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Cloud Computing refers to the on-demand delivery of IT resources and applications via the Internet, 

utilizing pay-as-you-go pricing. Cloud service providers provide these services through high-configured 

servers housed in datacenters. Consequently, various factors are investigated, including response time, 

cost, the number of requests, and the selection of the optimal datacenter (DC) to fulfill customer demands. 

Acting as an intermediary between the customer and the service provider, the cloud service broker 

assumes responsibility for selecting the appropriate datacenter. Several policies exist to determine this 

selection, like Service Proximity-Based Routing, which prioritizes the nearest region with minimal 

communication delay and low network latency. However, this policy resorts to random datacenter 

selection when multiple datacenters exist within the closest region, neglecting factors like datacenter cost 

and processing time. To address this, a weighted-based approach-aware service brokering policy is 

proposed, grading datacenters based on factors such as virtual machine (VM) cost, data transfer cost, 

and VM quantity. The proposed algorithm has been tested and evaluated using Cloud Analyst simulation, 

yielding noteworthy reductions in total cost, processing time, and response time. 

Povzetek: Predlagan je izboljšan način izbire podatkovnega centra za izvedbo oblačne storitve. 

Temelji na utežeh, ki ocenjujejo podatkovne centre glede na stroške prenosa podatkov in količino 

podatkov.

1 Introduction

As Internet technologies continue to evolve and the 

demands placed on computer applications grow, cloud 

computing has emerged as a versatile service provider 

that facilitates the sharing of information, software, and 

open resources within an Internet-based environment 

(Aljuhani et al., 2023). 

Cloud computing presents many services such as 

servers, storage, and applications to the customers with 

pay-as-you-go pricing. The cloud service provider 

provides these services through datacenters with many 

hosted servers and switches connected with high-speed 

communication links (Rekha and Dakshayini (2018); 

Sheikhani et al. (2017); and Chen et al., (2014)). 

Therefore, user satisfaction depends on the Quality 

of Service (QoS) provided by the service provider. 

Hence, the availability of datacenters and reliability of 

services are pivotal to ensuring superior quality of 

service. Unfortunately, datacenters can become 

congested, often due to uneven selection, load 

distribution, or a large increase in user numbers and 

requests. The consequences of overloaded datacenters are 

evident in the deteriorating quality of service. Thus, 

overloaded servers may reject new incoming requests 

when buffers reach saturation. Since response time 

estimates the duration between a user request being sent 

to the datacenter and the start of receiving results, a 

prolonged response time may indicate an overload on 

datacenter or cloud resources. Thus, to improve cloud 

performance, tasks or jobs should be distributed to the 

most appropriate datacenter by the service broker and 

virtual machines (VM) for execution with minimum 

response times. Minimum response time refers to the 

maximum number of tasks completed per unit time. 

Thus, the overall performance of the datacenter is 

improved without overloading (Manasrah et al., 2017; 

Aljuhani et al., 2023). 

In addition, other factors affect the efficiency of 

service broker algorithms including cost, number of 

requests, and selection of datacenter. In such scenarios, 

an optimized cloud service broker is indispensable, 

acting as an intermediary between the consumer and 

multiple cloud service providers to select the 

appropriate data center that matches the user's 

requirements.  

There are many policies to determine which 

datacenter (DC) should service the request for each 

customer, one of them is service proximity-based that 

select the earliest region, which has minimum 

communication delay and lowest network latency. In 
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contrast to meticulously orchestrated decisions driven by 

data analysis and cost-effectiveness, the selection of data 

centers within a given area is haphazard, devoid of any 

consideration for factors like virtual machine expenses, 

data transmission fees, the quantity of virtual machines, 

or computational duration. This arbitrary approach 

neglects optimization opportunities and undermines 

efficiency, potentially leading to suboptimal outcomes 

and unnecessary expenditures (Chen et al., 2014; and 

Ahmed et al., 2012) 

Recently, researchers have delved into enhancing 

service broker algorithms, spurred by limitations in 

prevailing proximity-based approaches. This impetus has 

led to the conception of a novel algorithm tailored for 

data center (DC) selection within cloud environments. 

The algorithm, imbued with weighted mechanisms, seeks 

to optimize performance by minimizing costs linked to 

virtual machine (VM) deployment and data transmission, 

thus offering a fresh perspective on service provisioning 

dynamics. Furthermore, it takes into account the number 

of VMs within each DC as a contributing factor. These 

factors—VM cost, data transfer cost, and the number of 

VMs included—interact to influence the overall 

effectiveness of the datacenter selection process in the 

CloudAnalyst simulator. By considering these factors 

comprehensively, the proposed algorithm can make 

informed decisions regarding the optimal datacenter 

choice based on the application requirements, budget 

constraints, and performance expectations. 

The remainder of the paper is structured as follows. 

