
https://doi.org/10.31449/inf.v48i7.5617 Informatica 48 (2024) 163–176 163

Weighted Service Broker Algorithm in Cloud Environment

Fatima Shannaq*1, Areej Alshorman2, Riziq Al- Sayyed3, Mohammad Shehab1, Walaa Al-Omari1
1 College of Computer Science and Informatics, Amman Arab University, Amman, Jordan
2 Faculty of Prince Al-Hussein Bin Abdullah II for IT, Al al-Bayt University, Mafraq, Jordan
3 King Abdullah II School of Information Technology, University of Jordan, Amman, Jordan

Email: f.alshannaq@aau.edu.jo, areej2017shorman@aabu.edu.jo, r.alsayyed@ju.edu.jo, w.alomary@aau.edu.jo,

moh.shehab12@gmail.com
*Corresponding author

Keywords: cloud computing, cloud service broker, cloud analyst, datacenter, VM

Received: December 30, 2023

Cloud Computing refers to the on-demand delivery of IT resources and applications via the Internet,

utilizing pay-as-you-go pricing. Cloud service providers provide these services through high-configured

servers housed in datacenters. Consequently, various factors are investigated, including response time,

cost, the number of requests, and the selection of the optimal datacenter (DC) to fulfill customer demands.

Acting as an intermediary between the customer and the service provider, the cloud service broker

assumes responsibility for selecting the appropriate datacenter. Several policies exist to determine this

selection, like Service Proximity-Based Routing, which prioritizes the nearest region with minimal

communication delay and low network latency. However, this policy resorts to random datacenter

selection when multiple datacenters exist within the closest region, neglecting factors like datacenter cost

and processing time. To address this, a weighted-based approach-aware service brokering policy is

proposed, grading datacenters based on factors such as virtual machine (VM) cost, data transfer cost,

and VM quantity. The proposed algorithm has been tested and evaluated using Cloud Analyst simulation,

yielding noteworthy reductions in total cost, processing time, and response time.

Povzetek: Predlagan je izboljšan način izbire podatkovnega centra za izvedbo oblačne storitve.

Temelji na utežeh, ki ocenjujejo podatkovne centre glede na stroške prenosa podatkov in količino

podatkov.

1 Introduction

As Internet technologies continue to evolve and the

demands placed on computer applications grow, cloud

computing has emerged as a versatile service provider

that facilitates the sharing of information, software, and

open resources within an Internet-based environment

(Aljuhani et al., 2023).

Cloud computing presents many services such as

servers, storage, and applications to the customers with

pay-as-you-go pricing. The cloud service provider

provides these services through datacenters with many

hosted servers and switches connected with high-speed

communication links (Rekha and Dakshayini (2018);

Sheikhani et al. (2017); and Chen et al., (2014)).

Therefore, user satisfaction depends on the Quality

of Service (QoS) provided by the service provider.

Hence, the availability of datacenters and reliability of

services are pivotal to ensuring superior quality of

service. Unfortunately, datacenters can become

congested, often due to uneven selection, load

distribution, or a large increase in user numbers and

requests. The consequences of overloaded datacenters are

evident in the deteriorating quality of service. Thus,

overloaded servers may reject new incoming requests

when buffers reach saturation. Since response time

estimates the duration between a user request being sent

to the datacenter and the start of receiving results, a

prolonged response time may indicate an overload on

datacenter or cloud resources. Thus, to improve cloud

performance, tasks or jobs should be distributed to the

most appropriate datacenter by the service broker and

virtual machines (VM) for execution with minimum

response times. Minimum response time refers to the

maximum number of tasks completed per unit time.

Thus, the overall performance of the datacenter is

improved without overloading (Manasrah et al., 2017;

Aljuhani et al., 2023).

In addition, other factors affect the efficiency of

service broker algorithms including cost, number of

requests, and selection of datacenter. In such scenarios,

an optimized cloud service broker is indispensable,

acting as an intermediary between the consumer and

multiple cloud service providers to select the

appropriate data center that matches the user's

requirements.

There are many policies to determine which

datacenter (DC) should service the request for each

customer, one of them is service proximity-based that

select the earliest region, which has minimum

communication delay and lowest network latency. In

mailto:f.alshannaq@aau.edu.jo
mailto:r.alsayyed@ju.edu.jo
mailto:moh.shehab12@gmail.com

164 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

contrast to meticulously orchestrated decisions driven by

data analysis and cost-effectiveness, the selection of data

centers within a given area is haphazard, devoid of any

consideration for factors like virtual machine expenses,

data transmission fees, the quantity of virtual machines,

or computational duration. This arbitrary approach

neglects optimization opportunities and undermines

efficiency, potentially leading to suboptimal outcomes

and unnecessary expenditures (Chen et al., 2014; and

Ahmed et al., 2012)

Recently, researchers have delved into enhancing

service broker algorithms, spurred by limitations in

prevailing proximity-based approaches. This impetus has

led to the conception of a novel algorithm tailored for

data center (DC) selection within cloud environments.

The algorithm, imbued with weighted mechanisms, seeks

to optimize performance by minimizing costs linked to

virtual machine (VM) deployment and data transmission,

thus offering a fresh perspective on service provisioning

dynamics. Furthermore, it takes into account the number

of VMs within each DC as a contributing factor. These

factors—VM cost, data transfer cost, and the number of

VMs included—interact to influence the overall

effectiveness of the datacenter selection process in the

CloudAnalyst simulator. By considering these factors

comprehensively, the proposed algorithm can make

informed decisions regarding the optimal datacenter

choice based on the application requirements, budget

constraints, and performance expectations.

The remainder of the paper is structured as follows.

