
https://doi.org/10.31449/inf.v48i8.5480 Informatica 48 (2024) 49–62 49

Closed Itemset Mining: A Graph Theory Perspective

Fatima Zohra Lebbah1,2, Moussa Larbani3,4, Abdellatif Rahmoun5
1Higher School of Electrical and Energetic Engineering of Oran (ESG2E), Vicinal Road N9,Oran, 31000, Algeria
2Laboratory of Research in Computer Science-SBA, Computational Intelligence and Soft Computing Team (CISCO),
Higher School of Computer Science, BP 73, Bureau de poste EL WIAM, Sidi-Belabbes, 22016, Algeria
3School of Mathematics and Statistics, Carleton University, Ontario, 1125 Colonel By Drive, Ottawa, K1S 5B6, Canada
4National Higher School of Statistics and Applied Economics (ENSSEA), Pôle Universitaire de Koléa, Tipaza, Algiers,
42003,Algeria
5Laboratory of Research in Computer Science-SBA, Computational Intelligence and Soft Computing Team (CISCO),
Higher School of Computer Science, BP 73, Bureau de poste EL WIAM, Sidi-Belabbes, 22016, Algeria
E-mail: fz_lebbah@yahoo.fr, fz.lebbah@esgee-oran.dz, larbani61@hotmail.com, a.rahmoun@esi-sba.dz

Keywords: dataset, closed frequent itemset, labeled graph, maximal clique

Received: November 28, 2023

Data mining is a field that focuses on extracting and analyzing usable data from large databases. This
paper specifically concentrates on the problem of finding closed frequent itemsets, which is extensively
studied in the field. Previous techniques based on graph theory have used tree structures and recursive
algorithms, which have limitations. In this paper, we propose a scalable modeling approach that repre-
sents a transaction dataset using an undirected and labeled graph. The labels on the edges are computed
and assigned in a clever manner. We also introduce a polynomial and exact algorithm based on the clique
notion in graph theory to compute all the closed frequent itemsets. Our initial testing results demonstrate
the efficiency of our algorithm in terms of CPU-time and memory usage compared to recent methods in the
literature. Additionally, our graph model can be easily extended when the dataset is updated. We utilize lin-
ear structures with boolean values to implement our graph and employ an exact algorithm with polynomial
complexity. These aspects of our approach provide strong foundations for investigating more challenging
issues related to the problem at hand.

Povzetek: Prispevek obravnava skalabilno modeliranje podatkovnih množic z uporabo neusmerjenih, oz-
načenih grafov za rudarjenje zaprtih pogostih množic. Predlagan je nov algoritem s polinomsko komplek-
snostjo, temelječ na teoriji klik.

1 Introduction
Nowadays, Data Mining is the science that allows us to
work with a dataset in line with our perspectives [18, 16, 17,
19]. It involves the process of finding patterns and knowl-
edge from a large amount of data. However, achieving the
desired and specific information poses a significant chal-
lenge for many researchers. This has led to the develop-
ment of various competing models and techniques, such as
in [27, 3, 2, 4, 7].
Itemset Mining is an appealing field within the realm

of Data Mining, primarily because of the need to manage
large-scale data. As the size of data increases, traditional
methods and techniques used to address Itemsets’ problems
tend to become slower and less efficient. Researchers are
currently focused on discovering and proposing new tech-
niques and algorithms to model and solve problems related
to Itemset Mining, including computing frequent, closed,
and maximal itemsets.
The process of extracting frequent sets of items bought

by customers, known as finding frequent itemsets in a trans-
action database [23, 15, 3], has been addressed by various

techniques. Some of these techniques include Constraints
Programming [32, 6, 5, 25, 8], as well as Graph Theory
[24, 28, 29, 30, 26].
Currently, graph theory-based approaches have been pro-

posed to find frequent itemsets. However, in this arti-
cle, we present a new approach to address the problem of
Closed Frequent Itemsets CFIs. We show that a transac-
tion database can be effectively modeled using the clique’s
concept through an undirected and labeled graph.
In this article, we introduce a clique-based algorithm for

finding CFIs, which we refer to as CfCi. This approach
uses linear structures and a polynomial algorithm. Specif-
ically, we show how our graph model enables the step-by-
step computation of all the CFIs.
The article is structured as follows:
Section 2 introduces the basic concepts of theCFIs min-

ing problem, along with a review of related works. Section
3 presents graph theory notions used to transform a transac-
tion database into an undirected and labeled graph. Section
4 describes the equivalency between a (Closed) Frequent
Itemsets and a (Maximal) clique and how to deduce a CFI
from a maximal clique. Section 5 depicts our CfCi algo-

50 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

rithm and the called functions. The complexity analysis and
an executed example are also given in this section. In Sec-
tion 6, we compare our algorithm CfCi to the latest exist-
ing techniques in the literature to highlight its contribution.
This section also includes the reporting of experimental re-
sults on various datasets and their analysis. In Section 7,
we discuss, describe, analyze, and interpret our findings.
Finally, Section 8 concludes the paper.

2 Problem definition and related
works

In this section, we begin by introducing the problem using
an example of a market basket. Then, we provide basic
concepts and definitions.
For instance, let’s consider the market baskets illustrated

in Figure 1, where we analyze five shopping baskets. The
aim is to study customer shopping habits and identify as-
sociations and correlations between different items. In this
paper, we focus on computing itemsets that are frequently
purchased together by customers. Specifically, we address
the problem of CFIs.

Figure 1: Market baskets analysis

Table 1 represents the market baskets as transactions and
items. Each row corresponds to a customer transaction, and
each column represents an item. The assigned lettersm, b,
e, j, and s represent specific items: milk, bread, egg, jam,
and sugar, respectively.
According to the table, the itemset {m, j} has a fre-

quency of three, showing that three customers purchase the
both articles milk and jam. Similarly, the itemset {b, e} has
a frequency of two, showing that two customers purchase
the both articles bread and egg.

Table 1: The itemset database, as shown on the left side of
Figure 1, can be represented using binary matrix notation,
as shown on the right side of the figure.

T Itemset
t1 {m, b, e, j}
t2 {m, s, e, j}
t3 {b, e}
t4 {m, j}

m s b e j
t1 1 0 1 1 1
t2 1 1 0 1 1
t3 0 0 1 1 0
t4 1 0 0 0 1

Therefore, an itemset database problem is defined by a
set of items I = {m, s, b, e, j} and a set of transactions
T = {t1, t2, t3, t4}. A boolean matrixD(n×m), which is
called the transaction database, represents the relationship
between these items through the transactions.

Therefore, an itemset database problem is defined by a
set of items I = {m, s, b, e, j} and a set of transactions
T = {t1, t2, t3, t4}. The relationship between these items
through the transactions is represented by a boolean matrix
D(n × m), which is called the transaction database (see
Definition 1). Here, n = |I| the number of items in I and
m = |T | represents the number of transactions in T .

