
https://doi.org/10.31449/inf.v48i6.5645 Informatica 48 (2024) 43–58 43

A Mobile Application for Detecting and Monitoring the Development

Stages of Wild Flowers and Plants

João Videira 1, Pedro D. Gaspar 2,3, Vasco N. G. J. Soares 1,4* and João M. L. P. Caldeira 1,4
1Polytechnic Institute of Castelo Branco, Av. Pedro Álvares Cabral nº 12, 6000-084 Castelo Branco, Portugal
2Department of Electromechanical Engineering, University of Beira Interior, Rua Marquês d’Ávila e Bolama, 6201-

001 Covilhã, Portugal
3C-MAST Center for Mechanical and Aerospace Science and Technologies, University of Beira Interior, 6201-001

Covilhã, Portugal
4Instituto de Telecomunicações, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal

jvideira@ipcbcampus.pt, dinis@ubi.pt, vasco.g.soares@ipcb.pt, jcaldeira@ipcb.pt

*Corresponding author: g.soares@ipcb.pt

Keywords: wild flowers and plants, development stages, computer vision, convolutional neural networks, YOLOv4,

YOLOv4-tiny, mobile app

Received: Januar 7, 2024

Wild flowers and plants appear spontaneously. They form the ecological basis on which life depends. They

play a fundamental role in the regeneration of natural life and the balance of ecological systems. However,

this irreplaceable natural heritage is at risk of being lost due to human activity and climate change. The

work presented in this paper contributes to the conservation effort. It is based on a previous study by the

same authors, which identified computer vision as a suitable technological platform for detecting and

monitoring the development stages of wild flowers and plants. It describes the process of developing a

mobile application that uses YOLOv4 and YOLOv4-tiny convolutional neural networks to detect the stages

of development of wild flowers and plants. This application could be used by visitors in a nature park to

provide information and raise awareness about the wild flowers and plants they find along the roads and

trails.

Povzetek: Raziskava uvaja mobilno aplikacijo z uporabo konvolucijskih nevronskih mrež YOLOv4 za

prepoznavanje razvojnih stopenj divjih rastlin, prispevajoč k ohranjanju naravne dediščine.

1 Introduction

Plants are recognized as a vital part of the world's

biological diversity and an essential resource for the

planet. They play a fundamental role in maintaining basic

ecosystem functions and are indispensable for the survival

of animal life on our planet [1]. While agricultural plants

provide food and basic fibers, many wild plants are of

great economic and cultural importance and have

enormous potential, serving as food, medicine, fuel,

clothing and common shelter [2], [3].

Given the growing number of endogenous and/or wild

flowers and plants at risk of extinction and in decline due

to climate change and the impact of human action [4], [5],

there is an urgent need to contribute technological

solutions for their conservation and preservation.

Detecting, monitoring and following the development

stages of endogenous and/or wild flowers and plants can

alert biologists and researchers linked to the various areas

of biodiversity to possible problems with the surrounding

environment, which can help them make more informed

decisions about how to manage and protect natural parks

or preserved areas. On the other hand, it can support and

help inform tourists and the community in general about

wild flowers and plants found along roads and trails. This

promotion of awareness about wild flowers and plants is

aimed at promoting environmental sustainability, but also

the development of economic and cultural activities in

regions where these plants grow.

The development stages of wild flowers and plants

can be classified as follows [6]: 1) sprout: this stage

typically takes place underground, where the plant begins

to grow from its seed; 2) seedling: this stage is

characterized by the spread of roots and the appearance of

the first leaves; 3) vegetative: this stage is identified by the

development of stems and foliage; 4) budding: this stage

can be identified by the appearance of buds on the plant;

5) flowering: this stage is recognized by the appearance of

flowers, which consequently causes pollination and can be

accompanied by the appearance of fruit in the early stages;

6) ripening: this stage is identified by the appearance of

ripe fruit. The sprout stage cannot be identified by

computer vision techniques, as it takes place underground.

This work follows on from the conclusions presented

in a previous paper by the same authors [7], which

analyzed computer vision as a suitable technological

platform for detecting and monitoring the development

stages of wild flowers and plants. It presented a survey of

the research in this field and applications related to plant

identification and plant disease detection. The most

mailto:jvideira@ipcbcampus.pt
mailto:dinis@ubi.pt

44 Informatica 48 (2023) 43–58 J. Videira et al.

promising computer vision techniques were identified,

and open problems and challenges were discussed.

The work presented in this article is one of the stages

of an ongoing project which aims to develop a mobile

application and system based on computer vision

techniques to detect and monitor the stages of

development of wild flowers and plants. The application

can be used by visitors to a nature park to provide

information and raise awareness about the wild flowers

and plants they encounter along the roads and trails. The

system will allow scientists and biologists, or the merely

curious, to remotely monitor and collect information on

the stages of development of wild flowers and plants.

Although there are already mobile applications that

can identify plant species, such as those available in [8],

[9], to the best of the authors' knowledge, at the time of

writing this article, there is still no mobile application

capable of classifying the developmental stages of wild

flowers and plants. Therefore, the main contributions of

this article are: 1) the creation of a dataset with the stages

of development of a wild plant; 2) a performance

evaluation study of the convolutional neural network

(CNN) models YOLOv4 and YOLOv4-tiny for detecting

the stages of development of this wild plant; 3) the

description of the process of developing a mobile

application, compatible with the Android platform, which

uses these CNNs.

This application is aimed at visitors or workers in

nature parks. It works by capturing an image of the plant

or flower. Then, using these computer vision techniques,

it will be able to identify the species of the wild plant, as

well as determine its stage of development, and to provide

additional information about them.

The rest of the paper is organized as follows. Section

2 introduces the main concepts of the computer vision

techniques used in the context of this work and presents a

performance assessment. Section 3 describes the

implementation process and the operation of the mobile

application developed in the context of this work. Finally,

Section 4 concludes the article and presents future work.

