
https://doi.org/10.31449/inf.v48i6.5645 Informatica 48 (2024) 43–58 43 

A Mobile Application for Detecting and Monitoring the Development 

Stages of Wild Flowers and Plants 

João Videira 1, Pedro D. Gaspar 2,3, Vasco N. G. J. Soares 1,4* and João M. L. P. Caldeira 1,4 
1Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral nº 12, 6000-084 Castelo Branco, Portugal 
2Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-

001 Covilhã, Portugal  
3C-MAST Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001 

Covilhã, Portugal 
4Instituto de Telecomunicações, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal 

jvideira@ipcbcampus.pt, dinis@ubi.pt, vasco.g.soares@ipcb.pt, jcaldeira@ipcb.pt 

*Corresponding author: g.soares@ipcb.pt 

Keywords: wild flowers and plants, development stages, computer vision, convolutional neural networks, YOLOv4, 

YOLOv4-tiny, mobile app  

Received: Januar 7, 2024 

Wild flowers and plants appear spontaneously. They form the ecological basis on which life depends. They 

play a fundamental role in the regeneration of natural life and the balance of ecological systems. However, 

this irreplaceable natural heritage is at risk of being lost due to human activity and climate change. The 

work presented in this paper contributes to the conservation effort. It is based on a previous study by the 

same authors, which identified computer vision as a suitable technological platform for detecting and 

monitoring the development stages of wild flowers and plants. It describes the process of developing a 

mobile application that uses YOLOv4 and YOLOv4-tiny convolutional neural networks to detect the stages 

of development of   wild flowers and plants. This application could be used by visitors in a nature park to 

provide information and raise awareness about the wild flowers and plants they find along the roads and 

trails. 

Povzetek: Raziskava uvaja mobilno aplikacijo z uporabo konvolucijskih nevronskih mrež YOLOv4 za 

prepoznavanje razvojnih stopenj divjih rastlin, prispevajoč k ohranjanju naravne dediščine.

1 Introduction 

Plants are recognized as a vital part of the world's 

biological diversity and an essential resource for the 

planet. They play a fundamental role in maintaining basic 

ecosystem functions and are indispensable for the survival 

of animal life on our planet [1]. While agricultural plants 

provide food and basic fibers, many wild plants are of 

great economic and cultural importance and have 

enormous potential, serving as food, medicine, fuel, 

clothing and common shelter  [2], [3]. 

Given the growing number of endogenous and/or wild 

flowers and plants at risk of extinction and in decline due 

to climate change and the impact of human action [4], [5], 

there is an urgent need to contribute technological 

solutions for their conservation and preservation. 

Detecting, monitoring and following the development 

stages of endogenous and/or wild flowers and plants can 

alert biologists and researchers linked to the various areas 

of biodiversity to possible problems with the surrounding 

environment, which can help them make more informed 

decisions about how to manage and protect natural parks 

or preserved areas. On the other hand, it can support and 

help inform tourists and the community in general about 

wild flowers and plants found along roads and trails. This  

 

promotion of awareness about wild flowers and plants is   

aimed at promoting environmental sustainability, but also 

the development of economic and cultural activities in 

regions where these plants grow. 

The development stages of wild flowers and plants 

can be classified as follows [6]: 1) sprout: this stage 

typically takes place underground, where the plant begins 

to grow from its seed; 2) seedling: this stage is 

characterized by the spread of roots and the appearance of 

the first leaves; 3) vegetative: this stage is identified by the 

development of stems and foliage; 4) budding: this stage 

can be identified by the appearance of buds on the plant; 

5) flowering: this stage is recognized by the appearance of 

flowers, which consequently causes pollination and can be 

accompanied by the appearance of fruit in the early stages; 

6) ripening: this stage is identified by the appearance of 

ripe fruit. The sprout stage cannot be identified by 

computer vision techniques, as it takes place underground. 

This work follows on from the conclusions presented 

in a previous paper by the same authors [7], which 

analyzed computer vision as a suitable technological 

platform for detecting and monitoring the development 

stages of wild flowers and plants. It presented a survey of 

the research in this field and applications related to plant 

identification and plant disease detection. The most 
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promising computer vision techniques were identified, 

and open problems and challenges were discussed. 

The work presented in this article is one of the stages 

of an ongoing project which aims to develop a mobile 

application and system based on computer vision 

techniques to detect and monitor the stages of 

development of wild flowers and plants. The application 

can be used by visitors to a nature park to provide 

information and raise awareness about the wild flowers 

and plants they encounter along the roads and trails. The 

system will allow scientists and biologists, or the merely 

curious, to remotely monitor and collect information on 

the stages of development of wild flowers and plants. 