Section 2 provides an overview of the Cloud Analyst

simulation tool. Section 3 discusses related works, while

Section 4 introduces the methodology and the proposed

algorithms and provides their descriptions. The

experimental setup and results are elaborated upon in

Section 5. Furthermore, conclusions and avenues for

future work are outlined in Section 6.

2 Introduction to cloud analyst
Cloud Analyst simulation tool built on cloudsim1

toolkit and it is a Java-based tool. It has an easy-to-use

GUI that simulates the behavior of cloud computing

environments and show the results in graphs and tables.

It efficiently determines the best resource allocation

technique and choosing datacenters to serve users’

requests, and defines the cost related to these operations

(Beloglazov et al., 2011 and Aazam and Huh, 2014).

The essential components in the cloud analyst tool

are (Wickremasinghe et al., 2010)

• User base (UB): each user base relates to a group of users

that is responsible for generating traffic in the simulation.

In realistic, each user base represents a single user, but

this cannot be reflected in the simulation because it will

1 Download Link: http://www.cloudbus.org/cloudsim/

take a long time. This component is represented by

UserBase.java class.

• Cloudlet: relates to the user requests. Each

cloudlet represents a group of user request. It is

represented by InternetCloudlet.java class.

Datacenter (DC) and datacenter controller:

DC represents the servers that includes the VMs

and distributed in different geographical area.

While DC controller is considered the main

entity that is responsible for managing the

activities of the datacenters, such as creation and

destruction of virtual machines, and routing the

cloudlet received from a user base to a VM

through the Internet. The name of the class that

represents this component is

DataCenterController.java.

• Broker policy: that decides which DC should

respond to the user base requests.

CloudAppServiceBroker.java class represents

this element.

• Load balancing algorithm: that used by the

DataCenterController to decide which VM should

process the next cloudlet. Cloud analyst includes

three load balancing algorithms, which are: round

robin, throttled, and active algorithm.

VmLoadBalancer.java class represents this

component.

Figure 1 shows the Cloud Analyst GUI, in which

user bases and datacenters are distributed over 6 regions

that correspond with the 6 main continents in the World

(North America, South America, Europe, Asia, Africa,

and Oceania). Locations of all other main entities such

as User Bases and Datacenters in the simulation are

identified only by the region for simplicity.

Figure 2 shows the class diagram which includes

the classes that are responsible for routing the user

request (cloudlet) from the user base to a VM in Cloud

Analyst. The routing process is performed as follows

(Sahu et al., 2019):

1. User base generates traffic in the form of a

Cloudlet that contains the application ID and the

name of the user base as the originator of the

request to get back the response.

2. User request (cloudlet) is sent to the Internet

class.

3. Internet checks the service broker to decide

which DC to select.

4. Service broker reply to the Internet about which

datacenter controller to select.

http://www.cloudbus.org/cloudsim/

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 165

Figure 1: Cloud Analyst GUI

Figure 2: Class diagram of the main classes in CloudAnalyst

166 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

5. Internet adds the network delay (defined through

the internet characteristics from the simulator

GUI) with the cloudlet and sends to the selected

DC controller.

6. DC controller uses the chosen VM load

balancing policy that defined during the con-

figuration.

7. VM load balancer starts assigning the virtual

machine to the user request.

8. Selected DC sends the response to the Internet

after finishing the processing of the request.

9. Internet checks the originator field in the cloudlet

information then adds the response and sends it

to the intended user base.

Choosing a datacenter when more than one

datacenter in the same region is done by service broker.

And thus, service broker controls the traffic routing

between user bases and datacenters.

There are three central service broker policies

currently included in the Cloud- Analyst (Sahu et al.,

2019).

• Service Proximity-Based Routing: In this

routing policy, the service broker chooses the

path from user base to the nearest region,

depending on the network delay and lowest

network latency, this policy may suffer from

bottleneck if huge requests are from the same

region. However, the process of choosing a DC

within a region is performed randomly.

• Performance Optimized Routing: In this case,

the service broker actively selects the best

available path based on datacenter workloads

and network delay, using previous response

times as a reference. However, this policy may

decrease resource utilization if any datacenter

experiencing high load is not considered.

• Dynamically re-configuring router: It is an

extension to proximity-based routing. In

addition, it balances application based on load by

increases and decreases the number of virtual

machines allocated in the datacenters.

3 Related work

The main goal of service broker policy is to select the

best datacenter to serve the user request. Many factors

affect choosing DC, such as processing capabilities, cost,

performance, latency, and others. Cloud analyst, as

mentioned earlier includes three broker algorithms, the

proximity-based routing is the base algorithm that chooses

the closest region according to the network latency. If that

region contains more than one DC, then it chooses one

randomly. However, this algorithm has many problems

that affect the Quality of Service (QoS) and user’s

satisfaction.

Many kinds of research intended to solve this

problem and improve the policy of selecting data- centers

or to develop a new approach. For instance, many

researchers use the Round Robin (R-R) algorithm to

choose DC’s in a circular manner to distribute the load

between them and to avoid the problem of sending all user

requests to only one DC and remains the others idle.

Examples on this kind of research are the ones introduced

by Kapgate (2014), Nishad et al. (2016), and Radi et al.,

(2015). Although these studies improved the resource

utilization of the DC’s, but they do not consider the

characteristics of the available datacenters such as their

processing capabilities and costs, which may lead to

select a datacenter with a higher cost or slower response.

While Mishra et al. (2014b), Mishra and Bhukya

(2014) propose a solution that based on R-R to distribute

user’s cloudlets equally among the available DC’s in the

selected region. What distinguishes these studies is that

they prioritize DCs according to some rating factor. The

first study uses the processing speed to order DCs, in

which the DC with higher speed should be selected more

times than the DCs with low processing speed. The

other study prioritizes DCs based on both the

processing speed and the DCs cost.

Other research dealt also with the cost factor and its

effect in choosing the best DC to serve the user request.

