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Numerous images based on deep learning techniques for super-resolution reconstruction increase the 

network capacity to express features mainly by deepening the network. However, excessively extending 

the network's depth causes the model to be over-parameterized and complicated. Furthermore, 

redundant parameters increase the instability of feature expression. To address this issue, based on the 

unstructured pruning algorithm, the weight parameters are changed and the balanced learning 

strategy is used, this paper proposes a neural network unstructured pruning algorithm that is suitable 

for image super-resolution reconstruction tasks, called the unstructured pruning algorithm. Without 

changing the network structure and increasing the computational complexity, the overall feature 

expression ability of the network is improved by searching for an optimal yet sparse sub-network of the 

original network, which excludes the influence of redundant parameters and maximizes the ability to 

capture fine-grained and richer features with limited parameters. Based on the Set5, Set14, and 

BSD100 test sets, experimental outcomes demonstrated that compared with an original network model 

and unstructured pruning algorithm, SSIM and PSNR of the rebuilt images obtained by Dynamic 

unstructured pruning algorithm are improved, and they have richer detail features and clearer overall 

and local contours. 

Povzetek: Predstavljeno je  dinamično neurejeno obrezovanje (krčenje) nevronske mreže za naloge 

rekonstrukcije - obnovitev večje resolucije slik. Eksperimentalni rezultati na testnih zbirkah Set5, Set14 

in BSD100 kažejo izboljšave v SSIM in PSNR merah. 

 

1  Introduction  

Super-resolution reconstruction technology for 

single-frame images is extensively utilized in numerous 

domains, like visual imaging, monitoring images, satellite 

imaging for remote sensing, and medical imaging, etc. of 

mobile devices. The two primary categories of available 

SISR reconstruction techniques are depth learning-based 

and interpolation-based. Interpolation by reconstruction 

algorithm has low computational complexity and fast 

reconstruction speed. It inserts a number of pixels at 

appropriate locations according to the known feature 

information of low-resolution images and spatial 

dimensional correlation to improve the resolution of 

low-resolution images. However, such algorithms mainly 

expand the feature information of low-resolution images 

by simply evaluating the correlation between adjacent 

pixels, Therefore, the method of reconstruction, the 

detailed features of high-resolution images are lost due to 

an issue in obtaining the high-frequency information, 

which also produces an undesirable visual effect in the 

imaging. The depth-learning-based reconstruction 

algorithm uses a neural network model to determine the 

relationship between the respective high-resolution and  

 

low-resolution images through mapping. The 

low-resolution image is subsequently subjected to the 

mapping relationship and uses previous information to 

map it to the high-quality high-resolution image. Research 

on Reference [1-3] shows that the algorithm based on 

depth learning has a more powerful reconstruction 

performance than the algorithm based on interpolation, 

and can greatly enhance the image the reconstruction 

quality. 

In reconstruction algorithm according to depth learning, 

the network layer with strong feature expression ability 

can learn the image feature representation more effectively, 

and capture more fine-grained and rich details. Some SISR 

deep learning-based reconstruction methods [3-4] enhance 

the network model's overall capability to convey features 

by using deeper network layers and more complex 

connection methods, thereby improving the reconstruction 

performance. Although the overall feature expression 

ability of the network layer that enhanced by expanding 

the network's depth layer and complex connection 

methods, excessive dependence on this method will lead to 

a sharp rise in the parameters number and The network 

model's computational difficulty. In the neural network, 
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the parameters represent the network scale model, and the 

computational complexity represents the efficiency of 

forward reasoning of the network model. In the sense of 

practical application, the applicability of the SISR network 

model in real circumstances will be constrained by the 

network model's scale and the speed of super-resolution 

image reconstruction. Reference [5] pointed out that 

discarding redundant parameters in the deep network layer 

can not only reduce the negative impact of 

over-parameterization of the model of network but 

enhance the feature expression's stability. 