1 Computer vision techniques
Computer vision techniques include a variety of

algorithms, models and procedures that allow computers

to analyze visual data such as photographs and videos [10]

and perform tasks such as object detection and

classification [11]. Object detection is the task of locating

an object in the visual input, while object classification

involves assigning a classification to the objects detected

in that same input [12]. These concepts are illustrated in

Figure 1. Although these tasks differ, deep learning is

often used for both.

Figure 1: Illustration of object classification and

detection concepts.

Deep learning is a subfield of machine learning,

which focuses on the creation and training of

convolutional neural networks. This training is carried out

by learning patterns from a large volume of data [13], such

as a dataset of images. This training is possible because

CNNs are made up of layers of interconnected nodes,

which simulate the behavior of neurons in a human brain

[13]. These concepts are illustrated in Figure 2. Training

CNNs makes it possible to detect patterns, and

consequently to detect and classify objects [14].

Figure 2: The structure of a convolutional neural

network.

In a previous work [7] by the same authors of this

article, it was found that over the years, various CNN

models have been considered in the literature for the tasks

of plant identification and plant disease detection. Given

the results reported in [15], [16] and [17], it was concluded

that YOLOv3 or YOLOv4 would be the best option to

consider when developing a mobile application to detect

the development stages of wild flowers and plants. These

models are fast, require relatively little processing

capacity and allow results to be obtained in real time.

These characteristics fit perfectly with the requirements of

the mobile application presented in this paper.

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 45

1.1 YOLOv4 e YOLOv4-tiny

The YOLO (You Only Look Once) model [18]

analyses images quickly by dividing an image into a grid,

predicting the bounding boxes, confidence levels and class

probabilities of the objects. The result is a set of objects

bounding boxes, with class names and confidence levels

[18]. These concepts are illustrated in Figure 3.

Figure 2: YOLO model detection process.

The YOLOv4 model consists of 3 components:

backbone, neck and head. YOLOv4 uses CNN

CSPDarkNet53 in the backbone, while YOLOv3 uses

DarkNet53 [19]. This component is responsible for feature

extraction, which is the process of transforming data into

numerical values. In YOLOv4, the neck component uses

Path Aggregation Network (PAN) [17] to extract feature

maps, while YOLOv3 uses Feature Pyramid Extraction

(FPN). Finally, the head component consists of applying

anchor boxes to the feature map extracted by PAN. These

anchor boxes are used to capture the objects and contain a

prediction value [20]. At this stage three heads can be used

to identify objects of various sizes, after the feature maps

of various scales are joined and subjected to a convolution

operation [21].

The YOLOv4-tiny model is a simplified version of

YOLOv4 [22]. The first difference in this model is the use

of the CSPDarknet53-tiny CNN [23]. The neck

component of YOLOv4-tiny uses the Feature Pyramid

Network (FPN) structure [23], a design that improves

object detection accuracy and increases detection speed

[24]. Another difference from YOLOv4 is that YOLOv4-

tiny uses only two heads instead of three [23]. This

modification could potentially pose challenges when

detecting objects at extreme scales, such as very small

objects [22]. Despite this limitation, the integration of

CSPDarknet53-tiny and FPN into YOLOv4-tiny

contributes to its overall performance, allowing it to

perform object detection tasks with less computing power

and greater speed.

1.2 Performance evaluation

This subsection focuses on evaluating the

performance of the YOLOv4 and YOLOv4-tiny CNN

models for detecting the developmental stages of wild

flowers and plants. To this end, the dataset created as part

of this work, the benchmark scenario, the performance

metrics considered, and the experimental results are

presented next.

1.2.1 Dataset description

To the best of the authors' knowledge, there are no

available datasets with images of the developmental

stage’s wild flowers and plants. Therefore, it was

necessary to create a dataset with the developmental

stages of a specific wild plant in order to train and test the

models. The plant selected for proof of concept and testing

was Rubus Fruticosus, also known as "bramble" or

"blackberry". This choice was because it is a common wild

plant and thus with many images available.

The dataset was categorized into 6 different classes,

each representing a stage of development of the wild plant.

The initial stage, called seedling, marks the appearance of

roots and the initial appearance of leaves. This is followed

by the vegetative stage, characterized by the development

of stems and foliage. The budding stage shows the

appearance of buds on the plant, heralding the next stage

of flowering. The flowering stage is identified by the

presence of flowers, often accompanied by the appearance

of the first fruits. The ripening stage is characterized by

the appearance of fruit on the plant. Finally, the class

"Rubus Fruticosus" is used to identify this plant species.

All the images used in this dataset were obtained from the

INaturalist [25] and biodiversity4all [26], platforms,

taking advantage of the large number of images present on

them. This dataset can be found on the Kaggle platform in

the following link [27]. Figure 4 shows an example of each

of the developmental stages described.

Seedling Vegetative Budding

Flowering Ripening

Figure 4: The development stages of the wild plant

Rubus Fruticosus.

To train and validate the CNN models, the dataset was

separated into train and test. In the training dataset, each

development stage category was created with

approximately 100 images. An exception was the

“Budding” category, which, given the limited availability

of images, only contains 80 images for training. It is

46 Informatica 48 (2023) 43–58 J. Videira et al.

important to note that the “Rubus Fruticosus” class has

490 images because this is the total number of images of

all the development stages for this plant species.

To create the test dataset, 20 images were used for

each development stage. This distribution of the number

of images for training and testing each development stage

guarantees sufficient data for training the models and

evaluating their performance. Table 1 shows the number

of images available for training and testing for each class

(i.e., development stage).

Table 1: Number of images for each class (i.e.,

development stage) in the training and test dataset.

Class Train Test

Seedling 100 20

Vegetative 100 20

Budding 80 20

Flowering 110 20

Ripening 100 20

Rubus

Fruticosus

490 100

Next, the Yolo_Label tool [28] was used to create the

annotations for each image. This task tells the models the

location of the objects and their classification. Then, they

can then be trained with this data and their performance

can be evaluated. Figure 5 illustrates this task.

