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Complex equipment disassembly tasks often require a group of people to complete, and the same time 

satisfying various resource constraints. This paper proposes an improved elite genetic algorithm (IGA) for 

the asynchronous parallel disassembly (APD) problem with the task priority, disassembly workspace 

interference and human resource constraints. The feasibility and effectiveness of the algorithm are verified 

through a hydraulic turbine hoisting and disassembling task instance. Results show that compared with 

classical algorithms (ACO&AGA) applied in APD, the proposed method is feasible and effective, and also 

has practical guiding significance for planning complex disassembling projects. 

Povzetek: Članek predstavlja izboljšan elitni genetski algoritem za razstavljanje kompleksne opreme z 

asinhronimi nalogami, ki upošteva prioritete, medsebojne motnje in človeške vire. 

 

1  Introduction 

As technology advances and develops, the scale and 

complexity of industrial equipment have become 

increasingly complex. For hydraulic turbines, vessels, and 

aerospace equipment, there are diverse maintenance 

procedures with many tasks, which are generally 

completed in separate project by assigned teams. As such, a 

significant research issue is the way to effectively 

excute these initiatives in an economical and effective 

manner [1]. Disassembling is one of the maintenance 

procedures. Unlike common ordinary disassembly 

scenarios, the disassembly tasks of complex equipment 

require multiple people to participate collaboratively in the 

disassembly, while also necessitating numerous specialized 

disassembly devices[2]. 

Disassembly sequence planning (DSP), which takes into 

consideration the removal directions and other component 

qualities, chooses the sequence in which components are 

removed from products in an effort to minimize 

disassembly time, cost, or other considerations. It can be 

thought of as a difficult NP-hard computational 

optimization issue [3]. The DSP research mainly did from 

the perspectives of how to decide a disassembly mode, how 

to build a disassembly modelling and how to apply a 

selected planning method[4].The disassembly mode can be 

built according to the particular disassembly scenarios, 

such as sequential and parallel disassembly. Currently, 

there has been extensive research done on sequential 

disassembly sequence planning (SDSP), such as ACO[5], 

genetic algorithms[6, 7] and PSO[8] to solve SDSP problem. 

In recent years, parallel disassembly sequence planning 

(PDSP) has been mentioned more frequently, because large 

or complicated items may require long processing times 

due to the SDSP paradigm [4]. Based on the PDSP models, 

researchers have tried to find multiple ways to describes the 

disassembly precedence relationship of products. They 

extracted the precedence relationshipsbetween different 

parts in following ways:manual work [9, 10], graphs[3], Petri 

nets [11], matrix-based [12]. According to the latest related 

research , graph and matrix-based methods are primarily 

used to describe the priority order of tasks[13,18].Graphs are 

a useful tool for describing the connections of priority and 

interaction between product components. However, 

processing disassembling restriction connections on 

computers can be done more easily with matrix-based 

techniques. 

Aiming at solving the PDSP problem, many papers have 

given different disassembly objectives and planning 

methods. From the perspective of PDSP cost objective, it 

can be sub-divided into disassembly time and cost[4, 14, 15,17]. 

Some of the papers have proposed the concept of 

asynchronous parallel disassembly (APD). APD refer to 

allowing the workers to start the next disassembling task 

immediately after completing the current one, without 
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waiting for others [16,20], which can save more time and 

improve effectiveness. Table 1 display the related research 

paper. 

 

Table 1: Related work 

Reference Method Findings Limitation 

Xing et al [13] Collaborative ant 

colony algorithm to 

solve APD 

The proposed method 

was capable of finding 

the ideal or nearly ideal 

solution in an 

acceptable amount of 

time. 

It dependence on the 

max-min ant system, 

which could be 

susceptible to changes 

in the features of the 

problem and could not 

always provide the 

most effective 

solutions. 