The neural network's pruning mechanism lowers the 

network model's parameters by eliminating some of 

variables. Structured and unstructured pruning techniques 

are the two categories into which existing pruning 

techniques can be separated. A structured pruning 

algorithm reduces the number of parameters by discarding 

some channels in the network layer. Because this method 

is an adjustment of the network structure, the original 

network structure will change. The unstructured pruning 

algorithm discards some parameters by zeroing some 

parameters in the network layer, so the original network 

structure will not be changed. Reference [6-7] applies the 

structured pruning algorithm to the image super-resolution 

model of network and maximizes the network size 

representation to deploy it to the actual application 

scenarios while ensuring the reconstruction performance. 

Reference [8] proposed an unstructured pruning algorithm 

(UPru) for neural networks. The design initiative of the 

algorithm to treat the complex neural net as the prize pool, 

and the winning lottery is a sparse sub-network 

corresponding to a group of weight parameters. The 

outcomes of the experiment demonstrate the validity of 

UPru algorithm has achieved remarkable resulted in image 

classification tasks by searching the optimal sparse 

sub-network, but it is not effective in image 

super-resolution tasks. 

UPru algorithm adopts an unbalanced feature learning 

strategy, which only focuses on the sparsity of the network 

model and ignores the diversity of feature expression. To 

enhance the effectiveness of image reconstruction, this 

paper indicates the dynamic unstructured pruning 

algorithm (DUPru) according to balanced learning 

strategy in combination with the characteristics of an 

image super-resolution reconstruction task. This algorithm 

not only ensures the sparsity of the network model, but 

also pays attention to the diversity of weight parameter 

learning, which can solve the problem of poor 

reconstruction performance caused by 

over-parameterization of the network model in the 

high-resolution image reconstruction assignment, and 

enhance the super-resolution image's reconstruction 

quality without changing the network structure and 

increasing the computational complexity. 

 

2  Related Work 

2.1 Depth learning-based technique for 

reconstructing super-resolution images from 

single frames 

Reference [9] proposed SRCNN model, which realized the 

low-resolution feature extraction images, nonlinear 

mapping features, and reconstruction of high-resolution 

images through three layers of CNN. Compared with the 

traditional interpolation-based algorithm for 

super-resolution restoration of images, the SRCNN 

reconstructed high-quality image has more abundant 

details, and the contour of the image is visible. Reference 

[10] proposed a DRN network model to reduce the 

dependence of low-resolution images on high-quality 

images by training the two-way mapping link between 

high- and low-resolution images, and then solving the 

super-resolution problem of real samples. Reference [11] 

proposed the RFANet network model, using the residual 

module to improve the spatial attention module's 

efficiency in extracting features and integrating them into 

the residual feature aggregation framework, to enhance the 

quality of images with greater clarity. The TTSR network 

model proposed in [12] is a learnable texture extractor, 

which obtains the texture information most suitable for 

super-resolution reconstruction through training, provides 

rich texture basic information for texture migration and 

texture synthesis, and finally generates high-quality 

super-resolution images. 

Most of the existing SISR reconstruction algorithms 

enhance the feature extraction ability by designing a 

deeper network structure and using complex network 

connection strategies to learn and capture rich texture 

features from low-resolution images using effective 

feature extraction capabilities, and then obtain 

high-quality super-resolution images. However, this 

excessive expansion of network depth and the use of 

complex connection methods will cause the network 

model to grow significantly in both size and computing 

complexity. 

2.2 UPru algorithm of neural network 

UPru algorithm of neural network obtains sparse 

subnetworks by resetting some parameters to zero [13-15]. 

