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In the last decades, the field of global optimization has experienced significant growth, leading to the 

development of various deterministic and stochastic algorithms designed to tackle a wide range of 

optimization problems. One notable member of this family is the Social Group Optimization (SGO) 

algorithm. The Improving Phase and the Acquiring Phase are its two main fundamental phases. The 

two upgraded versions of SGO with a modified improvement phase are Enhanced Social Group 

Optimization (ESGO) and Enhanced Modified Social Group Optimization (EMSGO). The key 

enhancement in these variants focuses on honing, refining skills and abilities to achieve greater 

effectiveness. To assess the performance of ESGO and EMSGO, an extensive comparative analysis is 

conducted, involving twelve algorithms, including recently introduced, potent metaheuristic methods. 

Since both ESGO and EMSGO are modified algorithms, a comparison is conducted between these 

two algorithms and six recently introduced improved/hybrid algorithms. Subsequently, twenty-six 

real-world design problems from the mechanical and chemical engineering areas are addressed by 

applying both modified methods. The simulation results leave no doubt about the capability of ESGO 

and EMSGO to consistently achieve optimal solutions. Their robust performance, both in comparative 

evaluations and real-world applications, underscores their potential in solving challenging 

optimization tasks. 

Povzetek: Razširjeni algoritem za optimizacijo socialnih skupin (ESGO) izboljšuje izvirno 

optimizacijo socialnih skupin z dodajanjem faze posnemanja, kar povečuje raznolikost populacije in 

globalno iskanje rešitev. ESGO je bil uspešno uporabljen pri reševanju kompleksnih optimizacijskih 

problemov. 

 

1 Introduction 
Numerous optimization difficulties have emerged as a 

result of the technology's rapid progress and need to be 

addressed. These problems are common in many 

industries, such as minerals, machinery, chemicals, 

electronics, finance, and electronics. complex solution 

spaces and complex relationships of unknown variables 

are common features of real-world optimization problems. 

Large numbers of variables, complex nonlinear 

constraints, and significant computational effort are 

frequently present in these situations [1-2]. Because they 

are unable to balance accuracy and time cost, conventional 

optimization techniques have difficulties effectively 

addressing these nonproductivity discontinuity problems 

[3]. Metaheuristic optimization algorithms have 

demonstrated superior performance in balancing time cost 

and solution quality [4]. Because of their straightforward 

structure and absence of requirement that a problem be 

continuously derivable, metaheuristic optimization  

 

 

algorithms have been widely used to handle challenging 

optimization problems in natural and technical fields [5,6].  

Metaheuristic algorithms have advanced significantly 

in the last few decades in terms of hyperparameter self- 

adaptation, population structure evolution, and theoretical 

characterization of the search dynamics [7]. A focus of 

metaheuristic algorithm research is how to balance 

algorithm exploration and exploitation for improved 

performance. To achieve balance, many studies utilize 

other operators or modify the algorithm settings [8]. To 

balance the exploration and exploitation of TLBO, 

Satapathy et al. presented an alternative search pattern 

technique [9]. Some metaheuristic algorithms' search 

performance during optimization is significantly 

influenced by programmable factors like crossover rate, 

mutation rate, and population size. Adaptive parameter 

control has been thoroughly investigated by researchers in 

order to address the problem of parameter value control at 

various phases of the optimization process [10]. OTLBO, 

a variation of the teaching learning-based optimization 
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(TLBO) algorithm that Satapathy et al. presented with 

orthogonal design and generates an optimal offspring by a 

statistical optimal method where a new selection strategy 

is applied to decrease the number of generations and make 

the algorithm converge faster. [11]. Evolution of the 

population structure has a significant impact on how well 

metaheuristic algorithms perform in searches. By include 

elite factors in the hierarchical population structure, 

Zhong et al. devised the differential evolution (DE) 

algorithm variant known as EHDE [12]. Wang et al. 

presented a four-layered GSA variation with a greater 

search capability dubbed MLGSA, which was inspired by 

the two-layered structure GSA [13]. Theoretical 

examination of the search dynamics has recently drawn a 

lot of interest from scholars in addition to the 

aforementioned variables [14]. 

Metaheuristic optimization algorithms can generally 

be divided into four groups [15]: algorithms based on 

physics and chemistry, swarm intelligence, human 

intelligence, and evolutionary principles. The principles of 

natural evolution serve as the basis for evolutionary-based 

algorithms. A common example is genetic algorithms, and 

its proposal was motivated by Darwinian evolution [16]. 

Genetic algorithms provide solutions through the concept 

of crossover and mutation of species in nature. DE [17], 

evolutionary programming [18], and evolutionary 

strategies [19] are other evolutionary-based algorithms 

that have been developed. Swarm-based algorithms, 

which construct optimization models by replicating 

animal social behaviour, fall under the second 

classification. ACO [21] and Particle Swarm Optimization 

(PSO) [20] are two of the most used swarm-based 

algorithms. By exchanging data on each person involved 

in the optimization process, they offer solutions. A few 

examples of swarm-based algorithms include the 

Artificial Bee Colony (ABC) [22], Whale Optimization 

Algorithm (WOA) [23], Butterfly Optimization 

Algorithm (BOA) [24], Seagull Optimization Algorithm 

(SOA)[25], Sooty Term Optimization Algorithm 

(STOA)[26], Chimp Optimization 

Algorithm(ChOA)[27], Jelly Fish (JS)[28]. Human-based 

algorithms, which draw their inspiration from human 

behaviour, are the third group.  Some human-based 

algorithms are Teaching Learning Based Optimization 

(TLBO)[29], Social Group Optimization (SGO)[30], Past 

Present Future (PPF)[31], and Mine Blast Algorithm 

(MBA)[32]. Physical and chemical-based algorithms, 

which are motivated by the physical laws and 

cosmological chemical processes, are the fourth type. 

Gravitational Search Algorithm (GSA)[34] and Simulated 

Annealing (SA)[33] are two popular ones. Examples of 

physical and chemical-based algorithms include the Water 

Cycle Algorithm (WCA)[35], Ray Optimization(RO)[36], 

and Artificial Chemical Reaction Optimization 

Algorithm(ACROA)[37]. 

The SGO algorithm is a novel human-based algorithm 

proposed by Satapathy et al., inspired by the social 

behaviour of human for solving complex problem. It can 

be seen from literature that SGO has good performance on 

solving variety of real-world optimization problems [38-

46] like many outstanding algorithms. But the NFL 

theorem [47] encouraged us to improve the SGO even if 

their performance is competitive with that of other 

algorithms.  As observed in the literature, an algorithm 

may perform exceptionally well for a specific set of 

problems but often struggles with others. This 

phenomenon is supported by the No Free Lunch (NFL) 

theorem, which encourages researchers to propose new 

algorithms or improve existing ones. In this context, the 

SGO algorithm has been modified to enhance its 

capability in solving real-world problems. 

 

In this paper, the following key contributions are made: 

• The enhanced SGO algorithm is introduced in 

two forms, ESGO and EMSGO, which 

incorporate practical problem-solving 

mechanisms based on rational group dynamics, 

aligning with the foundational principles of SGO. 

• The performance of the proposed ESGO and 

EMSGO algorithms is evaluated using a 

comprehensive set of 23 benchmark test 

functions. When compared to contemporary 

state-of-the-art algorithms, these solutions 

demonstrate their competitiveness in providing 

efficient solutions to these test problems while 

exhibiting faster convergence. 

• Since both ESGO and EMSGO are modified 

algorithms, a comparison is conducted between 

these two algorithms and six recently introduced 

improved/hybrid algorithms. 

• To further assess the capabilities of ESGO and 

EMSGO, they are applied to tackle 26 chemical 

and mechanical design problems. In most cases, 

the algorithms yield optimal solutions for these 

real-world challenges. 

 

The subsequent sections of this paper are organized as 

follows: Section 2 presents a comprehensive review of the 

fundamental concepts of SGO and MSGO. Section 3 

provides a detailed description of the proposed ESGO and 

EMSGO algorithms. Section 4 verifies the efficacy of the 

improved strategies and the superiority of the modified 

algorithms by conducting experiments using classical test 

functions and addressing real-world optimization 

problems. Finally, in Section 5, the conclusions are 

presented, and avenues for future research are explored. 
 

2 Social group optimization and 

modified social group optimization  

2.1 Social group optimization (SGO) 

The SGO algorithm, which is intended to handle complex 

problems, takes inspiration from human social behaviour. 

According to this algorithm, members of a social group 
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are potential solutions since they each have the knowledge 

and abilities needed to solve the given problem. 

Individuals' human characteristics match the dimensions 

of the design factors in the problem. The Enhancing Phase 

and the Acquiring Phase are the two stages of the 

optimization process. 

Consider a social group denoted as P_i, with i ranging 

from 1 to pop_size, representing the group's individuals. 

Each individual, P_i, is characterized by traits (p_i1, p_i2, 

p_i3, ..., p_iD), where D signifies the defining dimensions. 

Every individual is associated with a fitness value, f_i, 

reflecting their fitness levels. 

Phase 1: Improving Phase  

In this phase, the best individual, 'gbest,' shares 

knowledge with the entire group, enhancing their 

collective knowledge. Each individual updates their 

information based on 'gbest' according to the formula: 

 

  Pnew_i = c * P_i + r * (gbest - P_i)               (1)  

 

The new solution, Pnew_i , is accepted only if it 

improves fitness. Here, 'r' is a random number from U(0, 

1), and 'c' is the self-introspection parameter (c=0.2). 

Phase 2: Acquiring Phase 

In this phase, an individual interacts with the best 

performer (best_P) and engages in random interactions 

with other group members to acquire knowledge. The 

update is determined by:  

 

 Randomly select one person P_r, where i ≠r  

 

If f(P_i) < f(P_r) 

         Pnew_i = P_i + r_1*(P_i - P_r) + r_2 * (best_P -          

                           P_i) 

Else 

         Pnew_i = P_i + r_1 * (P_r - P_i) + r_2 * (best_P -    

                          P_i)   

End if                                                                        (2) 

 

The new solution is accepted if it enhances fitness. 

Here, r_1, r_2, and r_3 are random numbers from U(0, 1), 

introducing stochasticity. 'lb' and 'ub' represent lower and 

upper bounds of design variables. For detailed insights, 

refer to the paper [30]. 