Although there are already mobile applications that 

can identify plant species, such as those available in [8], 

[9], to the best of the authors' knowledge, at the time of 

writing this article, there is still no mobile application 

capable of classifying the developmental stages of wild 

flowers and plants. Therefore, the main contributions of 

this article are: 1) the creation of a dataset with the stages 

of development of a wild plant; 2) a performance 

evaluation study of the convolutional neural network 

(CNN) models YOLOv4 and YOLOv4-tiny for detecting 

the stages of development of this wild plant; 3) the 

description of the process of developing a mobile 

application, compatible with the Android platform, which 

uses these CNNs. 

This application is aimed at visitors or workers in 

nature parks. It works by capturing an image of the plant 

or flower. Then, using these computer vision techniques, 

it will be able to identify the species of the wild plant, as 

well as determine its stage of development, and to provide 

additional information about them. 

The rest of the paper is organized as follows. Section 

2 introduces the main concepts of the computer vision 

techniques used in the context of this work and presents a 

performance assessment. Section 3 describes the 

implementation process and the operation of the mobile 

application developed in the context of this work. Finally, 

Section 4 concludes the article and presents future work. 

 

1 Computer vision techniques  
Computer vision techniques include a variety of 

algorithms, models and procedures that allow computers 

to analyze visual data such as photographs and videos [10] 

and perform tasks such as object detection and 

classification [11]. Object detection is the task of locating 

an object in the visual input, while object classification 

involves assigning a classification to the objects detected 

in that same input [12]. These concepts are illustrated in 

Figure 1. Although these tasks differ, deep learning is 

often used for both. 

 

 
Figure 1: Illustration of object classification and 

detection concepts. 

 

Deep learning is a subfield of machine learning, 

which focuses on the creation and training of 

convolutional neural networks. This training is carried out 

by learning patterns from a large volume of data [13], such 

as a dataset of images. This training is possible because 

CNNs are made up of layers of interconnected nodes, 

which simulate the behavior of neurons in a human brain 

[13]. These concepts are illustrated in Figure 2. Training 

CNNs makes it possible to detect patterns, and 

consequently to detect and classify objects [14]. 

 

 
Figure 2:  The structure of a convolutional neural 

network. 

 

In a previous work [7] by the same authors of this 

article, it was found that over the years, various CNN 

models have been considered in the literature for the tasks 

of plant identification and plant disease detection. Given 

the results reported in [15], [16] and [17], it was concluded 

that YOLOv3 or YOLOv4 would be the best option to 

consider when developing a mobile application to detect 

the development stages of wild flowers and plants. These 

models are fast, require relatively little processing 

capacity and allow results to be obtained in real time. 

These characteristics fit perfectly with the requirements of 

the mobile application presented in this paper. 
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1.1 YOLOv4 e YOLOv4-tiny 

The YOLO (You Only Look Once) model [18] 

analyses images quickly by dividing an image into a grid, 

predicting the bounding boxes, confidence levels and class 

probabilities of the objects. The result is a set of objects 

bounding boxes, with class names and confidence levels 

[18]. These concepts are illustrated in Figure 3. 

 

 
Figure 2: YOLO model detection process. 

 

The YOLOv4 model consists of 3 components: 

backbone, neck and head. YOLOv4 uses CNN 

CSPDarkNet53 in the backbone, while YOLOv3 uses 

DarkNet53 [19]. This component is responsible for feature 

extraction, which is the process of transforming data into 

numerical values. In YOLOv4, the neck component uses 

Path Aggregation Network (PAN) [17] to extract feature 

maps, while YOLOv3 uses Feature Pyramid Extraction 

(FPN). Finally, the head component consists of applying 

anchor boxes to the feature map extracted by PAN. These 

anchor boxes are used to capture the objects and contain a 

prediction value [20]. At this stage three heads can be used 

to identify objects of various sizes, after the feature maps 

of various scales are joined and subjected to a convolution 

operation [21]. 

The YOLOv4-tiny model is a simplified version of 

YOLOv4 [22]. The first difference in this model is the use 

of the CSPDarknet53-tiny CNN [23]. The neck 

component of YOLOv4-tiny uses the Feature Pyramid 

Network (FPN) structure [23], a design that improves 

object detection accuracy and increases detection speed 

[24]. Another difference from YOLOv4 is that YOLOv4-

tiny uses only two heads instead of three [23]. This 

modification could potentially pose challenges when 

detecting objects at extreme scales, such as very small 

objects [22]. Despite this limitation, the integration of 

CSPDarknet53-tiny and FPN into YOLOv4-tiny 

contributes to its overall performance, allowing it to 

perform object detection tasks with less computing power 

and greater speed. 