Fig. 3. The process of creating an annotation on a dataset

image with the Yolo_Label tool.

1.2.2 Benchmark scenario

Both models were trained and tested on the same

device. To do this, the darknet code [29] was downloaded

to carry out the necessary training and tests. The test

environment was hosted on a device with an AMD Ryzen

5 4600H CPU, 16 GB of RAM, and an NVIDIA GeForce

GTX 1650 GPU which increased the computing power

required for deep learning operations.

This test environment allowed an unbiased

comparison of the accuracy, processing speed and

efficiency of the YOLOv4 and YOLOv4-tiny models.

1.2.3 Performance metrics

To assess the performance of YOLOv4 and YOLOv4-

tiny in the task of object detection and classification, the

models were trained with 12,000 iterations with batches of

64 images, following the instructions in [29]. This number

of iterations is equivalent to approximately 1567 epochs,

according to the formula show in (1).

𝐸𝑝𝑜𝑐ℎ𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑚𝑎𝑔𝑒𝑠 𝑖𝑛 𝑡𝑟𝑎𝑖𝑛

𝑏𝑎𝑡𝑐ℎ

 (1)

Once the training was complete, the trained models

with the best average precision (mAP) were selected. This

metric is calculated according to the formula shown in (2)

and considers the accuracy of each class (APk) and the

number of classes (n). The mAP is the metric commonly

used to compare the performance of CNN models such as

YOLO.

𝑚𝐴𝑃 =
1

𝑛
∑ 𝐴𝑃𝑘𝑘=𝑛

𝑘=1 (2)

It is also interesting to analyze in CNN models, the

average loss obtained by calculating the average of the

total loss of several batches in a dataset, and the test time

required to determine the mAP.

Overfitting [30] is a challenge when training CNNs.

It occurs when a model becomes excessively specialized

in the training data it has been exposed to, to the point of

memorizing the details of the data. As a result, the model

performs remarkably well on the training data, but fails

when confronted with new and unseen data [30]. To try to

solve this problem, it is essential to find a balance between

accurately capturing significant patterns and avoiding an

overly complex model that adapts too much to the training

data. Figure 6 illustrates the concept of overfitting.

Figure 4: Illustration of the concept of overfitting.

The solution found to avoid overfitting was the Early

Stopping [31]. This solution consists of monitoring the

model's performance with a validation dataset while it is

being trained. As training is carried out, signs of

performance degradation or stagnation are looked for.

When it is detected that the model's performance on the

validation dataset is no longer improving or is getting

worse, which indicates a greater number of errors, the

training is stopped. This prevents the model from

specializing on the training dataset and helps to ensure that

the model maintains good performance against new data

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 47

[32]. With this solution, the training of both models was

stopped when they showed a degradation or stagnation in

performance. Figure 7 illustrates this concept.

Figure 5: Illustration of the early stopping approach.

1.2.4 Results and discussion

The YOLOv4 and YOLOv4-tiny models went

through 12000 training iterations. The model weights

were then selected based on the maximum mAP value

achieved, for use in the mobile application presented in the

next section.

Figure 8 shows the results of the YOLOv4 model

training process. The final mAP and average loss values

were 74,83% and 1,4794, respectively. It was also

concluded that the model achieved its best performance at

around 7600 iterations with an accuracy of 77,18%. This

performance demonstrates the model's effectiveness in

identifying and classifying objects.

Figure 6: Results of the YOLOv4 training process.

To further analyze the performance of the YOLOv4

model, the accuracy of each class (i.e., development stage)

was evaluated. Table 2 shows the accuracy results

recorded for each class in the YOLOv4 model. Although

each class exceeded the average accuracy, it was observed

that the "Ripening" class had a lower average accuracy

with a value of 26,24%. This suggests possible areas of

future improvement for object recognition in this specific

class.

Table 2: Accuracy results for each class (i.e.,

development stage) in the YOLOv4 and YOLOv4-tiny

models.

 mAP

Class YOLOv4 YOLOv4-tiny

Rubus

Fruticosus

92,52% 86,03%

Seedling 82,13% 69,86%

Vegetative 100% 72,40%

Budding 82,71% 74,99%

Flowering 79,44% 83,51%

Ripening 26,24% 31,50%

Figure 9 shows the results of the training process for

the YOLOv4-tiny model. The model finished its training

with a mAP value of 65,43% and an average loss of

0,3566. However, the model achieved its best

performance at around 7000 iterations with an accuracy of

69,72%. Therefore, it can be concluded that this model is

very effective at classifying and detecting objects, even

though it is a simplified version of the YOLOv4 model.

Figure 7: Results of the YOLOv4-tiny training process.

The performance of the YOLOv4-tiny model was also

analyzed in depth. Table 2 also shows the accuracy results

recorded for each class in this model. It was found that,

although most of the classes exceeded the average

accuracy, the "Ripening" development stage again showed

a considerably lower average accuracy of 31,50%. This

result reinforces the conclusion that both models have

greater difficulty in recognizing this stage of development.

In view of these results, an explanation was sought as

to why the "Ripening" class had a manifestly lower

performance when compared to the other classes in both

models. The visual appearance of the fruits of this wild

plant, which can be red or black depending on the stage

48 Informatica 48 (2023) 43–58 J. Videira et al.

they are at, is how this development stage is detected. This

variation in the appearance of the fruit adds complexity

and may certainly play an important role in the lower

average accuracy value recorded.

Therefore, it is believed that compiling a dataset with

a greater number and variety of photographs that capture

the various stages of fruit development can help resolve

this constraint and contribute to improving model

performance. This will improve the ability to recognize

and generalize patterns associated with the different

appearances of this fruit, resulting in greater accuracy in

detecting this stage.

The performance evaluation also showed that the

YOLOv4 model completed the test to determine the mAP

in 5 seconds, i.e., it detected all the test data in 5 seconds,

while the YOLOv4-tiny model completed the same test in

1 second. Figure 10 shows the time and mAP results of the

tests carried out.

