
Informatica 29 (2005) 401–408 401

The Tropos Metamodel and its Use

Angelo Susi, Anna Perini and John Mylopoulos
ITC-irst, Via Sommarive, 18, I-38050 Trento-Povo, Italy
E-mail: susi@itc.it, perini@itc.it, jm@cs.toronto.edu

Paolo Giorgini
Department of Information and Communication Technology
University of Trento, via Sommarive 14, I-38050 Trento-Povo, Italy
E-mail: paolo.giorgini@dit.unitn.it

Keywords: Agent Oriented Software Engineering Methodology, Metamodel

Received: May 9, 2005

Tropos is a software development methodology founded on the key concepts of agent-oriented software
development. Specifically, Tropos emphasizes concepts for modelling and analysis during the early re-
quirements phase. This phase precedes the prescriptive requirements specification of the system-to-be. In
this paper, we present the Tropos metamodel starting from the basic concepts of actor, goal, plan, resource
and social dependency and then we illustrate its use by introducing an extension intended to introduce
concepts for modelling security concerns. We also sketch the Tropos modelling environment and compare
with the metamodels of other software development methodologies.

Povzetek: Podana je programska metodologija Tropos, temelječa na agentnih pristopih.

1 Introduction

Software development paradigms have exploited a wealth
of models to capture requirements and design information
about a software system (the “system-to-be”) throughout
its development process. Structured software development
used SADT and Data Flow Diagrams. Object-oriented
software development has used a range of modelling lan-
guages which have been integrated into UML. Not surpris-
ingly, agent-oriented software development is following on
the same footsteps.

To formally analyze software models, we need a means
to define their syntax and semantics. Metamodels have
been used for the former task. Metamodels define a set of
possible instantiations, which are all and only the syntacti-
cally correct models in some modelling language. As such,
metamodels have been used for more than two decades as
a basis for defining the syntax of (usually graph-theoretic)
modelling languages, such as UML as well as Tropos.

The objective of this paper is to introduce the Tropos
metamodel, discuss some of its uses, and compare it to
other metamodels of agent/goal-oriented software develop-
ment methodologies. Section 4 of the paper sketches the
Tropos methodology, while Section 3 presents the meta-
model and explains its features. Section 4 presents one
extension of the metamodel to include security-related con-
cepts. In Section 5 we sketch the Tropos development envi-
ronment, which uses the metamodel in its basic core. Sec-
tion 6 relates the proposed metamodel to others in the same
family of modelling languages, while Section 7 concludes

the paper.

2 Models and Methodology

Tropos is founded on the idea of using the agent paradigm
and related mentalistic notions during all phases of the de-
velopment software process. The methodology [6] adopts
the i* [26] modelling framework, which proposes the con-
cepts of (social) actor, goal, task, resource and social de-
pendency to model both the system-to-be and its organiza-
tional operating environment. The i* framework includes
the strategic dependency model (actor diagrams in Tropos)
for describing the network of inter-dependencies among ac-
tors, as well as the strategic rationale model (goal diagrams
in Tropos) for describing and supporting the means-ends
analysis conducted by each actor as it attempts to ensure
that – through delegations to other actors – its goals will
eventually be fulfilled.

An actor diagram is a graph whose nodes represent ac-
tors (agents, positions, or roles), while edges represent
dependencies among them. A dependency represents an
agreement between two actors where one actor (the depen-
der) depends on another (the dependee) to fulfill a goal, per-
form a task or deliver a resource (the dependum). Depen-
dencies may also involve softgoals (such as “having a good
quality meeting”) which represent vaguely-defined goals,
with no clear-cut criteria for their fulfillment.

A goal diagram is also a graph where nodes represent

402 Informatica 29 (2005) 401–408 A. Susi et al.

goals or plans1, while edges represent goal/plan relation-
ships, such as AND/OR-decomposition (i.e., a goal/plan
can be decomposed into a set of other goals/plans.
Goals/plans can also be related to softgoals through quali-
tative relationships (labelled “+” or “-”) to indicate that the
goal/plan contributes positively or negatively to the fulfill-
ment of the softgoal. Goal diagrams appear inside a bal-
loon associated with a single actor. This is the actor whose
goals/plans are being analyzed to determine how they can
be fulfilled/executed.