1.2 Performance evaluation 

This subsection focuses on evaluating the 

performance of the YOLOv4 and YOLOv4-tiny CNN 

models for detecting the developmental stages of wild 

flowers and plants. To this end, the dataset created as part 

of this work, the benchmark scenario, the performance 

metrics considered, and the experimental results are 

presented next. 

1.2.1 Dataset description 

To the best of the authors' knowledge, there are no 

available datasets with images of the developmental 

stage’s wild flowers and plants. Therefore, it was 

necessary to create a dataset with the developmental 

stages of a specific wild plant in order to train and test the 

models. The plant selected for proof of concept and testing 

was Rubus Fruticosus, also known as "bramble" or 

"blackberry". This choice was because it is a common wild 

plant and thus with many images available. 

The dataset was categorized into 6 different classes, 

each representing a stage of development of the wild plant. 

The initial stage, called seedling, marks the appearance of 

roots and the initial appearance of leaves. This is followed 

by the vegetative stage, characterized by the development 

of stems and foliage. The budding stage shows the 

appearance of buds on the plant, heralding the next stage 

of flowering. The flowering stage is identified by the 

presence of flowers, often accompanied by the appearance 

of the first fruits. The ripening stage is characterized by 

the appearance of fruit on the plant. Finally, the class 

"Rubus Fruticosus" is used to identify this plant species. 

All the images used in this dataset were obtained from the 

INaturalist [25] and biodiversity4all [26], platforms, 

taking advantage of the large number of images present on 

them. This dataset can be found on the Kaggle platform in 

the following link [27]. Figure 4 shows an example of each 

of the developmental stages described. 

 

   
Seedling Vegetative Budding 

  

 

Flowering Ripening  

Figure 4: The development stages of the wild plant 

Rubus Fruticosus. 

 

To train and validate the CNN models, the dataset was 

separated into train and test. In the training dataset, each 

development stage category was created with 

approximately 100 images. An exception was the 

“Budding” category, which, given the limited availability 

of images, only contains 80 images for training. It is 
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important to note that the “Rubus Fruticosus” class has 

490 images because this is the total number of images of 

all the development stages for this plant species.  

To create the test dataset, 20 images were used for 

each development stage. This distribution of the number 

of images for training and testing each development stage 

guarantees sufficient data for training the models and 

evaluating their performance. Table 1 shows the number 

of images available for training and testing for each class 

(i.e., development stage). 

 

Table 1: Number of images for each class (i.e., 

development stage) in the training and test dataset. 

Class Train Test 

Seedling 100 20 

Vegetative 100 20 

Budding 80 20 

Flowering 110 20 

Ripening 100 20 

Rubus 

Fruticosus 

490 100 

 

Next, the Yolo_Label tool [28] was used to create the 

annotations for each image. This task tells the models the 

location of the objects and their classification. Then, they 

can then be trained with this data and their performance 

can be evaluated. Figure 5 illustrates this task. 

 

 
Fig. 3. The process of creating an annotation on a dataset 

image with the Yolo_Label tool. 

1.2.2 Benchmark scenario 

Both models were trained and tested on the same 

device. To do this, the darknet code [29] was downloaded 

to carry out the necessary training and tests. The test 

environment was hosted on a device with an AMD Ryzen 

5 4600H CPU, 16 GB of RAM, and an NVIDIA GeForce 

GTX 1650 GPU which increased the computing power 

required for deep learning operations.  

This test environment allowed an unbiased 

comparison of the accuracy, processing speed and 

efficiency of the YOLOv4 and YOLOv4-tiny models. 

1.2.3 Performance metrics 

To assess the performance of YOLOv4 and YOLOv4-

tiny in the task of object detection and classification, the 

models were trained with 12,000 iterations with batches of 

64 images, following the instructions in [29]. This number 

of iterations is equivalent to approximately 1567 epochs, 

according to the formula show in (1). 

 

𝐸𝑝𝑜𝑐ℎ𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛

𝑏𝑎𝑡𝑐ℎ

  (1) 

 

Once the training was complete, the trained models 

with the best average precision (mAP) were selected. This 

metric is calculated according to the formula shown in (2) 

and considers the accuracy of each class (APk) and the 

number of classes (n). The mAP is the metric commonly 

used to compare the performance of CNN models such as 

YOLO. 

 

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘𝑘=𝑛

𝑘=1   (2) 

 

It is also interesting to analyze in CNN models, the 

average loss obtained by calculating the average of the 

total loss of several batches in a dataset, and the test time 

required to determine the mAP. 

Overfitting [30] is a challenge when training CNNs. 