For instance, Limbani and Oza (2012b) conduct an

experiment in a cloud environment using Cloud analyst

simulator that includes two DCs and only one user base,

in which all are located in the same region. The DC’s

have the same configuration except for their VM prices.

Their experiment showed how the random behavior of

the proximity service-based algorithm may lead to select

the DC that has a higher cost. The authors suggested

producing a cost-effective service broker algorithm, but

they did not introduce any algorithm or implementation

for their model.

Meanwhile, Aruna et al. (2017) produce an

implementation of a service broker policy that selects the

most cost-effective datacenter in the region. The paper

also discusses some issues related to mapping of services

to resources, and the studies on these issues. Although

this work reduces the overall cost, but it increases the

response time.

The work by Limbani and Oza (2012a) applies the

min-min scheduling algorithm instead of the R-R

algorithm to improve the proximity-based approach.

The proposed algorithm counts the number of tasks

needed to be assigned to some DC, and the number of

available datacenters. Then, MxN Execute Time Matrix

(ETM) will be generated that represents the execution

time of M tasks when running on N types of DCs. The

algorithm finds the Task-Datacenter pair with the

minimum value (earliest finish time). And finally, assign

the task to the DC. The results show improvements in

response time and in the load balance over the available

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 167

datacenters.

Whereas Most of the previously discussed researches

choose DC based on its location (low latency) or apply a

random selection or based on DC’s costs, the research of

Kishor and Thapar (2014) takes the decision for choosing

the DC based on their hardware configuration (number of

hardware machines), because DC with a greater number of

virtual machines can handle a larger number of cloudlets.

Cloud technologies improve rapidly and require a

need for simulation tools like Cloud Analyst that offer the

basic information and configuration about cloud

resources. Cloud analyst includes many algorithms that

determine the best resource allocation technique and

choosing datacenters to serve users’ requests. However,

Mahalle et al. (2015) analyze these algorithms and

compare them through different scenarios and

experiments. The survey introduced by Patel et al., (2015)

investigates the functionalities of two cloud simulators,

which are Cloudsim and Cloud Analyst. Then it reviews

the service broker policies of the Cloud Analyst tool, tests

them under different scenarios, and shows their related

challenges and issues. In addition, it also presents the

different solutions and papers in this field.

In (Aljuhani et al., 2023), the authors proposed a new

strategy for optimizing service provider selection, which

integrates consumer and provider preferences. Their

approach initiates with the utilization of the best-worst

method (BWM) to prioritize tasks based on the

preferences articulated by both stakeholders.

Subsequently, the model evaluates and contrasts task

similarities between consumers and providers through

the application of two novel algorithms. The

computational complexity of these algorithms has been

assessed to be O(n3), signifying their efficiency and

scalability.

Alwada’n et al. (2023) introduced a new approach to

congestion management within cloud systems. The

Dynamic Congestion Management (DCM) system they

proposed was specifically tailored to efficiently handle a

large influx of cloud requests while simultaneously

ensuring compliance with client quality requirements as

stipulated in the service-level policy. One notable aspect

of their system was the introduction of a forwarding

policy designed to prioritize high-priority calls

originating from cloud service requesters. These calls

were routed through the broker to appropriate cloud

resources, with the policy drawing inspiration from

congestion management mechanisms utilized by Cisco.

In (Chauhan et al., 2021), the authors introduced the

Brokering Service Selection (BSS) model for cloud

service selection. Unlike previous approaches, the BSS

model integrates subjective and objective weighting

methods to evaluate Quality of Service (QoS) attributes.

Subjective weights are obtained from user feedback,

while objective weights are derived from benchmark-

tested data of cloud services. By combining these

weights, the model calculates an integrated total weight

for each service. The BSS methodology is then utilized

to rank the cloud services accordingly. The effectiveness

of the BSS model was assessed through simulation and a

real dataset case study. The results demonstrated the

model's consistency in addressing rank reversal issues, a

common challenge in service selection. Additionally, the

BSS model exhibited superior execution time compared

to other contemporary solutions, indicating its efficiency

in practical applications.

Mehraj and Banday (2022) proposed a weighted

averaging methodology specifically designed for Cloud

computing. This new technique employs WMA-OWA

functions to dynamically assign weights to different

factors. Thus, it overcomes the constraints associated

with traditional subjective weight assignment techniques.

Unlike methods reliant on manual or subjective

determinations by experts, such as random allocation,

expert opinion, or average weight, the proposed approach

offers superior flexibility, adaptability, and dynamic

adjustment capabilities within Cloud computing

environments. Empirical evidence from experiments

validates the efficacy of this method, highlighting its

potential to enhance performance in Cloud computing

contexts.

Furthermore, various studies in the literature have

adopted nature-inspired optimization algorithms to

develop efficient load-balancing strategies for cloud

environments. For example, Kaur et al. (2020) introduced

a new framework named Deep Learning Deadline-

constrained, Dynamic VM Provisioning and Load

Balancing (DLD-PLB) to explore Deep Learning (DL)

methodologies in cloud computing. This framework

leveraged deep learning techniques to generate an

optimal VM schedule using Genome workflow tasks as

input. A comparative analysis of makespan and cost was

performed against a previous load-balancing

optimization framework, a hybrid approach called HDD-

PLB. The earlier methods integrated a hybrid Predict-

Earliest-Finish Time (PEFT) with Ant Colony

Optimization (ACO) to optimize underutilized VMs,

alongside a hybrid PEFT-Bat approach aimed at

enhancing overflow VM utilization.

