
mal detection accuracy with the proposed scheme.

6.6 Detection performance

We evaluate the detection performance of the proposed
scheme using metrics such as precision, recall, accuracy,
and F1 score. These metrics are computed based on the val-
ues obtained from the Hellinger distance threshold and the
specified window time. To optimize the scheme’s ability to
identify objects while minimizing false detections and max-
imizing true detections, it is crucial to select the appropriate
Hellinger distance threshold and time interval size (T). This
section explores the detection accuracy of the proposed ap-
proach by fixing the threshold and varying the batch size.
We conducted tests using three different batch sizes to as-
sess the performance of various algorithms. A threshold
value of 0.60 was chosen for all three cases, as our sensi-
tivity analysis indicated that this value yields the highest
accuracy.

6.6.1 Performance evaluation metrics

To evaluate the models used in the experiment, as perfor-
mance metrics, we have chosen accuracy, precision, recall,
and Fl-score, where TP stands for True Positive, TN for
True Negative, FP for False Positive, and FN for False Neg-
ative [46]. In Algorithm 1, we have also demonstrated the
performance evaluation metrics computation for each of the
four ML algorithms.

Accuracy: It is referred to as the number of right pre-
dictions divided by the total number of data instances.

(TP +TN)
(TP + FN +TN + FP)

Accuracy = (20)

Precision: The ratio of accurately anticipated positive
data to the total quantity of positive data expected is
what it’s called.

(TP)

Precision = m

2y
— Recall: It is the proportion of accurately predicted

positive data in the class to the total amount of data
in the class.

(T'P)

Recall = m

(22)

F1- score: It is referred to as the harmonic mean of
Precision and Recall.

(Precision X Recall)
(Precision + Recall)

F1 — score =2 x

(23)

A Novel Approach for Detection of DoS / DDoS Attack...

— Computational efficiency: Computational Effi-
ciency in the context of intrusion detection systems
(IDS) and anomaly detection can be evaluated based
on various factors, including the time complexity,
space complexity, and the overall resource require-
ments of the detection methods. Here’s a detailed ex-
amination of computational efficiency concerning dif-
ferent intrusion detection approaches, including our
Hellinger Distance-based method:

— Time Complexity: The Hellinger Distance cal-
culation involves simple mathematical opera-
tions like summation and square root, making it
computationally efficient. The time complexity
is typically linear concerning the number of fea-
tures or dimensions in the dataset.

— Space Complexity: Low, as it requires minimal
storage for probability distributions and calcu-
lated distances.

— Efficiency: The Hellinger Distance method
is computationally efficient compared to more
complex statistical or machine learning methods.
It avoids intensive operations like matrix inver-
sions and can be implemented with relatively low
computational overhead, making it suitable for
real-time applications.

6.6.2 Case Study][I]: Batch size = 10000

In this section, we discuss the results when the batch size
of our dataset is set to 10,000. We evaluated four machine
learning algorithms: Logistic Regression, Naive Bayes,
Support Vector Machine (SVM), and K-Nearest Neighbors
(KNN). For each algorithm, we created a graph depict-
ing the relationship between the Hellinger distance and the
batch size. Figure 12 illustrates the outcomes, with accom-
panying charts for each model. Performance metrics, in-
cluding Precision, Recall, Accuracy, and F1 Score for all
four algorithms, are summarized in Table 6.

The Hellinger distance values range between 0 and 1,
with a threshold value indicating anomalies if the distance
exceeds the threshold, and normalcy if it falls below. This
relationship is demonstrated in Fig. 13, which plots Batch
Number against Hellinger distance. The graph shows fixed
threshold values for each algorithm, with values above the
threshold indicating anomalies and those below considered
normal.

The accuracy of the Logistic Regression, Naive Bayes,
SVM, and KNN algorithms in this scenario is reported as
83.40%, 90.45%, 87.60%, and 84.70%, respectively.