Section 2 provides an overview of the Cloud Analyst 

simulation tool. Section 3 discusses related works, while 

Section 4 introduces the methodology and the proposed 

algorithms and provides their descriptions. The 

experimental setup and results are elaborated upon in 

Section 5. Furthermore, conclusions and avenues for 

future work are outlined in Section 6. 

2 Introduction to cloud analyst 
Cloud Analyst simulation tool built on cloudsim1 

toolkit and it is a Java-based tool. It has an easy-to-use 

GUI that simulates the behavior of cloud computing 

environments and show the results in graphs and tables. 

It efficiently determines the best resource allocation 

technique and choosing datacenters to serve users’ 

requests, and defines the cost related to these operations 

(Beloglazov et al., 2011 and Aazam and Huh, 2014). 

The essential components in the cloud analyst tool 

are (Wickremasinghe et al., 2010) 

• User base (UB): each user base relates to a group of users 

that is responsible for generating traffic in the simulation. 

In realistic, each user base represents a single user, but 

this cannot be reflected in the simulation because it will 

 

 
1 Download Link: http://www.cloudbus.org/cloudsim/ 

take a long time. This component is represented by 

UserBase.java class. 

• Cloudlet: relates to the user requests. Each 

cloudlet represents a group of user request. It is 

represented by InternetCloudlet.java class. 

Datacenter (DC) and datacenter controller: 

DC represents the servers that includes the VMs 

and distributed in different geographical area. 

While DC controller is considered the main 

entity that is responsible for managing the 

activities of the datacenters, such as creation and 

destruction of virtual machines, and routing the 

cloudlet received from a user base to a VM 

through the Internet. The name of the class that 

represents this component is 

DataCenterController.java. 

• Broker policy: that decides which DC should 

respond to the user base requests. 

CloudAppServiceBroker.java class represents 

this element. 

• Load balancing algorithm: that used by the 

DataCenterController to decide which VM should 

process the next cloudlet. Cloud analyst includes 

three load balancing algorithms, which are: round 

robin, throttled, and active algorithm. 

VmLoadBalancer.java class represents this 

component. 

Figure 1 shows the Cloud Analyst GUI, in which 

user bases and datacenters are distributed over 6 regions 

that correspond with the 6 main continents in the World 

(North America, South America, Europe, Asia, Africa, 

and Oceania). Locations of all other main entities such 

as User Bases and Datacenters in the simulation are 

identified only by the region for simplicity. 

Figure 2 shows the class diagram which includes 

the classes that are responsible for routing the user 

request (cloudlet) from the user base to a VM in Cloud 

Analyst. The routing process is performed as follows 

(Sahu et al., 2019): 

1. User base generates traffic in the form of a 

Cloudlet that contains the application ID and the 

name of the user base as the originator of the 

request to get back the response. 

2. User request (cloudlet) is sent to the Internet 

class. 

3. Internet checks the service broker to decide 

which DC to select. 

4. Service broker reply to the Internet about which 

datacenter controller to select. 

http://www.cloudbus.org/cloudsim/
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Figure 1: Cloud Analyst GUI 

Figure 2: Class diagram of the main classes in CloudAnalyst 
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5. Internet adds the network delay (defined through 

the internet characteristics from the simulator 

GUI) with the cloudlet and sends to the selected 

DC controller. 

6. DC controller uses the chosen VM load 

balancing policy that defined during the con- 

figuration. 

7. VM load balancer starts assigning the virtual 

machine to the user request. 

8. Selected DC sends the response to the Internet 

after finishing the processing of the request. 

9. Internet checks the originator field in the cloudlet 

information then adds the response and sends it 

to the intended user base. 

Choosing a datacenter when more than one 

datacenter in the same region is done by service broker. 

And thus, service broker controls the traffic routing 

between user bases and datacenters. 

There are three central service broker policies 

currently included in the Cloud- Analyst (Sahu et al., 

2019). 

• Service Proximity-Based Routing: In this 

routing policy, the service broker chooses the 

path from user base to the nearest region, 

depending on the network delay and lowest 

network latency, this policy may suffer from 

bottleneck if huge requests are from the same 

region. However, the process of choosing a DC 

within a region is performed randomly. 

• Performance Optimized Routing: In this case, 

the service broker actively selects the best 

available path based on datacenter workloads 

and network delay, using previous response 

times as a reference. However, this policy may 

decrease resource utilization if any datacenter 

experiencing high load is not considered. 

• Dynamically re-configuring router: It is an 

extension to proximity-based routing. In 

addition, it balances application based on load by 

increases and decreases the number of virtual 

machines allocated in the datacenters. 

3 Related work 

The main goal of service broker policy is to select the 

best datacenter to serve the user request. Many factors 

affect choosing DC, such as processing capabilities, cost, 

performance, latency, and others. Cloud analyst, as 

mentioned earlier includes three broker algorithms, the 

proximity-based routing is the base algorithm that chooses 

the closest region according to the network latency. If that 

region contains more than one DC, then it chooses one 

randomly. However, this algorithm has many problems 

that affect the Quality of Service (QoS) and user’s 

satisfaction. 