 

2.2 Modified social group optimization 

(MSGO) 
In the MSGO, the Improving Phase remains same as like 

SGO. Only Acquiring Phase has been modified in the 

following manner: 

Phase 2: Acquiring Phase  

A social group member engages in interactions with 

the best performer (best_P) in the same group during the 

Acquiring Phase. In order to learn, they simultaneously 

strike up conversations at random with other group 

members. When the other person knows more than the 

interacting person does, and the interacting person has a 

higher Self-Awareness Probability (SAP) of learning that 

knowledge, new knowledge is acquired. SAP is a measure 

of an individual's ability to learn from others. The 

following is an outline of the Acquiring Phase: 

 

For i = 1 to pop_size  

        Randomly select one person P_r, where i ≠ r 

        If f(P_i) < f(P_r) 

            If rand > SAP 

Pnew_i = P_i + r_1 * (P_i - P_r) + r_2 *  

(best_P - P_i)  

            Else  

                 Pnew_i = lb + r_3 * (ub - lb)  

            end if  

       Else 

                   Pnew_i = P_i + r_1 * (P_r - P_i)+ r_2 *      

                         (best_P - P_i)     

                                    

       End If  

End for                                                           (3)  

 

The acceptance of the new solution, Pnew_i , is 

contingent upon its ability to yield enhanced fitness 

relative to the current solution. In this context, r_1, r_2, 

and r_3 denote three independent random numbers drawn 

from a uniform distribution U(0, 1), introducing stochastic 

elements into the algorithm. The terms 'lb' and 'ub' 

represent the lower and upper bounds of the corresponding 

design variable, and the SAP is fixed at 0.7. For a more in-

depth understanding of the SGO algorithm, please consult 

the referenced paper [15]. 

 

3 Proposed ESGO (Enhanced SGO) 

and EMSGO (Enhanced MSGO) 

3.1 ESGO, and EMSGO algorithms 
To enhance or refine a skill or ability to a higher level of 

effectiveness in the SGO algorithm, the Improving phase 

undergoes the following modifications. 

 

Initially, a subset of the best-performing individuals (gbest 

persons) is selected from the social group. The knowledge 

level of each individual within this group is then enhanced 

through interactions with these superior (gbest) persons. 

As the iterations progress, the number of members in the 

gbest group diminishes. Eventually, only one dominant 

(gbest) individual remains within the social group. This 

modification of improving phase is adapted in the 

following manner: 

 

1) Calculate the number of gbest individuals (NG): NG 

= floor(0.1 * pop_size * (1 - iter / max_iter)) + 1 

2) Sort the fitness values in descending order and store 

the corresponding best values: 

             [value_best] = sort(f, 'descend') 

3) For each of the top NG individuals (indexed as j): 

             for j = 1:NG 

GG_j = P_best_j                (4) 

GGf_j = value_j 

                    End 
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4) Iterate through the entire population (i = 1 to 

pop_size): 

   For i = 1 to pop_size  

         Randomly select one individual, GG_r. 

 

   If the fitness value of GG_r (GGf_r) < fitness  

       value of the current individual (f_i): 

           Pnew_i = c * P_i + r_4 * (GG_r - P_i)       (5) 

   Else 

           Pnew_i = c * P_i + r_5 * (P_i - GG_r) 

   End if 

 

Only accept the new solution, Pnew_i, if it results in 

a higher level of fitness than the existing solution. Here, 

r_4 and r_5 are two independent random numbers drawn 

from a uniform distribution U(0, 1). 

 

The ESGO and EMSGO algorithms are derived by 

replacing Improving phase by the above modified 

Improving phase into the SGO and EMSGO algorithms, 

respectively. 

 

3.2 Phases of ESGO and EMSGO algorithm, 

Exploration and Exploitation concept  
Each of the two phases constituting the ESGO and 

EMSGO algorithms emphasizes distinct aspects of 

exploration and exploitation within the optimization 

framework. 

 

a) Improving Phase (Exploration Emphasis): Initially, a 

subset of the top-performing individuals (referred to 

as "gbest persons") is chosen from the social group. 

The individuals then undergo a process of knowledge 

enhancement through interactions with these superior 

gbest persons. As the iterations progress, the size of 

the gbest group gradually diminishes, eventually 

leaving only one dominant gbest individual within the 

social group. This adjustment in the improving phase 

facilitates improved knowledge transfer among 

individuals, thereby enhancing their exploration 

capabilities more rapidly. Throughout this phase, the 

primary focus is on exploration. 

 

b) Acquiring Phase (Transition to Exploitation): A 

social group member participates in a discussion with 

the group's top performer during this period. They 

also strike up conversations at random with other 

group members in an effort to learn more. When 

interacting with someone who knows more, an 

individual absorbs new information because they are 

more likely to have a higher Self-Awareness 

Probability (SAP) for learning that information. SAP 

is a measure of an individual's ability to learn from  

c) others. At this point, people start using the knowledge 

they have learned for optimization, marking the shift 

from exploration to exploitation. 

 

 

 

3.3 Discussion of computational complexity of 

ESGO and EMSGO algorithms 
BigO (TSD + TNC_f), where T is the number of iterations, 

S is the population size or the number of agents, C_f is the 

cost of function evaluation, and D is the problem 

dimension, represents the computational complexity of 

SGO. 

 

In analysing the temporal complexity of most 

algorithms, three main factors are usually taken into 

account:  

a. BigO (SD) computational complexity is usually 

associated with population initialization, where S 

denotes population size and D denotes problem 

dimension. 

b. BigO (SC_f) is frequently used to limit the 

computational cost of the initial function 

evaluation (FE). 

c. BigO (TSD + TNC_f) usually sets a limit on the 

main loop's computational complexity. 

 

Consequently, the overall computational complexity 

of the ESGO and EMSGO algorithms remains the same as 

the SGO algorithm, as both the ESGO and EMSGO 

algorithms are derived by introducing a modified 

improving phase, where the computational complexity of 

the modified improving phase is BigO (TSD + TNC_f). 

 

It follows that SGO, EMSGO, and EMSGO have 

similar computational complexity, which is represented by 

the notation BigO (TSD + TNC_f). 

  

Algorithm 1 gives the pseudo-code for the proposed 

ESGO and EMSGO algorithm. 

Algorithm 1: Pseudo code of ESGO /EMSGO 

algorithm 

1. Set up the search agent population (persons). 

2. Algorithm parameters definition: C, SAP 

3. While iter < Max_iter: 

 Determine the best current solution by doing fitness 

calculations 

  Select the best solutions and make gbest persons 

group. 

   Within the population (pop_size), for every agent i: 

                  Update the person using Equation 5. 

    End for. 

Perform fitness calculations and update the current 

position of persons 

  Update the current best solution. 

   

 Within the population (pop_size), for every agent i: 

Update the person using Equation 2 for ESGO 

algorithm/ Update the person using Equation 3 

for EMSGO algorithm 

 End for 

Perform fitness calculations and update the current 

position of persons 

Update the current best solution. 

     

4.   End while. 
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4 Simulation, experimental result, 

and discussions 

The performance of the ESGO and EMSGO algorithms is 

demonstrated in this paper through four experiments. In 

experiment 1, both algorithms are compared with each 

other and also with their original algorithm SGO and 

MSGO respectively. In the second experiment, the 

performances of both algorithms are compared with 

twelve state-of-the-art algorithms such as African vultures 

optimization algorithm (AVOA) [48], DE 

[49], Exponential distribution optimizer (EDO)[50], 

GWO [51], Kepler optimization algorithm (KOA) 

[52], Light Spectrum Optimizer (LSO) [53], Mantis 

Search Algorithm (MSA)[54], Nutcracker optimizer 

algorithm(NOA) [55], Reptile Search Algorithm (RSA) 

[56], Slime mould algorithm (SMA) [57], Spider wasp 

optimizer(SWO)[58], and WOA [23]. In the 3rd 

experiment, the performance of both algorithms is 

compared with six improved/hybrid recently introduced 

algorithms. In the 4th experiment, both algorithms show 

their performance in solving twenty-six real-world 

constrained optimization problems of mechanical and 

chemical design problems. 

Every novel optimization algorithm must undergo 

rigorous evaluation using well-defined benchmark 

functions to assess and validate its performance. Although 

there are numerous benchmark functions available, 

however there is no standardized set of benchmarks that 

are agreed upon for evaluating new algorithms. In order to 

validate and benchmark the performance of our proposed 

ESGO and EMSGO algorithms, the simulations are 

conducted on a set of twenty-three benchmark functions. 

These carefully selected benchmark functions serve as a 

comprehensive testbed for assessing various aspects of the 

algorithms, including their ability to achieve rapid 

convergence, escape local optima, and prevent premature 

convergence. The selection of these benchmark functions 

is motivated by their widespread use in existing literature 

[57, 59-63]. Out of the twenty-three functions, seven are 

unimodal benchmark functions (F1–F7), ideal for 

benchmarking the exploitation capabilities of algorithms 

due to their single global optimum. Six are multimodal 

benchmark functions, while ten are fixed-dimensional 

multimodal benchmark functions. Each of the multimodal 

functions, from F8 to F23, contains a multitude of local 

optima, making them well-suited for evaluating the 

 exploration capabilities of algorithms. For a 

comprehensive understanding of these benchmark 

functions, detailed descriptions can be found in reference 

[9], and graphical representations are provided in Figure 

1. Experiments 1-3 use these benchmark functions to 

validate the performance comparisons among algorithms.  

The detailed descriptions of twenty-six real-world 

constrained optimization problem of mechanical and 

chemical design problems are given in [64] which is used 

in experiment 4 to validate the performance algorithms. 

Implemented on the Windows 10 operating system, 

MATLAB 2016a is employed to execute all algorithms. 

The simulations are conducted on a laptop equipped with 

an Intel Core i5 processor and 8 GB of memory. 

 

4.1 Algorithm validation 
To assess the performance of the ESGO and EMSGO 

algorithms, a set of 23 benchmark functions is utilized, 

with results compared against twelve different 

metaheuristic algorithms, as previously outlined. In 

Experiment 1, a comparative analysis is conducted 

between ESGO, SGO, MSGO, and EMSGO, with the 

results presented in Table 2. In Experiment 2, the modified 

algorithms are compared with the twelve other algorithms, 

and the comparative outcomes are showcased in Table 3. 

Similarly, in Experiment 3, ESGO and EMSGO are 

compared with six recently introduced improved/hybrid 

algorithms, with the results imported in Table 5. 

Throughout these experiments, a fixed parameter, 

max_FEs, is maintained at 15,000. Consequently, the 

number of iterations and population size may vary for 

different algorithms. The parameter configurations for the 

algorithms align with widely accepted settings utilized by 

various researchers, as detailed in Table 1. 

 

Experiment 1: The performance comparison 

of the SGO family of algorithms  
In this specific experiment, the performance of the SGO 

algorithm family, which includes ESGO, SGO, EMSGO, 

and MSGO, is assessed through comparative analysis. To 

ensure the robustness and statistical significance of the 

findings, the experiment is conducted 30 times. The 

outcomes are presented in Table 2, detailing key metrics 

such as the best (BEST), worst (WORST), average 

(MEAN), and standard deviation (SD) of fitness solutions. 

Noteworthy results are highlighted in bold within the 

tables, and the symbol '∥' denotes that the value remains 

consistent with the preceding row. 