The Tropos methodology supports four phases of soft-
ware development: Early Requirements Analysis, Late Re-
quirements Analysis, Architectural Design, and Detailed
Design. Early requirements is concerned with understand-
ing the organizational context within which the system-
to-be will eventually function. During early requirements
analysis, the requirements engineer identifies the domain
stakeholders (who have a stake in the system-to-be) and
models them as social actors, who have goals and depend
on each other for goals to be fulfilled, plans to be per-
formed, and resources to be furnished. Late requirements,
on the other hand, is concerned with a definition of the
functional and non- functional requirements of the system-
to-be. This is accomplished by treating the system as an-
other actor (or a small number of actors) who are depen-
ders/dependees in dependencies that relate them to exter-
nal actors. The shift from early to late requirements occurs
when the system actor is introduced and it participates in
delegations from/to other actors.

Architectural design is concerned with the global struc-
ture of the system-to-be. Unsurprisingly, subsystems and
system components are represented as actors too, and their
dependencies to other system components are social, rather
than procedural/structural. This means that system compo-
nents need to have the ability to monitor dependencies to
other actors to make sure they will be fulfilled. As well,
system components need to be able to cancel dependen-
cies that seem ineffective and replace them with new ones
through planning, negotiation, etc. As with conventional
software architectures, architectural styles constitute crit-
ical support for the software developer. Since the funda-
mental concepts of Tropos architectures are intentional and
social, we have turned to theories which study social struc-
tures to define architectural styles: namely Organization
Theory and Strategic Alliances.

Detailed design focuses on the specification of actor
communication and behavior. To support this phase,
we have adopted existing agent communication languages
such as FIPA-ACL [20] or KQML [11]; also message trans-
portation mechanisms and other related concepts and tools.
We have also proposed and defined a set of stereotypes,
tagged values, and constraints to accommodate Tropos con-
cepts within UML [5].

Through the models constructed during these phases,
one can answer “why” questions, in addition to “what” and
“how” ones, regarding system functionality. For example,

1Plans in Tropos correspond to tasks in i*.

one can ask “Why does this component of the system need
to notify library users when a book becomes available”.
Answers to why questions ultimately link system function-
ality to stakeholder needs, preferences and objectives. Such
answers serve as ultimate justifications for all elements of
a proposed design.

3 The Metamodel

review
papers

Reviewer

PC
Chair

review
form

PC
Member

review
the

papers

assigned
papersactor goal

resource

KEY

dependum
depender dependee

be fair
in reviews

assignment

papers

conflicts conflicts

softgoal

review
form

plan

Figure 2: The Tropos actor diagram describing a sketch of
the conference review process.

Figure 1 shows the portion of the Tropos metamodel,
where agent, role and position are specialization of the con-
cept of actor. A position can cover 1 . . . n roles, whereas
an agent can play 0 . . . n roles and can occupy 0 . . . n posi-
tions. An actor can have 0 . . . n goals, which can be both
hard and softgoals and are wanted by 1 actor.

An actor dependency is a quaternary relationship and
relates respectively a depender, dependee, and dependum
(i.e. goal, plan, resource). It is possible to specify also a
reason for the dependency (labeled as why).

A model is an instance of the metamodel and can have
a graphical representation in terms of actor and goal dia-
grams.