6.6.3 Case Study|[II]: Batch size = 5000

In this section, we present the results for when the batch
size of our dataset is 5,000. We used the same four machine
learning algorithms and plotted the relationship between the
Hellinger distance and batch size for each algorithm. Figure

Informatica 48 (2024) 147-166

161

Table 9: Results obtained by different algorithms when
batch size 10000

Method Precision | Recall | Accuracy | Fl-score
Logistic Reg 0.871 0.607 0.834 0.715
Naive Bayes 0.980 0.893 0.904 0.934

SVM 0.921 0.625 0.876 0.744
KNN 0.942 0.589 0.847 0.725

using Lagistic Regression using Naive Bayes

8 00 w0 e 150

using K Neighbers

!“ '*‘i
H .|||' |‘| 4"
il
L
|I“Ilul

|
Ach

Batch number

Figure 14: Anomaly detection graph when batch size 10000

14 shows the results with corresponding plots for the dif-
ferent models. Performance metrics, including Precision,
Recall, Accuracy, and F1 Score for all four algorithms, are
summarized in Table 10.

Similar to previous analyses, Figure 14 illustrates that the
Hellinger distance values range between 0 and 1. A thresh-
old value based on the Hellinger distance indicates anoma-
lies if the distance exceeds this threshold, and normalcy if
it is below. Each algorithm maintains a constant threshold
value, as clearly visible in the graph.

According to Table 7, the accuracy for Logistic Regres-
sion, Naive Bayes, SVM, and KNN in this case is 88.10%,
91.70%, 86.60%, and 84.00%, respectively.

Table 10: Results obtained by different algorithms when
batch size 5000

Algorithm | Precision | Recall | Accuracy | Fl-score
Logistic Reg 0.941 0.714 0.881 0.812
Naive Bayes 0.981 0.928 0917 0.959

SVM 0.917 0.598 0.866 0.724
KNN 0.9375 | 0.5357 0.840 0.681

6.6.4 Case Study[III]: Batch size = 20000

In this section, we discuss the results for when the batch
size of our dataset is 20,000. We employed the same four
machine learning algorithms and created graphs showing
the relationship between the Hellinger distance and batch
size for each algorithm. Figure 15 presents these results

162 Informatica 48 (2024) 147-166

using Logistic Regression using Naive Bayes

I

..

a o 100 B0 200 0 300 100 1m0 200 250 %0
o Basch number

Hellnger Distance

using K Neighbars

Figure 15: Anomaly detection graph when batch size 5000

with corresponding plots for the different models. Perfor-
mance metrics, including Precision, Recall, Accuracy, and
F1 Score for all four algorithms, are summarized in Table
11.

Figure 15 demonstrates that the Hellinger distance values
range from 0 to 1, with a threshold value used to identify
anomalies. If the Hellinger distance exceeds this threshold,
it is classified as an anomaly; otherwise, it is considered
normal.

According to Table 8, the accuracy of Logistic Regres-
sion, Naive Bayes, SVM, and KNN in this case is 85.11%,
92.10%, 89.61%, and 87.01%, respectively.

Table 11: Results obtained by different algorithms when
batch size 20000

Algorithm | Precision | Recall | Accuracy | Fl-score
Logistic Reg | 0.8361 0.6896 0.8511 0.7540
Naive Bayes | 0.9642 | 0.9310 | 0.9210 0.9473

SVM 0.9565 | 0.7586 | 0.8961 0.8461

KNN 0.9523 | 0.6896 | 0.8701 0.7999

: I 1l
5 "\ﬂ\” | |U' 1] - / ‘
MW U | £ |
dd LAY B,
il I m
uf ! w M
i ||”|H‘| bﬂ = [r} W’l

/\/\:—J\w‘twl WMW\NI%\‘ | l |l

Figure 16: Anomaly detection graph when batch size 20000

S.K. Pandey et al.