Xianjing et al [16] A genetic algorithm 

with path reconnection 

strategy 

A number of 

real-world scenarios 

demonstrate the 

algorithm's efficacy. A 

path reconnecting 

operator was 

introduced to 

reconnect with the elite 

solution acquired by 

the genetic algorithm 

iteration to improve the 

algorithm's local 

search capability. 

Its capacity to handle 

intricate spatial 

constraints was 

limited, and it could 

not be scalable for 

large-scale 

disassembly issues. 

Qiu et al [19] The improved discrete 

NSGA-II 

(IDNSGA-II), which 

have good 

performance in 

multi-object APD 

modules. 

As demonstrated by 

the ideal results, the 

IDNSGA-II 

algorithm's 

multifaceted optimized 

outcomes for APD 

series scheduling can 

be nearly identical to 

It became more 

difficult to effectively 

realize the discrete 

numbers of 

disassembling 

sequence using the 

optimization 

algorithms already in 
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the single object 

optimized results. 

place, and 

computational 

complexity grew as 

product complexity 

increased. 

 

Shao et al [21] This paper presents 

GAILS, an efficient 

approach based on 

genetic algorithms 

(GA) and iteration 

local search (ILS) for 

handling JSSP and 

FJSSP. 

Both JSSP and FJSSP 

might be processed 

efficiently by the 

proposed approach 

while meeting certain 

goals. 

Its efficiency could be 

limited in 

unpredictable, 

real-time settings due 

to its possible inability 

to adapt to extremely 

dynamic production 

environments. 

 

Peng et al [22] Multi-Application 

Scheduling Algorithm 

(MASA) 

It demonstrates show 

these learning 

improvements increase 

the network's capacity, 

and experimental 

results demonstrate 

that MASA performs 

superior to alternative 

neural scheduling 

methods and 

heuristics. 

It is the possible 

susceptibility to the 

selection of 

hyperparameters that 

which can necessitate 

cautious adjustment for 

optimal outcomes in a 

range of application 

scenarios. 

Mithila et al [23] vector scheduling 

approach 

The tests conducted in 

CloudLab using nodes 

distributed across 

several cloud sites 

show that 

incorporating latency 

into vector scheduling 

Despite the benefits 

associated with 

modeled delay during 

communication, an 

overlay network 

configuration approach 

based on delay 
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method improves 

performance and 

makes better use of 

available resources. 

measures did not work 

well in a multi-cloud 

setting. 

Francescutto et al [24] Multi-resource 

Partial-ordering 

Flexible Job-shop 

Scheduling (MPF-JSS) 

Tests performed on a 

collection of cases 

taken from a 

medium-sized 

semiconductor fault 

investigation 

laboratory show that 

method was able to 

locate schedules for 87 

of the 91 cases that are 

thought to be examples 

from the real world. 

The possibility of 

complexity of 

computation and 

limited resources may 

make expanding up to 

greater or more 

complicated 

production 

environments difficult. 

Li et al [25] Reinforcement 

learning (RL)based 

multi-method 

approach 

The proposed approach 

produced outcomes 

that were 100% 

statistically superior to 

or comparable to those 

of its component 

algorithms. 

Its reliance on precise 

specifications for 

belief degrees, which 

might be difficult to 

determine by in 

extremely dynamic and 

unpredictable project 

situations. 

Feng et al [26] deep reinforcement 

learning (RL) method 

The efficiency of the 

proposed algorithm is 

demonstrated by the 

outcomes of the 

experiment. 

the difficulties in 

transferring the 

performance of the 

deep reinforced 

learning model to 

carrier-borne aviation 

support activities in the 

actual world because 

of the unpredictability 

and dynamic nature of 
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operating 

environments. 

Li et al [27] Grey Wolf 

Optimization 

algorithm, and particle 

swarm optimization 

The findings of the 

sensitivity evaluation 

demonstrate the 

created fuzzy 

computing model's 

suitability for various 

ranges of confidence 

values. 