Figure 2 depicts an example of an actor diagram for
the domain of the Conference Review Process and repre-
sents a model that can be obtained instantiating the meta-
model discussed so far. Three actors are involved: the Pro-
gram Committee Chair (PC Chair), the Program Com-
mittee Member (PC Member) and the Reviewer. De-
pendencies take place between them; in particular the
goal review papers is delegated by the PC Chair
to the PC Member, moreover the PC Chair also ex-
pects to have the information of the possible conflicts
(a resource dependency) between the PC Member and
the authors of the papers. On the other hand, the
PC Member depends on the PC Chair to obtain the
papers to distribute and the review form. Many crit-
ical goal and resource dependencies occur between the
PC Member and the Reviewer. In particular, the PC

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 403

 Actor Dependency

Goal

Plan

Resource

SoftGoalHardGoal

depender

dependee

1

0..n

0..n

wants 0..n

wantedBy
1

dependum

dependum

dependum

1

1

1

0..1 0..1 0..1
1

executedBy

execute 0..n

why

why

why

0..1

0..1

0..1

0..n
1

{XOR}

0..n

0..n

{XOR}

RoleAgentPosition

playoccupy
1..n

cover

0..n
0..n

0..n
0..n

Figure 1: The UML class diagram specifying the actor concept and the dependency relationship in the Tropos metamodel.
UML notation is compliant with the OMG MOF 1.4.

Member depends on the Reviewer for review the
papers and to obtain the information about the possible
conflicts on assigned papers. The Reviewer
depends on the PC Member in order to obtain a set
of assigned papers as well as the review form.
Finally, the PC Member wants to be fair in the
review assignment, and this is represented as a soft-
goal wanted by the PC Member.

review
papers

collect
the

reviews

PC
Member

assign
papers to
reviewers

AND decomposition

contribution (positive)

+KEY

++

be fair
in reviews

assignment

Reviewer

conflictsreview
the

papers

select
reviewers

send
the papers

verify
conflicts

verify
competences

send
papers by

e-mail

Means-end analysis

Figure 4: The Tropos goal diagram related to the actor PC
Member.

The concepts related to the Tropos goal diagram are de-
picted in Figure 3. The central concept of goal is repre-
sented by the class Goal. Goals can be analyzed, from the
point of view of an actor, by Means-end analysis, Con-
tribution analysis and Boolean decomposition. Means-
end Analysis is a ternary relationship defined among an
Actor, whose point of view is represented in the analy-

sis, a goal (the end), and a Plan, Resource or Goal (the
means). Contribution Analysis is a ternary relationship be-
tween an actor, whose point of view is represented, and
two goals. Contribution analysis strives to identify goals
that can contribute positively or negatively towards the ful-
fillment of other goals (see association relationship labeled
contribute in Figure 3). A contribution can be annotated
with a qualitative metric, as proposed in [8], denoted by
+,++,−,−−. In particular, if the goal g1 contributes pos-
itively to the goal g2, with metric ++ then if g1 is satisfied,
so is g2. Analogously, if the plan p contributes positively
to the goal g, with metric ++, this says that p fulfills g. A
+ label for a goal or plan contribution represents a partial,
positive contribution to the goal being analyzed. With la-
bels −−, and − we have the dual situation representing a
sufficient or partial negative contribution towards the ful-
fillment of a goal. Decomposition, whose metamodel is
described in Figure 3, is also a ternary relationship which
defines a generic boolean decomposition of a root goal
into subgoals, that can be in particular an AND- or an OR-
decomposition specified via the attribute Type in the class
Boolean Decomposition specialization of the class Decom-
position.

The concept of plan in Tropos is specified in Figure 2
and 3. Means-end analysis and AND/OR decomposition,
defined above for goals, can be applied to plans also. In
particular, AND/OR decomposition allows for modelling
the plan structure.

Figure 4 gives a sketchy view of goal diagram
for the actor PC Member and for the goal review
papers and for the softgoal be fair in the
review assignment.