 

Discussion 
It is seen from Table 2 that the ESGO algorithm reaches 

the global optimum for twelve functions, only best 

solution reaches optimal solution in four cases, and in four 

cases find good solutions in compare to others. The 

EMSGO algorithm reaches the global optimum for fifteen 

functions, only best solution reaches optimal solution in 

one case, and in three cases find good solutions in compare 

to others. The MSGO algorithm reaches the global 

optimum for thirteen functions, and only best solution 

reaches optimal solution in two cases. Similarly, the SGO 

algorithm reaches the global optimum for eight functions, 

only best solution reaches optimal solution in three cases, 

and in one case find good solutions in compare to others. 

Hence, it can be concluded that both the ESGO and 

EMSGO algorithms achieve improved results.
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Table 1: Parameter setting of algorithms compared to the SGO and MSGO algorithms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

     

Sl. No. Algorithms Parameters Values 

1 SGO C 0.2 

 MSGO C 
SAP 

0.2 
0.7 

2 GWO Control parameter [2, 0] 

3 AVOA p1 

p2 
p3 

alpha 

betha 
gamma 

0.6 

0.4 
0.6 

0.8 

0.2 
2.5 

4 SMA Parameter 0.03 

5 EDO f= 2*rand-1 
a=f^10 

b=f^5 

c=d*f 

 

6 DE F 

Cr 

0.5 

0.5 

7 KOA Tc 

M0 
lambda 

3 

0.1 
15 

8 LSO Ps 

Pe 
Ph 

B 

0.05 

0.6 
0.4 

0.05 

9 MSA p 

A 
a 

P 

Alp 
Pc 

0.5 

1.0 
0.5 

2 

6 
0.2 

10 NOA Alpha 

Pa2 
Prb 

0.05 

0.2 
0.2 

11 RSA Alpha 

value 

Beta 

0.1 

0.1 

0.1 

12 SWO TR 

Cr 

N_min=20 

0.3. 

0.2 

20 

13 WOA Spiral updating probability 

Shrinking encircling 

Random search ability 

0.5 

0.5 

0.1 

14 ESGO C 0.2 

15 EMSGO C 

SAP 

0.2 

0.7 
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Figure 1: Graphical representation of classical benchmark functions 

 

Table 2: Comparison results of family of SGO algorithms 

Algo/Fu

nctions 

 F1 F2 F3 F4 F5 F6 

ESGO BEST 0 4.1803e-199 8.2277e-149 5.9334e-140 3.4173e-09 0 

WORST 0 1.9582e-189 3.3997e-140 7.4641e-135 2.8200e-08 1.8489e-32 

MEAN 0 1.9721e-190 9.1732e-145 1.4414e-135 1.3524e-08 4.9304e-33 

STD 0 0 1.2569e-146 2.4817e-135 8.3790e-09 7.4354e-33 

 

SGO BEST 9.2725e-206 1.5010e-103 1.2056e-205 1.1175e-103 25.2399 1.4422e-05 

WORST 1.4198e-205 1.8192e-103 2.8262e-205 1.2648e-103 26.5470 7.4685e-04 

MEAN 1.2120e-205 1.6575e-103 2.1541e-205 1.2011e-103 25.9628 1.7258e-04 

STD 0 1.0090e-104 0 4.4263e-105 0.3815 2.4597e-04 

 

EMSG

O 

BEST 0 1.1289e-259 8.2056e-239 2.5451e-130 0 4.1842e-05 

WORST 0 2.4844e-196 5.7833e-179 2.1033e-125 1.2171e-04 5.3231e-04 

MEAN 0 2.5618e-197 5.7883e-180 2.3576e-126 1.4548e-05 2.4457e-04 

STD 0 0 0 6.5915e-126 3.8171e-05 1.7999e-04 

 

MSGO BEST 3.0864e-212 2.7434e-106 1.6631e-207 7.0946e-106 0 2.4271e-06 

WORST 1.1362e-205 1.7802e-103 6.3071e-195 4.8986e-104 0.1337 0.0215 

MEAN 4.1136e-206 7.9570e-104 6.3071e-196 1.8810e-104 0.0244 0.0112 

STD 0 5.4012e-104 0 1.5099e-104 0.0518 0.0075 

 

Algo/Fu

nctions 

 F7 F8 F9 F10 F11 F12 

 

ESGO BEST 2.0781e-05 -1.0832e+04 0 8.8818e-16 0 1.5705e-32 

WORST 8.1608e-05 -7.5157e+03 28.8538 8.8818e-16 0.0123 1.5705e-32 

MEAN 4.3626e-05 -9.0179e+03 17.3123 8.8818e-16 0.0012 1.5705e-32 

STD 2.0376e-05 1.1567e+03 10.2887 0 0.0039 2.8850e-48 

 

SGO BEST 5.0521e-06 -9.6243e+03 0.0039 '∥'  
  

0 2.0146e-06 

WORST 2.5723e-04 -5.7770e+03 0.0039 0 4.4800e-05 

MEAN 1.2684e-04 -7.6685e+03 0.0039 0 1.0564e-05 

STD 8.3738e-05 1.4999e+03 0 0 1.2502e-05 

 

EMSG

O 

BEST 9.1415e-06 -1.2569e+04 0 '∥' '∥' 1.0378e-07 

WORST 6.1383e-05 -1.2569e+04 0   2.9400e-05 
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Experiment 2: The performance comparison 

with state-of-the-art metaheuristics 

algorithms 
 

Based on the results obtained from Experiment 1, it is 

evident that ESGO and EMSGO exhibit superior 

performance in terms of fitness function evaluation when 

compared to other algorithms. Consequently, in this 

experiment, ESGO and EMSGO are subjected to a 

comprehensive comparison with the remaining twelve 

algorithms to validate their performance. The experiment 

is repeated 30 times, with the statistical results—including 

the BEST, WORST, MEAN, and SD of fitness solutions 

presented in Table 3. This rigorous analysis is designed to 

ensure stability and establish statistical significance, with 

the most remarkable results highlighted in bold in the 

MEAN 3.6674e-05 -1.2569e+04 0   8.4505e-06 

STD 2.0307e-05 5.9041e-05 0   1.1504e-05 

 

MSGO BEST 1.2110e-05 -1.2569e+04 '∥' '∥' '∥' 7.5531e-07 

WORST 1.6058e-04 -1.2569e+04    7.5531e-07 

MEAN 8.3206e-05 -1.2569e+04    7.0659e-05 

STD 6.1619e-05 0.0559    1.7495e-04 

 

Algo/Fu

nctions 

 F13 F14 F15 F16 F17 F18 

ESGO BEST 1.3498e-32 0.9980 3.0749e-04 -1.0316 0.3979 3.0000 

WORST 0.0110 0.9980 3.0749e-04 -1.0316 0.3979 3.0000 

MEAN 0.0033 0.9980 3.0749e-04 -1.0316 0.3979 3.0000 

STD 0.0053 0 1.0537e-19 0 0 1.0978e-15 

        

SGO BEST 3.2121e-05 0.9980 3.0749e-04 '∥' '∥' 3.0000 

WORST 0.0979 0.9980 3.1132e-04   3.0000 

MEAN 0.0110 0.9980 3.0867e-04   3.0000 

STD 0.0307 7.4015e-17 1.3701e-06   5.1279e-16 

 

EMSG

O 

BEST 1.0838e-09 0.9980 3.0749e-04 '∥' '∥' 3.0000 

WORST 9.8844e-05 0.9980 3.0749e-04   3.0000 

MEAN 2.5227e-05 0.9980 3.0749e-04   3.0000 

STD 3.6575e-05 0 1.0537e-20   0 

 

MSGO BEST 4.0152e-06 '∥' 3.0749e-04 '∥' '∥' 3.0000 

WORST 0.0110  7.7817e-04   3.0000 

MEAN 0.0024  5.0234e-04   3.0000 

STD 0.0037  2.0656e-04   2.1251e-16 

 

Algo/Fu

nctions 

 F19 F20 F21 F22 F23 

 

 

ESGO BEST -3.8628 -3.3220 -10.1532 -10.4029 -10.5364  

WORST -3.8628 -3.2031 -10.1532 -10.4029 -10.5364  

MEAN -3.8628 -3.2982 -10.1532 -10.4029 -10.5364  

STD 9.3622e-16 0.0501 1.3240e-15 1.6748e-15 1.32149e-15  

 

SGO BEST '∥' -3.3220 -5.0552 -10.4029 -5.1756  

WORST  -3.2031 -5.0552 -5.0877 -5.1285  

MEAN  -3.2863 -5.0552 -5.6192 -5.1332  

STD  0.0574 0 1.6808 0.0149  

 

EMSG

O 

BEST '∥' -3.3220 -10.1532 -10.4029 -10.5364  

WORST  -3.3220 -10.1532 -10.4029 -10.5364  

MEAN  -3.3220 -10.1532 -10.4029 -10.5364  

STD  9.2038e-09 0 1.8724e-15 2.7773e-15  

 

MSGO BEST '∥' -3.3220 -10.1532 -10.4029 -10.5364  

WORST  -3.2031 -10.1532 -10.4029 -10.5364  

MEAN  -3.2863 -10.1532 -10.4029 -10.5364  

STD  0.0574 1.3240e-15 1.6748e-15 2.1349e-15  
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table, and the symbol '∥' indicating that its value is 

equivalent to the value in the preceding column. Table 4 

reports the p-values derived from the WRS test [65] at a 

significance level of 5% for ESGO(E) versus other 

approaches and EMSGO(EM) versus other approaches. 

When p-values fall below 0.05, it indicates a rejection of 

the null hypothesis, while "N" signifies that the input 

values are similar. Additionally, in Table 4, "-" indicates 

that the performance of other approaches is inferior, "+" 

signifies it is superior, and "S" suggests a similar 

performance when compared to ESGO and EMSGO. 