Many kinds of research intended to solve this 

problem and improve the policy of selecting data- centers 

or to develop a new approach. For instance, many 

researchers use the Round Robin (R-R) algorithm to 

choose DC’s in a circular manner to distribute the load 

between them and to avoid the problem of sending all user 

requests to only one DC and remains the others idle. 

Examples on this kind of research are the ones introduced 

by Kapgate (2014), Nishad et al. (2016), and Radi et al., 

(2015). Although these studies improved the resource 

utilization of the DC’s, but they do not consider the 

characteristics of the available datacenters such as their 

processing capabilities and costs, which may lead to 

select a datacenter with a higher cost or slower response. 

While Mishra et al. (2014b), Mishra and Bhukya 

(2014) propose a solution that based on R-R to distribute 

user’s cloudlets equally among the available DC’s in the 

selected region. What distinguishes these studies is that 

they prioritize DCs according to some rating factor. The 

first study uses the processing speed to order DCs, in 

which the DC with higher speed should be selected more 

times than the DCs with low processing speed. The 

other study prioritizes DCs based on both the 

processing speed and the DCs cost. 

Other research dealt also with the cost factor and its 

effect in choosing the best DC to serve the user request. 

For instance, Limbani and Oza (2012b) conduct an 

experiment in a cloud environment using Cloud analyst 

simulator that includes two DCs and only one user base, 

in which all are located in the same region. The DC’s 

have the same configuration except for their VM prices. 

Their experiment showed how the random behavior of 

the proximity service-based algorithm may lead to select 

the DC that has a higher cost. The authors suggested 

producing a cost-effective service broker algorithm, but 

they did not introduce any algorithm or implementation 

for their model. 

Meanwhile, Aruna et al. (2017) produce an 

implementation of a service broker policy that selects the 

most cost-effective datacenter in the region. The paper 

also discusses some issues related to mapping of services 

to resources, and the studies on these issues. Although 

this work reduces the overall cost, but it increases the 

response time. 

The work by Limbani and Oza (2012a) applies the 

min-min scheduling algorithm instead of the R-R 

algorithm to improve the proximity-based approach. 

The proposed algorithm counts the number of tasks 

needed to be assigned to some DC, and the number of 

available datacenters. Then, MxN Execute Time Matrix 

(ETM) will be generated that represents the execution 

time of M tasks when running on N types of DCs. The 

algorithm finds the Task-Datacenter pair with the 

minimum value (earliest finish time). And finally, assign 

the task to the DC. The results show improvements in 

response time and in the load balance over the available 
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datacenters. 

Whereas Most of the previously discussed researches 

choose DC based on its location (low latency) or apply a 

random selection or based on DC’s costs, the research of 

Kishor and Thapar (2014) takes the decision for choosing 

the DC based on their hardware configuration (number of 

hardware machines), because DC with a greater number of 

virtual machines can handle a larger number of cloudlets. 

Cloud technologies improve rapidly and require a 

need for simulation tools like Cloud Analyst that offer the 

basic information and configuration about cloud 

resources. Cloud analyst includes many algorithms that 

determine the best resource allocation technique and 

choosing datacenters to serve users’ requests. However, 

Mahalle et al. (2015) analyze these algorithms and 

compare them through different scenarios and 

experiments. The survey introduced by Patel et al., (2015) 

investigates the functionalities of two cloud simulators, 

which are Cloudsim and Cloud Analyst. Then it reviews 

the service broker policies of the Cloud Analyst tool, tests 

them under different scenarios, and shows their related 

challenges and issues. In addition, it also presents the 

different solutions and papers in this field. 

In (Aljuhani et al., 2023), the authors proposed a new 

strategy for optimizing service provider selection, which 

integrates consumer and provider preferences. Their 

approach initiates with the utilization of the best-worst 

method (BWM) to prioritize tasks based on the 

preferences articulated by both stakeholders. 

Subsequently, the model evaluates and contrasts task 

similarities between consumers and providers through 

the application of two novel algorithms. The 

computational complexity of these algorithms has been 

assessed to be O(n3), signifying their efficiency and 

scalability. 

Alwada’n et al. (2023) introduced a new approach to 

congestion management within cloud systems. The 

Dynamic Congestion Management (DCM) system they 

proposed was specifically tailored to efficiently handle a 

large influx of cloud requests while simultaneously 

ensuring compliance with client quality requirements as 

stipulated in the service-level policy. One notable aspect 

of their system was the introduction of a forwarding 

policy designed to prioritize high-priority calls 

originating from cloud service requesters. These calls 

were routed through the broker to appropriate cloud 

resources, with the policy drawing inspiration from 

congestion management mechanisms utilized by Cisco. 