Definition 1 (transaction database). Let T =
{t1, t2, · · · tn} be the set of transactions, and
I = {i1, i2, · · · im} the set of items. A transaction
database is defined through the boolean database matrix
D(n×m):

Dj,k =

 1 if the item ij occurs in the
transaction tk

0 else
(1)

where:

n = |T | is the number of transactions,

m = |I| is the number of items.

Based on Figure 1 and Table 1, the analyzed shopping
results in the following transaction database D(4 × 5) as
shown in Matrix 2.

D =


1 0 1 1 1
1 1 0 1 1
0 0 1 1 0
1 0 0 0 1

 (2)

2.1 Frequent itemset mining
Before delving into the topic of Closed Frequent Itemset, it
is important to introduce the concept of support, as defined
in Definition 2.

Definition 2 (support measure). Let D be a transaction
database, I be the set of items, and T be the set of transac-
tions. The support measure of an itemset I ⊆ I is denoted
as Supp(I) and defined as:

Supp(I) =
∑
i∈I

(
∏
t∈T
Dti) (3)

Supp(I) is the number of transactions containing all the
items belonging to I .

Definition 3 (frequent itemset mining). Let D be a trans-
action database and θ be the minimum support threshold,
where θ > 0. An itemset I is considered frequent if its
support, denoted as Supp(I), is greater than or equal to θ
(θ > 0). Conversely, an itemset I is considered infrequent
if its support is less than θ (Supp(I) < θ).

For example, let’s consider the transaction database pre-
sented in Matrix 2. The support values for I1 = {i2},
I2 = {i3, i4} and I3 = {i1, i5} are S1, 2 and 3, respec-
tively.

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 51

Property 1 (downward closure). Every subset of a frequent
itemset is also frequent. In other words,

I is frequent ⇒ ∀Ii ⊂ I : Ii is frequent (4)

or equivalently:

I is infrequent ⇒ ∀Ii ⊃ I : Ii is infrequent (5)

Property 1 [2], also known as the Apriori Principle, is re-
lated to Property 3 and Property 2 [1, 21], which introduce
the characteristics of monotonicity and anti-monotonicity
of supports and the inclusion of frequent itemsets, respec-
tively.

Property 2 (anti-Monotony). [20] Let there be two item-
sets I1 and I2 such that I1 ⊂ I2 . It follows that
Supp(I1) ≥ Supp(I2).

∀Ii, Ij ∈ I/Ii ⊆ Ij : Supp(Ii) ≥ Supp(Ij) (6)

Property 3 (monotonicity). Let I1 and I2 be two itemsets
such that I1 ⊆ I2. If Supp(I2) ≥ θ then Supp(I1) ≥ θ.

∀Ii, Ij ∈ I/Ii ⊆ Ij : Supp(Ij) ≥ θ ⇒
Supp(Ii) ≥ θ

(7)

In other words, the relation Frequent (as stated in Prop-
erty 2) indicates that the subsets of a frequent itemset are
also frequent. Additionally, the support measure exhibits
monotonicity, as stated in Property 3.

2.2 Closed itemset mining
A closed itemset, denoted as Ic, is a frequent itemset that
has a support, denoted as Supp(Ic), equal to or greater than
a fixed minimum support threshold, denoted as θ. All the
items in Ic must be present in the optimal set of transac-
tions, denoted as TIc , which has a size equal to Supp(Ic)
(as defined in Definition 4).

Definition 4 (closed itemset). Let Ic be a frequent itemset
and Supp(Ic) be its support. The itemset Ic is closed if-
if it is not included in a larger frequent itemset Ii that has
the same support, Supp(Ic) = Supp(Ii), and appears in
all the transactions that include Ic, as well as additional
transactions.

Ic is closed ⇔ ∄Ii ⊃ Ic : Ii is frequent ∧
Supp(Ic) = Supp(Ii) ∧ TIc ⊂ TIi .

(8)

where, TIc and TIi are the sets of the transactions which
contain the elements of Ic and Ii, respectively.

Note that our aim is to identify all the closed itemsets.
Figure 2 depicts the first part of the Hasse diagram for the
database represented in Matrix 2. An edge is drawn from
the itemset I1 to the itemset I2 if and only if I1 ⊂ I2 and
|I2| = |I1| + 1. In this figure, the blue ellipses represent

the frequent itemsets, while the green ellipses represent the
closed itemsets. The support of each closed itemset is men-
tioned on the left side of the corresponding ellipse.
For instance, as shown in Figure 2, if we set theminimum

support threshold (θ) to 2, the support of {e} is 3, while the
support of its superset {b, e} is 2. Similarly, the support
of {m, j} is 3. This shows the anti-monotony property (as
stated in Property 2), where e is a subset of {e} ⊂ {b, e},
and their supports are 3 and 2, respectively.

2.3 Related works
So far, several algorithms have been developed for min-
ing Closed Frequent Itemsets, including AprioriTID Close
[20], LCM [22], CHARM [9], FP-Close[12], FCILINK
[31], NAFCP [10], EMFCI[14] NECLAT [13] and
GrAFCI+ [11]. However, most of these methods utilize tree
structures and recursive algorithms.
One primary challenge in the field of data mining is to ef-

ficiently find all the closed itemsets while optimizing CPU
time and memory usage.
To address this challenge, we propose a graph model

based on a linear structure that minimizes memory usage.
Additionally, we introduce the exact algorithm CfCi to find
all the closed frequent itemsets.
To emphasize the contribution of our proposed approach

in this work, we will compare the results of the CfCi algo-
rithm with the latest algorithms, namely NAFCP, NECLAT
and GrAFCI+. This comparison will be presented in Sec-
tion 6. We consider not only the novelty of the chosen algo-
rithm but also the availability of corresponding applications
and the detailed aspect of the results.
Table 2 presents the key characteristics of the algorithms

that are considered in the experiments section.

Table 2: Characteristics of the tested algorithms and their used
structures

Used Struc-
ture

Used Al-
gorithms

Proposed Ap-
proach

CfCi linear structure iterative exact
NAFCP tree structure recursive approximate
NECLAT tree structure recursive approximate
GrAFCI+ tree structure recursive approximate

3 Itemset mining vs undirected
graph

Firstly, we propose an undirected and labeled graph to rep-
resent a dataset. This model is based on the idea that con-
necting items that appear in the same transaction forms a
clique, which is a sub-graph where every pair of distinct
vertices are adjacent. Therefore, each transaction is repre-
sented by a clique. However, since a bond may be shared
by multiple cliques, we introduce a labeling approach that
ensures a bond shared by different cliques (as defined in
Definition 9) is accurately represented in the graph model.