It is believed that 

operating variables are 

exclusively 

represented by fuzzy 

programming, possibly 

ignoring intricate 

real-world variances. 

 

The remaining of the paper is structured as follows: Section 

2 give an overview of the disassembly workspace for APD 

and the previous connections of the APD process. In 

Section 3, a GA-based technique is proposed to obtain the 

parallel disassembly sequence. The outcomes of the 

techniques used in this paper are displayed in Section 4. 

Section 5 brings the current study to a close. 

2  Problem statement 

2.1 Problem representation 

In addition to being limited by preceding events, the 

problem in the task planning is also constrained by multiple 

resources, which should belong to the parallel disassembly 

sequence planning (PDSP). Based on the related works 

above, we can focus on the specific problem as APD 

(asynchronous parallel disassembly) problem. And based 

on the constraint of the work space interference and the 

priority of the task for our problem, we give our methods to 

define the disassembling space interference matrix and 

priority task matrix. 

(a) The definition of disassembling workspace 

The Workspace for the project can be divided into 6 

categories according to the contents and purposes of the 

occupied objects: component space, manpower space, 

equipment space, hazard space, protection space and 

temporary space [24]. Workspace interference refers to the 

situation where different workspaces occupy each other in 

actual scenes. Combined with the situation of complex 

equipment disassembling, in order to quickly obtain the 

results of the Workspace interference, we used the axial  

 

 

bounding box to simplify the shape of the our 

disassembling workspace. According to the working 

scenario, we give the following definitions for the 

disassembling workspace: 

• Component space: The components need to be 

dismantled in sequence according to the assembly 

direction and order. The collision interference 

with other components is not allowed during 

disassembling.  

•  Disassembling operation space: In the 

disassembling process, each task has a certain 

operation space. As shown in Figure 1, we take 

component a. as the bounding box, it sweeping 

along the task path  𝑺𝒌 , and finally the 

disassembling operation space is formed as Ω2 . 

Meanwhile, if the task is a manual task by workers, 

then we can take workers as a bounding box, and 

their movement paths as  𝑺𝒌, eventually forming a 

swept space. 
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Figure 1: The form of the disassembling operation space. 

• Protection space for lifting operations: When 

the lifting operation task is executed, the space 

formed by projection from disassembling 

operation space onto the working plane, it is called 

the protection space, as shown in Figure 2, Ω3 . 

From the scene we can see that a worker is 

carrying out task  𝒊 while the crane is also 

conducting task 𝒋. Due to safety regulations for 

lifting, workers are not allowed to stay in spaces 

near where overhead lifting is underway. As 

shown in the diagram, the worker's disassembling 

operation space interferes with the protection 

space. Such a scenario would not be permitted 

under actual working conditions. 

 

Figure 2: Schematic diagram of disassembling workspace 

interference. 

Based on the above definition of the disassembling 

workspace, the workspaces be shown in Figure 3. 

 

Figure 3. Schematic diagram of disassembling work space 

definition. 

In order to facilitate the expression of the workspace 

interference, we constructs a disassembling space 

interference matrix C = [𝐶𝑜𝑖𝑗 ] , which can encode the 

disassembling workspaces of each task with 0/1. Taking the 

working scene in Figure 3 as an example, the three types of 

workspaces do not interfere with each other, so the 

interference situation in the scene in the figure is recorded 

as 0. 

𝐶𝑜𝑖𝑗

= {
1, Task i hasspace interference with Task j；

 0, Task i has no space interference with Task j
(1) 

2.2 Task priority matrix 

The priority between tasks indicates the disassembling 

order [28]. For large-scale disassembling tasks, the order is 

defined according to logical regulations. For example, 

preparation work must be earlier than disassembling work, 

and follow by the hoisting task. We define a task priority 

matrix D = [𝑑𝑖𝑗 ] to represent the priority relationship 

between the 𝑖, 𝑗 task of the project. 