It occurs when a model becomes excessively specialized 

in the training data it has been exposed to, to the point of 

memorizing the details of the data. As a result, the model 

performs remarkably well on the training data, but fails 

when confronted with new and unseen data [30]. To try to 

solve this problem, it is essential to find a balance between 

accurately capturing significant patterns and avoiding an 

overly complex model that adapts too much to the training 

data. Figure 6 illustrates the concept of overfitting. 

 

 
Figure 4: Illustration of the concept of overfitting. 

 

The solution found to avoid overfitting was the Early 

Stopping [31]. This solution consists of monitoring the 

model's performance with a validation dataset while it is 

being trained. As training is carried out, signs of 

performance degradation or stagnation are looked for. 

When it is detected that the model's performance on the 

validation dataset is no longer improving or is getting 

worse, which indicates a greater number of errors, the 

training is stopped. This prevents the model from 

specializing on the training dataset and helps to ensure that 

the model maintains good performance against new data 



A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 47 

[32]. With this solution, the training of both models was 

stopped when they showed a degradation or stagnation in 

performance. Figure 7 illustrates this concept. 

 

 
Figure 5: Illustration of the early stopping approach. 

 

1.2.4 Results and discussion 

The YOLOv4 and YOLOv4-tiny models went 

through 12000 training iterations. The model weights 

were then selected based on the maximum mAP value 

achieved, for use in the mobile application presented in the 

next section. 

Figure 8 shows the results of the YOLOv4 model 

training process. The final mAP and average loss values 

were 74,83% and 1,4794, respectively. It was also 

concluded that the model achieved its best performance at 

around 7600 iterations with an accuracy of 77,18%. This 

performance demonstrates the model's effectiveness in 

identifying and classifying objects. 

 

 
Figure 6: Results of the YOLOv4 training process. 

 

To further analyze the performance of the YOLOv4 

model, the accuracy of each class (i.e., development stage) 

was evaluated. Table 2 shows the accuracy results 

recorded for each class in the YOLOv4 model. Although 

each class exceeded the average accuracy, it was observed 

that the "Ripening" class had a lower average accuracy 

with a value of 26,24%. This suggests possible areas of 

future improvement for object recognition in this specific 

class. 

 

Table 2: Accuracy results for each class (i.e., 

development stage) in the YOLOv4 and YOLOv4-tiny 

models. 

 mAP 

Class YOLOv4 YOLOv4-tiny 

Rubus 

Fruticosus 

92,52% 86,03% 

Seedling 82,13% 69,86% 

Vegetative 100% 72,40% 

Budding 82,71% 74,99% 

Flowering 79,44% 83,51% 

Ripening 26,24% 31,50% 

 

Figure 9 shows the results of the training process for 

the YOLOv4-tiny model. The model finished its training 

with a mAP value of 65,43% and an average loss of 

0,3566. However, the model achieved its best 

performance at around 7000 iterations with an accuracy of 

69,72%.  Therefore, it can be concluded that this model is 

very effective at classifying and detecting objects, even 

though it is a simplified version of the YOLOv4 model. 

 

 
Figure 7: Results of the YOLOv4-tiny training process. 

 

The performance of the YOLOv4-tiny model was also 

analyzed in depth. Table 2 also shows the accuracy results 

recorded for each class in this model. It was found that, 

although most of the classes exceeded the average 

accuracy, the "Ripening" development stage again showed 

a considerably lower average accuracy of 31,50%. This 

result reinforces the conclusion that both models have 

greater difficulty in recognizing this stage of development. 

In view of these results, an explanation was sought as 

to why the "Ripening" class had a manifestly lower 

performance when compared to the other classes in both 

models. The visual appearance of the fruits of this wild 

plant, which can be red or black depending on the stage 
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they are at, is how this development stage is detected. This 

variation in the appearance of the fruit adds complexity 

and may certainly play an important role in the lower 

average accuracy value recorded. 

Therefore, it is believed that compiling a dataset with 

a greater number and variety of photographs that capture 

the various stages of fruit development can help resolve 

this constraint and contribute to improving model 

performance. This will improve the ability to recognize 

and generalize patterns associated with the different 

appearances of this fruit, resulting in greater accuracy in 

detecting this stage. 

The performance evaluation also showed that the 

YOLOv4 model completed the test to determine the mAP 

in 5 seconds, i.e., it detected all the test data in 5 seconds, 

while the YOLOv4-tiny model completed the same test in 

1 second. Figure 10 shows the time and mAP results of the 

tests carried out. 

 

 
Figure 10: Accuracy results and total detection and 

classification times for YOLOv4 and YOLOv4-tiny 

respectively. 