 

Table 3: Comparison Results of ESGO, EMSGO and other algorithms 
Algo/F
unction

s 

 F1 F2 F3 F4 F5 F6 

ESGO BEST 0 5.2836e-199 3.5401e-46 3.1051e-142 7.4975e-10 0 

WORST 0 3.1359e-190 2.6954e-42 1.9962e-134 2.4696e-08 0 
MEAN 0 3.7878e-191 8.1478e-43 2.7076e-135 8.9214e-09 0 

SD 0 0 1.0752e-42 6.1875e-135 9.9187e-09 0 

 
EMSG

O 

BEST 0 6.9340e-263 2.4211e-243 7.1047e-133 0 9.7104e-07 

WORST 0 1.7585e-199 3.1882e-186 4.3710e-125 0.0032 3.8264e-04 
MEAN 0 1.8564e-200 3.1982e-187 8.3185e-126 4.2652e-04 1.0457e-04 

SD 0 0 0 1.6478e-125 0.0010 1.4912e-04 

        
AVOA BEST 7.7025 0.0334 53.4364 0.0490 30.7586 37.96

52 

WORST 2.3803e+04 72.2977 6.9949e+04 67.0993 8.7707e+07 2.6602e+04 
MEAN 8.9613e+03 46.2646 3.8489e+04 38.0639 2.9522e+07 8.2425e+03 

SD 1.0486e+04 26.2007 2.6043e+04 26.1463 3.8485e+07 1.1002e+04 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 
P-value(EM) 8.7450e-05 '∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 

        
DE 

 

BEST 4.4059e+04 163.1432 8.4222e+04 80.8065 1.9217e+08 4.2435e+04 

WORST 6.5836e+04 1.7386e+10 1.0999e+05 89.0112 2.3023e+08 6.2838e+04 

MEAN 5.8571e+04 3.4780e+09 9.4515e+04 85.4072 2.0369e+08 5.6172e+04 
SD 6.4844e+03 5.8684e+09 8.7802e+03 2.5891 1.1840e+07 6.4762e+03 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

P-value(EM) 8.7450e-05 '∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 
 

EDO BEST 1.4834e-102 5.0862e-56 0 1.5668e-51 28.7129 0.550

8 

WORST 8.0060e-85 1.2305e-40 5.2972e-76 3.9187e-40 28.7434 1.108

0 

MEAN 1.0280e-85 1.2404e-41 5.5843e-77 3.9239e-41 28.7295 0.861
5 

SD 2.5035e-85 3.8879e-41 1.6674e-76 1.2390e-40 0.0105 0.175
7 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

 P-value(EM) 8.7450e-05 '∥'  0.0028 '∥'  1.7265e-04 1.8267e-04 
 

GWO BEST 1.1432e+04 45.8397 1.9213e+04 45.0504 1.1085e+07 1.0877e+04 

WORST 1.9109e+04 1.0544e+03 4.3169e+04 56.7561 2.6838e+07 1.8265e+04 
MEAN 1.4651e+04 209.3304 3.1801e+04 51.0770 1.7175e+07 1.5388e+04 

SD 2.7088e+03 310.0702 7.1282e+03 4.0340 5.5991e+06 2.7820e+03 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 
 P-value(EM) 8.7450e-05 '∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 

 

KOA BEST 5.4244e+04 2.5173e+06 6.4049e+04 77.5024 1.6814e+08 4.2841e+04 
WORST 6.5658e+04 4.3553e+10 1.2905e+05 86.0408 2.2523e+08 6.7207e+04 

MEAN 6.0795e+04 1.3480e+10 9.6211e+04 83.4309 2.0486e+08 5.8797e+04 

SD 3.7316e+03 1.5055e+10 2.6865e+04 2.6637 1.9144e+07 8.3548e+03 
P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

 P-value(EM) 8.7450e-05 '∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 

 
LSO BEST 0 0 0 0 29 7.500

0 

WORST 0 0 0 0 29 7.500
0 

MEAN 0 0 0 0 29 7.500

0 
SD 0 0 0 0 0 0 

P-value(E) NaN 6.3864e-05 6.3864e-05 6.3864e-05 6.3864e-05 1.5938e-05 

 P-value(EM) 0.3681 '∥'  '∥'  '∥'  5.9363e-05 6.3864e-05 
 

MSA BEST 3.8432e+04 1.0814e+05 4.1720e+04 69.9315 8.1597e+07 4.0168e+04 

WORST 3.8432e+04 1.0814e+05 4.1720e+04 69.9315 8.1597e+07 4.0168e+04 
MEAN 4.3015e+04 2.0010e+06 5.2453e+04 72.9467 1.0748e+08 4.4521e+04 
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SD 2.6972e+03 2.2635e+06 5.9061e+03 1.8691 1.6092e+07 2.4725e+03 
P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

 P-value(EM) 8.7450e-05 '∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 

 
NOA BEST 4.8660e+04 2.9131e+08 7.3451e+04 77.6661 1.4000e+08 5.1567e+04 

WORST 6.6244e+04 8.0625e+10 1.3115e+05 86.9414 2.2977e+08 6.3968e+04 

MEAN 5.7156e+04 2.3403e+10 1.0086e+05 83.1270 1.8809e+08 5.8477e+04 

SD 6.0233e+03 2.7126e+10 2.0704e+04 3.2065 3.0255e+07 3.7992e+03 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

 P-value(EM) 8.7450e-
05 

'∥'  '∥'  '∥'  1.7265e-04 1.8267e-04 
 

RSA BEST 0 0 0 0 29 7.500

0 

WORST 0 0 0 0 29 7.500

0 

MEAN 0 0 0 0 29 7.500
0 

SD 0 0 0 0 0 0 

P-value(E) NaN 6.3864e-05 6.3864e-05 6.3864e-05 6.3864e-05 1.5938e-05 

 P-value(EM) 0.3681 '∥'  '∥'  '∥'  '∥'  '∥'  
 

SMA BEST 4.1063e-05 0.0080 0.0037 0.1079 28.9931 7.191

9 

WORST 0.1126 0.5269 292.4747 0.3502 30.1790 9.248
6 

MEAN 0.0402 0.1431 71.5265 0.1975 29.4534 7.757
6 

SD 0.0342 0.1830 98.6191 0.0770 0.3974 0.650

8 
P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8165e-04 6.3864e-05 

P-value(EM) '∥'  '∥'  '∥'  '∥'  '∥'  1.8267e-04 

 
SWO BEST 4.8980e+04 3.6923e+05 5.6283e+04 78.8348 1.6983e+08 5.3525e+04 

WORST 6.3486e+04 7.6522e+10 1.0584e+05 84.7210 2.3214e+08 6.6370e+04 

MEAN 5.8234e+04 1.3004e+10 8.6366e+04 82.0490 1.9669e+08 5.8365e+04 

SD 4.7426e+03 2.4953e+10 1.4348e+04 2.0315 2.2956e+07 4.1333e+03 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

P-value(EM) '∥'  '∥'  '∥'  '∥'  '∥'  1.8267e-04 
 

WOA BEST 1.0763e+04 37.4285 7.9057e+04 53.3947 4.6152e+06 8.5596e+03 

WORST 2.2247e+04 171.652 1.5291e+05 86.0943 6.9715e+07 3.7200e+04 

MEAN 1.6084e+04 80.5780 1.1317e+05 76.7905 2.7538e+07 1.8897e+04 

SD 4.4502e+03 42.3134 2.3395e+04 10.7489 2.0558e+07 8.2834e+03 

P-value(E) 6.3864e-05 1.8267e-04 1.8267e-04 1.8267e-04 1.8267e-04 6.3864e-05 

 P-value(EM) '∥'  '∥'  '∥'  '∥'  '∥'  1.8267e-04 

Algo/F
unction

s 

 F7 F8 F9 F10 F11 F12 

ESGO BEST 4.3625e-05 -1.1089e+04 0 8.8818e-16 0 1.5705e-32 

WORST 1.3583e-04 -7.9700e+03 23.8790 8.8818e-16 0 1.6109e-32 

MEAN 6.9865e-05 -8.8463e+03 12.1385 8.8818e-16 0 1.5802e-32 

SD 2.9670e-05 962.9930 9.0560 0 0 1.5117e-34 

        

EMSG

O 

BEST 2.3125e-05 -1.2569e+04 0 8.8818e-16 0 7.0940e-12 

WORST 6.3363e-05 -1.2569e+04 0 8.8818e-16 0 9.1524e-06 
MEAN 4.3487e-05 -1.2569e+04 0 8.8818e-16 0 1.8881e-06 

SD 1.3955e-05 7.2809e-04 0 0 0 2.9886e-06 

        
AVOA BEST 0.2208 -4.1571e+03 55.3583 1.1428 1.0421 0.244

4 

WORST 23.8537 -3.2544e+03 325.4436 12.2769 229.6541 5.5755e+07 
MEAN 11.7494 -3.6179e+03 217.0793 6.9852 44.9105 5.7285e+06 

SD 9.9263 256.5975 108.4945 3.8592 89.3992 1.7581e+07 

P-value(E) 1.8267e-04 1.8267e-04 6.3864e-05 6.3864e-05 6.3864e-05 1.4939e-04 
 P-value(EM) '∥'  '∥'  '∥'  '∥'  '∥'  '∥'  

 
DE 

 

BEST 66.7799 -3.3978e+03 335.9169 20.4348 462.1846 2.8041e+08 

WORST 108.1115 -2.3055e+03 415.4900 20.6292 588.1518 5.4382e+08 

MEAN 93.8855 -2.7284e+03 398.0476 20.5596 516.8565 4.0688e+08 
SD 12.6976 315.6260 22.9089 0.0620 37.1096 8.8929e+07 

P-value(E) 1.8267e-04 1.8267e-04 1.7861e-04 6.3864e-05 6.3864e-05 1.4939e-04 

 P-value(EM) '∥'  '∥'  6.3864e-05 '∥'  '∥'  1.8267e-04 
 

EDO BEST 5.6818e-05 -1.2566e+04 0 8.8818e-16 0 0.023

9 



Enhanced Social Group Optimization algorithm for Solving… Informatica 49 (2025) 151–176 161 

WORST 7.1180e-04 -1.2352e+04 0 8.8818e-16 0 0.096
9 

MEAN 2.8708e-04 -1.2489e+04 0 8.8818e-16 0 0.064

7 
SD 2.2037e-04 69.8756 0 0 0 0.024

6 

P-value(E) 0.0017 1.8267e-04 0.00 NaN NaN 1.4939e-04 
 P-value(EM) 4.3964e-04 '∥'  NaN NaN NaN 1.8267e-04 

        
GWO BEST 3.9947 -3.8122e+03 231.6198 16.0005 106.2397 1.0871e+06 

WORST 11.1918 -2.2596e+03 311.4545 18.2003 185.9527 4.0395e+07 

MEAN 6.2076 -2.8373e+03 272.2285 17.4764 147.1419 1.5626e+07 
SD 2.4455 574.3139 30.7015 0.6500 28.2347 1.4349e+07 

P-value(E) 1.8267e-04 1.8267e-04 1.7861e-04 6.3864e-05 6.3864e-05 1.4939e-04 

 P-value(EM) 1.8267e-04 1.8267e-04 1.1067e-04 6.3864e-05 6.3864e-05 1.8267e-04 
 

KOA BEST 77.6168 -5.4177e+03 367.0005 19.9668 387.9851 3.1296e+08 

WORST 112.4230 -5.4177e+03 424.7784 19.9668 575.4793 5.0309e+08 
MEAN 97.2831 -5.4177e+03 399.6969 19.9668 516.5733 4.3850e+08 

SD 12.8711 9.5869e-13 22.5140 0 54.2910 6.1302e+07 

P-value(E) 1.8267e-04 6.3864e-05 1.7861e-04 1.5938e-05 6.3864e-05 1.4939e-04 

 P-value(EM) '∥'  '∥'  1.1067e-04 '∥'  '∥'  1.8267e-04 

 