Figure 10: Accuracy results and total detection and

classification times for YOLOv4 and YOLOv4-tiny

respectively.

This difference in test time results suggests that the

YOLOv4-tiny model requires less computing power than

YOLOv4. YOLOv4-tiny may sacrifice some detection

accuracy in favor of processing speed. But the faster

processing of the test dataset demonstrates its suitability

for scenarios where fast response and real-time

performance are key, and/or there are limited computing

resources.

2 Mobile application
This section describes the development of the mobile

application for Android called "MontanhaVivaApp". It

can be used by visitors in a nature park to interactively

promote knowledge about the development stages of

different wild flowers and plants found along the roads

and trails, contributing to their conservation and

preservation.

2.1 Methodology

To develop this application, the User-Centred Design

and Iterative Development methodologies were adopted.

User-Centered Design [33] gives priority to end users

throughout the development process, to understand their

needs and preferences. This involves techniques such as

usability testing to ensure that the resulting product is in

line with user expectations. Iterative Development [34]

emphasizes continuous improvement, through repeated

cycles of design, implementation, and evaluation.

The User-Centered Design methodology was applied

to the creation of a prototype in Adobe XD [35]. It enabled

usability tests to be carried out on the mobile application's

interface, to find and correct shortcomings, and to

determine missing features. The usability testing phase is

described in subsection 3.4.

The Iterative Development methodology was applied

in the development phase. The project was divided into

several reasonably sized tasks, each focusing on a

different set of functionalities. The continuous integration

of new code and testing of new features ensured that the

development went smoothly. This development phase is

explained in subsection 3.5.

2.2 Requirement analysis

User requirements refer to the needs and expectations

of end users, determining the desired features and

interactions [36]. Requirements can be divided into two

categories: functional requirements and non-functional

requirements.

Functional requirements specify the precise tasks that

an application must perform, i.e., the main functionalities

and user interactions. To assist in the process of

identifying functional requirements, a use case diagram

was drawn, shown in Figure 11 in Unified Modeling

Language (UML) notation [37]. Use cases represent the

interactions between users and the application. They

provide a means of capturing the system's requirements

and identify the functionalities to which the user has

access.

Figure 8: The use case diagram of the application.

Next, the functional requirements are described with

the name of the interaction, a description, its

preconditions, and outputs. Table 3 summarizes this

information.

1) Navigation through the main menu, allowing the

user to view previous readings. Its precondition is that the

application is initialized. As an output of the requirement,

the user can use all the functions found in the main menu,

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 49

such as taking a photo to take a reading or checking the

details of a previous reading.

2) Capturing a photo to be analyzed by the CNN

model. The precondition for this requirement is that the

user clicks on the button available in the main menu to

take a photo. As an output of the requirement, the image

is processed by the chosen model.

3) The choice of CNN template, which can be selected

from the top section of the main menu. The precondition

for this requirement is that the user is in the main menu.

The output of the requirement is that the user can use all

the functions found in the main menu.

4) The use of the YOLOv4 model. The precondition

for this requirement is that the user has selected this CNN

model in the main menu and has taken a photograph. As

an output of the requirement, the user returns to the main

menu where the result of the new reading is now available.

5) The use of the YOLOv4-tiny template. The

precondition for this requirement is that the user has

selected this CNN model from the main menu and

captured a photo. As an output of the requirement, the user

returns to the main menu where the result of the new

reading is now available.

6) Seeing all the details of a reading. The precondition

for this requirement is that the user has selected one of the

readings in the main menu. To exit the requirement, the

user can delete the reading or return to the main menu.

7) Delete a specific reading using a button on the

details page of a reading. This requirement has the

precondition of being on the details page of a reading. As

an exit from the requirement, the user returns to the main

menu.

Table 3: Summary of functional requirements.

Name Precondition Exit

Browse the

menu

Initialize the

application.

Use of any

functionality found

in the menu.

Capturing

an image

Click on the

button to capture a

photo.

Return to the menu.

Choosing a

model

Find yourself in

the menu.

Use of any

functionality found

in the menu.

Choice of

YOLOv4

model

Find yourself in

the menu.

Use of any

functionality found

in the menu.

Choice of

YOLOv4-

tiny model

Find yourself in

the menu.

Use of any

functionality found

in the menu.

View

details of a

reading

Click on one of the

readings.

Delete reading.

Return to the menu.

Delete

reading

Finding yourself

on the details page

of a reading.

Return to the menu.

The application also has non-functional requirements,

which include attributes such as performance, feedback on

errors and ease of use.

An intuitive interface refers to the ease of use and

interaction of the user interface. It denotes the system's

ability to facilitate user involvement and navigation,

without the need for extensive training or guidance. It

contributes to the application's ease of use by minimizing

the learning curve, allowing users to quickly understand

the interface's functionalities and access them effortlessly.

Performance is the application's ability to perform

tasks effectively and efficiently, even under varying

conditions and workloads. It includes factors such as

responsiveness, speed and resource utilization. A well-

performing application meets user expectations by

providing quick responses, fast data processing and

smooth functionality across different devices and usage

scenarios.

Error feedback refers to the application's ability to

give clear and informative answers to users when errors or

exceptions occur during its operation. This requirement

underlines the importance of maintaining a user-friendly

environment, even in the presence of unforeseen

problems. Effective error feedback provides users with

concise and understandable explanations of the problems

encountered, suggests potential solutions and guides them

towards troubleshooting or making informed decisions.

By ensuring informative error feedback, the application

facilitates user understanding, minimizes frustration and

promotes a positive user experience.

A scalable database refers to the importance of a

structured and adaptable database architecture to which

information about other species of wild flowers and plants

and their development stages can be added, while

maintaining its efficiency and the organization of the data.

These requirements combined form a framework for

developing an application that aligns with user

expectations, provides the desired functionalities and

meets quality expectations.