 

This difference in test time results suggests that the 

YOLOv4-tiny model requires less computing power than 

YOLOv4. YOLOv4-tiny may sacrifice some detection 

accuracy in favor of processing speed. But the faster 

processing of the test dataset demonstrates its suitability 

for scenarios where fast response and real-time 

performance are key, and/or there are limited computing 

resources. 

2 Mobile application 
This section describes the development of the mobile 

application for Android called "MontanhaVivaApp". It 

can be used by visitors in a nature park to interactively 

promote knowledge about the development stages of 

different wild flowers and plants found along the roads 

and trails, contributing to their conservation and 

preservation. 

2.1 Methodology 

To develop this application, the User-Centred Design 

and Iterative Development methodologies were adopted. 

User-Centered Design [33] gives priority to end users 

throughout the development process, to understand their 

needs and preferences. This involves techniques such as 

usability testing to ensure that the resulting product is in 

line with user expectations. Iterative Development [34] 

emphasizes continuous improvement, through repeated 

cycles of design, implementation, and evaluation. 

The User-Centered Design methodology was applied 

to the creation of a prototype in Adobe XD [35]. It enabled 

usability tests to be carried out on the mobile application's 

interface, to find and correct shortcomings, and to 

determine missing features. The usability testing phase is 

described in subsection 3.4. 

The Iterative Development methodology was applied 

in the development phase. The project was divided into 

several reasonably sized tasks, each focusing on a 

different set of functionalities. The continuous integration 

of new code and testing of new features ensured that the 

development went smoothly. This development phase is 

explained in subsection 3.5. 

2.2 Requirement analysis 

User requirements refer to the needs and expectations 

of end users, determining the desired features and 

interactions [36]. Requirements can be divided into two 

categories: functional requirements and non-functional 

requirements.  

Functional requirements specify the precise tasks that 

an application must perform, i.e., the main functionalities 

and user interactions. To assist in the process of 

identifying functional requirements, a use case diagram 

was drawn, shown in Figure 11 in Unified Modeling 

Language (UML) notation [37]. Use cases represent the 

interactions between users and the application. They 

provide a means of capturing the system's requirements 

and identify the functionalities to which the user has 

access. 

 

 
Figure 8: The use case diagram of the application. 

 

Next, the functional requirements are described with 

the name of the interaction, a description, its 

preconditions, and outputs. Table 3 summarizes this 

information. 

1) Navigation through the main menu, allowing the 

user to view previous readings. Its precondition is that the 

application is initialized. As an output of the requirement, 

the user can use all the functions found in the main menu, 
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such as taking a photo to take a reading or checking the 

details of a previous reading. 

2) Capturing a photo to be analyzed by the CNN 

model. The precondition for this requirement is that the 

user clicks on the button available in the main menu to 

take a photo. As an output of the requirement, the image 

is processed by the chosen model. 

3) The choice of CNN template, which can be selected 

from the top section of the main menu. The precondition 

for this requirement is that the user is in the main menu. 

The output of the requirement is that the user can use all 

the functions found in the main menu. 

4) The use of the YOLOv4 model. The precondition 

for this requirement is that the user has selected this CNN 

model in the main menu and has taken a photograph. As 

an output of the requirement, the user returns to the main 

menu where the result of the new reading is now available. 

5) The use of the YOLOv4-tiny template. The 

precondition for this requirement is that the user has 

selected this CNN model from the main menu and 

captured a photo. As an output of the requirement, the user 

returns to the main menu where the result of the new 

reading is now available. 

6) Seeing all the details of a reading. The precondition 

for this requirement is that the user has selected one of the 

readings in the main menu. To exit the requirement, the 

user can delete the reading or return to the main menu. 

7) Delete a specific reading using a button on the 

details page of a reading. This requirement has the 

precondition of being on the details page of a reading. As 

an exit from the requirement, the user returns to the main 

menu. 

 

Table 3: Summary of functional requirements. 

Name Precondition Exit 

Browse the 

menu 

Initialize the 

application. 

Use of any 

functionality found 

in the menu. 

Capturing 

an image 

Click on the 

button to capture a 

photo. 

Return to the menu. 

Choosing a 

model 

Find yourself in 

the menu. 

Use of any 

functionality found 

in the menu. 

Choice of 

YOLOv4 

model 

Find yourself in 

the menu. 

Use of any 

functionality found 

in the menu. 

Choice of 

YOLOv4-

tiny model 

Find yourself in 

the menu. 

Use of any 

functionality found 

in the menu. 

View 

details of a 

reading 

Click on one of the 

readings. 

Delete reading. 

Return to the menu. 

Delete 

reading 

Finding yourself 

on the details page 

of a reading. 

Return to the menu. 