LSO BEST 0.0258 -5.0565e+03 0 8.8818e-16 0 1.669
0 

WORST 0.1386 -2.3825e+03 0 8.8818e-16 0 1.669
0 

MEAN 0.0685 -3.1907e+03 0 8.8818e-16 0 1.669

0 

SD 0.0412 1.0299e+03 0 0 0 2.3406e-16 

P-value(E) 1.8267e-04 1.8165e-04 0.0022 NaN NaN 4.9177e-05 

 P-value(EM) '∥'  '∥'  NaN NaN NaN 6.3864e-05 
 

MSA BEST 45.5181 -4.4134e+03 336.7071 19.3659 366.8070 9.5920e+07 

WORST 45.5181 -4.4134e+03 336.7071 19.3659 366.8070 9.5920e+07 
MEAN 51.7201 -4.0591e+03 346.9462 19.7710 398.6249 1.7816e+08 

SD 4.7908 195.7146 6.9562 0.1759 26.6722 3.8232e+07 

P-value(E) 1.8267e-04 1.8267e-04 1.7861e-04 6.3864e-05 6.3864e-05 1.4939e-04 
 P-value(EM) '∥'  '∥'  1.1067e-04 '∥'  '∥'  1.8267e-04 

        
NOA BEST 79.4873 -5.4177e+03 364.2811 19.9668 471.3946 2.5340e+08 

 WORST 120.1875 -5.4177e+03 434.5688 19.9668 592.1890 5.7029e+08 

MEAN 103.4432 -5.4177e+03 403.0857 19.9668 565.1993 4.2632e+08 

SD 14.0245 9.5869e-13 25.9011 0 35.3447 1.1130e+08 

P-value(E) 1.8267e-04 6.3864e-05 1.7861e-04 1.5938e-05 6.3864e-05 1.4939e-04 

P-value(EM) '∥'  '∥'  1.1067e-04 '∥'  '∥'  1.8267e-04 
 

RSA 

 

BEST 7.1089e-04 -3.0950e+03 0 8.8818e-16 0 1.6690 

WORST 0.0103 -1.9350e+03 0 8.8818e-16 0 1.6690 
MEAN 0.0047 -2.3866e+03 0 8.8818e-16 0 1.6690 

SD 0.0031 401.2004 0 0 0 2.3406e-16 
P-value(E) 1.8267e-04 1.8267e-04 0.0022 NaN NaN 4.9177e-05 

P-value(EM) '∥'  '∥'  NaN NaN NaN 6.3864e-05 

 
SMA BEST 4.2446e-04 -1.2555e+04 0.0027 0.0020 0.0036 0.831

4 

WORST 0.0740 -3.7818e+03 26.9253 0.0524 0.0880 1.662
2 

MEAN 0.0293 -7.2608e+03 4.1987 0.0282 0.0487 1.254

6 
SD 0.0217 3.8479e+03 8.7322 0.0167 0.0305 0.287

6 

P-value(E) 1.8267e-04 0.3847 0.3840 6.3864e-05 6.3864e-05 1.4939e-04 
P-value(EM) '∥'  1.8267e-04 1.1067e-04 '∥'  '∥'  1.8267e-04 

 

SWO BEST 66.0314 -3.3444e+03 375.6053 20.1243 423.7847 2.1526e+08 
WORST 102.7668 -2.6099e+03 429.9510 20.5447 550.9944 4.6015e+08 

MEAN 90.2103 -2.9264e+03 407.7917 20.3921 507.9397 3.4502e+08 

SD 11.9828 225.8055 17.5389 0.1530 47.6517 6.2470e+07 
P-value(E) 1.8267e-04 1.8267e-04 1.7861e-04 6.3864e-05 6.3864e-05 1.4939e-04 

P-value(EM) '∥'  '∥'  1.1067e-04 '∥'  '∥'  1.8267e-04 

 
WOA 

 

BEST 4.0683 -8.4432e+03 241.8468 12.7928 66.1645 1.1880e+06 

WORST 18.1893 -4.7413e+03 340.4939 17.8355 215.8781 6.0313e+07 

MEAN 11.1807 -6.3963e+03 306.6318 15.5953 155.9841 2.5707e+07 
SD 4.4140 1.2397e+03 34.3787 1.6976 51.5082 2.2675e+07 
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P-value(E) 1.8267e-04 5.8284e-04 1.7861e-04 6.3864e-05 6.3864e-05 1.4939e-04 
P-value(EM) '∥'  1.8267e-04 1.1067e-04 '∥'  '∥'  1.8267e-04 

Algo/F
unction

s 

 F13 F14 F15 F16 F17 F18 

ESGO 

 

BEST 1.3498e-32 0.9980 3.0749e-04 -1.0316 0.3979 3.000

0 

WORST 0.0548 0.9980 3.0749e-04 -1.0316 0.3979 3.000

0 

MEAN 0.0077 0.9980 3.0749e-04 -1.0316 0.3979 3.000
0 

SD 0.0172 0 9.7310e-20 0 0 9.3622e-16 

 

EMSG

O 

BEST 1.4482e-09 0.9980 3.0749e-04 -1.0316 0.3979 3.000

0 

WORST 9.3515e-05 0.9980 3.0749e-04 -1.0316 0.3979 3.000

0 

MEAN 1.8852e-05 0.9980 3.0749e-04 -1.0316 0.3979 3.000

0 

SD 3.3044e-05 0 9.7310e-20 0 0 0 

 

AVOA BEST 3.4455 3.3015 0.0018 -1.0316 0.3982 3.002
9 

WORST 2.2399e+08 25.6376 0.0510 -0.9123 0.4404 7.092

5 
MEAN 7.5618e+07 12.5651 0.0205 -0.9929 0.4142 4.302

2 
SD 8.7433e+07 7.4563 0.0159 0.0441 0.0166 1.749

2 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 
P-value(EM) 1.8267e-04 '∥'  1.8267e-

04 
'∥'  '∥'  6.3864e-05 

 

 
D

E 

 

BEST 6.7444e+08 3.0014 0.0042 -1.0215 0.4034 4.611
4 

WORST 1.0352e+09 15.5151 0.0256 -0.7381 0.6127 12.66

26 
MEAN 8.9934e+08 9.6993 0.0181 -0.8525 0.4704 7.461

7 

SD 1.1373e+08 4.4249 0.0080 0.0957 0.0748 2.906
5 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 
 

EDO BEST 0.1964 0.9980 6.0609e-04 -1.0316 0.3979 3.000

0 
WORST 0.5513 0.9982 0.0013 -1.0316 0.3979 3.000

7 

MEAN 0.3684 0.9981 8.3949e-04 -1.0316 0.3979 3.000
2 

SD 0.1092 8.7514e-05 1.9852e-04 1.3264e-06 1.4829e-05 2.1767e-04 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 0.4429 1.0997e-04 
P-value(EM) 1.8267e-04 '∥'  0.0028 '∥'  '∥'  6.3864e-05 

 

 
GWO 

BEST 1.8154e+07 2.0230 0.0038 -1.0308 0.4006 3.004
4 

WORST 1.1507e+08 12.9125 0.0413 -0.9536 0.6533 5.532

3 
MEAN 5.8232e+07 7.1274 0.0164 -1.0038 0.4841 3.831

1 

SD 2.9227e+07 3.8136 0.0125 0.0263 0.0904 0.684
1 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 
 

KOA BEST 7.2168e+08 2.9821 0.0049 -1.0276 0.4016 7.649

7 
 WORST 1.0797e+09 27.8353 0.1063 -0.6278 0.5907 32.34

46 

MEAN 9.2260e+08 12.2474 0.0525 -0.8687 0.4792 16.52
06 

SD 1.1321e+08 8.1667 0.0338 0.1568 0.0626 8.568

4 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 
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LSO 
 

BEST 3 4.0339 0.0102 -1.0139 0.4016 5.845
3 

WORST 3 12.6705 0.1022 -0.3175 0.5907 37.65

39 

MEAN 3 9.8962 0.0532 -0.6705 0.4792 16.87

01 

SD 0 3.7132 0.0282 0.2216 0.0626 11.80
80 

P-value(E) 6.1582e-05 4.9177e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 6.3864e-05 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 
 

 

MSA 

BEST 2.8700e+08 0.9980 0.0030 -1.0298 0.4016 3.025

0 

WORST 2.8700e+08 0.9980 0.0030 -1.0298 0.5907 3.025

0 

MEAN 3.8465e+08 1.2827 0.0049 -1.0233 0.4792 3.153
3 

SD 6.9371e+07 0.3251 0.0015 0.0078 0.0626 0.099

7 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 

 
NOA BEST 7.6419e+08 7.9004 0.0138 -0.9764 0.4016 3.861

7 

WORST 9.5384e+08 64.6598 0.1132 -0.1700 0.5907 31.75
82 

MEAN 8.4808e+08 28.3656 0.0656 -0.5786 0.4792 11.91

98 

SD 6.8994e+07 21.7623 0.0336 0.3114 0.0626 9.195

3 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 

 

RSA BEST 3 9.2110 0.0090 -0.4096 0.5116 6.6847 

WORST 3 12.6705 0.1484 0 0.5907 123.1639 

MEAN 3 12.3246 0.0922 -0.0815 0.4522 40.6273 

SD 0 1.0940 0.0590 0.1429 0.0626 31.6910 

P-value(E) 6.1582e-05 2.4282e-05 1.6494e-04 4.1717e-05 6.3864e-05 1.0997e-04 

P-value(EM) 6.3864e-05 '∥'  1.7265e-04 '∥'  '∥'  6.3864e-05 

 
SMA BEST 2.9824 0.9980 7.1102e-04 -1.0315 0.4016 3.000

8 

WORST 3.2405 9.8039 0.0143 -1.0209 0.5907 3.360
9 

MEAN 3.1123 4.8996 0.0057 -1.0291 0.4792 3.082

6 
SD 0.0930 3.2198 0.0042 0.0038 0.0626 0.122

9 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 
P-value(EM) 1.8267e-04 '∥'  3.2984e-04 '∥'  '∥'  6.3864e-05 

 
SWO BEST 5.4627e+08 1.0171 0.0193 -1.0283 0.4116 3.371

7 

WORST 1.0179e+09 22.0117 0.0942 -0.0493 0.5957 23.61
71 

MEAN 7.5225e+08 8.7381 0.0611 -0.7510 0.4892 10.25

34 
SD 1.3204e+08 5.9854 0.0224 0.3141 0.0726 6.967

2 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 
P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 

 

WOA BEST 1.0576e+08 1.1509 0.0018 -1.0308 0.4016 3.001
8 

WORST 3.9234e+08 20.1571 0.0514 -0.5923 0.5907 33.11

36 

MEAN 2.2762e+08 11.2657 0.0180 -0.9283 0.4792 10.45

06 

SD 9.3427e+07 6.4055 0.0175 0.1413 0.0626 11.98
40 

P-value(E) 1.7761e-04 6.3864e-05 1.7462e-04 6.3864e-05 6.3864e-05 1.0997e-04 

P-value(EM) 1.8267e-04 '∥'  1.8267e-04 '∥'  '∥'  6.3864e-05 

  F19 F20 F21 F22 F23  

ESGO 

 