52 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

{}

{m} {b} {e} {j} {s}

{m, b} {m, e} {m, j} {m, s} {b, e} {b, j} {b, s} {e, j} {e, s} {j, s}

Supp(x) x frequent itemset

Supp(x) x closed itemset

Figure 2: The search space of frequent itemset mining for the database of Table 1 and θ = 2

In our graph model, we assign a binary value, known as
a sub-label, to each transaction. Specifically, as defined in
Definition 5, the bond (j, k) that represents the occurrence
of items ij and ik in the same transaction tp is character-
ized by the sub-label Lp(j, k) = 10n−p−1, where n is the
number of transactions.

Definition 5 (sub-label). Consider a database D(n ×m)
and a transaction tp ∈ T . The occurrence of items ij and ik
in the same transaction tp, represented by D [p, j] = 1 and
D [p, k] = 1, is modeled by the bond (j, k) labeled with the
binary value Lp(j, k) = 10n−p−1. This sub-label is a part
of the overall labelLp(j, k) that represents the relationship
between the items ij and ik.

Each time the pair of items ij and ik appears in a transac-
tion, a new sub-label is added to the label of the bond (i, j).
In other words, the label of the bond (ij , ik), denoted by
L(ij , ik), is the sum of all the sub-labels associated with
that bond, as expressed by Equation 9 in Definition 6.

Definition 6 (bond label). Let G = ⟨X,U,L⟩ be the graph
model of a transactions database. The label of the bond
(i, j) ∈ U is given by:

L(i, j) =
∑
tp∈T

Lp(i, j) (9)

In Definition 7, we introduce the notion of the label size
denoted by HW (L(i, j)), which is the number of the in-
cluded ones or the included sub-labels in L(i, j).
Definition 7 (label size). Let G = ⟨X,U,L⟩ be the graph
model of a transaction database. The size of the label
L(i, j), denoted asHW (L(i, j)), represents the Hamming
Weight ofL(i, j), which is the number of included sub-
labels.

Definition 8 introduces the concept that the items appear-
ing in the transaction t are well represented by a clique.
To differentiate one transaction or clique from another, we
assign the corresponding sub-label L p(i, j) to each bond
(i, j).

Definition 8 (transaction VS clique). Let D(n ×m) be a
transaction database defined on the set T of transactions
and the set I of items. Suppose that the transaction tp ∈ T
includes all the items of the itemset I ⊂ I . The transaction
tp is represented by the clique Cp, where:

Cp =
{
ij , ik ∈ Ii,Lp(ij , ik) = 10(n−p−1)

}
(10)

InDefinition 9, we depict howwemodel each transaction
and its included items by a labeled clique in the correspond-
ing undirected and labeled graph, called dataset graph.

Definition 9 (dataset VS Labeled graph). Let D(n×m) be a
transaction database, where n = |T | represents the num-
ber of transactions and m = |I| represents the number
of items. We associate with D the undirected and labeled
graph G = ⟨X,U,L⟩ where:

X: set of vertices that represents the set of items, with

|X| = |I| = m

U : set of bonds which are defined as follows: (ij , ik) ∈ UD if ∃tp ∈ T : D [p, j] = 1
∧D [p, k] = 1

(ij , ik) /∈ U else

and

|U | = m+
∑

i=1..n

∑
j=1..m

D [i, j]− n

(11)

Lij: binary value assigned to the bond (i, j) ∈ U , which
is defined as follows:

Lij ,ik =
∑

p=1..n

D [p, j] ∗ D [p, k] ∗ 10n−p−1 (12)

For instance, let’s consider the itemset mining problem
[6] described below:

i1 i2 i3 i4
t1 1 0 1 1
t2 1 1 0 1
t3 0 0 1 1

In Figures 3a, 3b, and 3c, we depict the cliques generated
from the transactions t1, t2, and t3, respectively.
Therefore, our graph model G = ⟨X,U,L⟩ is formed by

combining all the cliques extracted from D, and the corre-
sponding adjacency matrix A will be a binary symmetric
matrix, as defined in Definition 10.

Definition 10 (items adjacencymatrix). Let G = ⟨X,U,L⟩
be the graph modeling the database D(n×m). The corre-
sponding adjacency matrix A to G is defined as follows:

ajk =

{
L (ij , ik) if (ij , ik) ∈ U
0 else (13)

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 53

i1

i3 i4

100

100

100

100

100 100

(a) t1 VS C1

i1

i2 i4

10 10

10

10

10 10

(b) t1 VS C1

i3 i4
1

1 1

(c) t2 VS C2

Figure 3: Transactions VS Cliques

where:
L (ij , ik) =

∑n
p=1 L p(ij , ik)

We illustrate through Figures 4, 5 and 6, the sub-graphs
G1 =

⟨
X,U,L1

⟩
, G2 =

⟨
X,U,L2

⟩
and G3 =

⟨
X,U,L3

⟩
which model the transactions t1, t2 and t3, respectively.
On the right of each sub-graph Gp, we introduce the cor-
responding adjacency matrix Lp containing the bonds sub-
labels.

i1

i3i2 i4

100

100

100

100

100 100

Figure 4: G1 =
⟨
X,U,L1

⟩
models the transac-

tion t1

L1 =


100 000 100 100
000 000 000 000
100 000 100 100
100 000 100 100



i1

i3i2 i4

010 010

010

010

010 010

Figure 5: G2 =
⟨
X,U,L2

⟩
models the transac-

tion t2

L2 =


010 010 000 010
010 010 000 010
000 000 000 000
010 010 000 010


i1

i3i2 i4
001

001 001

Figure 6: G3 =
⟨
X,U,L3

⟩
models the transac-

tion t3

L3 =


000 000 000 000
000 000 000 000
000 000 001 001
000 000 001 001


As illustrated in Figure 7, according to Definition 10, the

combination of the sub-graphs G1, G2 and G3, provides the
labeled and undirected graph G = ⟨X,U,L⟩. The corre-
sponding adjacency matrixA = L1 +L2 +L3 is given on
the right side of the figure.

i1

i3i2 i4

100

101

010 110

010

110

010 101 111

Figure 7: G = ⟨X,U,L⟩ models the database
transactions t1, t2 and t3

AD =


110 010 100 110
010 010 000 010
100 000 101 101
110 010 101 111


4 Frequent itemset vs clique
In this section, we present the utilization of the maximal
clique principle in our approach to find the closed itemsets.
The concept of a frequent itemset is defined in Defini-

tion 11, using the concept of a clique in graph theory. In
other words, a clique in the dataset corresponding graph
G = ⟨X,Y,L⟩ models a frequent itemset, where the con-
tained vertices correspond to items.