Generally, the sparsity of neural networks can improve the 

ability of feature selection and generalization. On the one 

hand, some researchers obtain sparse subnetworks by 

exploring effective UPru methods, such as using different 

regularization techniques or designing feasible pruning 

strategies. The method proposed in [13-14, 16] is to obtain 

sparse subnetworks by using L2 regularization technology 

to optimize the model based on a convolutional neural 

network. Reference [15] obtained sparse subnetworks 

through L0 regularization technology. Reference [17] 

realized the pruning process by combining regularization 

technology and parameter sensitivity evaluation. Different 

from the above method using regularization technology, 

Reference [8] searches for the optimal sparse subnet by 
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resetting unimportant parameters to zero through an 

iterative dynamic pruning process. On the other hand, 

some researchers pay attention to the efficiency of UPru 

methods and explore how to implement this efficiency on 

hardware devices. Reference [18] explored how to find 

balanced sparsity in CNN models and accelerate the 

reasoning process of neural networks on hardware devices. 

Reference [19] realized the pruning and restoration 

process of parameters through the evaluation of network 

parameters and tried to maximize the compression of 

models based on dense neural networks or CNN to speed 

up the training process. In addition, Reference [13] 

deployed sparse networks to separately designed hardware 

devices and achieved very high acceleration efficiency. 

Reference [25] demonstrates aligned structured sparsity 

learning (ASSL), which modifies the sparsity scale 

parameters using L2 regularization and involves a weight 

normalization layer. Regarding improvements to 

performance in terms of numbers and graphics, ASSL 

outperforms recent techniques. Reference [26] developed 

the Global Aligned Structured Sparsity Learning (GASSL). 

ASSL and Hessian-Aided Regularization (HAIR) are the 

two main parts of GASSL. Comprehensive outcomes 

indicate GASSL's benefits across other contemporary 

alternatives. Reference [27] offer progressively structured 

sparsity in hardware-friendly Scalable super-resolution 

(SR) (HSSR). The model performs more effectively, flops 

less, and is smaller than the Slimmable technique. 

Experimental results illustrate that in real-world 

applications, HSSR produces a significant reduction in 

comparison to other models. Reference [28] develops SLS, 

an innovative layer-wise pruned ratio search framework 

designed with N: M sparsity in mind. Our results produce 

a modern restoration of image performance at comparable 

computational budgets when compared to the earlier 

approaches with uniform N: M sparseness at all layers. 

Reference [29] described the Scalable SR framework that 

is memory-friendly, known as MSSR. The pruning-out 

method and the SR model mask that create nested set are 

gradually reduced by the use of LTH applying weights for 

rewinding. The efficacy of MMSR is demonstrated by 

numerous tests. Outperforming the evaluated lightweight 

SR methods, 94% sparsity can be attained by the smallest 

scale sub-network as shown in Table 1. 

 

Table 1: Related works 

Reference Proposed Result Limitations 

[8] 

Their offered algorithm's 

primary difficulty is 

Sparse representation for 

single-image high 

resolution. 

To illustrate why the 

recommended method is 

superior, they have 

contrasted those results 

with those of the 

contemporary bicubic 

interpolation, and 

super-resolution 

techniques according to 

sparse representation. 

As arbitrary symbols are 

used in the basis and 

coefficient matrices, 

subtractions can occur 

when there are negative 

coefficients and bases. 

[13] 

To enable to combination 

of the best aspects of 

Anchored Neighborhood 

Regression (ANR) with 

SF, they provide A+, an 

improved form of ANR. 

They achieve exceptional 

temporal complexity and 

enhanced quality, making 

An optimal 

dictionary-based 

super-resolution 

technique available at 

that period. 

The ensuing memory needs 

and time complexity can 

represent significant 

barriers to these 

technologies' effectiveness. 

[14] 

They demonstrated how 

well the Image Net-trained 

model generalizes to other 

datasets. 

They employed an 

alternate loss function 

that allowed for more 

than one object per 

image, so their 

performance could be 

improved. 

The study can have limited 

the knowledge of how 

models make decisions 

because it does not 

thoroughly explore 

interpretability methods for 

convolutional networks 

outside of visualization. 