BEST -3.8628 -3.3220 -10.1532 -10.4029 -10.5364  

WORST -3.8628 -3.2031 -10.1532 -10.4029 -10.5364  
MEAN -3.8628 -3.3101 -10.1532 -10.4029 -10.5364  
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SD 9.3622e-16 0.0376 0 1.8724e-15 5.3864e-15 

 

 

EMSG

O 

BEST -3.8628 -3.3220 -10.1532 -10.4029 -10.5364  

WORST -3.8628 -3.3220 -10.1532 -10.4029 -10.5364  
MEAN -3.8628 -3.3220 -10.1532 -10.4029 -10.5364  

SD 0 9.2038e-09 0 0 5.3864e-15 

 

 

AVOA 

 

BEST -3.8554 -3.0677 -6.3022 -9.1029 -4.4976  

WORST -3.6830 -2.3662 -1.2040 -1.5697 -1.4449  

MEAN -3.8016 -2.7888 -2.5218 -3.6354 -2.4322  
SD 0.0532 0.2461 1.6158 2.2237 1.0535  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 6.3864e-05 6.3864e-05  

P-value(EM) '∥' 1.8165e-04 '∥' '∥' '∥' 
 

 

D
E 

 

BEST -3.8529 -2.9290 -2.3594 -2.2949 -3.2228  
WORST -3.6123 -1.9355 -0.7682 -0.7686 -1.0506  

MEAN -3.7591 -2.4405 -1.2893 -1.1888 -1.5033  

SD 0.0866 0.3006 0.5691 0.4318 0.6396  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 6.3864e-05 1.6118e-04  

P-value(EM) '∥' 1.8165e-04 '∥' 1.5932e-04 '∥' 
 

 

EDO 
 

BEST -3.8627 -3.2807 -10.0372 -10.1394 -10.3280  
WORST -3.8624 -3.1114 -9.0513 -6.6129 -5.8198  

MEAN -3.8626 -3.1647 -9.4825 -8.8969 -8.5269  

SD 1.2376e-04 0.0475 0.3170 1.0859 1.5640  
P-value(E) 6.3864e-05 1.7865e-04 6.3864e-05 6.3864e-05 4.3745e-04  

P-value(EM) 6.3864e-05 4.3745e-04 6.3864e-05 6.3864e-05 4.3745e-04 

 

 

GWO 

 

 

BEST -3.8598 -3.2761 -6.6657 -5.0855 -2.8311  

WORST -3.7899 -2.7823 -0.9199 -1.8350 -1.3021  

MEAN -3.8323 -3.0315 -1.9021 -3.3878 -2.1339  
SD 0.0275 0.1266 1.7055 1.2214 0.4926  

P-value(E) 6.3864e-05 1.7865e-04 6.3864e-05 6.3864e-05 1.6118e-04  

P-value(EM) '∥' 4.3745e-04 '∥' 0.0297 1.6118e-04 
 

 

KOA 

 
 

BEST -3.7779 -2.8099 -1.0715 -1.9384 -1.5148  

WORST -3.5197 -2.0402 -0.4657 -0.6809 -0.8724  
MEAN -3.6068 -2.4278 -0.7505 -1.0839 -1.1098  

SD 0.0958 0.2350 0.2215 0.3508 0.1946  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 6.3864e-05 1.6118e-04  
P-value(EM) '∥' 1.8165e-04 6.3864e-05 1.5932e-04 1.6118e-04 

 

 

LSO 
 

 

BEST -3.7985 -2.7576 -1.7209 -1.3938 -3.1473  
WORST -3.5779 -1.8099 -0.6040 -0.6387 -0.8197  

MEAN -3.7193 -2.3107 -1.0016 -0.9915 -1.4593  

SD 0.0750 0.3213 0.4116 0.2900 0.7417  
P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 6.3864e-05 1.6118e-04  

P-value(EM) '∥' 1.8165e-04 '∥' 1.5932e-04 '∥' 
 

 

MSA 
 

 

BEST -3.8605 -3.2122 -5.3730 -4.7984 -5.0588  

WORST -3.8605 -3.2122 -5.3730 -4.7984 -5.0588  

MEAN -3.8554 -3.0574 -3.1027 -3.3813 -5.0588  

SD 0.0055 0.0765 0.9302 0.9535 1.3777e-14  

P-value(E) 6.3864e-05 1.7865e-04 6.3864e-05 6.3864e-05 2.9377e-04  

P-value(EM) '∥' 4.3745e-04 '∥' '∥' '∥' 
 

 

NOA 
 

 

BEST -3.8433 -2.5874 -1.1580 -1.5230 -2.4136  
WORST -3.5174 -1.8432 -0.5307 -0.7422 -0.8937  

MEAN -3.7123 -2.1747 -0.7900 -1.1315 -1.2139  

SD 0.1111 0.3111 0.2374 0.2992 0.4667  
P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 1.5932e-04 1.6118e-04  

P-value(EM) '∥'  1.8165e-04 '∥'  6.3864e-05 '∥'  
 

 

RSA 

 
 

BEST -3.8094 -2.4156 -0.8657 -1.2773 -1.1469  

WORST -3.0148 -0.9463 -0.2834 -0.4220 -0.6601  
MEAN -3.4383 -1.6450 -0.4905 -0.6030 -0.9586  

SD 0.2788 0.5156 0.2049 0.2477 0.1349  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 1.5932e-04 1.6118e-04  
P-value(EM) '∥'  1.8165e-04 '∥'  6.3864e-05 '∥'  

 

 

SMA 

 
 

BEST -3.8623 -3.1346 -10.0208 -9.3983 -8.2808  

WORST -3.8341 -2.2623 -2.4945 -1.9579 -1.0896  
MEAN -3.8514 -2.7689 -4.5584 -4.6781 -3.7356  

SD 0.0078 0.3421 2.1547 2.6561 2.1286  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 6.3864e-05 3.8932e-04  
P-value(EM) '∥'  1.8165e-04 '∥'  '∥'  '∥'   
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Table 4: WRS test results on Table 3 
 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 
 E EM E EM E EM E EM E EM E EM E EM E EM E EM E EM E EM E EM 

AVOA - - - - - - - - - - - - - - - - - - - - - - - - 
DE - - - - - - - - - - - - - - - - - - - - - - - - 
EDO - - - - + + - - - - - - - - - - + N N N N N - - 
GWO - - - - - - - - - - - - - - - - - - - - - - - - 
KOA - - - - - - - - - - - - - - - - - - - - - - - - 
LSO N N + + + + + + - - - - - - - - + N N N N N   
MSA - - - - - - - - - - - - - - - - - - - - - - - - 
NOA - - - - - - - - - - - - - - - - - - - - - - - - 
RSA N N + + + + + + - - - - - - - - + N N N N N   
SMA - - - - - - - - - - - - - - S - - - - - - - - - 
SWO - - - - - - - - - - - - - - - - - - - - - - - - 
WOA - - - - - - - - - - - - - - - - - - - - - - - - 

 F13 F1
4 

F15 F16 F17 F18 F19 F20 F21 F22 F23   

 E EM E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

E E
M 

  

AVOA - - - - - - - - - - - - - - - - - - - - - -   
DE - - - - - - - - - - - - - - - - - - - - - -   
EDO - - - - - - - - - - - - - - - - - - - - - -   
GWO - - - - - - - - - - - - - - - - - - - - - -   
KOA - - - - - - - - - - - - - - - - - - - - - -   
LSO - - - - - - - - - - - - - - - - - - - - - -   
MSA - - - - - - - - - - - - - - - - - - - - - -   
NOA - - - - - - - - - - - - - - - - - - - - - -   
RSA - - - - - - - - - - - - - - - - - - - - - -   
SMA - - - - - - - - - - - - - - - - - - - - - -   
SWO - - - - - - - - - - - - - - - - - - - - - -   
WOA - - - - - - - - - - - - - - - - - - - - - -   

 

Total no of’+’=10, Total no of ’S’=1, Total no of ’N’=8, Total no of’-’=257 (For ESGO algorithm) 

Total no of’+’=7, Total no of ’S’=0, Total no of ’N’=11, Total no of’-’=258 (For EMSGO algorithm) 

Here, E represents ESGO and EM represents EMSGO algorithm. “-”, “+”, and “S” denote that the performance of other 

approaches is worse, better, and similar to ESGO and EMSGO respectively. 

 

 

 
SWO 

 

BEST -3.8379 -2.7585 -1.4098 -1.9429 -3.4058  

WORST -3.6279 -1.8461 -0.6324 -0.7866 -0.9884  

MEAN -3.7513 -2.2405 -0.9346 -1.1783 -1.5817  
SD 0.0579 0.2779 0.3051 0.3436 0.6943  

P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 1.5932e-04 1.6118e-04  

P-value(EM) '∥'  1.8165e-04 '∥'  6.3864e-05 '∥'  
 

 

WOA 
 

BEST -3.8622 -2.9763 -6.2016 -3.4370 -4.4309  
WORST -3.6581 -2.1432 -1.4378 -1.0475 -1.6685  

MEAN -3.7568 -2.7168 -3.2018 -2.2719 -2.7508  

SD 0.0746 0.2455 1.3968 0.6886 1.0772  
P-value(E) 6.3864e-05 1.3093e-04 6.3864e-05 3.8932e-04 2.9377e-04  

P-value(EM) '∥'  1.8165e-04 '∥'  6.3864e-05 '∥'   
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Figure 3: Convergence characteristics of algorithms 

 

Discussion 
In this experimental evaluation, the effectiveness of 

ESGO and EMSGO in navigating, exploiting, and 

avoiding local minima across a diverse range of 

benchmark functions, including both unimodal and 

multimodal functions, was examined. 
Unimodal functions, characterized by a singular global 

optimum, serve as a measure of an algorithm's exploitation 

capability. The results presented in Table 3 for unimodal 

test functions (F1-F7) demonstrate the superior 

performance of ESGO and EMSGO, surpassing most 

other algorithms in all evaluated functions. These findings 

underscore the proficiency of ESGO and EMSGO in 

exploitation, showcasing their capacity to efficiently 

converge towards and exploit the optimal solution. This 

efficacy is attributed to the incorporation of the self-

awareness probability (SAP) parameter. 
Multimodal test functions, featuring multiple local optima 

that escalate with dimensionality, provide a platform for 

assessing an algorithm's exploration ability. Functions F8 

through F23 represent multimodal scenarios. As indicated 

in Table 3, ESGO and EMSGO exhibit remarkable 

exploration capabilities, surpassing other methods. Across 

multimodal functions, ESGO and EMSGO not only 

achieve optimal solutions but also outperform all 

compared algorithms, demonstrating competitiveness 

with high-performance optimizers. The exploration 

prowess of ESGO and EMSGO can be attributed to the 

distinctive phases of optimization and the self-

introspection parameter C. 
 

Based on the WRS test results in Table 3, 

For the ESGO algorithm: 

• It performs worse than EDO for F3 and F9, LSO 

for F2, F3, F4, and F9, and RSA for F2, F3, F4, 

and F9. 