Definition 11 (frequent itemset VS Clique). Let’s consider
the adjacency matrix A(n × n), the set of items I, the set
of transactions T and the min-support θ. An itemset I is
frequent if and only if its items are vertices of a clique C in
G, such that all the labels of the corresponding bonds share
at least θ sub-labels.

∀i, j ∈ I : | ∩SL(i,j) | ⩾ θ (14)

where SL(i, j) is the set of the sub-labels whose sum equals
A [i, j]

54 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

i1 i2 i3 i4 i5

t1 1 0 1 1 0
t2 1 1 0 1 0
t3 0 0 1 1 0
t4 0 0 0 0 1

(a)

D =


1 0 1 1 0
1 1 0 1 0
0 0 1 1 0
0 0 0 0 1


(b)

Figure 8: Example of itemset mining problem including 5
items and 4 transactions

To compute theCFIs, the infrequent items (see Property
1) and empty transactions should be removed. For instance,
consider the dataset given in Figure 8.
As illustrated in Figure 9, if the min-support is set to

θ = 2, we notice that i2 and i5 are infrequent and should be
removed. Thus, the dataset D is replaced by D′ (see sub-
Figure 9a), which includes the empty transaction t4. At this
level, t4 is deleted to move to D′′ (see sub-Figure 9b).

i1 i3 i4
t1 1 1 1
t2 1 0 1
t3 0 1 1
t4 0 0 0

D′ =


1 1 1
1 0 1
0 1 1
0 0 0


(a)

i1 i3 i4
t1 1 1 1
t2 1 0 1
t3 0 1 1

D′′ =

 1 1 1
1 0 1
0 1 1


(b)

i1

i3 i4

100

101

110

110

101 111

GD′′ = ⟨XD′′ , UD′′ ,LD⟩

(c)

Figure 9: Removing infrequent items and empty transac-
tions

The graph corresponding to D′′, called G′′ =
⟨X ′′, U ′′,L⟩ (see sub-Figure 9c), will be the input for our
proposed algorithms and will be noted as G = ⟨X,U,L⟩.
Every pair ij , ik ∈ Ic, where lc is a closed itemset, is fre-

quent, as defined in Definition 4. Therefore, if we project
this concept onto the graph model G = ⟨X,U,L⟩, the label
of each bond (i, j) ∈ U must contain at least θ ones. Stated
differently, a bond in our graph needs to be consistent (Def-

inition 12).

Definition 12 (consistent bond). Let G = ⟨X,U,L⟩
be the graph model of the dataset D′′. Suppose that
L(i, j) is the corresponding label to the bond (i, j), and
HW (L(i, j)) is the number of the ones included in L(i, j).
If HW (L(i, j)) ⩾ θ then (i, j) is consistent and (i, j) is
inconsistent otherwise.

Consequently, as given in Definition 13, if all the bonds
of the graph are consistent,the graph is consistent.

Definition 13 (Consistent data mining graph). Let Gc =
⟨X,Uc,L⟩ be the dataset graph. Gc is consistent if-if all its
bonds are consistent:

Gc = ⟨Xc, Uc,L⟩ is consistent ⇔ ∀(i, j) ∈ U :
(i, j) is consistent. (15)

Thus, the input graph of our algorithm should be a con-
sistent graph whose inconsistent bonds are omitted. As il-
lustrated in Figure 10, Gc = ⟨Xc, Uc,Lc⟩ is the consistent
version of G (see Figure 7). The corresponding adjacency
matrix A(3× 3) is shown on the right side of the figure.

i1

i3 i4
101

110

110

101 111

Figure 10: The consistent graph
Gc = ⟨Xc, Uc,Lc⟩ (see sub-Figure
9c)

A =

 110 0 110
0 101 101
110 101 111



5 CfCi exact algorithm for complete
enumeration

In Definition 15, we introduce the closed itemset notion in
terms of the graph theory. ACFI corresponds to amaximal
clique (see Definition 14), whose at least θ sub-labels are
shared by the bonds.

Definition 14 (maximal clique). Let G = ⟨X,U⟩ be an
unditrected graph. A clique C is maximal if it cannot be
extended into a larger clique. In other words, C is not a
subset of a larger clique.

Definition 15 (closed itemset VS dataset graph). LetA(n×
n) be the adjacency matrix of the consistent graph G =
⟨X,U,L⟩. An itemset I is closed if its items are the ver-
tices of a maximal clique CQ such that all the labels of the
corresponding bonds share at least θ sub-labels.

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 55

In graph theory, finding maximal cliques is a hard prob-
lem. It is difficult to find a polynomial algorithm that pro-
vides this kind of clique. However, in this paper, we pro-
poseAlgorithm 2, called CfCi. This algorithm, based on the
bonds’ sub-labels, is exact and has polynomial complexity.
Considering, for example, the graph given in Figure 10.

The corresponding structures are given below.

D =

 1 1 1
1 0 1
0 1 1

 A = 110 0 110
0 101 101
110 101 111


Labs = [110, 101, 111]

supp = [2, 2, 3]

IndV ect =

 1
2
3


Algorithm 1, having the polynomial complexity

O(nbcons×(nbcons−1)
2) (see Proposition 1), provides the

CFIs corresponding to the initial labels that belong to
Labs.

Proposition 1. Algorithm 1 has the worst case complexity
≈ O(nbcons

2−nbcons
2), where nbcons is the number of the

consistent vertices.

Proof. In this algorithm, we have three nested loops. At
most, at the outer one nbcons vertices will be treated and at
the inner ones nbcons−1

2 will be processed. Thus, the com-
plexity of BasicCFI’s ≈ O(nbcons

2−nbcons
2).

Let’s consider, for example, the graph G = ⟨X,U,L⟩
illustrated in Figure 11.

i1

i3i2 i4

i5

1000

1010

0100 1100

0100

1100

0100 1010 1110

0001

Figure 11: G = ⟨X,U,L⟩ models the dataset given in Table 1

We suppose that θ = 1, whichmakes the graph consistent
(see 13) and the correct input of our algorithm.
Figure 12 shows the different steps of Algorithm 1 ap-

plied to the graph. The sub-figures contain arrows in green,
blue and red, that correspond to the fact that the intersec-
tion between the first label and the second generates a label
equal to the first one, a label with support⩾ θ and a label
with support< θ, respectively.
The algorithm 2, called CfCi, is the proposed algorithm

of the polynomial complexity≈ O(l
3−l2

2 (v−1)), where l is
the labels’ number and v is the vertices’ number (see Propo-
sition 2). It provides all the CFIs of the tackled dataset
since the second loop of the algorithm computes all the pos-
sible labels’ intersections. In other words, each new gener-
ated label whosesupp ⩾ θ should lead to a new CFI .