Abed-Alguni and Alawad (2021) introduced a

discrete variant of the Grey Wolf Optimizer (DGWO) for

scheduling interdependent tasks onto Virtual Machines

(VMs). The scheduling task within DGWO is formulated

as a dual-objective minimization challenge involving

computation and data transmission expenses. To handle

discrete candidate solutions, DGWO adopts the largest

order value (LOV) technique, transforming continuous

solutions into discrete ones. Empirical evaluations

against established optimization-based scheduling

algorithms (Particle Swarm Optimization (PSO), Grey

Wolf Optimizer) demonstrate that DGWO achieves

faster task distribution to VMs. Additionally, DGWO is

contrasted with PSO and Binary PSO (BPSO) using

Workflow-Sim and variously sized scientific workflows.

168 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

The simulation results indicate that DGWO outperforms

the other algorithms in terms of makespan.

Table 1 shows a comparison between the different

service broker models introduced in the literature and

shows the improvement in each study, the factors adopted

in brokering, and the simulation tool used to display the

model. It shows that Cloud Analyst is used almost in all

studies, which proves its eligibility in imitating the process

of resource provisioning and allocation in cloud

environments.

Our proposed approach distinguishes itself from

prior research by meticulously examining numerous

essential elements to enhance the efficiency of the

service broker algorithm in data center selection. While

earlier investigations tended to concentrate on singular

aspects, our methodology encompasses a broader

spectrum, amalgamating factors such as cost reduction,

processing time, and response time concurrently. By

acknowledging the intricate interactions among these

variables, our algorithm not only enhances each facet

independently but also guarantees equitable

enhancements across the entire system. This holistic

optimization strategy differentiates our work,

showcasing a profound comprehension of the

intricacies inherent in data center selection and

advocating for more streamlined and responsive service

delivery in cloud computing ecosystems.

Compared with nature-inspired optimization

algorithms such as Genetic Algorithms (GA), the

Weighted Service Broker algorithm operates on the

foundation of deterministic optimization principles.

Rather than relying on random variations and genetic

operators for decision-making, this algorithm employs

predefined weights and criteria to allocate resources

efficiently. The deterministic approach fosters

predictability and control, offering advantages in

scenarios prioritizing stability and reliability. Moreover,

the algorithm's streamlined computational complexity

minimizes overhead compared to the resource-intensive

exploration typical of nature-inspired optimizers. Its

deterministic nature simplifies implementation and

diminishes the necessity for intricate parameter tuning,

facilitating faster convergence and reduced

computational costs in applicable contexts.

4 Methodology
Cloud Analyst is a simulation tool designed to assist

in the selection of an appropriate datacenter in a cloud

computing environment. In this context, factors such as

virtual machine (VM) cost, data transfer cost, and the

number of VMs included are crucial in evaluating the

effectiveness of different datacenter options.

In Cloud Analyst simulation tool, datacenter’s cost is

represented by virtual machine cost included in the DC,

and the data transfer cost.

VM cost refers to the pricing associated with

deploying and running virtual machines in a cloud

datacenter. This cost can vary based on factors, like the

type of VM instance (e.g., CPU, RAM, storage capacity),

the duration of usage, and any additional services or

features included. In the Cloud Analyst simulator, the

VM cost factor helps evaluate the economic feasibility of

deploying applications on different VM instances offered

by various datacenters, in which lower VM costs can lead

to reduced overall expenses for running applications,

making a datacenter more attractive for selection.

Data transfer cost refers to the charges incurred for

transferring data into and out of the cloud datacenter. This

cost is influenced by factors like the volume of data

transferred, the distance between the user and the

datacenter, and the network bandwidth. In the context of

the Cloud Analyst simulator, data transfer cost is essential

in assessing the expenses associated with moving data

between the cloud datacenter and the user, in which higher

data transfer costs can significantly impact the overall

operational expenses, especially for applications that

require frequent data exchanges.

However, the number of VMs included refers to the

capacity or scalability of the datacenter, represented by the

maximum number of virtual machines that can be

provisioned and managed within the infrastructure. This

factor influences the ability of the datacenter to

accommodate varying workloads and demands from

applications. In the Cloud Analyst simulator, the number

of VMs included plays a crucial role in determining the

scalability and flexibility of each datacenter option, in

which datacenters with a higher number of VMs included

can handle more concurrent tasks and accommodate

growing resource requirements, enhancing their

suitability for diverse application workloads.

The algorithms proposed in this study have

considered these factors with the objective of refining

the proximity-based service broker policy. This policy

utilizes a random selection of a datacenter to fulfill user

requests when multiple datacenters are present within

the same region. Consequently, the proposed algorithms

aim to mitigate this random selection by incorporating

these factors into the decision-making process.

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 169

Table 1: Comparison of service brokers models

Paper Improvement Factors Simulation tool

Kapgate (2014) Resource utilization

Response time

observed by user & DC

Request Service Times

Cloud Analyst

Nishad et al.

(2016)
Resource utilization

total cost is same for all data

centers by using round-robin

selection of DC

CloudSim &

Cloud Analyst

Radi (2015) Resource utilization Infrastructure of datacenters
Cloud Analyst

simulation toolkit

Mishra et al.

(2014b)

Resource utilization

Processing time

Response time

Processing speed

Cloud Analyst

Mishra and

Bhukya (2014)

Resource utilization

Processing time

Response time

Rating factor that depends on

(cost + speed MIPS)
Cloud-Analyst

Limbani and Oza

(2012a)
Cost VM cost + Data transfer cost Cloud Analyst

Limbani and Oza

(2012b)
Processing time VM cost Cloud-Analyst

Sheikhani et al.

(2017)

Response time + average processing

time

Speed MIPS

Bandwidth
Cloud Analyst

Kishor and

Thapar (2014)

Resource utilization

overall response time (the regional

request servicing time& the data centre

processing time)

Hardware configuration Cloud Analyst

Aljuhani et al.

(2023)

Improve task scheduling

Resource utilization

Enhance consumers’ trust

VM cost

Speed MIPS

Cloud Analyst

Alwada’n et al.