The goal review papers has been AND-
decomposed in two sub goals: assign papers
to reviewers and collect the reviews. This
latter represents the “Why” for the dependency review

404 Informatica 29 (2005) 401–408 A. Susi et al.

Actor Decomposition

Goal

Plan

Resource

Boolean Decomposition
+Type: String

Contribution
+Metric: String

Means-End Analysis

0..n

1

1

1

pointOfView

pointOfView

pointOfView
1

1

1

contributeTo

contributeTo

contributeTo

contributedBy
1

0..n

0..n

0..n

0..n 0..n

1

0..n

end

means
0..n 1 1

end1

0..n means 0..n

1

1

root

root

0..n 0..n0..n 0..n
{XOR}

{XOR}

Figure 3: The UML class diagram specifying the concepts related to the goal diagram in the Tropos metamodel.

the papers between PC Member and Reviewer,
as shown in Figure 1. The goal assign papers
to reviewers is decomposed in two subgoals:
send the papers, that is operationalized as send
papers by e-mail, and select reviewers
decomposed in verify the competences and
verify conflicts. This latter represents the “Why”
for the resource dependency conflicts between the PC
Member and the reviewer. Moreover, the fulfillment
of these two sub-goals can contribute positively to the
fulfillment of the softgoal be fair in the review
assignment as described by the positive contribution
relationships in the diagram.

4 Metamodel Extension
Secure Tropos has been proposed in [16] as a formal frame-
work for modelling and analyzing security. It enhances
Tropos introducing four new concepts and relationships
behind Tropos dependency: trust, delegation, provision-
ing, and ownership. The basic idea of ownership is that
the owner of a resource (goal or plan) has full authority
concerning access and disposition of his resource (goal or
plan). The distinction between owning a resource makes
it clear how to model situations in which, for example, a
client is the legitimate owner of his/her personal data and a
Web Service provider that stores customers’ personal data,
provides the access to her/his data. We use the relation for
delegation when in the domain of analysis there is a formal
passage of authority (e.g. a signed piece of paper, a dig-
ital credential is sent, etc.). The trust relations have their
intuitive meaning among agents, namely the believe of an
agent that the actor does not misuse some resources.

Figure 5 shows the the new part of the Tropos metamodel
concerning trust and ownership. An actor (the truster)
trusts another actor (the trustee) about the achievement

of a goal, the fulfillment of a plan or the delivering of a
resource. The content of the trust relationship is called
trustum. An actor can be the owner of a resource, a plan
and goal and he/she has authority concerning the use of the
resource, the execution of the plan and achievement of the
goal, respectively.

Actor Trust

Goal Plan Resource

truster

trustee

1

0..n

0..n

trustum

0..1 0..1 0..1

1

{XOR}

trustum1 1 1 trustum

0..n 0..n 0..n

1 ownedBy

owns owns owns

Figure 5: The Tropos metamodel related to the concept of
Trust.

The metamodel describing delegation relationships is
basically identical to the metamodel for the dependency re-
lationship as presented in Figure 1. The delegater delegates
the delegatee for the achievement of a goal, the execution
of a plan or the delivering of a resource. As for the depen-
dency relationship, it is also possible here to specify the
reason (why) of a delegation.

We have shown in [17] how the original concept of Tro-
pos dependency can be expressed in terms of trust and del-
egation. Roughly, when an actor depends on another actor
to achieve a goal (to fulfill a task or to deliver a resource),
it is implicitly intended that the actor trusts the other actor
and delegates it for such activities. A precise formalization
of dependency refinement in terms of trust and delegation
has been presented in [17].

Figure 6 presents an example of application the ex-

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 405

tended metamodel. The Author trusts the PC Chair to
implement a fair review process and he/she
is the owner of the paper sent to the PC Member and
reviewed by the Reviewer. The PC Chair trusts and
delegates PC Member to review a certain number of pa-
pers, and in turn the PC Member trusts and delegates
the Reviewer to review the papers. The PC member
(Reviewer) depends on the PC Chair (PC Member)
to receive the paper to review.

review
papers

Reviewer

PC
Chair

PC
Member

review
the

papers

assigned
papers

papers

Author

implement
a fair review

process

T

T

(T,Del) (T,Del)

O
O

(T,Del)

(T,Del)

Figure 6: The Tropos actor diagram with the trust concepts.