0001 0100 1010 1100 1110Labs
0000

0000 0000 0000

[i5]

FCI i5

IndVect

1SuppVect

(a) I1 = {i5}
0001 0100 1010 1100 1110Labs

0000
0100

0100

[i5] [i2, i1, i4]FCI

i5 i2IndVect

1 1SuppVect

(b) I2 = {i2, i1, i4}
0001 0100 1010 1100 1110Labs

1000
1010

[i5] [i2, i1, i4] [i3, i4]FCI

i5 i2 i3IndVect

1 1 2SuppVect

(c) I3 = {i3, i4}
0001 0100 1010 1100 1110Labs

1100

[i5] [i2, i1, i4] [i3, i4] [i1, i4]FCI

i5 i2 i3 i1IndVect

1 1 2 2SuppVect

(d) I4 = {i1, i4}
0001 0100 1010 1100 1110Labs

1110

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4]FCI

i5 i2 i3 i1 i4IndVect

1 1 2 2 3SuppVect

(e) I5 = {i4}

Figure 12: Generated CFIs by Algorithm 1. IndV ect and
SuppV ect contain the vertices who are at the origin of the
corresponding labels and their supports, respectively.

To find a new maximal clique, our algorithm calls the
function NewClique (see Algorithm 3). NewClique(r)
computes the incident vertices to IndV ect [r], that share at
least θ sub-labels contained in Labs [r].

Proposition 2. Algorithm 2 has the worst case complexity
≈ O(l

3−l2

2 (v − 1)), where l is the labels’ number and v is
vertices’ number.

Proof. In this algorithm, we have three nested loops. Con-
sider l the labels’ number and v vertices’ number. At most,
at the outer one l labels will be treated, and at the first and
the second inner ones l and l−1

2 iterations will be processed,
respectively. In addition, at most v − 1 successors are han-
dled in the function NewClique. Thus, the CfCi’s com-
plexity ≈ O(l

3−l2

2 × v − 1).

In Figure 13, we illustrate the variation of the used struc-
tures: Labs, FCI , IndV ect and SuppV ect. As given in
the proof of Proposition 2, Algorithm 2 executes in nbcons
outer loops, where nbcons is the number of the consistent

56 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

Algorithm 1 BasicCFI(M)
Require: θ: threshold, M : adjacency matrix of the cleaned graph, nbcons: number of consistent vertices; ConsItem:

vector of consistent vertices;
1: V ertexSet← ∅;
2: for i = 0..nbcons do ▷ the vertices are covered, according to their labels,
3: from the smallest to the biggest one
4: V ertexSet← V ertexSet ∪ {i};
5: IndV ect← IndV ect ∪ {i};SuppV ect← SuppV ect ∪ {supp [i]}
6: for j = i+ 1..nbcons do
7: if DistLabs(i, j) = supp [j] then ▷ return the distance between the
8: labels i and j
9: V ertexSet← V ertexSet ∪ {j}
10: end if
11: end for
12: if V ertexSet ̸= ∅ then
13: FCI ← FCI ∪ {V ertexSet}
14: end if
15: V ertexSet← ∅
16: end for
17: return FCI

Algorithm 2 CfCi()
Require: θ: threshold, M : adjacency matrix of the cleaned graph, nbcons: number of consistent vertices; ConsItem:

vector of consistent vertices; Labs: set of the generated labels by BasicCFI algorithm
1: beg ← 0; end← |Labs|; e← |Labs|
2: for k = 0 · · · |Labs| do
3: bg = beg[k]; ed = end[k]
4: for i = bg · · · ed do
5: b← 0
6: for j = i+ 1 · · · ed do
7: cl← 0;dst← DistLabs(Labs[i], Labs[j])
8: if dst ̸= SuppV ect[i] ∧ dst ≥ θ then
9: cl = comp2Labs(Labs[i], Labs[j]) ▷ return to cl the intersection of the labels i and j
10: if cl /∈ Labs then
11: Labs← Labs ∪ {cl}; IndV ect← IndV ect ∪ {i}
12: SuppV ect← SuppV ect ∪ {dst}
13: V ertexSet← NewClique(|Labs| − 1)
14: if V ertexSet ̸= ∅ then
15: V ertexSet← V ertexSet ∪ {ind};FCI ← FCI ∪ {V ertexSet}
16: V ertexSet← ∅
17: end if
18: b← b+ 1
19: end if
20: end if
21: end for
22: if b ≥ 1 then
23: beg ← beg + e; end← end+ ed+ b; e← e+ b
24: end if
25: end for
26: end for

vertices. Thus, since nbcons = 5, our algorithm executes
5 outer loops. Through sub-Figures 13a, 13b, 13c, 13d and
13e, we illustrate the different loops’ details. We used the
green arrow to express the novelty and consistency of the

generated label, the blue to show that the generated label is
already implemented, and the red when the support of the
generated label is less than θ.

Thus, Algorithm 2, applied to the graph, provides six

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 57

Algorithm 3 NewClique

1: function NewClique(r)
2: V ertexSet← ∅
3: ind← IndV ect[r]
4: while v ∈ succ[ind] do
5: dst = DistLabs(r, v)
6: if dst = SuppV ect[r] then
7: V ertexSet← V ertexSet ∪ {v}
8: end if
9: end while
10: return V ertexSet
11: end function

0001 0100 1010 1100 1110

0000

0000 0000 0000

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4]FCI

i5 i2 i3 i1 i4IndVect

1 1 2 2 3SuppVect

(a) No new label is generated.
0001 0100 1010 1100 1110

0000
0100

0100

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4]FCI

i5 i2 i3 i1 i4IndVect

1 1 2 2 3SuppVect

(b) No new label is generated.
0001 0100 1010 1100 1110Labs + 1000

1000
1000

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4] [i3, i1, i4]FCI

i5 i2 i3 i1 i4 i3IndVect

1 1 2 2 3 1SuppVect

(c) I6 = {i3, i4, i4} is generated.
0001 0100 1010 1100 1110 1000Labs

1010

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4] [i3, i1, i4]FCI

i5 i2 i3 i1 i4 i3IndVect

1 1 2 2 3 1SuppVect

(d) No new label is generated.
0001 0100 1010 1100 1110 1000Labs

1100

[i5] [i2, i1, i4] [i3, i4] [i1, i4] [i4] [i3, i1, i4]FCI

i5 i2 i3 i1 i4 i3IndVect

1 1 2 2 3 1SuppVect

(e) No new label is generated.