(2023)

Resource utilization

Improve the functionality Enhance

the performance

Improve the quality for the

clients’ requirements

CloudSim &

Cloud Analyst

Chauhan et al.

(2021)

Resource utilization

Achieve the integrated total weight

of QoS parameters

Execution time metric
Cloud Analyst,

CloudSim & toolkit

Mehraj and

Banday (2022)

Resource utilization

Assign weights dynamically

flexibility, adaptability, and

dynamic adjustment capability

Cloud Analyst &

CloudSim

Kaur et al.

(2020)

Resource provisioning,

Load balancing

VM cost

Number of VMs

Cloud workflow

simulator

Abed-Alguni and

Alawad (2021)

Scheduling dependent tasks to

VMs

Computation and data

transmission costs
WorkflowSim

Proposed model

Resource utilization

Cost

DC processing time

DC response time

VM cost

Data Transfer cost

Number of VMs

Cloud Analyst

170 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

Algorithm 1 (Figure 3) prioritizes the DCs based on

their virtual machine’s cost (vmCost) only. The

datacenter with the least cost should be selected first.

However, Algorithm 2 (Figure 4) orders datacenters based on

the total cost (vmCost and transferCost).

Algorithm 1 and algorithm 2 consider only the cost

factor and neglected the physical characteristics of the

DCs and their VMs, such as the processor speed,

number of VM on each DC, and many others features.

Therefore, we have proposed Algorithm 3 (See

Figure 5) that gives weights to datacenters according to

their total cost and the number of VM on each datacenter,

as we have considered that the DC that has a lower price

and a larger number of VM should take a higher weight.

The following equation demonstrates how weight (Wi)

is calculated for DCi:

𝐖𝐢 =
𝐑×𝐌𝐚𝐱(𝐂1,𝐂𝟐,…,𝐂𝐧)

𝐂i
+

((𝟏−𝐑)×𝐕𝐌𝐢)

𝐌𝐢𝐧(𝐕𝐌1,𝐕𝐌2,….𝐕𝐌n)

R represents the rating factor and its value range

between 0.0 and 1.0, and different values of R give

different behavior of the algorithm. While, Ci and VMi

relates to the total cost and the number of VM created in

DCi. However, Max(C1, .. Cn) returns the highest price

among DCs, and min(VM1,…VMn) returns the lowest

number of VMs among different DCs.

5 Experimental setup and results
 In order to implement and evaluate the proposed

algorithms in a cloud environment, we have used the

Cloud Analyst tool. We have conducted three

experiments that include 5 datacenters (DCs) and 1 user

base. Then we displayed how the algorithm distributes

the user requests among these DCs. Then, we compared

the obtained results with the serviceProximityService

algorithm in the cloud analyst simulator.

The metrics that will be used to evaluate the

performance of the proposed algorithms and compare

them with the other algorithms encapsulated in the

cloud analyst tool are:

• Response time: It is the difference between the

time for sending a request and the time for

receiving its response. The aim is to minimize

the response time so we can improve the

system’s performance.

• Processing time: which is the time needed to

process a task.

• The total cost of operation (Virtual machine

cost + data transfer cost)

5.1. Experiment 1: Select datacenter
with the least cost without
considering DCs physical
characteristics

5.1.1. Simulation configuration

Table 2 shows the simulation configuration for the

first two experiments, in which 5 DCs and 1 UB are

located in the same region, then test how the proposed

algorithm avoids the random selection of datacenter and

chooses the one with the minimum cost.

 As shown in the above table, we assume that users

use the system in the evenings after they finished their

work for approximately two hours. Average peak users

point to the number of registered users who are jointly

online through the peak time. While the average off-peak

users determine the number of simultaneous users during

the off-peak hours, which we assume 10% of the number

of average peak users. And also suppose that each

online user makes 60 requests per hour. According to

DC’s configuration, we have assumed that each

datacenter has 5 virtual machines (VMs), running

Linux OS, and has Xen VMM architecture. Also, the

cost per VM per hour and the cost per 1Gb of data

Figure 3: Algorithm 1: VmCost

Figure 2: Algorithm 3: TotalCost and No. of VM

Figure 4:Algorithm 2: TotalCost

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 171

transfer from and to the Internet for DC1 to DC5 are

$0.04, $0.07, $0.1, $0.15, $0.2 respectively. We have

considered the datacenters have the same physical

characteristics.

Table 2: Experimental Parameters

Parameter Value

Simulation duration 5 hours

User base Region 2

Request Per User Per Hour 60

Data Size Per Request 100

Peak hour start (GMT) 13

Peak hour end (GMT) 15

Avg Peak Users 400000

Avg Off Peak Users 40000

Number of DC 5

DCs Region 0

DCs – Cost per VM $/H 0.04, 0.07, 0.1, 0.15, 0.2

DCs – Data Transfer Cost

$/GB

0.04, 0.07, 0.1, 0.15, 0.2

Number of VMs 5

User Grouping Factor 10000

Request Grouping Factor 1000

Executable Instruction

Length

250

Load Balancing Policy Round Robin

5.1.2. Results discussion

Table 3 displays the results obtained from the first

experiment and compares Algorithm 1 and 2 with the

broker policies implemented in Cloud Analyst. Our

model shows a significant reduction in total cost. While

the processing time and the response time were better in

Cloud Analyst policies because it adopts the best effort

approach for selecting DC which depends on

randomization.

Figure 6 analyses the performance of the first

experiment. It shows that proximity-based policy has the

least response time, which was 399.17. While

Algorithm 1 was the best in terms of cost.