In addition to the user requirements, the platform

requirements must also be addressed. As this application

was developed using Android Studio [38], it requires an

Android operating system. More specifically, as

minSdkVersion 24 was used, the application works on

Android versions 7 and later. Installation requires

approximately 80 MB of storage, and at least 2 GB of

RAM is recommended for optimum performance. A

working camera is also essential for capturing

photographs. In addition to these requirements, users who

choose to use YOLOv4 need an Internet connection to use

it.

2.3 Technologies and architecture of the

mobile app

The "MontanhaVivaApp" mobile application was

implemented using the Android Studio integrated

development environment (IDE) (electric eel 2022.1.1)

[38] and the Java programming language. The application

uses an SQLite database [39] and the Structured Query

Language (SQL). The database was designed to hold a

50 Informatica 48 (2023) 43–58 J. Videira et al.

large amount of data on the different species of wild

flowers and plants and their development stages.

The application uses the YOLOv4 and YOLOv4-tiny

trained models to detect and classify images of wild

flowers and plants in order to identify the species and their

development stage. The YOLOv4-tiny model was

implemented locally in the application, as it requires less

computing power, allowing it to be used by a mobile

device. The YOLOv4 model, which requires more

computing power, was implemented remotely and is used

via an application programming interface (API). To create

this API, the Flask platform in version 2.3.3 [40] was used,

together with Python language. Figure 12 shows the

diagram of the architecture described.

Figure 9: The MontanhaVivaAPP application

architecture.

Since the application will be used by visitors in nature

parks, they may be in remote locations where Internet

access may be scarce or non-existent. Therefore, it was

decided to implement the YOLOv4-tiny model and the

database locally. This way, even if a user is in an area

without network coverage and captures a photograph, the

application will be able to identify the wild plant and its

development stage, providing a reading with the plant's

information. Figure 13 shows a sequence diagram

describing the process of creating a new reading locally,

using the YOLOv4-tiny model.

Fig. 10. The sequence diagram illustrating the process of

creating a new reading locally using the YOLOv4-tiny

model.

In addition, the application offers another option for

detection and classification using the YOLOv4 model, for

users who have access to the Internet. The user may prefer

to use this model because it is more accurate, as discussed

in a subsection above. This model is available to the user

via an API, which will receive a photograph and use the

YOLOv4 model to perform the detection and

classification, returning the results to the application (i.e.,

species and development stage). Then, the application will

create a new reading from this data. Figure 14 shows a

sequence diagram illustrating the process of creating a

new reading locally, using the YOLOv4 model.

Figure 11: The sequence diagram illustrating the process

of creating a new reading using the API with the

YOLOv4 model.

2.4 Usability tests

Before starting the application development process,

an Adobe XD prototype was developed to simulate the

application's functionalities. This prototype is available at

[41]. The prototype made it possible to analyze how users

would interact with the application, as well as to identify

missing features to improve the application.

The initial interface of the prototype is the main menu,

which serves as the entry point to the application. This

menu contains all the readings of wild plants previously

taken by the user. These readings are separated into cells.

Each cell displays a summary set of information, including

the scientific name, the common name, the stage of

development, the period of that stage and the date of the

reading. The main menu also has a camera button in the

bottom right-hand corner, which simulates the process of

capturing a photograph of a wild plant for detection and

classification. After successfully capturing the photo, the

user returns to the main menu interface, where the newly

generated reading allows further exploration and

management. Figure 15 shows the process of creating a

new reading and shows these described interfaces.

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 51

Figure 12: The process of creating a new reading in the

prototype.

An interface is also available that allows users to

obtain more detailed information about a particular wild

plant reading. As it can be seen in Figure 16, it displays

information such as the common name, the scientific

name, the development stage, the period of the

development stage, the habitat specifications, and a full

description of the species.

Figure 13: The interface details of a reading in the

prototype.

Usability tests were carried out with real users to

obtain information about interaction with the application’s

interface and the user experience. The concept and

purpose of the mobile application were explained, and

users were asked to create a new reading and consult its

details. The difficulty of performing these tasks was

assessed. Users were then asked two questions: Question

1 "Would you use this application?"; Question 2 "Would

you add any functionality or information?". Table 4

summarizes the results of the usability tests.

The feedback from the usability tests allowed

assessing possible changes to be made to the application.

In view of what was reported, a "Delete reading" button

was incorporated, giving users control over their readings.

The category in which the plant is classified by the

International Union for Conservation of Nature (IUCN),

was also added to the detailed information, which reflects

its degree of risk of extinction.

It was also decided to give autonomy to the user to

choose the CNN model to be used for detection and

classification, unlike the previous approach which decided

automatically based on the existence of network coverage.

These adjustments based on user experience were aimed

at improving the usability of the application.

52 Informatica 48 (2023) 43–58 J. Videira et al.

Table 4: Usability test results

ID of

the

user

Problems

with the

interface

Question 1

Would you

use this

application?

Question 2

Would you

add any

functionality

or

information?

1 None

observed.

Yes, I like

hiking and it

would be

good to

identify

plants and

what stage

they're at.

I would add a

button to

choose

whether I want

to use local

detection, as I

may not want

to waste

mobile data.

2 None

observed.

No, I'm not

in the habit

of visiting

nature parks.

No.

3 None

observed.

Yes, because

I have a

garden at

home.

Add a

description of

the plant's

growth stage.

4 None

observed.

Yes, it looks

like

something I

would use on

a visit to a

nature park.

Add

information

about the state

of danger the

plant is in.

5 None

observed.

No, I'm not

interested in

plants.

Add a button

to delete a

reading.

6 None

observed.

Yes, if I went

to a nature

park.

The option to

choose the

model so as

not to use

mobile data.

7 None

observed.

Yes, I

thought it

was an

interesting

idea.

No.

8 None

observed.

Yes, if you

visit a nature

park.

No.

9 None

observed.

No, I'm not

in the habit

of visiting

nature parks.

No.

10 None

observed.

Yes, I'm in

the habit of

hiking and I

think it's an

interesting

thing to use.

Add a

description of

the growth

stage.