𝑑𝑖𝑗 = {
1, Task i is the preTask of Task j；

    0, Task i is not the preTask of Task j.
    (2) 
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❖ Notation: 

P —— the disassembling project 

N —— the set of the tasks (we can set the start and end 

nodes of the virtual project to be denoted as O and Θ.) 

𝑃𝑖 , 𝑃𝑗 —— the tasks 𝑖, 𝑗 in project, ∀𝑖, 𝑗 ∈ 𝑁 

n —— the number of the tasks 

K —— the number of the whole workers 

𝑇𝑖  —— the time of 𝑃𝑖  

𝑇𝑆𝑖  —— the start time of 𝑃𝑖  

𝐾𝑖 —— the requiring workers for task i 

𝐶𝑜𝑖𝑗 ∈ 𝐶 —— the disassembling space interference matrix 

for tasks 𝑖, 𝑗 

𝑑𝑖𝑗 ∈ 𝐷 —— priority task matrix for tasks 𝑖, 𝑗 

𝑡𝑒𝑛𝑑—— the project completion time 

Γ𝑡 ⊂ 𝑁—— the set of tasks being operated at time t 

❖ Assumptions 

the mathematical model is established based on 5 

assumptions: 

(1) The spatial requirements of the tasks are been given; 

(2) The supply of other tool-type resources for the tasks is 

sufficient;  

(3) Tasks must be carried out strictly according to the 

specified number of personnel. When the number of 

personnel does not meet the current task requirements, the 

task cannot start; 

(4) The skills and quality of the workers are basically the 

same; 

(5) The workers involved in task belong to the same trade.  

❖ Mathematical model 

min𝑡𝑒𝑛𝑑 = 𝑃Θ                                      （3） 

s. t.𝑑𝑖𝑗(𝑇𝑆𝑗 − 𝑇𝑖 − 𝑇𝑆𝑖) ≥ 0, ∀𝑖, 𝑗 ∈ 𝑁           （4） 

𝐶𝑜𝑖𝑗 = 0,∀𝑖, 𝑗 ∈ Γ𝑡                                （5） 

∑ 𝐾𝑖 ≤ 𝐾,𝑖∈Γ𝑡 
∀𝑖                                   (6) 

The objective function (1) minimizes the project 

completion time 𝑡𝑒𝑛𝑑, namely the start time of the virtual 

end node. Constraint (2) represents the task precedence 

constraints, meaning a task's start time should not be earlier 

than the end time of its pre-tasks. Constraint (3) indicates 

that parallel tasks cannot have spatial interference at any 

time; constraint (4) requires that the number of workers 

assigned to the set of parallel tasks cannot exceed the 

maximum headcount limit at any time. 

3  Improved elite genetic algorithm 

solution 

3.1 Coding 

Different from the integer coding method adopted in related 

research on asynchronous parallel task planning[16, 26, 29], we 

adopt real number coding to make the search space more 

sufficient. Encode the tasks to generate a random real 

number vector in the [0,1] interval as an individual, denoted 

as AL =（𝑎1，𝑎2，……，𝑎𝑛），𝑎𝑖∈[0,1]. According to the 

task priority matrix, the topological sorting method is used 

to generate a task sequence (Sequence of Tasks) that 

satisfies the task priority constraints from AL. 

3.2 Decoding 

Since the asynchronous parallel tasks also contain multiple 

constraints, how to decode AL into a scheduling scheme the 

constraints become the key to solving the PSDP problem. 

We combine the idea of parallel topological sorting and 

designs a scheduling generation mechanism (SGS) based 

on multi-variable constraints, which innovatively 

incorporates multi-resource constraint conditions on the 

traditional serial scheduling generation mechanism (SSS). 

Traverse every task node in the AL task sequence, and 

judge the conditions of time, worker number, and work 

space interference in turn. Finally, update the task start time 

table and end time table. The value in the final task end 

time table is the completion time of the task sequence. The 

decoding steps are shown in Figure 4. 
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Figure 4: The workflow of decoding. 