In (Chauhan et al., 2021), the authors introduced the 

Brokering Service Selection (BSS) model for cloud 

service selection. Unlike previous approaches, the BSS 

model integrates subjective and objective weighting 

methods to evaluate Quality of Service (QoS) attributes. 

Subjective weights are obtained from user feedback, 

while objective weights are derived from benchmark-

tested data of cloud services. By combining these 

weights, the model calculates an integrated total weight 

for each service. The BSS methodology is then utilized 

to rank the cloud services accordingly. The effectiveness 

of the BSS model was assessed through simulation and a 

real dataset case study. The results demonstrated the 

model's consistency in addressing rank reversal issues, a 

common challenge in service selection. Additionally, the 

BSS model exhibited superior execution time compared 

to other contemporary solutions, indicating its efficiency 

in practical applications. 

Mehraj and Banday (2022) proposed a weighted 

averaging methodology specifically designed for Cloud 

computing. This new technique employs WMA-OWA 

functions to dynamically assign weights to different 

factors. Thus, it overcomes the constraints associated 

with traditional subjective weight assignment techniques. 

Unlike methods reliant on manual or subjective 

determinations by experts, such as random allocation, 

expert opinion, or average weight, the proposed approach 

offers superior flexibility, adaptability, and dynamic 

adjustment capabilities within Cloud computing 

environments. Empirical evidence from experiments 

validates the efficacy of this method, highlighting its 

potential to enhance performance in Cloud computing 

contexts. 

Furthermore, various studies in the literature have 

adopted nature-inspired optimization algorithms to 

develop efficient load-balancing strategies for cloud 

environments. For example, Kaur et al. (2020) introduced 

a new framework named Deep Learning Deadline-

constrained, Dynamic VM Provisioning and Load 

Balancing (DLD-PLB) to explore Deep Learning (DL) 

methodologies in cloud computing. This framework 

leveraged deep learning techniques to generate an 

optimal VM schedule using Genome workflow tasks as 

input. A comparative analysis of makespan and cost was 

performed against a previous load-balancing 

optimization framework, a hybrid approach called HDD-

PLB. The earlier methods integrated a hybrid Predict-

Earliest-Finish Time (PEFT) with Ant Colony 

Optimization (ACO) to optimize underutilized VMs, 

alongside a hybrid PEFT-Bat approach aimed at 

enhancing overflow VM utilization. 

Abed-Alguni and Alawad (2021) introduced a 

discrete variant of the Grey Wolf Optimizer (DGWO) for 

scheduling interdependent tasks onto Virtual Machines 

(VMs). The scheduling task within DGWO is formulated 

as a dual-objective minimization challenge involving 

computation and data transmission expenses. To handle 

discrete candidate solutions, DGWO adopts the largest 

order value (LOV) technique, transforming continuous 

solutions into discrete ones. Empirical evaluations 

against established optimization-based scheduling 

algorithms (Particle Swarm Optimization (PSO), Grey 

Wolf Optimizer) demonstrate that DGWO achieves 

faster task distribution to VMs. Additionally, DGWO is 

contrasted with PSO and Binary PSO (BPSO) using 

Workflow-Sim and variously sized scientific workflows. 
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The simulation results indicate that DGWO outperforms 

the other algorithms in terms of makespan. 

Table 1 shows a comparison between the different 

service broker models introduced in the literature and 

shows the improvement in each study, the factors adopted 

in brokering, and the simulation tool used to display the 

model. It shows that Cloud Analyst is used almost in all 

studies, which proves its eligibility in imitating the process 

of resource provisioning and allocation in cloud 

environments.  

Our proposed approach distinguishes itself from 

prior research by meticulously examining numerous 

essential elements to enhance the efficiency of the 

service broker algorithm in data center selection. While 

earlier investigations tended to concentrate on singular 

aspects, our methodology encompasses a broader 

spectrum, amalgamating factors such as cost reduction, 

processing time, and response time concurrently. By 

acknowledging the intricate interactions among these 

variables, our algorithm not only enhances each facet 

independently but also guarantees equitable 

enhancements across the entire system. This holistic 

optimization strategy differentiates our work, 

showcasing a profound comprehension of the 

intricacies inherent in data center selection and 

advocating for more streamlined and responsive service 

delivery in cloud computing ecosystems. 

Compared with nature-inspired optimization 

algorithms such as Genetic Algorithms (GA), the 

Weighted Service Broker algorithm operates on the 

foundation of deterministic optimization principles. 

Rather than relying on random variations and genetic 

operators for decision-making, this algorithm employs 

predefined weights and criteria to allocate resources 

efficiently. The deterministic approach fosters 

predictability and control, offering advantages in 

scenarios prioritizing stability and reliability. Moreover, 

the algorithm's streamlined computational complexity 

minimizes overhead compared to the resource-intensive 

exploration typical of nature-inspired optimizers. Its 

deterministic nature simplifies implementation and 

diminishes the necessity for intricate parameter tuning, 

facilitating faster convergence and reduced 

computational costs in applicable contexts.  