Figure 13: Generated CFIs by Algorithm CfCi. IndV ect
and SuppV ect contain the vertices who are at the origin of
the corresponding labels and their supports, respectively.

maximal cliques as given in Figure 14. Each clique Ci in-
duces a closed itemset Ii.
The maximal cliques resulted from our algorithm C1,
C2, C3, C4, C5 and C6 are illustrated via sub-Figures 14a,
14b,14c, 14d, 14e and 14f, respectively.

i5 0001

(a)
C1 modeling the CFI I1 = {i5}

i1

i2 i4

0100 1100

0100

1100

0100 1110

(b) C2 modeling the CFI I2 = {i2, i1, i4}
i3 i4

1010
1010 1110

(c) C3 modeling the CFI I3 = {i3, i4}

i1

i4

1100

1100

1110

(d) C4 modeling the CFI I4 = {i1, i4}
i4 1110

(e) C5 modeling the CFI I5 = {i4}

i1

i3 i4

1000

1010

1100

1100

1010 1110

(f) C6 modeling the CFI I6 = {i3, i1, i4}

Figure 14:
Maximal cliques VS CFIs

6 Experiments
As stated in Section 2.3, besides CfCi, we consider in our
experiments the algorithms NAFCP [10], NECLAT [13]
and GrAFCI+ [11]. In addition, to have credible results,
we chose the datasets according to their varied densities.
More precisely, the chosen datasets : Mushroom, Lymph
and Soybean datasets 1 have respectively 18%, 40% and
32% (see Table 3).
In Table 3, we introduce the characteristics of each tested

dataset DName(nbItem, nbTr, dns), where DName is
the dataset’s name, and nbItem, nbTr and dns are, re-
spectively, the corresponding items’ number, transactions’
number and density. The datasets’ information given in the
table are:

– freq: the frequency adopted by the algorithm,

– θ: the corresponding support to freq,

– dns: the density of the dataset according to freq,
1The tested datasets are downloaded from https://dtai.cs.

kuleuven.be/CP4IM/datasets/

58 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

– nvr: the vertices’ number of the consistent dataset’s
graph,

– nbd: the bonds’ number of the consistent dataset’s
graph.

Table 3: Characteristics of the tested dataset: Mushroom,
Lymph and SoyBean.

Mushroom(119,8124,18%)
freq θ dns nvr nbd
5% 406 30% 67 1168
25% 2031 51% 31 229
50% 4062 74% 12 52
80% 6499 94% 5 14

Lymph(148,68,40%)
freq θ dns nvr nbd
5% 7 45% 59 1369
25% 37 60% 40 549
50% 74 76% 24 193
80% 118 91% 11 58

Soybean(50,630,32%)
freq θ dns nvr nbd
5% 32 36% 44 601
25% 158 56% 23 157
50% 315 75% 12 55
80% 504 93% 5 13

The results provided by the tested algorithms are ana-
lyzed regarding the CPU-time, the number of computed
CFIs (called ncl) and the memory usage (calledMem).
The used computer has the following configuration:

Linux-20.04.1 on a notebook with Intel Core i7 and 8
GB/RAM. The experiments are performed in the Java lan-
guage.
In sub-Figures 15a, 15b and 15c, we present the behav-

ior of CfCi, NAFCP, NECLAT and GrAFCI+ applied to
Mushroom, in terms of the gotten CPU-time, ncl (the num-
ber of closed itemsets) and mem (the memory usage), re-
spectively.
We notice, via sub-Figure 12a, that the applied methods

have approximately the same CPU time until the frequency
of 25%, where CfCi and GrAFCI+ become slower. At a
frequency of 5%, CfCi and NECLAT are the fastest ones,
whereas NAFCP is considerably the slowest one. Sub-
Figure 15b shows that all the methods, at frequencies of
80%, 50% and 25%, provide the same number of CFIs.
Whereas, at a frequency of 5%, our algorithm provides
more CFIs than NECLAT and GrAFCI+, and less than
NAFCP.
In terms of memory usage, sub-Figure 15c highlights the

efficiency of our algorithm compared to the others.
In Figure 16, we introduce three diagrams that express

the behavior of the adopted methods, applied to the dataset

(a) CPU-time

(b) Number of CFIs

(c) Memory usage

Figure 15: MUSHROOM dataset

Lymph, in terms of CPU-time, number ofCFIs and mem-
ory usage.
As shown in sub-Figure 16a, at frequencies 80% and

50%, all the methods have the same level of fastness,
whereas CfCi becomes faster at frequency 25%. In addi-
tion, we notice that at frequency 5%, NAFCP becomes the
slowest, NECLAT the fastest and CfCi becomes close to
NECLAT.

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 59

(a) CPU-time

(b) Number of CFIs

(c) Memory usage

Figure 16: LYMPH dataset

Sub-Figure 16b shows, in terms of the CFIs number,
that at frequencies 80%, 50%and 25%, all the methods pro-
vide the same results except GrAFCI+, which gives more
CFIs at frequency 80%. Whereas, at frequency 5%, the
provided number of CFIs differs from algorithm to algo-
rithm, and our algorithm provides moreCFIs than NAFCP
and NECLAT and less than GrAFCI+. Figure 17 contains
SoyBean’s diagrams, that reveal the behavior of the tested

methods in terms of CPU-time, number ofCFIs and mem-
ory usage.

(a) CPU-time

(b) Number of CFIs

(c) Memory usage

Figure 17: SOYBEAN dataset

We notice through sub-Figure 17a that CfCi and
NECLAT start the fastest ones at freq = 80%, then
NECLAT remains the most efficient. On the other side, as
the frequency decreases, the fastness of CfCi and GrAFCI+
decreases.
Regarding the number of CFIs, all the methods pro-

60 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

vide the same number of CFIs at each frequency, except
GrAFCI+, which gives one more CFI.
We notice through sub-Figure 17a that CfCi and

NECLAT start the fastest ones at freq = 80%, then
NECLAT remains the most efficient, and as the frequency
decreases, CfCi and GrAFCI+.
Regarding the number of CFIs, all the methods provide

the same number of closed frequent itemsets at each fre-
quency, except GrAFCI+ which gives one more CFIs.
Sub-Figure 17c shows the efficiency of our algorithm

in regards to memory usage. Contrary to GrAFCI+ and
NECLAT, which are really costly.
As stated in Section 5, our algorithm is a complete ap-

proach that is designed to provide the exact number of
CFIs. We observed through the diagrams given above,
that NAFCP, GrAFCI+ and NECLAT may yield less or
more CFIs in certain situations. In addition, our algo-
rithm is the most efficient in terms of memory usage for all
datasets, except Lymph with freq = 5%. Thus, CfCi has
the average CPU-time results and the best results in terms
of the number of CFIs and memory usage.
We have to precise that the case where CfCi, applied to

Lymph, provides the worst results in terms of memory us-
age. This result can be justified by the size of the corre-
sponding graph. According to Table 3, the graph that mod-
els the Lymph dataset contains the biggest values, namely
118 vertices and 91 bonds, compared to the others.