 

The application also has non-functional requirements, 

which include attributes such as performance, feedback on 

errors and ease of use.  

An intuitive interface refers to the ease of use and 

interaction of the user interface. It denotes the system's 

ability to facilitate user involvement and navigation, 

without the need for extensive training or guidance. It 

contributes to the application's ease of use by minimizing 

the learning curve, allowing users to quickly understand 

the interface's functionalities and access them effortlessly.  

Performance is the application's ability to perform 

tasks effectively and efficiently, even under varying 

conditions and workloads. It includes factors such as 

responsiveness, speed and resource utilization. A well-

performing application meets user expectations by 

providing quick responses, fast data processing and 

smooth functionality across different devices and usage 

scenarios. 

Error feedback refers to the application's ability to 

give clear and informative answers to users when errors or 

exceptions occur during its operation. This requirement 

underlines the importance of maintaining a user-friendly 

environment, even in the presence of unforeseen 

problems. Effective error feedback provides users with 

concise and understandable explanations of the problems 

encountered, suggests potential solutions and guides them 

towards troubleshooting or making informed decisions. 

By ensuring informative error feedback, the application 

facilitates user understanding, minimizes frustration and 

promotes a positive user experience.  

A scalable database refers to the importance of a 

structured and adaptable database architecture to which 

information about other species of wild flowers and plants 

and their development stages can be added, while 

maintaining its efficiency and the organization of the data. 

These requirements combined form a framework for 

developing an application that aligns with user 

expectations, provides the desired functionalities and 

meets quality expectations. 

In addition to the user requirements, the platform 

requirements must also be addressed. As this application 

was developed using Android Studio [38], it requires an 

Android operating system. More specifically, as 

minSdkVersion 24 was used, the application works on 

Android versions 7 and later. Installation requires 

approximately 80 MB of storage, and at least 2 GB of 

RAM is recommended for optimum performance. A 

working camera is also essential for capturing 

photographs. In addition to these requirements, users who 

choose to use YOLOv4 need an Internet connection to use 

it. 

2.3  Technologies and architecture of the 

mobile app 

The "MontanhaVivaApp" mobile application was 

implemented using the Android Studio integrated 

development environment (IDE) (electric eel 2022.1.1) 

[38] and the Java programming language. The application 

uses an SQLite database [39] and the Structured Query 

Language (SQL). The database was designed to hold a 
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large amount of data on the different species of wild 

flowers and plants and their development stages.  

The application uses the YOLOv4 and YOLOv4-tiny 

trained models to detect and classify images of wild 

flowers and plants in order to identify the species and their 

development stage. The YOLOv4-tiny model was 

implemented locally in the application, as it requires less 

computing power, allowing it to be used by a mobile 

device. The YOLOv4 model, which requires more 

computing power, was implemented remotely and is used 

via an application programming interface (API). To create 

this API, the Flask platform in version 2.3.3 [40] was used, 

together with Python language. Figure 12 shows the 

diagram of the architecture described. 

 

 
Figure 9: The MontanhaVivaAPP application 

architecture. 

 

Since the application will be used by visitors in nature 

parks, they may be in remote locations where Internet 

access may be scarce or non-existent. Therefore, it was 

decided to implement the YOLOv4-tiny model and the 

database locally. This way, even if a user is in an area 

without network coverage and captures a photograph, the 

application will be able to identify the wild plant and its  

development stage, providing a reading with the plant's 

information.  Figure 13 shows a sequence diagram 

describing the process of creating a new reading locally, 

using the YOLOv4-tiny model. 

 

 
Fig. 10. The sequence diagram illustrating the process of 

creating a new reading locally using the YOLOv4-tiny 

model. 

 

 

 

 

In addition, the application offers another option for 

detection and classification using the YOLOv4 model, for 

users who have access to the Internet. The user may prefer 

to use this model because it is more accurate, as discussed 

in a subsection above. This model is available to the user 

via an API, which will receive a photograph and use the 

YOLOv4 model to perform the detection and 

classification, returning the results to the application (i.e., 

species and development stage). Then, the application will 

create a new reading from this data. Figure 14 shows a 

sequence diagram illustrating the process of creating a 

new reading locally, using the YOLOv4 model. 

 

 
Figure 11: The sequence diagram illustrating the process 

of creating a new reading using the API with the 

YOLOv4 model. 

2.4 Usability tests 

Before starting the application development process, 

an Adobe XD prototype was developed to simulate the 

application's functionalities. This prototype is available at 

[41]. The prototype made it possible to analyze how users 

would interact with the application, as well as to identify 

missing features to improve the application.  

The initial interface of the prototype is the main menu, 

which serves as the entry point to the application. This 

menu contains all the readings of wild plants previously 

taken by the user. These readings are separated into cells. 