• It matches the performance of EDO for F10 and 

F11, LSO for F1, F10, and F11, as well as RSA 

for F1, F10, and F11. 

• ESGO outperforms other algorithms in all other 

functions. 

• It consistently surpasses AVOA, DE, KOA, 

MSA, NOA, SMA, and SWO across all twenty-

three functions. 

 

For the EMSGO algorithm: 

• It is inferior to EDO for F3, LSO for F2, F3, F4, 

and RSA for F2, F3, and F4. 

• It matches the performance of EDO for F9, F10, 

and F11, LSO for F1, F9, F10, F11, and RSA for 

F1, F9, F10, and F11. 

 

 

 

 

 

 

 

 

    

  

 

 



168   Informatica 49 (2025) 151–176                                                                                                                                            A. Naik 

• EMSGO outshines other algorithms in the 

remaining functions. 

It consistently outperforms AVOA, DE, KOA, MSA, 

NOA, SMA, and SWO for all twenty-three functions. 

 

As depicted in Table 4, the ESGO algorithm surpasses 

AVOA, DE, EDO, GWO, KOA, LSO, MSA, NOA, RSA, 

SMA, SWO, and WOA in 23 cases out of 23, 23, 19, 23, 

23, 16, 23, 23, 16, 22, 23, and 23 cases, respectively. 

Conversely, the ESGO algorithm performs less effectively 

than AVOA, DE, EDO, GWO, KOA, LSO, MSA, NOA, 

RSA, SMA, SWO, and WOA in zero, zero, two, zero, 

zero, four, zero, zero, four, one, zero, and zero cases, 

respectively. Additionally, the ESGO algorithm exhibits 

equivalence with EDO in two cases and with LSO and 

RSA in three and three cases, respectively. In summary, 

out of 276 instances, ESGO achieves equivalent results in 

8 cases, the same solution in one case, a worse solution in 

10 cases, and superior outcomes in 257 cases compared to 

other algorithms. 

 

Similarly, as illustrated by Table 4, the EMSGO 

algorithm outperforms AVOA, DE, EDO, GWO, KOA, 

LSO, MSA, NOA, RSA, SMA, SWO, and WOA in 23 

cases out of 23, 23, 19, 23, 23, 16, 23, 23, 16, 22, 23, and 

23 cases, respectively. Conversely, the EMSGO algorithm 

performs less effectively than AVOA, DE, EDO, GWO, 

KOA, LSO, MSA, NOA, RSA, SMA, SWO, and WOA in 

zero, zero, one, zero, zero, three, zero, zero, three, one, 

zero, and zero cases, respectively. Additionally, the 

EMSGO algorithm exhibits equivalence with EDO in 

three cases and with LSO and RSA in four and four cases, 

respectively. In summary, out of 276 instances, EMSGO 

achieves equivalent results in 11 cases, the same solution 

in zero cases, a worse solution in 7 cases, and superior 

outcomes in 258 cases compared to other algorithms. 

 

In conclusion, both ESGO and EMSGO demonstrate 

outstanding performance when addressing unimodal and 

multimodal functions. 

 

Experiment 3: The performance comparison 

with well-known improved and hybrid 

metaheuristics algorithms 
In this section, the same set of 23 optimization 

functions used in Experiments 1 and 2 is employed. The 

objective is to perform a comparative analysis between the 

simulation results obtained from ESGO, EMSGO, and the 

findings previously reported in reference [66] for two 

prominent optimization algorithms: the dynamic Harris 

Hawks Optimization with a mutation mechanism 

(DHHO/M) [67], and the Harris Hawks Optimization 

incorporating genetic operators such as crossover and 

mutation (HHOCM) [68]. Additionally, the analysis is 

extended to compare the simulation results from reference 

[69] for three other prominent optimization techniques: 

the Exponential Crow Search Algorithm (ECSA), the 

Power Crow Search Algorithm (PCSA), and the S-shaped 

Crow Search Algorithm (SCSA). Furthermore, the 

simulation results of a prominent hybrid algorithm, the 

Improved Hybrid Aquila Optimizer (IHAO) [70], and the 

Harris Hawks Optimization (HHO) [71] algorithm 

IHAOHHO [71] are also investigated. 

 

Table 5: Simulation results for ESGO, EMSGO, DHHO/M, HHOCM, IHAOHHO, ECSA, PCSA, and SCSA 
fun

cti

ons  

 ESGO EMSGO DHHO/M HHOCM IHAOHHO ECSA PCSA SCSA 

F1 BEST 0 0       

MEAN 0 0 1.97e-95 0 3.37e-253 7.62e-28 1.41e-32 8.36e-35 

STD 0 0 6.74e-95 0 0 1.02e-27 1.87e-32 1.33e-34 

 

F2 BEST 0 0       

MEAN 0 0 1.326e-48 1.22e-203 1.56e-127 2.13e-11 1.02e-11 3.14e-12 

STD 0 0 6.07e-48 0 8.53e-127 2.13e-11 1.78e-11 7.20e-12 

 

F3 BEST 2.20e-122 0       

MEAN 1.46e-116 0 7.67e-70 0 2.74e-199 1.35e-22 2.27e-24 1.0e-24 

STD 2.37e-117 0 4.20e-69 0 0 5.36e-22 5.43e-24 4.37e-24 

 

F4 BEST 0 0       

MEAN 0 0 3.96e-43 4.55e-197 2.22e-129 2.87e-13 7.64e-13 4.20e-13 

STD 0 0 2.16e-42 0 1.11e-128 4.35e-13 1.28e-12 6.27e-12 

 

F5 BEST 6.34e-21 0       

MEAN 7.11e-20 0 6.70e-03 3.14e-02 5.39e-04 7.97e-01 1.25 1.32 

STD 8.47e-20 0 9.58e-03 5.02e-02 2.27e-03 1.62 1.83 1.91 

 

F6 BEST 0 0       

MEAN 0 0 7.39e-05 3.13e-04 3.59e-06 5.81e-28 7.08e-33 0 

STD 0 0 1.09e-04 3.83e-04 7.73e-06 1.08e-27 9.91e-33 0 

 

F7 BEST 1.56e-05 4.25e-07       

MEAN 2.53e-05 5.29e-06 1.58e-04 1.62e-04 9.53e-05 4.72e-04 4.50e-04 4.88e-05 

STD 1.18e-05 3.23e-06 1.44e-04 1.76e-04 7.67e-05 2.72e-04 2.98e-04 3.31e-05 

 

F8 BEST -1.05e+04 -1.26e+04       

MEAN -9.25e+03 -1.26e+04 -1.26e+ 04 -1.26e+04 -1.26e+04 -2.45e+03 -2.66e+03 -2.81e+03 

STD 7.86e+02 0 5.43e+02 5.50e+01 1.82e-01 3.53e+02 3.09e+02 3.76e+02 

 

F9 BEST 0.00e+00 0       
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MEAN 12.5341 0 0 0 0 2.60 4.44 3.70 

STD 7.2981 0 0 0 0 7.06 6.00 7.08 

 

F1

0 

BEST 8.88e-16 8.88e-16       

MEAN 8.88e-16 8.88e-16 8.88e-16 8.88e-16 8.88e-16 1.11e-01 1.09e-01 0.91e-01 

STD 0 0 0 0 0 2.20e-01 3.02e-01 1.36e-01 

 

F1

1 

BEST 0 0       

MEAN 0 0 0 0 0 2.68e-02 1.23e-02 1.00e-02 

STD 0 0 0 0 0 2.86e-02 3.48e-02 3.19e-02 

 

F1

2 

BEST 1.59e-32 1.57e-32       

MEAN 1.59e-32 1.57e-32 8.53e-06 1.57e-05 2.70e-07 2.23e-08 9.04e-08 8.11e-11 

STD 2.30e-34 2.89e-48 1.00e-05 2.27e-05 4.42e-07 1.47e-07 .76e-07 1.49e-10 

          

F1

3 

BEST 2.34e-32 1.35e-32       

MEAN 2.34e-32 1.35e-32 9.52e-05 2.76e-04 3.02e-06 1.11e-04 1.05e-02 1.25e-02 

STD 2.21e-34 2.10e-48 1.10e-04 3.96e-04 5.08e-06 1.93e-04 2.12e-02 2.00e-02 

 

F1

4 

BEST 9.98e-01 9.98e-01       

MEAN 9.98e-01 9.98e-01 1.29 1.16 1.59 9.98e-01 9.98e-01 9.98e-01 

STD 0 0 9.40e-01 5.27e-01 9.25e-01 3.43e-02 9.95e-02 5.64e-02 

 

F1

5 

BEST 3.07e-04 3.07e-04       

MEAN 3.99e-04 3.07e-04 4.58e-04 5.61e-04 4.42e-04 3.27e-03 4.41e-03 1.23e-03 

STD 2.90e-04 2.64e-16 3.01e-04 4.29e-04 3.46e-04 5.61e-03 8.11e-03 3.64e-03 

 

F1

6 

BEST -1.0316 -1.0316       

MEAN -1.0316 -1.0316 −1.0316 −1.0316 -1.0316 -1.0316 -1.0316 -1.0316 

STD 0 7.40e-17 5.75e-11 3.87e-09 3.19e-08 5.77e-16 6.19e-16 6.42e-16 

 

F1

7 

BEST         

MEAN 3.97e-01 3.97e-01 3.98e-01 3.98e-01 3.98e-01 3.97e-01 3.97e-01 3.97e-01 

STD 0 0 3.99e-06 1.65e-06 4.04e-05 0 0 0 

 

F1

8 

BEST 3.0000 3.0000       

MEAN 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 

STD 1.20e-15 6.62e-16 7.53e-08 1.55e-08 3.32e-06 2.16e-15 2.13e-15 2.04e-15 

 

F1

9 

BEST -3.8628 -3.8628       

MEAN -3.86e+00 -3.86 -3.86 -3.86 -3.83 -3.86 3.86 3.86 

STD 9.3622e-16 0 3.09e-03 5.16e-04 7.1972e-02 2.61e-15 2.42e-15 2.37e-15 

 

F2

0 

BEST -3.32e+00 -3.32       

MEAN -3.32e+00 -3.32 -3.11 -3.26 -3.08 -3.27 -3.27 -3.27 

STD 1.7813e-03 2.23e-11 8.39e-02 6.78e-02 1.19e-01 4.79e-02 5.29e-02 5.92e-02 

 

F2

1 

BEST -1.02e+01 -1.02e+01       

MEAN -1.02e+01 -1.02e+01 -1.00 -5.06 -1.02 -2.05 -6.72 -6.57 

STD 1.32e-15 0.00e+00 1.26e-01 2.69e-04 1.45e-03 3.31 3.38 3.69 

 

F2

2 

BEST -1.04e+01 -1.04e+01       

MEAN -1.04e+01 -1.04e+01 -1.02e+01 -5.09 -1.04e+01 -5.43 -3.96 -4.61 

STD 1.24e-13 1.67e-15 1.87e-01 1.06e-04 6.66e-04 3.52 3.80 3.53 

 