5 A Modelling Environment
In order to support the specific analysis techniques adopted
in Tropos, different tools have been developed, such as
a tool for the verification of requirements specification
through model-checking technique (T-Tool) [13], a tool
which supports forward and backward reasoning on the
goal analysis structures (GR-Tool) [15]. In this section,
we will give details of a modelling environment, called
TAOM4e (Tool for Agent-Oriented Modelling for Eclipse),
which is based on an implementation of the metamodel
described in the previous sections. The metamodel has
been specified following the OMG’s MDA [21] standard
for metamodel interoperability, that is the Meta Object Fa-
cility (MOF)2 which offers a mechanism for automatically
deriving a concrete syntax based on XML DTDs and/or
schemas known as XML Model Interchange (XMI). This
is a preliminary step towards the adoption of the model-to-
model transformation approach proposed by MDA.

Among the main requirements we considered in devel-
oping this tool are the following [23]:

– Visual Modelling. The modelling environment should
support the user during the specification of an AO
model (e.g., according to the Tropos visual notation).
Moreover, the environment should allow us to repre-
sent new entities that will be included in the Tropos
metamodel, language variants, such as those presented
in Section 4, as well as to restrict its use to a subset of
entities of the modelling language.

2http://www.omg.org/technology/documents/
modeling_spec_catalog.htm#MOF

– Specification of model entities properties. The mod-
elling environment should allow us to easily annotate
the visual model with model properties like invari-
ants, creation or fulfillment conditions that are typi-
cally used in Formal Tropos specification.

– Automatic Model Translation. The modelling envi-
ronment should allow us to save a model in a standard
format (e.g., XML and XMI), and provide automatic
transformation into a different specification language.
The model-to-model transformation approach should
be also compliant with Query/View/Transformation
(QVT) requirements [14], as discussed in [24].

– Extensibility. The modelling environment should be
extensible and allow for different configurations by
easily integrating other tools at will.

ECLIPSE

EMF GEF

TAOM4e

TAOM4e model

TAOM4e platform

Figure 7: The architecture of TAOM4e.

An effective solution to the requirement of a flexible ar-
chitecture and to the component integration issue is offered
by the Eclipse Platform.

New tools are integrated into the platform through plug-
ins that provide the environment with new functionalities.
A plug-in is the smallest unit of function in Eclipse and the
Eclipse Platform itself is organized as a set of subsystems,
implemented in one or more plug-ins, built on the top of
a small runtime engine. The TAOM4e architecture is de-
picted in Figure 7. It follows the Model View Controller
pattern and has been devised as an extension of two exist-
ing plug-ins. First, the EMF plug-in3 offers a modelling
framework and code generation facilities for building tools
and other applications based on a structured data model.
Given an XMI model specification, EMF provides func-
tions and runtime support to produce a set of Java classes
for the model. Most importantly, EMF provides the foun-
dation for interoperability with other EMF-based tools and
applications. The resulting plug-in, called TAOM4e model
implements the Tropos metamodel. It represents the Model
component of the MVC architecture. Second, the Graph-
ical Editing Framework (GEF) plug-in4 allows developers
to create a rich graphical editor around an existing meta-
model. The functionality of the GEF plug-in helps to cover
the essential requirement of the tool, that is supporting a
visual development of Tropos models by providing some
standard functions like drag & drop, undo-redo, copy &
paste and others. The resulting plug-in, called TAOM4e

3http://www.eclipse.org/emf/
4http://www.eclipse.org/gef/

406 Informatica 29 (2005) 401–408 A. Susi et al.

platform represents both the Controller and the Viewer
components of the tool. In Figure 8 a snapshot of the mod-

Figure 8: The Graphic User Interface of TAOM4e.

eler: the diagram editor window on the right, the project
and model browsers on the left, the entity properties win-
dow at the bottom.

6 Related Work

Many Agent-Oriented Software Engineering methodolo-
gies have been proposed and compared over the last few
years [18, 25]. An analysis of the metamodels of three
methodologies, ADELFE [4], GAIA [27] and PASSI [7]
has been presented in [3]. The aim of this work was to face
interoperability issues between different methodologies.