2.5 Development

The Iterative Development methodology was used to

develop the mobile application. Thus, the process was

divided into several tasks. Initially, all the interfaces and

menus were created and the navigation between them was

tested, ensuring that the new code was implemented in this

iteration without any problems.

Next, the SQLite database implemented in the

application was created. At this stage, the application only

returns results for the Rubus Fruticosus species, due to the

difficulties when creating the dataset described in a

subsection above. However, both the application and the

database have been designed to store and display

information on the development stages of various plant

species.

The database stores the information that will be

shown to the user. It consists of 6 tables, shown in the

entity-relationship (ER) model in Figure 17, which store

information such as: the common name of the species, the

scientific name of the species, the development stage, the

time period of the development stage, the IUCN code, the

habitats in which it can be found, and descriptions of the

species and stage. After planning and implementing the

database, its operation was tested.

Figure 14: The ER model of the database.

After implementing the database, the YOLOv4-tiny

model was implemented. To do this, it was necessary to

convert the model trained in darknet to tensorflow lite

[42]. This approach allowed the model to be implemented

locally in the application. After this implementation, the

model was rigorously tested with all the development

stages to ensure that any errors were detected and

corrected.

Next, an API was implemented with the Flask

framework to allow the YOLOv4 model to be executed

remotely. To do this, the application checks if there is

access to the API using a mobile Internet connection (3G

or higher). If successful, it sends the photo for detection

and classification. The results are returned in JSON

format, and include the species and development stage, to

form the reading that is then displayed in the application.

The API was subjected to functional tests to detect and

correct errors. Figure 18 illustrates how this works.

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 53

Figure 15: The sequence diagram illustrating the

interaction between the application and the API.

After these iterations, the functional prototype of the

MontanhaVivaApp application was developed and is

available at [43]. Figure 19 shows the modules of the

mobile application, including the Java files and menus,

respecting the Java language nomenclature [44].

Figure 16: The modules of the MontanhaVivaApp

mobile application.

2.6 Structure of the application and

evaluation

This subsection describes the features of the

MontanhaVivaApp application and the main operations

that can be performed on it.

The main menu, shown in Figure 20, serves as the

entry point to the application. It provides a view of the

previously recorded wild flowers and plants readings.

These readings are listed in cells in the main menu, each

containing summary information about the scientific

name, the common name, the development stage, the

period of the stage and the date of the reading.

Figure 17: The main menu interface.

Users can consult more detailed information about a

particular reading. All they need to do is to select one of

the readings listed in the main menu and the interface

shown in Figure 21 will appear. This screen provides a

range of information including the common name of the

plant, the scientific name, the development stage, the

period of that stage, the category assigned by the IUCN,

the common habitat, and a detailed description of the

species. In the top right-hand corner, there is a button that

allows the user to delete this reading. If this button is

clicked, once the reading has been removed, the message

"Reading successfully deleted" is displayed, as shown in

Figure 21. This user-initiated deletion process simplifies

data management and improves the application's

functionality.

Figure 18: The interfaces showing the details and the

message with the deletion notification.

54 Informatica 48 (2023) 43–58 J. Videira et al.

In the top corner of the main menu (Figure 20), the

user can choose the CNN model they want to use to detect

and classify plants: YOLOv4 or YOLOv4-tiny. In the

bottom right-hand corner, there is a button that activates

the mobile device's camera to take a photo. This image is

then transmitted to the model selected for analysis. Figure

22 shows the process of capturing an image (i.e., photo) to

be analyzed.

Figure 19: The process of capturing an image.

If the user has selected the YOLOv4 model and there

is no Internet connectivity to the API, he will receive the

message "No connection to the API, use the local model",

shown in Figure 23. This information allows the user to

decide whether to use YOLOv4-tiny for local processing

in the main menu (Figure 20).

In cases where the chosen model cannot detect the

plant and its development stage, the user will receive the

message "Bad reading, please try again", shown in Figure

23. These error messages are enlightening in that they

suggest possible causes to help the user.

Figure 20: The error messages notification.

3 Conclusion
Wild flowers and plants are a vital part of biological

diversity and an essential resource for the planet.

However, we are seeing an increase in the number of wild

flowers and plants at risk of extinction and in decline due

to climate change and the impact of human action.

Therefore, there is an urgent need to contribute

technological solutions for their conservation and

preservation.

The work presented in this article is one of the stages

of an ongoing research project, which aims to develop a

mobile application and a system based on computer vision

techniques to detect and monitor the development stages

of wild flowers and plants.

In summary, the main contributions resulting from

this article are: 1) the creation of a dataset with the stages

of development of a wild plant; 2) a comparative

performance analysis of the YOLOv4 and YOLOv4-tiny

convolutional neural network models for detecting the

development stages of this wild plant; 3) a description of

the process of developing a mobile application, using

YOLOv4 and YOLOv4-tiny, as a proof of concept.

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 55

This mobile application can be used by visitors to a

nature park to provide information and raise awareness

about the development stages of the wild flowers and

plants they encounter along the roads and trails. The

application is currently in the testing phase of its prototype

version.

Several points remain open for future work,

including: 1) creating a dataset with support for a wide

range of wild flowers and plants species, with a large

number of images for each plant species and development

stage; 2) testing and evaluating other convolutional neural

network models; 3) continuing the process of validating

the application with a wide range of real users; 4) using

the feedback from these users to add features to the

application that enrich and facilitate its use.

Acknowledgments
J.M.L.P.C. and V.N.G.J.S. acknowledge that this

work is funded by FCT/MCTES through national funds

and when applicable co-funded EU funds under the

project UIDB/50008/2020. P.D.G. thanks the support

provided by the Center for Mechanical and Aerospace

Science and Technologies (C-MAST) under project

UIDB/00151/2020.

This is within the activities of project Montanha Viva

– An intelligent prediction system for decision support in

sustainability, project PD21-00009, promoted by

PROMOVE program funded by Fundação La Caixa and

supported by Fundação para a Ciência e a Tecnologia and

BPI.