6.7 Performance comparison of our own
collected real time dataset with existing
dataset

In this section, we compare the results obtained from
our real-time dataset with those from the NSL-KDD and
UNSW_NBI15 datasets. The analysis includes all four ma-
chine learning algorithms across four performance metrics:
Precision, Recall, Accuracy, and F1 Score. The results are
summarized in Table 12.

The analysis reveals that the accuracy of all four al-
gorithms on our own real-time dataset is notably higher
compared to the NSL-KDD and UNSW_NBI15 datasets.
Specifically, we achieved a maximum accuracy of 99.41%
with our real-time dataset, whereas the NSL-KDD dataset
and UNSW_NBI15 dataset yielded accuracies of 85.29%
and 81.42%, respectively.

Table 12: Result comparison of our own real time dataset
with NSL-KDD & UNSW_NBIS5 dataset

Different Dataset Algorithm | Precision | Recall | Accuracy | Fl-score
Logistic Reg | 0.8827 | 0.6702 | 08553 | 0.7603
. Naive Bayes 0.9750 0.9173 0.9941 0.9467
Our own Real Time Dataset \——gxr 00315 | 0.6605 | 08793 | 0.7714
RNN 09430 | 0.6047 | 08524 | 0.7353
Togistic Reg | 09365 | 0.7373 | 0.7957 | 0.7343
Naive Bayes 0.9717 0.9232 0.8371 0.8392
NSL-KDD Dataset SVM 00226 | 0.8754 | 08529 | 08734
KRN 00450 | 0.7121 | 0.8447 | 08811
Logistic Reg | 09625 | 0.7411 | 0.7722 | 0.7523
Naive Bayes | 09820 | 09169 | 0.7831 | 08121
UNSW_NBIS Dataset SUM 09819 | 0.8454 | 0.8021 | 0.8347
KNN 00902 | 0.6921 | 0.8142 | 0.8551

6.8 Comparison with prior approaches

We compared the performance of our proposed approach
for DoS attack detection with existing approaches. Our ap-
proach yielded better results than the prior work, as illus-
trated in Figure 17.

Different Approaches for Detection
of DoS Attack

>
o
<
e
=1
b
<

DIIFERENT RESEARCH WORK

Chen et al.{2019) mRoopak et al.(2019) = Wang and Liu{2020)

m Bhardwaj et al.(2020) m Proposed Method

Figure 17: Comparative analysis of proposed approach
with existing approaches

A Novel Approach for Detection of DoS / DDoS Attack...

7 Conclusion and future work

In this paper, we propose a novel DoS attack detection
method using the Hellinger Distance technique. This ap-
proach introduces a robust and unique model for identifying
DoS attacks. The proposed DoS Attack Detection Model
is organized into three phases: (a) Data Processing, (b)
Threshold Generation, and (c) Anomaly Detection. Data is
collected within a virtual environment, and the results are
analyzed for binary classification.

The model demonstrates a binary classification accu-
racy of 99.41% on real-time attack data. In comparison,
the NSL-KDD benchmark dataset and the UNSW_NB15
dataset show binary classification accuracy’s of 85.29% and
81.42%, respectively. We identified DoS attacks by setting
a threshold value and analyzed its impact using various ma-
chine learning models in conjunction with the Hellinger dis-
tance.

Several case studies were conducted, each corresponding
to different batch sizes and Hellinger distances. The mod-
els were evaluated using precision, recall, accuracy, and F1
score, yielding promising results. The performance of all
four algorithms was assessed across these metrics.

Looking ahead, the Hellinger distance could be used to
detect deviations in the normal behavior of different proto-
cols to identify network anomalies. The proposed approach
has potential for adaptation to detect attacks against IoT
protocols such as MQTT, AMQP, and CoAP. Future work
will focus on exploring the application of this approach to
these protocols.

References

[1] Z.Tan, A. Jamdagni, X. He, P. Nanda, R. P. Liu, and
J. Hu, “Detection of denial-of-service attacks based
on computer vision techniques,” IEEE transactions
on computers, vol. 64, no. 9, pp. 2519-2533, 2014.