In this section we extend this analysis including Tropos.
We will focus on four dimensions: Agent Structure, Agent
Interaction, Agent Organization and Agent Development
(e.g., CASE tools at support of the development process).
Table 1 summarizes the comparison. In ADELFE the con-
cept of agent (Cooperative Agent) is defined as the
composition of aptitudes, skills, characteristic, communi-
cation and representation. Not explicit concept of role is
given, the concept of goal is implicitly used to identify
agent skills, but it is not representable as well as the con-
cept of plan, since a plan is an entity that will be built at
run time and which is not representable at design time. In
GAIA, an agent (Agent Type) is specified as a compo-
sition of roles. Each role is responsible of a specific set of
activities associated with the role. Goals cannot be explic-
itly modeled, but they are implicitly used to characterize a
role. In PASSI, an agent (Agent) is defined as the compo-
sition of roles and each role is defined as the manifestation
of the agent activity in some scenario. Goals are implicitly
considered when specifying non-functional requirements
attached to agent duties. In Tropos, the concept of Actor
generalizes the concepts of agent and role (or set of roles),
an actor can have individual goals and it can be able to ex-
ecute plans to satisfy goals. Goal analysis in Tropos drives
the modelling process, as discussed in Section 4 and allows

us to represent goal decomposition, means to satisfy a goal
or contribution towards goal satisfaction through different
goal relationships.

The concepts used to specify the interactions of an agent
with another agent or with the environment are similar in
ADELFE, GAIA and PASSI. Basically, they use the con-
cept of communication, role, and protocols. Tropos adopts
the Agent Unified modelling Language (AUML) Agent In-
teraction Diagram, described in [2, 22] (proposed by the
FIPA –Foundation for Physical Intelligent Agents– [12]
and the OMG Agent Work group) where agent communica-
tive acts are represented as messages in a UML sequence
diagram.

In GAIA, the concept of organization is a primary con-
cept, organization rules specify constraints that the orga-
nization should observe. In PASSI, agent organization as-
pects are modeled implicitly in terms of services that can
be accessed by agents in a given scenario. In ADELFE,
agent organization and society emerges from the evolving
interactions between the agents which are compliant with
cooperation rules.

In Tropos the strategic dependencies between actors in
a domain makes explicit the organizational dimension and
provide basic entities to model organizational patterns [19].
Moreover, the Tropos metamodel has been extended to in-
clude concepts of business processes and security.

Both ADELFE and PASSI provide CASE tools at
support of modelling and for ad-hoc analysis on part
of the resulting specification. Tropos provides mod-
elling and analysis tools (details can be found in
http://www.troposproject.org) as well as code generation
tools [10].

This comparison shows that different metamodels
(methodologies) may allow us to model different proper-
ties of a system (e.g., organizational aspects, communica-
tions and protocols). On the other hand, it shows that even
if metamodels share a comparable set of concepts, they can
be used in a different way by the different methodologies.
This can be found also considering requirements engineer-
ing methodologies based on metamodels. For instance, in
KAOS [9], the concept of agent is used to assign leaf goals
resulting from goal analysis.

Finally, other related work on i* and Tropos metamod-
els are worth to be mentioned. The i* metamodel [26]
represents the basis for the Tropos metamodel. Other ex-
tensions of the i* metamodel have been proposed. For in-
stance, in [1] where a methodology for COTS selection is
proposed.

7 Conclusion

We have presented an overview of the Tropos metamodel.
Like other software development methodologies, Tropos
supports a variety of models that need to be analyzed for
syntactic and semantic consistency. The metamodel serves
as a basis for checking for syntactic consistency. Making

THE TROPOS METAMODEL AND ITS USE Informatica 29 (2005) 401–408 407

Agent Structure ADELFE GAIA PASSI Tropos
Agent Cooperative Agent Agent Type Agent Actor
Role Not explicit Role in a organization Role in a scenario Specialization of Actor
Goal Not explicit Not explicit Not explicit Goal and goal relationships
Plan Not explicit Activity of a Role Ontology of Action Plan and plan relationships
Agent Interaction
Comm. & Protocol Agent Communication Communication associated Communication associated Not in the current metamodel.