Declarations
Author contributions. Conceptualization, P.D.G., J.V;

methodology, J.V; validation, P.D.G., J.M.L.P.C. and

V.N.G.J.S.; formal analysis, P.D.G., J.M.L.P.C. and

V.N.G.J.S.; investigation, J.V; writing—original draft

preparation, J.V; writing—review and editing, P.D.G.,

J.M.L.P.C. and V.N.G.J.S.; supervision, J.M.L.P.C. and

V.N.G.J.S.; funding acquisition, P.D.G., J.M.L.P.C. and

V.N.G.J.S. All authors have read and agreed to the

published version of the manuscript.

Conflicts of interest. The authors declare no conflict of

interest.

References
[1] Agence France-Presse, “Chain-reaction extinctions

will cascade through nature: Study | Daily Sabah.”

https://www.dailysabah.com/life/environment/chain-

reaction-extinctions-will-cascade-through-nature-

study (accessed Jan. 29, 2023).

[2] L. E. Grivetti and B. M. Ogle, “Value of traditional

foods in meeting macro- and micronutrient needs: the

wild plant connection,” Nutr Res Rev, vol. 13, no. 1,

pp. 31–46, Jun. 2000, doi:

10.1079/095442200108728990.

[3] E. Christaki and P. Florou-Paneri, “Aloe vera: A plant

for many uses,” J Food Agric Environ, vol. 8, pp.

245–249, 2010.

[4] Trevor Dines, “Plantlife - A Voice for Wildflowers -

Ark Wildlife UK.”

https://www.arkwildlife.co.uk/blog/plantlife-a-voice-

for-wildflowers/ (accessed Jan. 29, 2023).

[5] X. Chi et al., “Threatened medicinal plants in China:

Distributions and conservation priorities,” Biol

Conserv, vol. 210, Part A, pp. 89–95, Jun. 2017, doi:

10.1016/J.BIOCON.2017.04.015.

[6] Woodstream, “Learn The Six Plant Growth Stages.”

https://www.saferbrand.com/articles/plant-growth-

stages (accessed Sep. 04, 2023).

[7] João Videira, Pedro D. Gaspar, Vasco N. G. J. Soares,

and João M. L. P. Caldeira, “Detecting and

Monitoring the Development Stages of Wild Flowers

and Plants using Computer Vision: Approaches,

Challenges and Opportunities (in press),”

International Journal of Advances in Intelligent

Informatics (IJAIN), 2023.

[8] PEAT GmbH, “Plantix - seu médico agrícola – Apps

no Google Play.”

https://play.google.com/store/apps/details?id=com.p

eat.GartenBank&hl=pt_PT&gl=US (accessed Oct.

06, 2022).

[9] AIBY Inc., “Plantum - Identificar plantas – Apps no

Google Play.”

https://play.google.com/store/apps/details?id=plant.i

dentification.flower.tree.leaf.identifier.identify.cat.d

og.breed.nature&hl=pt_PT&gl=US (accessed Oct.

06, 2022).

[10] N. Buch, S. A. Velastin, and J. Orwell, “A review of

computer vision techniques for the analysis of urban

traffic,” IEEE Transactions on Intelligent

Transportation Systems, vol. 12, no. 3, pp. 920–939,

Sep. 2011, doi: 10.1109/TITS.2011.2119372.

[11] S. Xu, J. Wang, W. Shou, T. Ngo, A. M. Sadick, and

X. Wang, “Computer Vision Techniques in

Construction: A Critical Review,” Archives of

Computational Methods in Engineering 2020 28:5,

vol. 28, no. 5, pp. 3383–3397, Oct. 2020, doi:

10.1007/S11831-020-09504-3.

[12] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan,

“Contextualizing object detection and classification,”

in IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37., 20015, pp. 13–27. doi:

10.1109/CVPR.2011.5995330.

[13] Y. LeCun, Y. Bengio, and G. Hinton, “Deep

learning,” Nature, vol. 521, no. 7553, pp. 436–444,

May 2015, doi: 10.1038/nature14539.

[14] The MathWorks Inc., “What Is Object Detection? -

MATLAB & Simulink.”

https://www.mathworks.com/discovery/object-

detection.html?s_tid=srchtitle_object%20detection_

1 (accessed Dec. 26, 2022).

[15] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao,

“YOLOv4: Optimal Speed and Accuracy of Object

Detection.” arXiv, 2020. doi:

10.48550/ARXIV.2004.10934.

[16] G. Li, X. Huang, J. Ai, Z. Yi, and W. Xie, “Lemon-

YOLO: An efficient object detection method for

lemons in the natural environment,” IET Image

56 Informatica 48 (2023) 43–58 J. Videira et al.

Process, vol. 15, no. 9, pp. 1998–2009, Mar. 2021,

doi: 10.1049/ipr2.12171.

[17] A. Shill and M. A. Rahman, “Plant disease detection

based on YOLOv3 and YOLOv4,” 2021

International Conference on Automation, Control

and Mechatronics for Industry 4.0, ACMI 2021, pp.

1–6, Jul. 2021, doi:

10.1109/ACMI53878.2021.9528179.

[18] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi,

“You Only Look Once: Unified, Real-Time Object

Detection,” in 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), IEEE, Jun.

2016. doi: 10.1109/cvpr.2016.91.

[19] J. Redmon and A. Farhadi, “YOLOv3: An

Incremental Improvement,” Apr. 2018, Accessed:

Aug. 21, 2023. [Online]. Available:

https://arxiv.org/abs/1804.02767v1

[20] The MathWorks Inc., “Anchor Boxes for Object

Detection - MATLAB & Simulink.”

https://www.mathworks.com/help/vision/ug/anchor-

boxes-for-object-detection.html (accessed Dec. 26,

2022).

[21] Q. Chen and Q. Xiong, “Garbage Classification

Detection Based on Improved YOLOV4,” Journal of

Computer and Communications, vol. 8, pp. 285–294,

2020, doi: 10.4236/jcc.2020.812023.