F2

3 

BEST -1.05e+01 -1.05e+01       

MEAN -1.05e+01 -1.05e+01 -1.04e+01 -5.13 -1.05e+01 -6.00 -5.50 -4.55 

STD 1.32e-15 2.78e-17 1.54e-01 1.78e-04 6.67e-04 3.67 3.70 3.84 

 

 

Table 6: Results of Friedman’s Test on Table 5 

Functions ESGO EMSGO DHHO/M HHOCM IHAOHHO ECSA PCSA SCSA  

F1 2 2 5 2 4 8 7 6  

F2 1.5 1.5 5 3 4 8 7 6  

F3 4 1.5 5 1.5 3 8 7 6  

F4 1.5 1.5 5 3 4 6 8 7  

F5 2 1 5 4 3 6 7 8  

F6 2 2 7 8 6 5 4 2  

F7 2 1 5 6 4 8 7 3  

F8 5 2.5 2.5 2.5 2.5 8 7 6  

F9 8 1 3 4 2 5 7 6  

F10 3 3 3 3 3 8 7 6  

F11 3 3 3 3 3 8 7 6  

F12 2 1 7 8 6 4 5 3  

F13 2 1 4 5 3 7 6 8  

F14 1.5 1.5 7 6 8 3 5 4  

F15 2 1 4 5 3 7 8 6  
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F16 1 2 6 7 8 5 3 4  

F17 3 3 7 6 8 3 3 3  

F18 2 1 7 6 8 5 4 3  

F19 2 1 7 6 8 5 4 3  

F20 2 1 7 6 8 3 4 5  

F21 2 1 4 7 3 8 6 5  

F22 2 1 4 6 3 5 8 7  

F23 2 1 4 7 3 5 6 8  

Sum of 

ranks 57.5 35.5 116.5 115 107.5 138 137 121 

 

Average 

of ranks 2.5 1.543478 5.065217 5 4.673913 6 5.956522 5.26087 

 

Sum of 

ranks 

squared 191.75 66.25 642.25 657.5 611.25 900 873 709 

 

 

The assessment methodology and parameters 

employed for the ESGO and EMSGO algorithms closely 

adhere to the protocols outlined in Experiment 1. To 

ensure a fair comparison with the results from other 

algorithms, the dimension size was standardized to D = 30 

for all functions, excluding fixed-dimensional benchmark 

functions. Additionally, the maximum number of fitness 

function evaluations was set to Max_FEs = 15,000, and 30 

independent runs were conducted. Table 5 displays 

function values in terms of BEST, MEAN, and STD for 

the 23 classical benchmark functions, as discussed earlier. 

The BEST function value is provided exclusively for 

ESGO and EMSGO, as it is not reported for other 

algorithms in the imported papers. Bold font in the table 

denotes the most outstanding function value for each 

function. Evidently, EMSGO outperforms all listed 

algorithms in Table 5, exhibiting the lowest MEAN 

function value with the lowest STD for 22 out of the 23 

functions. In addition, ESGO performs second-best in 

Table 5, obtaining the lowest STD for eight of the 23 

functions and the lowest MEAN function value. Out of the 

23 classical benchmark functions, HHOCM comes in third 

place with the lowest MEAN function value and the 

lowest STD for five of them 

 

For each of the 23 classical benchmark functions 

listed in Table 5, Friedman's test [73], a nonparametric 

statistical test, was used to identify the lowest MEAN 

function value with the lowest STD. The findings of 

Friedman's test are shown in Table 6, revealing statistical 

insights into the ranks of ESGO, EMSGO, DHHO/M, 

HHOCM, IHAOHHO, ECSA, PCSA, and SCSA. The 

top-ranking algorithm is indicated in bold in this table. The 

algorithms are EMSGO, ESGO, IHAOHHO, HHOCM, 

DHHO/M, SCSA, PCSA, and ECSA, in that order of 

ranking. This suggests that out of all the algorithms that 

were looked at, EMSGO performs the best. 

 

 

 

 

 

4.2 Process Synthesis and design problems of 

chemical and mechanical engineering 

Real-world optimization problems are extremely 

difficult to solve due to the incredible complexity of 

objective functions and the profusion of nonlinear 

nonconvex equality and inequality constraints. This 

research focuses on a carefully chosen set of 26 limited 

problems taken from the mechanical and chemical 

engineering areas. In addition to the exhaustively 

documented 19 mechanical engineering problems in [64], 

the compilation includes seven process synthesis and 

design problems from chemical engineering. In these 

cases, the number of decision variables ranges from 2 to 

30, the equality constraints from 0 to 4, and the inequality 

constraints from 1 to 86. See [64] for a detailed discussion 

of the problems and thorough formula definitions. 

In the experimental phase, the parameter Max_FEs 

(maximum number of fitness function evaluations) is 

defined as: 

Max_FEs=

{
 
 

 
 

1 × 105 ,         𝑖𝑓 𝐷 ≤ 10

2 × 105 ,         𝑖𝑓 10 < 𝐷 ≤ 30

4 × 105 ,         𝑖𝑓 30 <  𝐷 ≤ 50

8 × 105 ,         𝑖𝑓 50 < 𝐷 ≤ 150

106 ,         𝑖𝑓 150 < 𝐷

 

With a fixed population size of 50, D here stands for 

the dimension (number of decision variables) for 

algorithms. Based on the learnings from Experiment 1, 

additional factors were chosen, and Table 7 provides an 

overview of the results. For constraint management, Deb's 

guidelines [74] are adopted, using a criterion that accepts 

impractical solutions if they show small violations, from 

0.01 in the first iteration to 0.001 in the last. In problems 

pertaining to process synthesis, design, and optimization 

in mechanical engineering, this approach is very helpful 

because the global minimum frequently coincides with or 

is located close to the edge of the viable design space. 

Candidate solutions tend to gravitate towards these 

boundaries when this approach is used, increasing the 

likelihood of obtaining the global minimum [75] 
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Table 7: Details of 26 real-world constrained optimization problem, 

  Name F(x) ESGO EMSGO 

P8 Process synthesis problem 2.0000000000e+00 2.0000e+00(R) 2.0000e+00(R) 

 

P9 Process synthesis and design problem 2.5576545740e+00 2.5577e+00(R) 2.5577e+00(R) 

 

P10 Process flow sheeting problem 1.0765430833e+00 1.0765e+00(R) 1.0765e+00(R) 

 

P11 Two-reactor Problem 9.9238463653e+01 9.9238e+01(R) 9.9238e+01(R) 

 

P12 Process synthesis problem 2.9248305537e+00 2.9248e+00(R) 2.9248e+00(R) 

 

P13 Process design Problem 2.6887000000e+04 2.6887e+04(R) 2.6887e+04(R) 

 

P14 Multi-product batch plant 5.3638942722e+04 5.8477e+04 5.9484e+04 

 

Mechanical engineering problems   

 

P15 Weight Minimization of a Speed Reducer 2.9944244658e+03 2.9944e+03(R) 2.9944e+03(R) 

     

P16 Optimal Design of Industrial refrigeration 

System 

3.2213000814e-02 3.2213e-02(R) 3.2213e-02(R) 

 

 

P17 Tension/compression spring design (case 1) 1.2665232788e-02 1.2665e-02(R) 1.2669e-02 

     

P18 Pressure vessel design 5.8853327736e+03 6.0597e+03 6.3708e+03 

     

P19 Welded beam design 1.6702177263e+00 1.6702e+00(R) 1.6702e+00(R) 

     

P20 Three-bar truss design problem 2.6389584338e+02 2.6390e+02(R) 2.6390e+02(R) 

     

P21 Multiple disk clutch brake design problem 2.3524245790e-01 2.3524e-01(R) 2.3524e-01(R) 

     

P22 Planetary gear train design optimization 

problem 

5.2576870748e-01 5.3000e-01 5.3319e-01 

     

P23 Step-cone pulley problem 1.6069868725e+01 1.6070e+01(R) 1.6226e+01 

 

P24 Robot gripper problem 2.5287918415e+00 2.5288e+00(R) 2.5288e+00(R) 

     

P25 Hydro-static thrust bearing design problem 1.6254428092e+03 1.6348e+03 1.6475e+03 

 

P26 Four-stage gear box problem 3.5359231973e+01 3.5359e+01(R) 3.5359e+01(R) 

 

P27 10-bar truss design 5.2445076066e+02 5.2453e+02 5.2548e+02 

 

P28 Rolling element bearing 1.4614135715e+04 1.6958e+04 1.6958e+04 

 

P29 Gas Transmission Compressor Design  2.9648954173e+06 2.9649e+06(R) 2.9649e+06(R) 

 

P30 Tension/compression spring design (case 2) 2.6138840583e+00 2.6586e+00 2.6586e+00 

 

P31 Gear train design Problem 0.0000000000e+00 0(R) 1.4840e-26 

 

P32 Himmelblau’s Function -3.0665538672e+04 -3.0666e+04(R) -3.0666e+04(R) 

 

P33 Topology Optimization 2.6393464970e+00 2.6393e+00(R) 2.6393e+00(R) 
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Discussion 
The optimal solution is reached by the ESGO in 19 

cases, whereas the ESGO is reached in 16 cases, according 

to Table 7. In two instances, the results are the same for 

both, while in five instances, ESGO receives a better result 

than EMSGO. 

 

Overall discussion 
From the entire experiment, it was discovered that 

ESGO performs better for real-world optimization 

problems, while EMSGO is more effective for handling 

classical optimization problems. 

. 

 

5 Conclusion 

This paper introduces an innovative adaptation of the 

Social Group Optimization algorithm, namely Enhanced 

Social Group Optimization (ESGO) and Enhanced 

Modified Social Group Optimization (EMSGO). The 

Improving Phase of the SGO algorithm has been tailored 

to incorporate the concept of "hone." To evaluate the 

effectiveness of ESGO and EMSGO, extensive 

experiments were conducted across 23 benchmark 

functions, comparing their performance against twelve 

other optimization techniques and six recently introduced 

improved/hybrid algorithms. The test outcomes were 

rigorously assessed using Wilcoxon's rank test and 

Friedman's test, revealing that both ESGO and EMSGO 

significantly outperform the compared algorithms. 

Furthermore, ESGO and EMSGO were applied to address 

26 real-world optimization problems. ESGO successfully 

identified optimal solutions in 19 cases, while EMSGO 

achieved optimal solutions in 16 cases. The 

comprehensive experimentation indicates that ESGO 

excels in tackling real-world optimization problems, 

whereas EMSGO demonstrates superior performance in 

classical optimization challenges. Consequently, it is 

concluded that while these algorithms exhibit exceptional 

proficiency in classical optimization scenarios, their 

performance may vary when applied to real-world 

problems. Future research will explore their applicability 

in image processing, industry, neural networks, text 

analysis, and data mining as part of addressing real-world 

optimization challenges. 
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