Each cell displays a summary set of information, including 

the scientific name, the common name, the stage of 

development, the period of that stage and the date of the 

reading. The main menu also has a camera button in the 

bottom right-hand corner, which simulates the process of 

capturing a photograph of a wild plant for detection and 

classification. After successfully capturing the photo, the 

user returns to the main menu interface, where the newly 

generated reading allows further exploration and 

management. Figure 15 shows the process of creating a 

new reading and shows these described interfaces. 
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Figure 12: The process of creating a new reading in the 

prototype. 

 

An interface is also available that allows users to 

obtain more detailed information about a particular wild 

plant reading. As it can be seen in Figure 16, it displays 

information such as the common name, the scientific 

name, the development stage, the period of the  

 

 

 

 

 

 

 

 

 

 

development stage, the habitat specifications, and a full 

description of the species. 

 

 
Figure 13: The interface details of a reading in the 

prototype. 

 

Usability tests were carried out with real users to 

obtain information about interaction with the application’s 

interface and the user experience. The concept and 

purpose of the mobile application were explained, and 

users were asked to create a new reading and consult its 

details. The difficulty of performing these tasks was 

assessed. Users were then asked two questions: Question 

1 "Would you use this application?"; Question 2 "Would 

you add any functionality or information?". Table 4 

summarizes the results of the usability tests. 

The feedback from the usability tests allowed 

assessing possible changes to be made to the application. 

In view of what was reported, a "Delete reading" button 

was incorporated, giving users control over their readings. 

The category in which the plant is classified by the 

International Union for Conservation of Nature (IUCN), 

was also added to the detailed information, which reflects 

its degree of risk of extinction. 

It was also decided to give autonomy to the user to 

choose the CNN model to be used for detection and 

classification, unlike the previous approach which decided 

automatically based on the existence of network coverage. 

These adjustments based on user experience were aimed 

at improving the usability of the application. 
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Table 4: Usability test results 

ID of 

the 

user 

Problems 

with the 

interface 

Question 1 

Would you 

use this 

application? 

Question 2 

Would you 

add any 

functionality 

or 

information? 

1 None 

observed. 

Yes, I like 

hiking and it 

would be 

good to 

identify 

plants and 

what stage 

they're at. 

I would add a 

button to 

choose 

whether I want 

to use local 

detection, as I 

may not want 

to waste 

mobile data. 

2 None 

observed. 

No, I'm not 

in the habit 

of visiting 

nature parks. 

No. 

3 None 

observed. 

Yes, because 

I have a 

garden at 

home. 

Add a 

description of 

the plant's 

growth stage. 

4 None 

observed. 

Yes, it looks 

like 

something I 

would use on 

a visit to a 

nature park. 

Add 

information 

about the state 

of danger the 

plant is in. 

5 None 

observed. 

No, I'm not 

interested in 

plants. 

Add a button 

to delete a 

reading. 

6 None 

observed. 

Yes, if I went 

to a nature 

park. 

The option to 

choose the 

model so as 

not to use 

mobile data. 

7 None 

observed. 

Yes, I 

thought it 

was an 

interesting 

idea. 

No. 

8 None 

observed. 

Yes, if you 

visit a nature 

park. 

No. 

9 None 

observed. 

No, I'm not 

in the habit 

of visiting 

nature parks. 

No. 

10 None 

observed. 

Yes, I'm in 

the habit of 

hiking and I 

think it's an 

interesting 

thing to use. 

Add a 

description of 

the growth 

stage. 

2.5 Development 

The Iterative Development methodology was used to 

develop the mobile application. Thus, the process was 

divided into several tasks. Initially, all the interfaces and 

menus were created and the navigation between them was 

tested, ensuring that the new code was implemented in this 

iteration without any problems. 

Next, the SQLite database implemented in the 

application was created. At this stage, the application only 

returns results for the Rubus Fruticosus species, due to the 

difficulties when creating the dataset described in a 

subsection above. However, both the application and the 

database have been designed to store and display 

information on the development stages of various plant 

species.  

The database stores the information that will be 

shown to the user. It consists of 6 tables, shown in the 

entity-relationship (ER) model in Figure 17, which store 

information such as: the common name of the species, the 

scientific name of the species, the development stage, the 

time period of the development stage, the IUCN code, the 

habitats in which it can be found, and descriptions of the 

species and stage. After planning and implementing the 

database, its operation was tested. 

 

 
Figure 14: The ER model of the database. 

 

After implementing the database, the YOLOv4-tiny 

model was implemented. To do this, it was necessary to 

convert the model trained in darknet to tensorflow lite 

[42]. This approach allowed the model to be implemented 

locally in the application. After this implementation, the 

model was rigorously tested with all the development 

stages to ensure that any errors were detected and 

corrected. 