4 Methodology 
Cloud Analyst is a simulation tool designed to assist 

in the selection of an appropriate datacenter in a cloud 

computing environment. In this context, factors such as 

virtual machine (VM) cost, data transfer cost, and the 

number of VMs included are crucial in evaluating the 

effectiveness of different datacenter options.  

 

 

 

 

 

In Cloud Analyst simulation tool, datacenter’s cost is 

represented by virtual machine cost included in the DC, 

and the data transfer cost. 

VM cost refers to the pricing associated with 

deploying and running virtual machines in a cloud 

datacenter. This cost can vary based on factors, like the 

type of VM instance (e.g., CPU, RAM, storage capacity), 

the duration of usage, and any additional services or 

features included.  In the Cloud Analyst simulator, the 

VM cost factor helps evaluate the economic feasibility of 

deploying applications on different VM instances offered 

by various datacenters, in which lower VM costs can lead 

to reduced overall expenses for running applications, 

making a datacenter more attractive for selection. 

Data transfer cost refers to the charges incurred for 

transferring data into and out of the cloud datacenter. This 

cost is influenced by factors like the volume of data 

transferred, the distance between the user and the 

datacenter, and the network bandwidth. In the context of 

the Cloud Analyst simulator, data transfer cost is essential 

in assessing the expenses associated with moving data 

between the cloud datacenter and the user, in which higher 

data transfer costs can significantly impact the overall 

operational expenses, especially for applications that 

require frequent data exchanges. 

However, the number of VMs included refers to the 

capacity or scalability of the datacenter, represented by the 

maximum number of virtual machines that can be 

provisioned and managed within the infrastructure. This 

factor influences the ability of the datacenter to 

accommodate varying workloads and demands from 

applications. In the Cloud Analyst simulator, the number 

of VMs included plays a crucial role in determining the 

scalability and flexibility of each datacenter option, in 

which datacenters with a higher number of VMs included 

can handle more concurrent tasks and accommodate 

growing resource requirements, enhancing their 

suitability for diverse application workloads. 

The algorithms proposed in this study have 

considered these factors with the objective of refining 

the proximity-based service broker policy. This policy 

utilizes a random selection of a datacenter to fulfill user 

requests when multiple datacenters are present within 

the same region. Consequently, the proposed algorithms 

aim to mitigate this random selection by incorporating 

these factors into the decision-making process. 
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Table 1: Comparison of service brokers models 

Paper Improvement Factors Simulation tool 

Kapgate (2014) Resource utilization 

Response time 

observed by user & DC 

Request Service Times 

Cloud Analyst 

Nishad et al. 

(2016) 
Resource utilization 

total cost is same for all data 

centers by using round-robin 

selection of DC 

CloudSim & 

Cloud Analyst 

Radi (2015) Resource utilization Infrastructure of datacenters 
Cloud Analyst 

simulation toolkit 

Mishra et al. 

(2014b) 

Resource utilization 

Processing time 

Response time 

Processing speed 

 
Cloud Analyst 

Mishra and 

Bhukya (2014) 

Resource utilization 

Processing time 

Response time 

Rating factor that depends on 

(cost + speed MIPS) 
Cloud-Analyst 

Limbani and Oza 

(2012a) 
Cost VM cost + Data transfer cost Cloud Analyst 

Limbani and Oza 

(2012b) 
Processing time VM cost Cloud-Analyst 

Sheikhani et al. 

(2017) 

Response time + average processing 

time 

Speed MIPS 

Bandwidth 
Cloud Analyst 

Kishor and 

Thapar (2014) 

Resource utilization 

overall response time (the regional 

request servicing time& the data centre 

processing time) 

Hardware configuration Cloud Analyst 

Aljuhani et al. 

(2023) 

Improve task scheduling 

Resource utilization 

Enhance consumers’ trust 

VM cost 

Speed MIPS 

Cloud Analyst 

 

Alwada’n et al. 

(2023) 

Resource utilization 

Improve the functionality Enhance 

the performance 

Improve the quality for the 

clients’ requirements 

CloudSim & 

Cloud Analyst 

Chauhan et al. 

(2021) 

Resource utilization 

Achieve the integrated total weight 

of QoS parameters 

Execution time metric 
Cloud Analyst, 

CloudSim & toolkit 

Mehraj and 

Banday (2022) 

Resource utilization 

Assign weights dynamically 

flexibility, adaptability, and 

dynamic adjustment capability 

Cloud Analyst & 

CloudSim 

Kaur et al. 

(2020) 

Resource provisioning, 

Load balancing 

VM cost 

Number of VMs 

Cloud workflow 

simulator 

Abed-Alguni and 

Alawad (2021) 

Scheduling dependent tasks to 

VMs 

Computation and data 

transmission costs 
WorkflowSim 

Proposed model 

Resource utilization 

Cost 

DC processing time 

DC response time 

 

VM cost 

Data Transfer cost 

Number of VMs 

Cloud Analyst 
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Algorithm 1 (Figure 3) prioritizes the DCs based on 

their virtual machine’s cost (vmCost) only.  The 

datacenter with the least cost should be selected first. 