7 Discussion
There are advantages and disadvantages to each of the pre-
vious data mining techniques. Most of them are based on
tree structures (see Table 2), namely NList, Gr-tree and FP-
tree in NAFCP, GrAFCI+ and NECLAT, respectively. This
is because of the recursive relationship indirectly expressed
in Property 1.
In addition, the authors of the tested techniques, pro-

posed approximate approaches, and employed recursive al-
gorithms to construct and to explore the corresponding tree
structure.
Using recursive structures and approximated algorithms

in most SOTA approaches means that memory usage is
costly and finding all closed itemsets is not guaranteed. In
addition, updating tree structures, when the corresponding
dataset is modified, is generally a complex task.
In this article, we developed a new boolean and linear

structure that can be easily updated when necessary, and
iterative algorithms to optimize memory usage. Since our
algorithm CfCi is exact and polynomial, it provides all the
CFIs and shows good CPU-time.
In certain instances, when the frequency is 5%, CfCi

slows down as compared to NAFCP, GrAFCI+ and
NECLAT. This is because of the step that verifies if the
computedCFI does not belong to the current set ofCFIs.
Most times, the number of the CFIs ncl provided by

our algorithm is the same as the other techniques. Some-

times, we get less or moreCFIs, particularly when freq =
5%. Our algorithm comprises calculating all the intersec-
tions between the bonds’ labels and preventing duplicated
CFIs. Thus, we have the incompleteness of the algorithms
NAFCP, NECLAT and GrAFCI+ compared to CfCi.
Our approach is the best choice for optimizing memory

usage, except in the Lymph dataset when freq = 5%.

8 Conclusion and future works

This paper has introduced new modeling and solving ap-
proaches to find all the CFIs. We have presented an effi-
cient graph modeling approach that is based on the clique
notion in graph theory. Implementing our model by using a
linear structure makes our graph model more flexible to be
updated when transactions or items are added or removed.
Our proposed model is based on the fact that a frequent
itemset is considered a clique in an undirected graph. Thus,
CfCi is a new algorithm, based on the maximal clique’s
principle, has been introduced to tackle the closed itemsets
mining problem.
Our first experiments have shown the efficiency of CfCi

in finding all the CFIs compared to the recent algorithms
existing in the literature. This is because the proposed algo-
rithm uses boolean structures and is basically conceived to
find all CFIs, through systematic searches. Thus, our al-
gorithm is more efficient than the tested methods in terms
of the number of CFIs and memory usage, and approxi-
mately more efficient in terms of CPU time.
To summarize, the structure used in our approach is lin-

ear, and the proposed algorithm is iterative, exact, and poly-
nomial. That is the origin of the promising results exposed
and analyzed in this article.
However, there are some caseswhere our approach is less

efficient than the newest methods, particularly in terms of
CPU time. This is because of the CfCi’s step, which tackles
the duplicate CFIs cases.
As with any research work, a new version that inher-

its the advantages and avoids the disadvantages of our ap-
proach can follow our approach. Exploring opportunities
for the practical implementation of the proposed algorithm
will serve as the future direction for our research. We con-
sider adapting our dataset graph model and CfCi algorithm
to tackle classification and clustering problems.

References

[1] Fournier-Viger, Philippe and Chun-Wei Lin, Jerry and
Truong-Chi, Tin and Nkambou, Roger (2019) A Sur-
vey of High Utility Itemset Mining, High-Utility Pat-
tern Mining: Theory, Algorithms and Applications,
Springer International Publishing, pp. 1–45. https:
//doi.org/10.1007/978-3-030-04921-8_1

Closed Itemset Mining: A Graph Theory Perspective Informatica 48 (2024) 49–62 61

[2] Charu C. Aggarwal (2015) Data Mining-The Text-
book, Springer International Publishing. https://
doi.org/10.1007/978-3-319-14142-8

[3] Han, Jiawei and Kamber, Micheline and Pei, Jian
(2011) Data Mining: Concepts and Techniques,
Morgan Kaufmann. http://www.sciencedirect.
com/science/book/9780123814791

[4] Truong-Chi, Tin and Fournier-Viger, Philippe (2019)
A Survey of High Utility Sequential Pattern Min-
ingHigh-Utility Pattern Mining, Springer Interna-
tional Publishing, pp. 97–129. http://dx.doi.
org/10.1007/978-3-030-04921-8_4

[5] Carson Kai-Sang Leung (2009)Frequent Item-
set Mining with Constraints, Encyclope-
dia of Database Systems, Springer Interna-
tional Publishing, pp. 1179–1183. https:
//doi.org/10.1007/978-0-387-39940-9_170

[6] Tias Guns and Siegfried Nijssen and Luc De Raedt
(2011) Itemset mining: A constraint programming
perspective, Artificial Intelligence, Elsevier BV,
175(12-13), pp. 1951–1983. https://doi.org/10.
1016/j.artint.2011.05.002

[7] Wensheng Gan and Jerry Chun-Wei Lin and Philippe
Fournier-Viger and Han-Chieh Chao and Justin Zhan
(2017)Mining of frequent patterns with multiple min-
imum supports, Engineering Applications of Artificial
Intelligence, Elsevier BV, 60(C), pp. 83–96. https:
//doi.org/10.1016/j.engappai.2017.01.009

[8] Fatima-Zahra El Mazouri and Said Jabbour and Bad-
ran Raddaoui and Lakhdar Sais and Mohammed
Chaouki Abounaima and Khalid Zenkouar (2019)
Breaking Symmetries in Association Rules, Pro-
cedia Computer Science, Elsevier BV, 148(C),
pp. 283–290. https://www.sciencedirect.com/
science/article/pii/S1877050919300523

[9] Zaki, M.J. and Hsiao, C.-J. (2005) Efficient algo-
rithms for mining closed itemsets and their lattice
structure, Transactions on Knowledge and Data En-
gineering, Institute of Electrical and Electronics Engi-
neers (IEEE), 17(4), pp. 462–478. http://dx.doi.
org/10.1109/tkde.2005.60

[10] Tuong Le and Bay Vo (2015) An N-list-based al-
gorithm for mining frequent closed patterns,Expert
Systems with Applications, Elsevier BV, 42(19), pp.
6648-6657. https://doi.org/10.1016/j.eswa.
2015.04.048

[11] Ledmi, Makhlouf and Zidat, Samir and Hamdi-
Cherif, Aboubekeur (2021)GrAFCI+ A Fast
Generator-Based Algorithm for Mining Fre-
quent Closed Itemsets, Knowledge and Infor-
mation Systems, Springer Science and Business

Media LLC, 63(7), pp. 1873–1908. https:
//doi.org/10.1007/s10115-021-01575-3

[12] Grahne, G. and Zhu, J. (2005) Fast algorithms for fre-
quent itemset mining using FP-trees, Transactions on
Knowledge and Data Engineering, Institute of Elec-
trical and Electronics Engineers (IEEE), 17(10), pp.
1347–1362. http://dx.doi.org/10.1109/tkde.
2005.166