Figure 5: Performance Analysis – Experiment 1

Table 2: Experiment 1 results
Server

broker

policy

Response

Time

(ms)

Processing

Time (ms)

VM

Cost

($)

Data

Transfer

Cost ($)

Total

Cost

($)

Proximity-

based

(Closest

DC)

383.70 78.58 14.00 125.19 139.19

Optimize

response

time

399.17 95.38 14.00 127.09 141.09

Proposed

algorithm

1

500.79 195.78 11.40 45.27 56.67

Proposed

algorithm

2

500.79 195.81 14.00 89.62 103.62

5.2. Experiment 2: Select datacenter
with the least cost when considering
DCs physical characteristics

5.2.1. Simulation configuration

This experiment follows the same configuration as

in the previous experiment, but the number of VMs on

each DC changed according to Table 4 in order to test

and evaluate the third proposed Algorithm.

Table 3: No. of VM on each DC
Datacenter name Number of VMs

DC1 10

DC2 5

DC3 8

DC4 8

DC5 5

5.2.2. Results discussion

Table 5 shows the results of the weighted algorithms

when considering different rating values (R). The table

reveals that the algorithm gives approximately the

same result for Average response time, Average

processing time, and Data transfer cost for any value of

R. However, it shows a significant reduction in VM cost

at rating factors 0.0, 0.1, 0.9, and 1.0. Table 6 displays

the comparison between the results obtained from the

proposed algorithm (R=0.1) and the proximity-based

algorithm, which apparently shows the improvement in

the processing time and the total cost which was

$146.13 and became approximately $24. However, the

response time in our algorithm increased because of the

extra computational time needed to calculate the weight

for each DC. Figure 7 shows the performance analysis

of this experiment.

172 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

Table 4: Weighted algorithm results with different rating

factor

Rating

factor

Average

response

time (ms)

Average

processing

time (ms)

VM

cost

($)

Data

transfer

cost ($)

Total

cost ($)

0.0 654.20 42.79 16.15 7.54 23.69

0.1 654.20 42.79 16.15 7.54 23.69

0.2 654.10 42.65 16.50 7.57 24.07

0.3 654.05 42.68 17.00 7.59 24.59

0.4 654.19 42.85 17.00 7.63 24.63

0.5 655.79 42.92 17.00 7.72 24.72

0.6 654.19 42.85 17.00 7.63 24.63

0.7 654.05 42.68 17.00 7.59 24.59

0.8 654.10 42.65 16.50 7.57 24.07

0.9 654.20 42.79 16.15 7.54 23.69

1.0 654.20 42.79 16.15 7.54 23.69

Table 5: Comparison between weighted algorithm and

proximity based in Experiment 2
Service

Broker

Algorithm

Avg

response

time

(ms)

Avg

processing

time (ms)

VM

cost

($)

Data

transfer

cost ($)

Total

cost

($)

Proximity-

based

(Closest

DC)

379.38 74.25 18.75 127.38 146.13

Weighted

Algorithm

(R=0.1)

654.20

42.79

16.15

7.54
23.69

Figure 6: Performance Analysis - Experiment 2

5.3. Experiment 3: Select datacenter
with the highest weight - DCs
located in different regions

5.3.1. Simulation Configuration

This experiment follows the same configuration as

in experiment 2, but the datacenters are located in

different regions as shown in Table 7.

Table 6: Location of DCs

Datacenter name Region

DC1 0

DC2 1

DC3 1

DC4 2

DC5 2

5.3.2. Results discussion

Table 8 displays the results of both the proximity-based

policy and the weighted algorithm when the DCs are

located in different regions. As shown, the performance of

our algorithm exceeds the other algorithm since it shows a

reduction in response time, processing time as well as the

total cost.

 Table 7: Comparison between weighted algorithm and

proximity-based in Experiment 3
Service

Broker

Algorithm

Average

response

time

(ms)

Average

processing

time (ms)

VM

cost

($)

Data

transfer

cost ($)

Total

cost

($)

Proximity-

based

(Closest

DC)

262.27 210.83 17.70 194.27 211.97

Weighted

Algorithm

(R=0.1)

252.96 38.44 17.70 26.57 44.27

 The explanation behind these results is that in

Experiment 2 the algorithm calculates the weight for 5

DCs, while in Experiment 3 it calculates the weight for

only 2 DCs so it took less time and gave a faster response.

Figure 8 shows the performance of the two algorithms.

Figure 7: Performance Analysis– Experiment 3

5.4. Experiment 4: Select datacenter
with the highest weight — DCs and
UBs located in different regions

In this experiment, we aimed to test our algorithm

over a different scenario, in which there are 6 user bases

worldwide.

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 173

5.4.1. Simulation configuration

We have determined 6 user bases, each one in a

different region as shown in Table 9, where each region

represents a different continent, also we assume that all

user bases located in the same time zone for simplicity

reasons. We have also assumed that the number of off-

peak users equal to 10% of the number of average peak

users, and each online user makes 15 requests per hour.

Table 10 shows the configuration of datacenters. It

shows 5 DCs in different regions. The cost for each DC

is the same as the previous experiment.

Table 8: User bases configuration

U
se

r
b

a
se

s

R
eg

io
n

C
o

n
ti

n
en

t

U
se

r

re
q

u
es

t/
h

o
u

r

P
ea

k
 h

o
u

rs

st
a

rt
 (

G
M

T
)

P
ea

k
 h

o
u

rs

en
d

 (
G

M
T

)

A
v

g
.

p
ea

k

u
se

rs

A
v

g
.
o

ff
-p

ea
k

u
se

rs

UB1 0 North

America

15 13 15 400000 40000

UB2 1 South

America

15 15 17 100000 10000

UB3 2 Europe 15 20 22 300000 30000

UB4 3 Asia 15 1 3 150000 15000

UB5 4 Africa 15 21 23 50000 5000

UB6 5 Oceania 15 9 11 80000 8000

Table 9: DCs configuration

Datacenter

name

Region Cost per

VM

$/HR

Data

transfer

cost

$/GB

Number

of VMs

DC1 0 0.04 0.04 10

DC2 1 0.07 0.07 5

DC3 4 0.1 0.1 8

DC4 5 0.15 0.15 8

DC5 2 0.2 0.2 5

5.4.2. Results discussion

 Experiment 4 simulates the cloud environment

when it encounters many users spread around the

world. The results in Table 11 shows a significant

improvement in the cloud services, since the response

time decreased almost to the quarter of the random policy.