[2] J. Pougajendy and A. R. K. Parthiban, “Detection of
sip-based denial of service attack using dual cost for-
mulation of support vector machine,” The Computer
Journal, vol. 60, no. 12, pp. 1770-1784, 2017.

[3] S. Wankhede and D. Kshirsagar, “Dos attack detec-
tion using machine learning and neural network,”
in 2018 Fourth International Conference on Com-

puting Communication Control and Automation (IC-
CUBEA), IEEE, 2018, pp. 1-5.

[4] M. Agarwal, D. Pasumarthi, S. Biswas, and S. Nandji,
“Machine learning approach for detection of flood-
ing dos attacks in 802.11 networks and attacker lo-
calization,” International Journal of Machine Learn-
ing and Cybernetics, vol. 7, pp. 1035-1051, 2016.

[5] N. Tripathi, N. Hubballi, and Y. Singh, “How secure
are web servers? an empirical study of slow http dos
attacks and detection,” in 2016 11th International
Conference on Availability, Reliability and Security
(ARES), IEEE, 2016, pp. 454-463.

(6]

(7]

(8]

[12]

[13]

[16]

[17]

Informatica 48 (2024) 147-166 163

N. Nishanth and A. Mujeeb, “Modeling and de-
tection of flooding-based denial-of-service attack in
wireless ad hoc network using bayesian inference,”
IEEE Systems Journal, vol. 15, no. 1, pp. 17-26,
2020.

C. Anand and N. Vasuki, “Trust based dos attack de-
tection in wireless sensor networks for reliable data
transmission,” Wireless Personal Communications,
vol. 121, no. 4, pp. 2911-2926, 2021.

J. Lee, K. Cho, C. Lee, and S. Kim, “Voip-aware net-
work attack detection based on statistics and behav-
ior of sip traffic,” Peer-to-Peer Networking and Ap-
plications, vol. 8, pp. 872—880, 2015.

P. Alcoy, S. Bjarnason, P. Bowen, C. Chui, K.
Kasavchenko, and G. Sockrider, “Netscout arbor’s
13th annual worldwide infrastructure security re-
port,” Netscout Systems, Inc., Burlington, MA, US4,
Tech. Rep, 2018.

J. Pescatore, “Ddos attacks advancing and enduring:
A sans survey,” Tech. Rep., 2014.

V. Durcekova, L. Schwartz, and N. Shahmehri, “So-
phisticated denial of service attacks aimed at appli-
cation layer,” in 2012 ELEKTRO, 2012, pp. 55-60.
DOI: 10.1109/ELEKTR0.2012.6225571.

Z. A. Baig, S. Sanguanpong, S. N. Firdous, T. G.
Nguyen, C. So-In, et al., “Averaged dependence es-
timators for dos attack detection in iot networks,”

Future Generation Computer Systems, vol. 102,
pp. 198-209, 2020.

S. Sharma, Y. Gigras, R. Chhikara, and A. Dhull,
“Analysis of nsl kdd dataset using classification
algorithms for intrusion detection system,” Recent
Patents on Engineering, vol. 13, no. 2, pp. 142—-147,
2019.

S. Ramesh, C. Yaashuwanth, K. Prathibanandhi,
A. R. Basha, and T. Jayasankar, “An optimized deep
neural network based dos attack detection in wireless
video sensor network,” Journal of Ambient Intelli-
gence and Humanized Computing, pp. 1-14, 2021.

Z. He, T. Zhang, and R. B. Lee, “Machine learn-
ing based ddos attack detection from source side in
cloud,” in 2017 IEEE 4th International Conference
on Cyber Security and Cloud Computing (CSCloud),
IEEE, 2017, pp. 114-120.

N. Gao, L. Gao, Q. Gao, and H. Wang, “An intrusion
detection model based on deep belief networks,” in
2014 Second international conference on advanced
cloud and big data, IEEE, 2014, pp. 247-252.