Agent Interaction to a role and protocols to a role and AUML interaction diagram
Protocols associated Messages as UML sequence diagram
associated to a communication components messages
to communication of communication for communication acts

A. Organization
Structure & Rules Cooperation rules OrganizationStructure, Not explicit Strategic Dependency,

Organization, Ownership, Delegation
OrganizationalRule and Trust

Organizational patterns
A. Development
Modeler Open-Tool — PASSI Toolkit TAOM, OME, DW-Tool, ST-Tool
Analysis tooos Open-Tool — PASSI Toolkit GR-Tool, DW-Tool, ST-Tool,T-Tool
Code Generation — — PASSI Toolkit SKwyRL

Table 1: Comparison of the meta-models of four Agent-Oriented methodologies.

it richer, could also help in supporting some forms of se-
mantic consistency currently conducted through a series of
tools offered within the Tropos software development envi-
ronment.

References
[1] C. Ayala, C. Cares, J. P. Carvallo, G. Grau, M. Haya,

X. Franch G. Salazar, E. Mayol, and C. Quer. A Com-
parative Analysis of i*-Based Agent-Oriented Model-
ing Language. In Proceedings of 17th International
Conference on Software Engineering and Knowledge
Engineering (SEKE’05), pages 43–50, Taipei, Tai-
wan, 2005. KSI Press.

[2] B. Bauer, J.P. Muller, and J. Odell. Agent UML: A
formalism for specifying multiagent interaction. In
P. Ciancarini and M. Wooldridge, editors, Proc. of the
1st Int. Workshop on Agent-Oriented Software Engi-
neering (AOSE’00), volume 1957 of LNCS, pages 91–
104, Limerick, Ireland, 2001. Springer.

[3] C. Bernon, M. Cossentino, M. P. Gleizes, P. Turci, and
F. Zambonelli. A Study of Some Multi-agent Meta-
models. In J. P. Muller J. Odell, P. Giorgini, editor,
Agent-Oriented Software Engineering V: 5th Interna-
tional Workshop, AOSE 2004, volume 3382 of LNCS,
pages 62–77, New York, USA, NY, 2004. Springer.

[4] C. Bernon, M.P. Gleizes, S. Peyruqueou, and G. Pi-
card. ADELFE, a Methodology for Adaptive Multi-
Agent Systems Engineering. In P. Petta, R. Tolksdorf,
and F. Zambonelli, editors, Third International Work-
shop on Engineering Societies in the Agents World
(ESAW-2002), volume 2577 of LNCS, pages 156–169,
Madrid, Spain, 2003. Springer.

[5] G. Booch, J. Rumbaugh, and I. Jacobson. The Unified
Modeling Language: User Guide. Addison-Wesley,
1999.

[6] P. Bresciani, P. Giorgini, F. Giunchiglia, J. My-
lopoulos, and A. Perini. Tropos: An Agent-
Oriented Software Development Methodology. Au-

tonomous Agents and Multi-Agent Systems, 8(3):203–
236, 2004. Kluwer Academic Publishers.

[7] A. Chella, M. Cossentino, and L. Sabatucci. Tools
and patterns in designing multi-agent systems with
PASSI. WSEAS Transactions on Communications,
3(1):352–358, 2004.

[8] L.K. Chung, B. Nixon, E. Yu, and J. Mylopoulos.
Non-Functional Requirements in Software Engineer-
ing. Kluwer Publishing, 2000.

[9] A. Dardenne, A. van Lamsweerde, and S. Fickas.
Goal-directed requirements acquisition. Science of
Computer Programming, 20(1–2):3–50, 1993. Else-
vier.

[10] T. T. Do, M. Kolp, and S. Faulkner. Agent Oriented
Design Patterns: The SKwyRL Perspective. In Proc.
of the 6th International Conference on Enterprise In-
formation Systems (ICEIS 2004), pages 48–53, Porto,
Portugal, 2004.

[11] T. Finin, Y. Labrou, and J. Mayfield. KQML as an
agent communication language. In J.M. Bradshaw,
editor, Software Agents, pages 291–316. MIT Press,
Menlo Park, CA, 1997.