Also, the processing time of the proximity-based policy

is 10 times larger than in weighted policy.

Figure 9 shows the significant reduction in both

response time and processing time in the weighted

service broker algorithm. VM’s cost was the same in

both algorithms, but the data transfer cost was reduced

from $168.39 to $18.87.

Table 10: Comparison between weighted algorithm

and proximity-based in Experiment 4
Service

Broker

Algorithm

Average

response

time

(ms)

Average

processing

time (ms)

VM

cost

($)

Data

transfer

cost ($)

Total

cost

($)

Proximity-

based

(Closest

DC)

1924.48 1763.61 12.21 168.39 180.60

Weighted

Algorithm

(R=0.1)

466.20 169.42 12.21 18.87 31.08

6 Conclusion and future work

Figure 9: Performance Analysis – Experimet 4

Cloud Computing refers to the on-demand delivery

of IT resources and applications via the Internet,

utilizing pay-as-you-go pricing. Cloud service

providers provide these services through high-

configured servers housed in datacenters by adopting

service broker algorithm like proximity-based routing

that chooses the shortest path from the user base (UB)

to the data center (DC) based on the network latency

only. However, this algorithm suffers from various

drawbacks due to the random selection of DC when

there are multiple datacenters in the same region. In this

study, we proposed a weighted approach algorithm to

enhance proximity-based routing algorithm by

prioritizing DCs based on their cost and number of their

VMs. The algorithm tested over Cloud Analyst simulator

and the results show improvements in the processing

time and the total cost in all scenarios. And it also shows

a reduction in response time when the number of DCs

located in the same region is small since it calculates

the weight for only a small number of DCs.

174 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

However, cloud computing environments often

experience variations in workload demand, with periods

of peak usage followed by periods of quiescence.

Ensuring optimal resource allocation and user

satisfaction in dynamic workloads necessitates the

adaptation of service broker algorithms in real-time. The

scalability of these algorithms becomes crucial to meet

changing requirements efficiently; however,

implementing vendor-specific algorithms in multi-cloud

or hybrid environments can present significant

challenges due to variations in APIs, pricing models, and

performance characteristics across platforms.

Addressing these issues requires an enhanced approach,

which can be considered in future work, such as

incorporating additional datacenter characteristics like

processor speed and hardware units, alongside

leveraging machine learning and artificial intelligence

techniques. Furthermore, implementing standardized

interfaces and protocols can also be considered in future

research to foster interoperability and portability,

facilitating improved decision-making and resource

allocation across diverse cloud environments.

List of abbreviations

The key abbreviations used in this paper are:

VM: virtual machine

DC: datacenter

UB: User base

QoS: Quality of Service

References

[1] Aazam, M., & Huh, E.-N. (2014). Fog Computing

and Smart Gateway Based Communication for

Cloud of Things. 2014 International Conference

on Future Internet of Things and Cloud.

https://doi.org/10.1109/ficloud.2014.83.

[2] Abed-alguni, B. H., & Alawad, N. A. (2021).

Distributed Grey Wolf Optimizer for scheduling

of workflow applications in cloud environments.

Applied Soft Computing, 102, 107113.

https://doi.org/10.1016/j.asoc.2021.107113.

[3] Ahmed, A.S., 2012. Proximity-Based Routing

Policy for Service Brokering in Cloud Computing.

International Journal of Engineering Research

and Applications. 2(2) 453, 12,

DOI={10.5220/0003908000760081}.

[4] Aljuhani, A., Alhubaishy, A., Khalid Imam

Rahmani, M., & A. Alzahrani, A. (2023). Light-

Weighted Decision Support Framework for

Selecting Cloud Service providers. Computers,

Materials & Continua, 74(2), 4293–4317.

https://doi.org/10.32604/cmc.2023.033893.

[5] Alwada’n, T., Al-Tamimi, A.-K., Mohammad, A.

H., Salem, M., & Muhammad, Y. (2023).

Dynamic congestion management system for

cloud service broker. International Journal of

Electrical and Computer Engineering (IJECE),

13(1), 872.

https://doi.org/10.11591/ijece.v13i1.pp872-883.

[6] Aruna, M., Bhanu, D., & Karthik, S. (2017).

Allocating resources in cloud using CloudAnalyst.

2017 International Conference on Intelligent

Computing and Control (I2C2).

https://doi.org/10.1109/i2c2.2017.8321912.

[7] Beloglazov, A., & Buyya, R. (2011). Optimal

online deterministic algorithms and adaptive

heuristics for energy and performance efficient

dynamic consolidation of virtual machines in

Cloud data centers. Concurrency and

Computation: Practice and Experience, 24(13),

1397–1420. Portico.

https://doi.org/10.1002/cpe.1867

[8] Chauhan, S. S., Pilli, E. S., & Joshi, R. C.

(2021). BSS: a brokering model for service

selection using integrated weighting approach in

cloud environment. Journal of Cloud

Computing, 10(1).

https://doi.org/10.1186/s13677-021-00239-5.

[9] Sahu, S., & Pandey, M. (2019). Efficient load

Balancing algorithm analysis in Cloud

Computing. 2019 International Conference on

Communication and Electronics Systems

(ICCES).

https://doi.org/10.1109/icces45898.2019.9002248.