[22] Z. Jiang, L. Zhao, S. Li, Y. Jia, and Z. Liquan, “Real-

time object detection method based on improved

YOLOv4-tiny,” Journal of Network Intelligence, vol.

7, no. 1, Nov. 2022, Accessed: Aug. 23, 2023.

[Online]. Available:

https://arxiv.org/abs/2011.04244v2

[23] L. Song et al., “Object detection based on Yolov4-

Tiny and Improved Bidirectional feature pyramid

network,” Journal of Physics: Conference Series

2021 International Conference on Electronic

Communication, Computer Science and Technology

07/01/2022-09/01/2022 Nanchang, vol. 2209, no. 1,

Feb. 2022, doi: 10.1088/1742-6596/2209/1/012023.

[24] W. Zhang et al., “Airborne infrared aircraft target

detection algorithm based on YOLOv4-tiny,” Journal

of Physics: Conference Series 2021 International

Conference on Advances in Optics and

Computational Sciences (ICAOCS) 2021 21-23

January 2021, Ottawa, Canada, vol. 1865, no. 4, Apr.

2021, doi: 10.1088/1742-6596/1865/4/042007.

[25] Ken-ichi Ueda, Nate Agrin, and Jessica Kline, “Uma

comunidade para naturalistas · iNaturalist.”

https://www.inaturalist.org/ (accessed Aug. 21,

2023).

[26] Ken-ichi Ueda, Nate Agrin, and Jessica Kline, “Uma

comunidade para naturalistas · BioDiversity4All.”

https://www.biodiversity4all.org/ (accessed Aug. 23,

2023).

[27] João Videira, Pedro D. Gaspar, Vasco N. G. J. Soares,

and João M. L. P. Caldeira, “MontanhaVivaApp

Dataset | Kaggle.”

https://www.kaggle.com/datasets/krosskrosis/monta

nhavivaapp-dataset (accessed Sep. 05, 2023).

[28] Yonghye Kwon, “GitHub -

developer0hye/Yolo_Label: GUI for marking

bounded boxes of objects in images for training

neural network YOLO.”

https://github.com/developer0hye/Yolo_Label

(accessed Aug. 21, 2023).

[29] Alexey Bochkovskiy, “GitHub - AlexeyAB/darknet:

YOLOv4 / Scaled-YOLOv4 / YOLO - Neural

Networks for Object Detection (Windows and Linux

version of Darknet).”

https://github.com/AlexeyAB/darknet (accessed

Aug. 21, 2023).

[30] J. A. Cook and J. Ranstam, “Overfitting,” British

Journal of Surgery, vol. 103, no. 13, p. 1814, Dec.

2016, doi: 10.1002/bjs.10244.

[31] M. Decuyper, M. Stockhoff, S. Vandenberghe, al -,

and X. Ying, “An Overview of Overfitting and its

Solutions,” J Phys Conf Ser, vol. 1168, no. 2, p.

022022, Feb. 2019, doi: 10.1088/1742-

6596/1168/2/022022.

[32] L. Prechelt, “Early Stopping - But When?,” pp. 55–

69, 1998, doi: 10.1007/3-540-49430-8_3.

[33] The Interaction Design Foundation, “What is User

Centered Design?” https://www.interaction-

design.org/literature/topics/user-centered-design

(accessed Sep. 08, 2023).

[34] Eastern Peak, “Iterative Development.”

https://easternpeak.com/definition/iterative-

development/ (accessed Sep. 08, 2023).

[35] Matt Rae, “What is Adobe XD and What is it Used

for?” https://www.adobe.com/products/xd/learn/get-

started/what-is-adobe-xd-used-for.html (accessed

Sep. 08, 2023).

[36] Pavel Gorbachenko, “Functional vs Non-Functional

Requirements | Enkonix.”

https://enkonix.com/blog/functional-requirements-

vs-non-functional/ (accessed Sep. 08, 2023).

[37] IBM, “Use-case diagrams - IBM Documentation.”

https://www.ibm.com/docs/en/rational-soft-

arch/9.6.1?topic=diagrams-use-case (accessed Sep.

08, 2023).

[38] Google and JetBrains, “Android Studio & App Tools

- Android Developers.”

https://developer.android.com/studio (accessed Sep.

08, 2023).

[39] D. Richard Hipp, “SQLite.”

https://www.sqlite.org/index.html (accessed Sep. 08,

2023).

[40] Armin Ronacher, “Welcome to Flask.”

https://flask.palletsprojects.com/en/2.3.x/ (accessed

Sep. 08, 2023).

[41] João Videira, Pedro D. Gaspar, Vasco N. G. J. Soares,

and João M. L. P. Caldeira, “MontanhaVivaApp –

Google Drive.”

https://drive.google.com/drive/u/2/folders/1FX6pwv

DgV2lN9u3EwtH66DhPunIPJ3AT (accessed Aug.

24, 2023).

[42] Việt Hùng, “GitHub - hunglc007/tensorflow-yolov4-

tflite: YOLOv4, YOLOv4-tiny, YOLOv3, YOLOv3-

tiny Implemented in Tensorflow 2.0, Android.

Convert YOLO v4 .weights tensorflow, tensorrt and

tflite.” https://github.com/hunglc007/tensorflow-

yolov4-tflite (accessed Aug. 21, 2023).

A Mobile Application for Detecting and Monitoring the Development… Informatica 48 (2023) 43–58 57

[43] João Videira, Pedro D. Gaspar, Vasco N. G. J. Soares,

and João M. L. P. Caldeira,

“videira202011/MontanhaVivaApp.”

https://github.com/videira202011/MontanhaVivaAp

p (accessed Sep. 04, 2023).

[44] Oracle, “Creating and Using Packages (The JavaTM

Tutorials > Learning the Java Language >

Packages).”

https://docs.oracle.com/javase/tutorial/java/package/

packages.html (accessed Sep. 05, 2023).

58 Informatica 48 (2023) 43–58 J. Videira et al.