3.3 Genetic operator design 

After obtaining the initialized population, the individuals in 

the population are selected, crossed, and mutated according 

to the fitness function. We defined the fitness as the 

objective function, shown in the following formula: 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = −𝑡𝑒𝑛𝑑                                   (5) 

𝑡𝑒𝑛𝑑 indicates the last task completion time, which means 

that the shorter the task completion time of individuals with 

higher fitness in the population. 

We choose the most widely used tournament selection 

method for genetic operators. In each generation 

population, two individuals are randomly selected for 

comparison, and the individual with greater individual 

fitness remains in the next generation. 

The crossover genetic operator pairs the individuals in the 

population, and exchanges part of the chromosome 

according to the crossover probability; the mutation genetic 

operator changes the gene values at some positions of the 

chromosome to other alleles. In the crossover operator, 

single-point crossover is adopted to exchange fragments 

between chromosomes at random positions. The mutation 

operator adopts single-point mutation, which adds a 

disturbance value to a random position of the chromosome 

to change the order of some tasks so that it can increase the 

diversity of the population. The adaptive crossover and 

mutation probability formulas defined in this paper are as 

follows: 

𝑝𝑐 = 𝑘𝑐 −
𝑓′−𝑓𝑎𝑣𝑔

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
𝜆                       (6) 

𝑝𝑚 = 𝑘𝑚 −
𝑓𝑖−𝑓𝑎𝑣𝑔

𝑓𝑚𝑎𝑥−𝑓𝑚𝑖𝑛
𝜇                      (7) 

𝑝𝑐 is the adaptive crossover probability; 𝑘𝑐 is the basic 

crossover probability;𝜆  is the crossover factor; 𝑓′ is the 

larger fitness value of the two individuals for crossover; 

𝑘𝑚 is the basic mutation probability; 𝜇  is the mutation 

factor; 𝑓𝑖  is the current individual fitness. When the 

population fitness tends to the local optimal value, 

appropriately reduce the crossover probability and increase 

the mutation probability to prevent premature convergence 

of the algorithm; when the fitness difference between 

chromosomes is relatively large or individuals in the 

population are dispersed in the solution space, the formula 

can appropriately increase the crossover probability and 

reduce the mutation probability, so that superior individuals 

can be retained to help the population conduct a more 

extensive search in the solution space. 

3.4 Ant colony search operator 

In order to further expand the search scope of the solution 

space, this paper designs an ant colony search operator, 

which compares the fitness of individuals in the population, 

and performs local search on suboptimal individuals and 

global search on inferior individuals through the 

calculation of state transition probability in the ant colony 

algorithm, so as to obtain higher quality populations. The 

operator adopts the pheromone search idea based on the ant 

colony algorithm. First, the fitness values of the new 

population after genetic manipulation are set as the initial 

pheromone, and the state transition probability of the 

population is calculated. The state transition probability 

formula is as follows: 
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𝑝𝑖 = −
𝜏𝑚𝑎𝑥−𝜏𝑖

𝜏𝑚𝑎𝑥
                                     (8) 

𝑝𝑖indicates the state transition probability of individual 𝑖; 
𝜏𝑚𝑎𝑥 indicates the maximum pheromone value of the 

population; 𝜏𝑖 is the current individual pheromone value. 

𝑝0 is a constant for state transition probability. When the 

state transition probability 𝑝𝑖is less than 𝑝0, a local search 

operation is performed; when the state transition 

probability 𝑝𝑖  is greater than 𝑝0, a global search operation 

is performed to generate new individuals. The search 

strategy formula is as follows: 

𝑡𝑒𝑚𝑝 = 𝑝𝑖 + 𝜀, 𝜀 ∈ [−𝛼𝜆, 𝛼𝜆]                     (9)   

𝑡𝑒𝑚𝑝 is the temporary individual vector after searching, 

𝑝𝑖is the population individual, 𝛼 indicates the local search 

step size, 𝜆 indicates the scaling coefficient. For the 

suboptimal individuals (𝑝𝑖 ≥ 𝑝0) in the population,𝜆 take a 

smaller value for local optimal search; for the inferior 

individuals (𝑝𝑖 < 𝑝0 ) in the population, 𝜆  take a larger 

value, with the purpose of global search for individuals. 