[13] Nader Aryabarzan and Behrouz Minaei-Bidgoli
(2021) NEclatClosed: A vertical algorithm for min-
ing frequent closed itemsets, Expert Systems with Ap-
plications, Elsevier BV, 174(C), pp. 114738. https:
//doi.org/10.1016/j.eswa.2021.114738

[14] Gang Fang and Yue Wu and Ming Li and Jia
Chen (2015) An Efficient Algorithm for Mining
Frequent Closed Itemsets, Informatica (Slove-
nia), Slovenian Society Informatika, 39(1), pp.
87–98. https://api.semanticscholar.org/
CorpusID:214751872

[15] Renata Iváncsy and István Vajk (2005) Fast Dis-
covery of Frequent Itemsets: a Cubic Structure-
Based Approach, Informatica (Slovenia), Slove-
nian Society Informatika, 29(1), pp. 71–78.
http://www.informatica.si/index.php/
informatica/article/view/19

[16] Alkenani, Jawad and Kheerallah, Yousif Abdulwahab
(2023) A NewMethod Based onMachine Learning to
Increase Efficiency in Wireless Sensor Networks, In-
formatica (Slovenia), Slovenian Society Informatika,
46(9), pp. 45–52. http://dx.doi.org/10.31449/
inf.v46i9.4396

[17] Al-Jammali, Karrar (2023) Prediction of Heart
Diseases Using Data Mining Algorithms, Infor-
matica (Slovenia), Slovenian Association Infor-
matika, 47(5), http://dx.doi.org/10.31449/
inf.v47i5.4467

[18] Karna, Hrvoje (2020) Data Mining Approach to
Effort Modeling On Agile Software Projects, In-
formatica (Slovenia), Slovenian Association Infor-
matika, 44(2), pp. 231–139. http://dx.doi.org/
10.31449/inf.v44i2.2759

[19] Awad, Fouad Hammadi and Hamad, Mur-
tadha M. (2023) Big Data Clustering Tech-
niques Challenged and Perspectives: Review,
Informatica (Slovenia), Slovenian Associa-
tion Informatika, 47(6), pp. 203–218. http:
//dx.doi.org/10.31449/inf.v47i6.4445

[20] Agrawal, Rakesh and Srikant, Ramakrishnan (1994)
Fast Algorithms for Mining Association Rules in
Large Databases, Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases,Morgan

62 Informatica 48 (2024) 49–62 F.Z. Lebbah et al.

Kaufmann Publishers Inc., San Francisco, CA,
USA, pp. 487–499. https://dl.acm.org/doi/
10.5555/645920.672836

[21] Saïd Jabbour and Mehdi Khiari and Lakhdar Sais and
Yakoub Salhi and Karim Tabia (2013) Symmetry-
Based Pruning in Itemset Mining, 25th IEEE Inter-
national Conference on Tools with Artificial Intelli-
gence -ICTAI, IEEE Computer Society, Los Alami-
tos, CA, USA, pp. 483–490. https://doi.org/10.
1109/ICTAI.2013.78

[22] Takeaki Uno and Masashi Kiyomi and Hiroki
Arimura (2004) LCM ver. 2: Efficient Mining
Algorithms for Frequent/Closed/Maximal Itemsets,
FIMI ’04, Proceedings of the IEEE ICDM Work-
shop on Frequent Itemset Mining Implementations,
CEUR-WS.org, Brighton, UK, pp. 1–11. https://
ceur-ws.org/Vol-126/uno.pdf

[23] Agrawal, Rakesh and Imieliński, Tomasz and Swami,
Arun (1993) Mining association rules between sets
of items in large databases, International Conference
on Management of Data, Association for Comput-
ingMachinery,Washington, D.C., USA, pp. 207–216.
https://doi.org/10.1145/170035.170072,

[24] Yun Chi and Haixun Wang and Yu, P.S. and Muntz,
R.R. (2004) Moment: Maintaining Closed Frequent
Itemsets over a Stream Sliding Window, Fourth In-
ternational Conference on Data Mining (ICDM’04),
IEEE, Brighton, UK, pp. 59–66. http://dx.doi.
org/10.1109/icdm.2004.10084

[25] Belaid, Mohamed-Bachir and Bessiere, Christian and
Lazaar, Nadjib (2019) Constraint Programming for
Mining Borders of Frequent Itemsets,Proceedings of
the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, International Joint
Conferences on Artificial Intelligence Organization,
Macao, China, pp. 1064–1070. https://doi.org/
10.24963/ijcai.2019/149

[26] AlZoubi, Wael (2015) An Improved Graph Based
Method for Extracting Association Rules, Interna-
tional Journal of Software Engineering and Applica-
tions, Academy and Industry Research Collaboration
Center (AIRCC), pp. 1–10. http://dx.doi.org/
10.5121/ijsea.2015.6301

[27] Raedt, Luc De and Guns, Tias and Nijssen,
Siegfried (2010) Constraint programming for data
mining and machine learning, Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intel-
ligence, AAAI Press, Atlanta, Georgia, pp. 1671–
-1675. https://dl.acm.org/doi/abs/10.5555/
2898607.2898874

[28] Schlegel, Benjamin and Gemulla, Rainer and Lehner,
Wolfgang (2011) Memory-efficient frequent-itemset

mining, Proceedings of the 14th International Con-
ference on Extending Database Technology, Asso-
ciation for Computing Machinery, Uppsala, Swe-
den, pp. 461–472. https://doi.org/10.1145/
1951365.1951420

[29] Tiwari, Vivek and Tiwari, Vipin and Gupta, Shailen-
dra and Tiwari, Renu (2010) Association rule min-
ing: A graph based approach for mining frequent
itemsets, 2010 International Conference on Net-
working and Information Technology, IEEE, Manila,
Philippines, pp. 309–313. http://dx.doi.org/10.
1109/icnit.2010.5508505

[30] Gouda, K. and Zaki, M.J.(2001) Efficiently mining
maximal frequent itemsets, Proceedings 2001 IEEE
International Conference on Data Mining, IEEE, San
Jose, CA, USA, pp. 163–170. http://dx.doi.org/
10.1109/icdm.2001.989514

[31] Han, Kyong Rok and Kim, Jae Yearn (2005)
FCILINK: Mining Frequent Closed Itemsets Based
on a Link Structure between Transactions, Journal of
Information & Knowledge Management, World Sci-
entific Pub Co Pte Lt, pp. 257–267. https://doi.
org/10.1142/S0219649205001213

[32] De Raedt, Luc and Guns, Tias and Nijssen, Siegfried
(2008) Constraint Programming for Itemset Mining,
Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Association for Computing Machinery, Las Ve-
gas, Nevada, USA, pp. 204–212. https://doi.
org/10.1145/1401890.1401919