However, Algorithm 2 (Figure 4) orders datacenters based on 

the total cost (vmCost and transferCost). 

Algorithm 1 and algorithm 2 consider only the cost 

factor and neglected the physical characteristics of the 

DCs and their VMs, such as the processor speed, 

number of VM on each DC, and many others features. 

Therefore, we have proposed Algorithm 3 (See 

Figure 5) that gives weights to datacenters according to 

their total cost and the number of VM on each datacenter, 

as we have considered that the DC that has a lower price 

and a larger number of VM should take a higher weight. 

The following equation demonstrates how weight (Wi) 

is calculated for DCi: 

𝐖𝐢 =
𝐑×𝐌𝐚𝐱(𝐂1,𝐂𝟐,…,𝐂𝐧)

𝐂i
+

((𝟏−𝐑)×𝐕𝐌𝐢)

𝐌𝐢𝐧(𝐕𝐌1,𝐕𝐌2,….𝐕𝐌n)
                                                                 

R represents the rating factor and its value range 

between 0.0 and 1.0, and different values of R give 

different behavior of the algorithm. While, Ci and VMi 

relates to the total cost and the number of VM created in 

DCi. However, Max(C1, .. Cn) returns the highest price 

among DCs, and min(VM1,…VMn) returns the lowest 

number of VMs among different DCs.   

 

5 Experimental setup and results 
 In order to implement and evaluate the proposed 

algorithms in a cloud environment, we have used the 

Cloud Analyst tool. We have conducted three 

experiments that include 5 datacenters (DCs) and 1 user 

base. Then we displayed how the algorithm distributes 

the user requests among these DCs. Then, we compared 

the obtained results with the serviceProximityService 

algorithm in the cloud analyst simulator. 

The metrics that will be used to evaluate the 

performance of the proposed algorithms and compare 

them with the other algorithms encapsulated in the 

cloud analyst tool are: 

• Response time: It is the difference between the 

time for sending a request and the time for 

receiving its response. The aim is to minimize 

the response time so we can improve the 

system’s performance. 

• Processing time: which is the time needed to 

process a task. 

• The total cost of operation (Virtual machine 

cost + data transfer cost) 

5.1. Experiment 1: Select datacenter 
with the least cost without 
considering DCs physical 
characteristics 

5.1.1. Simulation configuration 

Table 2 shows the simulation configuration for the 

first two experiments, in which 5 DCs and 1 UB are 

located in the same region, then test how the proposed 

algorithm avoids the random selection of datacenter and 

chooses the one with the minimum cost. 

 As shown in the above table, we assume that users 

use the system in the evenings after they finished their 

work for approximately two hours. Average peak users 

point to the number of registered users who are jointly 

online through the peak time. While the average off-peak 

users determine the number of simultaneous users during 

the off-peak hours, which we assume 10% of the number 

of average peak users. And also suppose that each 

online user makes 60 requests per hour. According to 

DC’s configuration, we have assumed that each 

datacenter has 5 virtual machines (VMs), running 

Linux OS, and has Xen VMM architecture. Also, the 

cost per VM per hour and the cost per 1Gb of data 

Figure 3: Algorithm 1: VmCost 

Figure 2: Algorithm 3: TotalCost and No. of VM 

Figure 4:Algorithm 2:  TotalCost 
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transfer from and to the Internet for DC1 to DC5 are 

$0.04, $0.07, $0.1, $0.15, $0.2 respectively. We have 

considered the datacenters have the same physical 

characteristics. 

 

Table 2: Experimental Parameters 

Parameter Value 

Simulation duration 5 hours 

User base Region 2 

Request Per User Per Hour 60 

Data Size Per Request 100 

Peak hour start (GMT) 13 

Peak hour end (GMT) 15 

Avg Peak Users 400000 

Avg Off Peak Users 40000 

Number of DC 5 

DCs Region 0 

DCs – Cost per VM $/H 0.04, 0.07, 0.1, 0.15, 0.2 

DCs – Data Transfer Cost 

$/GB 

0.04, 0.07, 0.1, 0.15, 0.2 

Number of VMs 5 

User Grouping Factor 10000 

Request Grouping Factor 1000 

Executable Instruction 

Length 

250 

Load Balancing Policy Round Robin 

5.1.2. Results discussion 

Table 3 displays the results obtained from the first 

experiment and compares Algorithm 1 and 2 with the 

broker policies implemented in Cloud Analyst. Our 

model shows a significant reduction in total cost. While 

the processing time and the response time were better in 

Cloud Analyst policies because it adopts the best effort 

approach for selecting DC which depends on 

randomization. 