The obtained is processed for boundary conditions, and the 

solution value is defined within the encoding range of [0, 1], 

and its fitness is calculated. If the fitness value is superior to 

𝑝𝑖 , the population individual is updated. 

After the ant colony search is completed, the parent and 

offspring populations are retained to accelerate the 

convergence speed of the algorithm and improve the 

quality of the solution. In this paper, the individuals in the 

parent and offspring populations are sorted according to the 

fitness, and the top 50% of individuals with fitness are 

selected as the new population. Then the pheromone matrix 

is updated to record the current optimization trend. 

3.5 Algorithm steps and processes 

Step 1: Initialize the system, including population size, 

number of iterations, crossover probability, mutation 

probability and adaptive coefficients. 

Step 2: Construct the initial solution to the problem, and 

generate an initial feasible solution population according to 

the constraint conditions.   

Step 3: Judge the iterative circulation condition. Exit the 

operation if the maximum number of iterations is reached; 

otherwise, go to Step 4. 

Step 4: Perform selection, crossover, mutation, ant colony 

search, and elite retention operations on the population 

according to preset probabilities, respectively. 

Step 5: Increment the number of iterations and jump to 

Step 3.  

4  Application and discussion 

4.1 Application 

There are thirty-one tasks that need to be completed in 

order to disassemble a bulb cylindrical propellers generator 

unit. Four regular workers and one crane operator are 

assigned to complete the jobs. Table 3 provides basic 

details about the activities and people, and Figure 5 shows 

the workstation where tasks 1 through 10 are to be 

disassembled. The typical parameters presented in Table 2 

are essential components of the project's requirements that 

are critical to defining its operational restrictions and 

framework. This disassembly project description, which is 

based on task specifics, worker assignments, and parameter 

settings, lays the foundation for effective planning and 

execution. 

 

Figure 5: Disassembling work task space (Tasks 1-10) 

scene diagram
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Table 2: Experimental parameter settings 

NO. Parameter 

1 Population size = 8  

2 Maximum number of iterations = 100 

3 Basic crossover probability = 0.7 

4 Basic mutation probability = 0.1 

5 Crossover factor = 0.2 

6 Mutation factor = 0.05 

7 State transition constant = 0.2 

8 Search step size = 0.2 

9 Scaling coefficient [0.5, 2.5] 

 

Table 3: Disassembling work task information 

Num. The description of tasks Pre- 

tasks 

Time

（h） 

worker

s 

Space  

interference 

1 Assist in draining the upstream 

channel and unblocking the 

pipeline 

- 4 3 5,8,13,17,14,23,27,28 

2 Clean up silt in upstream 

channel  

- 6 3 3,5,6,12,13,14,15,17,23,24,27,28 

3 Support marking for bulb head 1,2 2 2 4,5,7,8,13,14,15,17,23,24,27,28 

4 Remove bulb head support 

bolts 

3 2 3 5,8,13,14,17,23,24,27,28 

5 Dismantle bulb head support 1,2,4 2 4 8,13,14,17,23,24,27,28 
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6 Remove bulb head assembly 