A. Akbar, S. M. Basha, S. A. Sattar, and S. Razi-
uddin, “An intelligent sip message parser for detect-
ing and mitigating ddos attacks,” Int. J. Innov. Eng.
Technol, vol. 7, no. 2, pp. 1-7, 2016.

164

[18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

Informatica 48 (2024) 147-166

Z. Tsiatsikas, A. Fakis, D. Papamartzivanos, D.
Geneiatakis, G. Kambourakis, and C. Kolias, “Bat-
tling against ddos in sip: Is machine learning-based
detection an effective weapon?” In 2015 12th In-
ternational Joint Conference on e-Business and
Telecommunications (ICETE), 1IEEE, vol. 4, 2015,
pp- 301-308.

Z. Liu and Y. Shi, “A hybrid ids using ga-based fea-
ture selection method and random forest,” Interna-
tional Journal of Machine Learning and Comput-
ing, 2022. [Online]. Available: https : / / api .
semanticscholar.org/CorpusID:247829090.

M. Zekri, S. El Kafhali, N. Aboutabit, and Y. Saadi,
“Ddos attack detection using machine learning tech-
niques in cloud computing environments,” in 2077
3rd international conference of cloud computing
technologies and applications (CloudTech), 1EEE,
2017, pp. 1-7.

P. J. Sajith and G. Nagarajan, “Intrusion detection
system using deep belief network & particle swarm
optimization,” Wirel. Pers. Commun.,vol. 125,no. 2,
pp- 1385-1403, Jul. 2022, ISSN: 0929-6212. DOI:
10.1007/s11277-022-09609-x. [Online]. Avail-
able: https://doi.org/10.1007/s11277-022-
09609-x.

U. K. Singh, C. Joshi, and D. Kanellopoulos, “A
framework for zero-day vulnerabilities detection and
prioritization,” Journal of Information Security and
Applications, vol. 46, pp. 164—172, 2019.

X. Sun, J. Dai, P. Liu, A. Singhal, and J. Yen, “Us-
ing bayesian networks for probabilistic identification
of zero-day attack paths,” IEEE Transactions on In-

formation Forensics and Security, vol. 13, no. 10,

pp. 2506-2521, 2018.

J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day mal-
ware detection using transferred generative adver-
sarial networks based on deep autoencoders,” Infor-
mation Sciences, vol. 460, pp. 83—102, 2018.

D. Papamartzivanos, F. G. Marmol, and G. Kam-
bourakis, “Dendron: Genetic trees driven rule induc-
tion for network intrusion detection systems,” Future
Generation Computer Systems, vol. 79, pp. 558-574,
2018.

R. A. R. Ashfaq, X.-Z. Wang, J. Z. Huang, H. Ab-
bas, and Y.-L. He, “Fuzziness based semi-supervised
learning approach for intrusion detection system,”
Information sciences, vol. 378, pp. 484—497, 2017.

A. V. Turukmane and R. Devendiran, “M-multisvm:
An efficient feature selection assisted network in-
trusion detection system using machine learning,”
Comput. Secur.,vol. 137, p. 103 587, 2023. [Online].
Available: https : / / api . semanticscholar .
org/CorpusID:265137226.

X. Cao, Model selection based on expected squared
Hellinger distance. Colorado State University, 2007.

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

S.K. Pandey et al.

B. Sharmila and R. Nagapadma, “Intrusion detec-
tion system using naive bayes algorithm,” in 2079
IEEE International WIE Conference on Electrical
and Computer Engineering (WIECON-ECE), 1EEE,
2019, pp. 1-4.

S. Krishnaveni, P. Vigneshwar, S. Kishore, B. Jothi,
and S. Sivamohan, “Anomaly-based intrusion detec-
tion system using support vector machine,” in Arti-
ficial intelligence and evolutionary computations in
engineering systems, Springer, 2020, pp. 723-731.