Figure 6 analyses the performance of the first 

experiment. It shows that proximity-based policy has the 

least response time, which was 399.17. While 

Algorithm 1 was the best in terms of cost. 

 

 
Figure 5: Performance Analysis – Experiment 1 

 

 

 

Table 2: Experiment 1 results 
Server 

broker 

policy 

Response 

Time 

(ms) 

Processing 

Time (ms) 

VM 

Cost 

($) 

Data 

Transfer 

Cost ($) 

Total 

Cost 

($) 

Proximity-

based 

(Closest 

DC) 

383.70 78.58 14.00 125.19 139.19 

Optimize 

response 

time 

399.17 95.38 14.00 127.09 141.09 

Proposed 

algorithm 

1 

500.79 195.78 11.40 45.27 56.67 

Proposed 

algorithm 

2 

500.79 195.81 14.00 89.62 103.62 

5.2. Experiment   2: Select datacenter 
with the least cost when considering 
DCs physical characteristics 

5.2.1. Simulation configuration 

This experiment follows the same configuration as 

in the previous experiment, but the number of VMs on 

each DC changed according to Table 4 in order to test 

and evaluate the third proposed Algorithm. 

 

Table 3: No.  of VM on each DC 
Datacenter name Number of VMs 

DC1 10 

DC2 5 

DC3 8 

DC4 8 

DC5 5 

  

5.2.2. Results discussion 

Table 5 shows the results of the weighted algorithms 

when considering different rating values (R). The table 

reveals that the algorithm gives approximately the 

same result for Average response time, Average 

processing time, and Data transfer cost for any value of 

R. However, it shows a significant reduction in VM cost 

at rating factors 0.0, 0.1, 0.9, and 1.0. Table 6 displays 

the comparison between the results obtained from the 

proposed algorithm (R=0.1) and the proximity-based 

algorithm, which apparently shows the improvement in 

the processing time and the total cost which was 

$146.13 and became approximately $24. However, the 

response time in our algorithm increased because of the 

extra computational time needed to calculate the weight 

for each DC. Figure 7 shows the performance analysis 

of this experiment. 
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Table 4: Weighted algorithm results with different rating 

factor 

Rating 

factor 

Average 

response 

time (ms) 

Average 

processing 

time (ms) 

VM 

cost 

($) 

Data 

transfer 

cost ($) 

Total 

cost ($) 

0.0 654.20 42.79 16.15 7.54 23.69 

0.1 654.20 42.79 16.15 7.54 23.69 

0.2 654.10 42.65 16.50 7.57 24.07 

0.3 654.05 42.68 17.00 7.59 24.59 

0.4 654.19 42.85 17.00 7.63 24.63 

0.5 655.79 42.92 17.00 7.72 24.72 

0.6 654.19 42.85 17.00 7.63 24.63 

0.7 654.05 42.68 17.00 7.59 24.59 

0.8 654.10 42.65 16.50 7.57 24.07 

0.9 654.20 42.79 16.15 7.54 23.69 

1.0 654.20 42.79 16.15 7.54 23.69 

 

Table 5: Comparison between weighted algorithm and 

proximity based in Experiment 2 
Service 

Broker 

Algorithm 

Avg 

response 

time 

(ms) 

Avg 

processing 

time (ms) 

VM 

cost 

($) 

Data 

transfer 

cost ($) 

Total 

cost 

($) 

Proximity-

based 

(Closest 

DC) 

379.38 74.25 18.75 127.38 146.13 

Weighted 

Algorithm 

(R=0.1) 

   

654.20 

     

42.79 

   

16.15 

  

7.54 
23.69 

  

  
Figure 6: Performance Analysis - Experiment 2 

5.3. Experiment 3: Select datacenter 
with the highest weight - DCs 
located in different regions 

5.3.1. Simulation Configuration 

This experiment follows the same configuration as 

in experiment 2, but the datacenters are located in 

different regions as shown in Table 7. 

 

 

 

 

Table 6: Location of DCs 

Datacenter name Region 

DC1 0 

DC2 1 

DC3 1 

DC4 2 

DC5 2 

 

5.3.2. Results discussion 

Table 8 displays the results of both the proximity-based 

policy and the weighted algorithm when the DCs are 

located in different regions. As shown, the performance of 

our algorithm exceeds the other algorithm since it shows a 

reduction in response time, processing time as well as the 

total cost.   

 

  Table 7: Comparison between weighted algorithm and 

proximity-based in Experiment 3 
Service 

Broker 

Algorithm 

Average 

response 

time 

(ms) 

Average 

processing 

time (ms) 

VM 

cost 

($) 

Data 

transfer 

cost ($) 

Total 

cost 

($) 

Proximity-

based 

(Closest 

DC) 

262.27 210.83 17.70 194.27 211.97 

Weighted 

Algorithm 

(R=0.1) 

252.96 38.44 17.70 26.57 44.27 

   

 The explanation behind these results is that in 

Experiment 2 the algorithm calculates the weight for 5 

DCs, while in Experiment 3 it calculates the weight for 

only 2 DCs so it took less time and gave a faster response. 