surface bolts 

2 4 2 8,13,17,19,21,22,31 

7 Prepare steel wires and four 

shackles for lifting 

- 2 2 - 

8 Auxiliary hook rises; the 

gantry crane moves to the pit 

7 0.5 0 11,12,13,15,17,19,20,21,22,27,29 

9 Remove shackles and connect 

thin steel wires 

8 0.5 1 10,11,15,17,29 

10 Descend auxiliary hook 9 0.5 0 11,12,15,17,27 

11 Install four shackles 10 0.5 1 15,17,27,29 

12 Main hook hangs rope 5 0.5 1 15,17,27,29 

13 Install manual pulley block 5 0.5 1 15,17,22,24 

14 Install jack under bulb head 5 0.5 1 17,23,28 

15 Hang manual pulley blocks on 

two lifting points upstream of 

bulb head   

14 0.5 1 17,22,24 

16 Hang a pulley block on hanger 

ear of flow channel wall 

- 0.5 1 16.17,23,27,30 

17 Crane starts; gantry crane 

bears 

6,11,12

,13 ，

15,16 

0.5 0 19,21,22,23,27,29,30 

18 Check stress status of each 

point 

6,11,12

,13,15,

16 

0.5 1 19,21,22,23,27,29,30 

19 Remove remaining bolts 

between assemblies  

17,18 1.5 2 21,22,27,30,31 

20 Return tools and removed parts 17,18 0.5 1 23,27,30 
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to corresponding positions 

21 Remove reserved bolts for 

bulb head 

19,20 1 2 22,23 

22 Pull the pulley block to 

separate bulb head from stator 

bonding surface 

21 0.5 1 23 

23 Crane lifts bulb head and 

places it on squared timbers 

22，27 1 0 27,28,30 

24 Take measurements 23 0.5 1 27,30 

25 Fabricate steel bracket - 1 1 - 

26 Prepare squared timbers - 0.5 1 - 

27 Lift squared timbers and steel 

bracket to bulb head placement   

25,26,1

7 

0.5 0 29 

28 Full welding for steel bracket 23 0.5 1 30 

29 Loosen main hook and remove 

steel wires 

24 0.5 1 30 

30 Lift bulb head bolts to 

installation room 

29 0.5 0 31 

31 Apply penetrating oil on flange 

surfaces between assemblies 

23 0.5 1 - 

 

4.2 Discussion 

The IGA algorithm was executed to solve the case. After 

iterative convergence, the total duration of the optimal 

scheduling scheme generated is 25.5h. The Gantt chart is 

shown in the figure 6. No. 5 rows indicates the crane 

driver's task, and the other rows indicate ordinary workers. 

The width of the color blocks corresponds to the task time; 

the gap indicates that the worker is waiting, and the length 

of the gap corresponds to the time the worker waits before 

performing the next disassembling task. Our proposed 

method outperforms existing approaches such as  

 

Collaborative ant colony algorithm to solve APD, A genetic 

algorithm with path reconnection strategy, The improved 

discrete NSGA-II (IDNSGA-II), genetic algorithms (GA) 

and iteration local search (ILS) for handling JSSP and 

FJSSP, Multi-Application Scheduling Algorithm (MASA), 

vector scheduling approach and Multi-resource 

Partial-ordering Flexible Job-shop Scheduling (MPF-JSS), 

demonstrating superior performance in the comparison of 

results. 
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Figure 6: Gantt chart of optimal solution 

4.3 Influence of resource constraints on 

solutions 
Compare the results of this algorithm with two cases 

without considering human resource constraints and space 

interference constraints. 

(1) With the same initial parameters, masking the human 

resource conditions, the results obtained are shown in 

Figure 7. Although it can be seen that the solving 

conditions are more relaxed, the task execution time is 

shorter, and the project end time is 19h, the figure shows 

that nearly 10 people are needed to complete the related 

task arrangements at the beginning of task planning, while 

only 4-5 people are needed to complete the project later in 

the schedule. 

 

Figure 7: Disassembling task Gantt chart without 

considering personnel constraints 

(2) With the same initial parameters, shielding the space 

interference constraints, the results obtained are shown in 

Figure 8. The task execution time is 25h, which is slightly 

shorter than the time planning of this algorithm. However, 

tasks 4 and 8 are planned to be carried out at the same time. 