[10] Kapgate, D., (2014). Improved round robin

algorithm for data center selection in cloud

computing. International Journal of Engineering

Sciences & Research Technology 3, 686–

691.

[11] Kaur, A., Kaur, B., Singh, P., Devgan, M.S. and

Toor, H.K., (2020). Load balancing optimization

based on deep learning approach in cloud

environment. International Journal of

Information Technology and Computer Science,

12(3), pp.8-18.

https://doi.org/10.5815/ijitcs.2020.03.02.

[12] Kishor, K., & Thapar, V. (2014). An Efficient

Service Broker Policy for Cloud Computing

Environment.

https://api.semanticscholar.org/CorpusID:167608

43

[13] Limbani, D., Oza, B., (2012a). A proposed service

broker policy for data center selection in cloud

environment with implementation In International

Journal of Computer Technology

[14] Limbani, D., Oza, B., (2012b). A proposed

https://doi.org/10.1109/ficloud.2014.83
https://doi.org/10.1016/j.asoc.2021.107113
https://doi.org/10.32604/cmc.2023.033893
https://doi.org/10.11591/ijece.v13i1.pp872-883
https://doi.org/10.1109/i2c2.2017.8321912
https://doi.org/10.1186/s13677-021-00239-5
https://doi.org/10.5815/ijitcs.2020.03.02
https://api.semanticscholar.org/CorpusID:16760843.
https://api.semanticscholar.org/CorpusID:16760843.

Weighted Service Broker Algorithm in Cloud Environment Informatica 48 (2024) 163–176 175

service broker strategy in cloudanalyst for cost-

effective data center selection In International

Journal of Engineering Research and

Applications, India 2, 793–797.

https://api.semanticscholar.org/CorpusID:618455

91

[15] Mahalle, H. S., Tayde, S., & Kaveri, P. R. (2015).

Implementing service broker policies in cloud

computing environment. 2015 International

Conference on Communication Networks (ICCN).

https://doi.org/10.1109/iccn.2015.37.

[16] Manasrah, A. M., Smadi, T., & ALmomani, A.

(2017). A Variable Service Broker Routing

Policy for data center selection in cloud analyst.

Journal of King Saud University - Computer and

Information Sciences, 29(3), 365–377.

https://doi.org/10.1016/j.jksuci.2015.12.006.

[17] Mehraj, S., & Banday, M. T. (2022). A Dynamic

Weighted Averaging Technique for Trust

Assessment in Cloud Computing. International

Journal of Cloud Applications and Computing,

12(1), 1–21.

https://doi.org/10.4018/ijcac.297099.

[18] Mishra, R.K., Bhukya, S.N., 2014. Service

broker algorithm for cloud-analyst. International

Journal of Computer Science and Information

Technologies 5, 3957–3962.

https://api.semanticscholar.org/CorpusID:15390

326

[19] Mishra, R. K., Kumar, S., & Sreenu Naik, B.

(2014). Priority based Round-Robin service

broker algorithm for Cloud-Analyst. 2014 IEEE

International Advance Computing Conference

(IACC).

https://doi.org/10.1109/iadcc.2014.6779438

[20] Nishad, L.S., Kumar, S., Bola, S.K., Beniwal, S.,

Pareek, A., (2016). Round robin selection of

datacenter simulation technique cloudsim and

cloud analsyt architecture and making it efficient

by using load balancing technique In 2016 3rd

International Conference on Computing for

Sustainable Global Development (INDIACom),

pp. 2901–2905.

[21] Patel, H. V., & Patel, R. (2015). Cloud Analyst:

An Insight of Service Broker Policy. IJARCCE,

122–127.

https://doi.org/10.17148/ijarcce.2015.4125.

[22] Radi, M., (2015). Efficient service broker policy

for large-scale cloud environments. arXiv

preprint arXiv:1503.03460.

https://api.semanticscholar.org/CorpusID:15422

365

[23] Rekha, P. M., & Dakshayini, M. (2018).

Dynamic Cost-Load Aware Service Broker Load

Balancing in Virtualization Environment.

Procedia Computer Science, 132, 744–751.

https://doi.org/10.1016/j.procs.2018.05.086.

[24] Sheikhani, L., Chang, Y., Gu, C., & Luo, F.

(2017). Modifying broker policy for better

response time in datacenters. 2017 3rd IEEE

International Conference on Computer and

Communications (ICCC).

https://doi.org/10.1109/compcomm.2017.832297

7.

[25] Chen, L., Shen, H., & Sapra, K. (2014). RIAL:

Resource Intensity Aware Load balancing in

clouds. IEEE INFOCOM 2014 - IEEE

Conference on Computer Communications.

https://doi.org/10.1109/infocom.2014.6848062

[26] Wickremasinghe, B., Calheiros, R. N., & Buyya,

R. (2010). CloudAnalyst: A CloudSim-Based

Visual Modeller for Analysing Cloud

Computing Environments and Applications.

2010 24th IEEE International Conference on

Advanced Information Networking and

Applications.

https://doi.org/10.1109/aina.2010.32.

https://api.semanticscholar.org/CorpusID:61845591
https://api.semanticscholar.org/CorpusID:61845591
https://doi.org/10.1109/iccn.2015.37
https://doi.org/10.1016/j.jksuci.2015.12.006
https://doi.org/10.4018/ijcac.297099
https://api.semanticscholar.org/CorpusID:15390326.
https://api.semanticscholar.org/CorpusID:15390326.
https://doi.org/10.17148/ijarcce.2015.4125
https://api.semanticscholar.org/CorpusID:15422365
https://api.semanticscholar.org/CorpusID:15422365
https://doi.org/10.1016/j.procs.2018.05.086
https://doi.org/10.1109/infocom.2014.6848062
https://doi.org/10.1109/aina.2010.32

176 Informatica 48 (2024) 163–176 Dr. Fatima Shannag