Figure 8 shows the performance of the two algorithms. 

 

 
Figure 7: Performance Analysis– Experiment 3 

 

5.4. Experiment 4: Select datacenter 
with the highest weight — DCs and 
UBs located in different regions 

In this experiment, we aimed to test our algorithm 

over a different scenario, in which there are 6 user bases 

worldwide. 
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5.4.1. Simulation configuration 

We have determined 6 user bases, each one in a 

different region as shown in Table 9, where each region 

represents a different continent, also we assume that all 

user bases located in the same time zone for simplicity 

reasons. We have also assumed that the number of off- 

peak users equal to 10% of the number of average peak 

users, and each online user makes 15 requests per hour. 

Table 10 shows the configuration of datacenters. It 

shows 5 DCs in different regions. The cost for each DC 

is the same as the previous experiment. 

  

Table 8: User bases configuration 
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UB1 0 North 

America 

15 13 15 400000 40000 

UB2 1 South 

America 

15 15 17 100000 10000 

UB3 2 Europe 15 20 22 300000 30000 

UB4 3 Asia 15 1 3 150000 15000 

UB5 4 Africa 15 21 23 50000 5000 

UB6 5 Oceania 15 9 11 80000 8000 

 
Table 9: DCs configuration 

Datacenter 

name 

Region Cost per 

VM 

$/HR 

Data 

transfer 

cost 

$/GB 

Number 

of VMs 

DC1 0 0.04 0.04 10 

DC2 1 0.07 0.07 5 

DC3 4 0.1 0.1 8 

DC4 5 0.15 0.15 8 

DC5 2 0.2 0.2 5 

5.4.2.       Results discussion 

  Experiment 4 simulates the cloud environment 

when it encounters many users spread around the 

world. The results in Table 11 shows a significant 

improvement in the cloud services, since the response 

time decreased almost to the quarter of the random policy. 

Also, the processing time of the proximity-based policy 

is 10 times larger than in weighted policy. 

Figure 9 shows the significant reduction in both 

response time and processing time in the weighted 

service broker algorithm. VM’s cost was the same in 

both algorithms, but the data transfer cost was reduced 

from $168.39 to $18.87. 

  

 

 

 

 

Table 10: Comparison between weighted algorithm 

and proximity-based in Experiment 4 
Service 

Broker 

Algorithm 

Average 

response 

time 

(ms) 

Average 

processing 

time (ms) 

VM 

cost 

($) 

Data 

transfer 

cost ($) 

Total 

cost 

($) 

Proximity-

based 

(Closest 

DC) 

1924.48 1763.61 12.21 168.39 180.60 

Weighted 

Algorithm 

(R=0.1) 

466.20 169.42 12.21 18.87 31.08 

      

6 Conclusion and future work 

Figure 9: Performance Analysis – Experimet 4 

Cloud Computing refers to the on-demand delivery 

of IT resources and applications via the Internet, 

utilizing pay-as-you-go pricing. Cloud service 

providers provide these services through high-

configured servers housed in datacenters by adopting 

service broker algorithm like proximity-based routing 

that chooses the shortest path from the user base (UB) 

to the data center (DC) based on the network latency 

only. However, this algorithm suffers from various 

drawbacks due to the random selection of DC when 

there are multiple datacenters in the same region. In this 

study, we proposed a weighted approach algorithm to 

enhance proximity-based routing algorithm by 

prioritizing DCs based on their cost and number of their 

VMs. The algorithm tested over Cloud Analyst simulator 

and the results show improvements in the processing 

time and the total cost in all scenarios. And it also shows 

a reduction in response time when the number of DCs 

located in the same region is small since it calculates 

the weight for only a small number of DCs. 
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However, cloud computing environments often 

experience variations in workload demand, with periods 

of peak usage followed by periods of quiescence. 

Ensuring optimal resource allocation and user 

satisfaction in dynamic workloads necessitates the 

adaptation of service broker algorithms in real-time. The 

scalability of these algorithms becomes crucial to meet 

changing requirements efficiently; however, 

implementing vendor-specific algorithms in multi-cloud 

or hybrid environments can present significant 

challenges due to variations in APIs, pricing models, and 

performance characteristics across platforms. 

Addressing these issues requires an enhanced approach, 

which can be considered in future work, such as 

incorporating additional datacenter characteristics like 

processor speed and hardware units, alongside 

leveraging machine learning and artificial intelligence 

techniques. Furthermore, implementing standardized 

interfaces and protocols can also be considered in future 

research to foster interoperability and portability, 

facilitating improved decision-making and resource 

allocation across diverse cloud environments. 

List of abbreviations 

The key abbreviations used in this paper are: 

VM: virtual machine 

DC: datacenter 

UB: User base 

QoS: Quality of Service 
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