Next, an API was implemented with the Flask 

framework to allow the YOLOv4 model to be executed 

remotely. To do this, the application checks if there is 

access to the API using a mobile Internet connection (3G 

or higher). If successful, it sends the photo for detection 

and classification. The results are returned in JSON 

format, and include the species and development stage, to 

form the reading that is then displayed in the application. 

The API was subjected to functional tests to detect and 

correct errors. Figure 18 illustrates how this works. 
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Figure 15: The sequence diagram illustrating the 

interaction between the application and the API. 

 

After these iterations, the functional prototype of the 

MontanhaVivaApp application was developed and is 

available at [43]. Figure 19 shows the modules of the 

mobile application, including the Java files and menus, 

respecting the Java language nomenclature [44]. 

 

 
Figure 16: The modules of the MontanhaVivaApp 

mobile application. 

2.6 Structure of the application and 

evaluation 

This subsection describes the features of the 

MontanhaVivaApp application and the main operations 

that can be performed on it.  

The main menu, shown in Figure 20, serves as the 

entry point to the application. It provides a view of the 

previously recorded wild flowers and plants readings. 

These readings are listed in cells in the main menu, each 

containing summary information about the scientific 

name, the common name, the development stage, the 

period of the stage and the date of the reading.  

 

 
Figure 17: The main menu interface. 

 

Users can consult more detailed information about a 

particular reading. All they need to do is to select one of 

the readings listed in the main menu and the interface 

shown in Figure 21 will appear. This screen provides a 

range of information including the common name of the 

plant, the scientific name, the development stage, the 

period of that stage, the category assigned by the IUCN, 

the common habitat, and a detailed description of the 

species. In the top right-hand corner, there is a button that 

allows the user to delete this reading. If this button is 

clicked, once the reading has been removed, the message 

"Reading successfully deleted" is displayed, as shown in 

Figure 21. This user-initiated deletion process simplifies 

data management and improves the application's 

functionality. 

 

  
 

Figure 18: The interfaces showing the details and the 

message with the deletion notification. 
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In the top corner of the main menu (Figure 20), the 

user can choose the CNN model they want to use to detect 

and classify plants: YOLOv4 or YOLOv4-tiny. In the 

bottom right-hand corner, there is a button that activates 

the mobile device's camera to take a photo. This image is 

then transmitted to the model selected for analysis. Figure 

22 shows the process of capturing an image (i.e., photo) to 

be analyzed. 

 

 
Figure 19: The process of capturing an image. 

 

If the user has selected the YOLOv4 model and there 

is no Internet connectivity to the API, he will receive the 

message "No connection to the API, use the local model", 

shown in Figure 23. This information allows the user to 

decide whether to use YOLOv4-tiny for local processing 

in the main menu (Figure 20).  

In cases where the chosen model cannot detect the 

plant and its development stage, the user will receive the 

message "Bad reading, please try again", shown in Figure 

23. These error messages are enlightening in that they 

suggest possible causes to help the user. 

 

  
 

Figure 20: The error messages notification. 

3 Conclusion 
Wild flowers and plants are a vital part of biological 

diversity and an essential resource for the planet. 

However, we are seeing an increase in the number of wild 

flowers and plants at risk of extinction and in decline due 

to climate change and the impact of human action. 

Therefore, there is an urgent need to contribute 

technological solutions for their conservation and 

preservation. 

The work presented in this article is one of the stages 

of an ongoing research project, which aims to develop a 

mobile application and a system based on computer vision 

techniques to detect and monitor the development stages 

of wild flowers and plants.  

In summary, the main contributions resulting from 

this article are: 1) the creation of a dataset with the stages 

of development of a wild plant; 2) a comparative 

performance analysis of the YOLOv4 and YOLOv4-tiny 

convolutional neural network models for detecting the 

development stages of this wild plant; 3) a description of 

the process of developing a mobile application, using 

YOLOv4 and YOLOv4-tiny, as a proof of concept. 
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This mobile application can be used by visitors to a 

nature park to provide information and raise awareness 

about the development stages of the wild flowers and 

plants they encounter along the roads and trails. The 

application is currently in the testing phase of its prototype 

version.  

Several points remain open for future work, 

including: 1) creating a dataset with support for a wide 

range of wild flowers and plants species, with a large 

number of images for each plant species and development 

stage; 2) testing and evaluating other convolutional neural 

network models; 3) continuing the process of validating 

the application with a wide range of real users; 4) using 

the feedback from these users to add features to the 

application that enrich and facilitate its use. 
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