E. Besharati, M. Naderan, and E. Namjoo, “Lr-hids:
Logistic regression host-based intrusion detection
system for cloud environments,” Journal of Ambi-

ent Intelligence and Humanized Computing, vol. 10,
pp. 3669-3692, 2019.

R. Wazirali, “An improved intrusion detection sys-
tem based on knn hyperparameter tuning and cross-
validation,” Arabian Journal for Science and Engi-
neering, vol. 45, no. 12, pp. 10 859-10 873, 2020.

J. D. Little and S. C. Graves, “Little’s law,” Build-
ing intuition: insights from basic operations man-
agement models and principles, pp. 81-100, 2008.

A. Bhattacharyya, “On a measure of divergence be-
tween two statistical populations defined by their
probability distribution,” Bulletin of the Calcutta
Mathematical Society, vol. 35, pp. 99-110, 1943.

N. Hubballi and N. Tripathi, “A closer look into dhcp
starvation attack in wireless networks,” Computers
& Security, vol. 65, pp. 387-404, 2017.

N. Noor Imanina and H. IGARASHI, “Policy gradi-
ent method using fuzzy controller in policies and its
application,”

J. Therdphapiyanak and K. Piromsopa, “An anal-
ysis of suitable parameters for efficiently applying
k-means clustering to large tcpdump data set us-
ing hadoop framework,” in 2013 10th International
Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information
Technology, 2013, pp. 1-6. DOI: 10 . 1109 /
ECTICon.2013.6559650.

R. Das and G. Tuna, “Packet tracing and analysis of
network cameras with wireshark,” 2017 5th Interna-
tional Symposium on Digital Forensic and Security
(ISDFES), pp. 1-6,2017. [Online]. Available: https:
/ / api . semanticscholar . org / CorpusID :
11222601.

I. S. Thaseen, C. A. Kumar, and A. Ahmad, “In-
tegrated intrusion detection model using chi-square
feature selection and ensemble of classifiers,” Ara-

bian Journal for Science and Engineering, vol. 44,
pp- 3357-3368, 2019.

A Novel Approach for Detection of DoS / DDoS Attack... Informatica 48 (2024) 147-166 165

[40] Y. Sugianela and T. Ahmad, “Pearson correlation
attribute evaluation-based feature selection for in-
trusion detection system,” in 2020 International
Conference on Smart Technology and Applications
(ICoSTA), IEEE, 2020, pp. 1-5.

[41] S.M.Kasongo and Y. Sun, “Performance analysis of
intrusion detection systems using a feature selection
method on the unsw-nb15 dataset,” Journal of Big
Data, vol. 7, pp. 1-20, 2020.

[42] Ortega Vazquez, Carlos and vanden Broucke, Seppe
and De Weerdt, Jochen, “Hellinger distance decision
trees for PU learning in imbalanced data sets,” eng,
MACHINE LEARNING, 2024, ISSN: 0885-6125.
[Online]. Available: %7Bhttp: //doi . org/10.
1007/s10994-023-06323-y%7D.

[43] M. Ring, S. Wunderlich, D. Scheuring, D. Landes,
and A. Hotho, “A survey of network-based intrusion
detection data sets,” Computers & Security, vol. 86,
pp. 147-167, 2019.

[44] R.Thomas and D. Pavithran, “A survey of intrusion
detection models based on nsl-kdd data set,” 2018
Fifth HCT Information Technology Trends (ITT),
pp- 286-291, 2018.

[45] V. Kumar, D. Sinha, A. K. Das, S. C. Pandey, and
R. T. Goswami, “An integrated rule based intrusion
detection system: Analysis on unsw-nbl5 data set
and the real time online dataset,” Cluster Comput-
ing, vol. 23, pp. 1397-1418, 2020.

[46] M. Naser and A. Alavi, “Insights into performance
fitness and error metrics for machine learning,”
arXiv preprint arXiv:2006.00887, 2020.

166 Informatica 48 (2024) 147-166 S.K. Pandey et al.