According to the data in Table 2, there is a situation of 

workspace interference between tasks 4 and 8. While the 

crane is traveling to the pit and descending, the worker of 

task 4 is working in the pit, which conflicts with our 

problem definition. 

 

Figure 8: Disassembling task Gantt chart without 

considering spatial constraints 

In summary, by introducing human resource and workspace 

constraints, a disassembling task sequence that is more in 

line with the actual situation can be obtained, which 

effectively avoids redundant personnel and space resource 

conflict issues in DSP. 

4.4  Algorithm performance analysis 

The improved elite genetic algorithm (IGA) proposed in 

this paper is compared experimentally with the traditional 

ant colony algorithm (ACO) and the adaptive genetic 

algorithm (AGA). Figure 9 display the comparision of 

algorithm. It can be seen that the local search strategy 

designed in this paper enables the algorithm to jump out of 

the local optimal value in terms of optimization, and 

compared with the ant colony algorithm, the improved 

genetic algorithm adopted in this paper can also find better 

quality optimal solutions faster. 

 

Figure 9: The algorithm comparison. 
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Precision is a fundamental parameter utilized in the fields 

of statistics to evaluate performance. Figure 10 depict the 

comparative evaluation of precision in suggested and 

traditional methods. When compared to currently existing 

methods such as IGA and ACO, which have Precision 

values of 85% and 82%, respectively, the suggested AGA 

achieves precision value of 90%.  

 

Figure 10: Precision recall 

Recall is a performance metric used in data categorization 

that represents the proportion of actual positives that a 

model properly retrieves. The recall result is shown in 

Figure 11. When compared to currently existing methods 

such as IGA and ACO, which have Recall values of 88% 

and 85%, respectively, the suggested AGA achieves an 

accuracy value of 92%.  

 

Figure11: Recall 

 

5  Conclusions 

Aimed at the multi-resource constraint problem in 

asynchronous parallel task planning, this paper establishes 

a multi-resource constrained task scheduling mathematical 

programming model from the perspective of worker roles, 

working space, and limited personnel resources. An IGA 

algorithm is designed to solve this problem, and a decoding 

method based on parallel topological sorting is proposed to 

obtain the minimum project duration for tasks under 

multi-resource conditional constraints. On the basis of the 

elite genetic algorithm, combined with the advantage of 

local optimization of the ant colony algorithm, an ant 

colony local search operator based on pheromone is 

proposed to improve the search space and solution quality. 

The novel decoding technique and the proposed IGA 

algorithm have tremendous potential for a range of 

industrial uses. The optimum task scheduling mathematical 

model could be useful for industries like manufacturing, 

building, construction, and logistics that include complex 

project scheduling. The incorporation of a 

pheromone-based ant colony local search operator 

broadens the algorithm's industrial value by improving its 

adaptability to real-world scenarios and indicating its 

applicability in contexts that are dynamic and 

resource-intensive. 

Through the hydraulic turbine hoisting and disassembling 

example, the effectiveness of the algorithm and 

improvement measures in this paper is verified by 

analyzing the key parameter settings. The experimental 

results show that the multi-resource constrained 

asynchronous parallel task planning proposed in this paper 

is more practical, effectively avoiding the safety threats and 

resource conflicts of tasks. The problems, models and 

algorithms studied in this paper can be customized for 

resource requirements according to the specific project 

characteristics, and have certain versatility and scalability. 

It has guiding significance for scheduling disassembling 

work tasks of large equipment. In future research, 

asynchronous parallel tasks can be further studied in terms 

of project scheduling costs. The proposed method may not 

be generalizable beyond the particular hydraulic turbine 

instance, and the algorithm's performance may be sensitive 

to changes in job parameters, requiring careful thought and 

modification for various disassembly tasks. 

Data Availability  

The data used to support the findings of this study are 

available from the corresponding author upon request. 
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