[12] FIPA. The Foundation for Intelligent Physical
Agents. At http://www.fipa.org, 2001.

[13] A. Fuxman, M. Pistore, J. Mylopoulos, and
P. Traverso. Model checking early requirements spec-
ifications in Tropos. In Int. Symposium on Require-
ments Engineering, pages 174–181, Toronto, CA,
2001. IEEE Computer Society.

[14] T. Gardner, C. Griffin, J. Koehler, and R. Hauser. A
review of omg mof 2.0 query / views / transforma-
tions submissions and recommendations towards the
final standard. In MetaModelling for MDA Workshop,
pages 178–197, York, UK, England, 2003.

[15] P. Giorgini, J. Mylopoulous, and R. Sebastiani. Goal-
Oriented Requirements Analysis and Reasoning in
the Tropos Methodology. Engineering Applications
of Artificial Intelligence, 18(2):159–171, 2005.

408 Informatica 29 (2005) 401–408 A. Susi et al.

[16] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Requirements Engineering meets Trust Man-
agement: Model, Methodology, and Reasoning. In
Proc. of iTrust’04, volume 2995 of LNCS, pages 176–
190. Springer-Verlag, 2004.

[17] P. Giorgini, F. Massacci, J. Mylopoulous, and N. Zan-
none. Modeling Security Requirements Through
Ownership, Permission and Delegation. In Proc. of
the The 13th IEEE Requirements Engineering Con-
ference (RE’05), Paris, France, 2005. IEEE Computer
Society.

[18] B. Henderson-Sellers and P. Giorgini, editors. Agent-
Oriented Methodologies. Idea Group Inc., Hershey,
PA, USA, 2005.

[19] M. Kolp, P. Giorgini, and J. Mylopoulos. A goal-
based organizational perspective on multi-agents ar-
chitectures. In Proc. of the 8th Int. Workshop on In-
telligent Agents: Agent Theories, Architectures, and
Languages, ATAL’01, volume 2333 of LNCS, pages
128–140, Seattle, USA, 2002. Springer.

[20] Y. Labrou, T. Finin, and Y. Peng. Agent communica-
tion languages: The current landscape. IEEE Intelli-
gent Systems, 14(2):45–52, 1999. IEEE.

[21] Stephen J. Mellor, Kendall Scott, Axel Uhl, and Dirk
Weise. MDA Distilled. Addison-Wesley, 2004.

[22] J. Odell, H. Van Dyke Parunak, and B. Bauer. Ex-
tending UML for agents. In Proc. of the 2nd Int. Bi-
Conference Workshop on Agent-Oriented Information
Systems, AOIS’00, pages 3–17, Austin, USA, 2000.

[23] A. Perini and A. Susi. Developing Tools for Agent-
Oriented Visual Modeling. In G. Lindemann, J. Den-
zinger, I.J. Timm, and R. Unland, editors, Multiagent
System Technologies, Proc. of the Second German
Conference, MATES 2004, volume 3187 of LNAI,
pages 169–182, Erfurt, Germany, 2004. Springer.

[24] A. Perini and A. Susi. Automating Model Trans-
formations in Agent-Oriented modelling. In Agent-
Oriented Software Engineering VI: AOSE 2005,
LNCS, Utrecht, The Netherlands, 2005. Springer.

[25] A. Sturm and O. Shehory. A Framework for Evaluat-
ing Agent-Oriented Methodologies. In M. Winikoff
P. Giorgini, B. Henderson-Sellers, editor, Proc. of
the Int. Bi-Conference Workshop on Agent-Oriented
Information Systems, AOIS 2003, volume 3030 of
LNCS, pages 94–109. Springer, 2003.

[26] E. Yu. Modelling Strategic Relationships for Process
Reengineering. PhD thesis, University of Toronto,
Department of Computer Science, 1995.

[27] F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing Multiagent Systems: The Gaia Method-
ology. ACM Transactions on Software Engineering
and Methodology, 12(3):317–370, 2003. ACM.