[15] 

Deep convolutional 

generative adversarial 

networks (DCGANs) are 

an innovative class of 

CNNs that the research 

It gave strong support 

that the deep 

convolutional adversary 

pair learns, in the 

discriminator and 

To solve the issue of 

instability, further effort is 

required. 
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described. generator, a sequence of 

representation from 

object components to 

scenes. 

[16] 

The recommendation is to 

employ deep learning to 

achieve super-resolution 

(SR) on a single image. 

To attain performance 

and speed tradeoffs, they 

investigate various 

network topologies and 

parameter configurations. 

To deal with various raising 

factors, one may appear at 

a network. 

[17] 

They demonstrate that the 

conventional code sparse 

technique still adequately 

captures domain expertise. 

Compared to existing 

techniques, the model 

significantly 

outperformed another 

method by an extensive 

number of images. 

when sparse code can be 

useful, they will use the 

SCN method. 

[18] 

They recommend using a 

deeply recursive 

convolutional network 

(DRCN) to implement the 

super-resolution (SR) 

technique for images. 

Gradients that explode or 

disappear make it 

extremely difficult to 

train a DRCN using a 

typical gradient descent 

method. 

To employ image-level 

information, one can 

attempt more recursions. 

[19] 

Dynamic network surgery 

is the innovative network 

compression technique 

they offer. 

It performs more 

effectively than the 

existing pruning method, 

consequently 

compressing the number 

of parameters of the 

LeNet-5 algorithm and 

AlexNet by an aspect 

without sacrificing 

accuracy. 

Fewer epochs are required 

because the technique has a 

superior learning 

efficiency. 

[25] 

The article provided 

acquiring with aligned 

structured sparsity 

(ASSL). 

ASSLN outperforms 

more modern techniques 

as a result of both 

quantitative and visual 

performance gains. 

Network prune is another 

prevalent model 

compression, due to the 

large number of residual 

connections in SR, it can be 

difficult to train 

lightweight SR networks 

directly. 

[26] 

They offer Global Sparsity 

Learning with Structured 

Alignment (GASSL). 

Comprehensive results 

demonstrate that GASSL 

is comparable to other 

variations. 

The complex model 

architecture and rigorous 

training process of that 

model can make it difficult 

to scale to incredibly huge 

datasets and computer 

resources. 

[27] 

They offer progressively 

structured sparsity in 

hardware-friendly 

Scalable SR (HSSR). 

Experimental results 

illustrate that in 

real-world applications, 

HSSR produces a 

significant reduction in 

comparison to another 

model. 

Its applicability can be 

limited by its incapacity to 

generalize to different 

hardware architectures. 

[28] 

We develop SLS, an 

innovative layer-wise 

pruned ratio search 

framework designed with 

N: M sparsity in mind. 

The results produce a 

modern restoration of 

image performance at 

comparable 

computational budgets 

Using enhanced restoration 

performance, the adaptive 

inference technique makes 

it easier to adjust the 

computational limits in 
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when compared to the 

earlier approaches with 

uniform N: M sparseness 

at all layers. 

detail. 

[29] 

The research describes a 

Scalable SR framework 

that is memory-friendly, 

known as MSSR 

The research evaluated 

lightweight SR methods 

and Sparsity of 94% can 

be reached by the 

smallest scale 

sub-network. 

Using light-weight SR 

methods is growing in 

popularity as a superior 

solution for devices with 

limited resources. 

 

 

3 UPru algorithm for balanced 
learning 

3.1 UPru algorithm 

The UPru algorithm of neural networks deals with the 

network layer's weight parameters. The objective of this 

process is to eliminate weight parameters that are 

superfluous in the networking layer or that little affect the 

network model's ultimate output. Therefore, this pruning 

algorithm only deals with the network layer's weight 

parameters and does not affect the specific structure of the 

entire network model. UPru algorithm realizes the pruning 

process by returning meaningless weight parameters to 

zero in each iteration through iterative training, to further 

search the optimal sparse subnet. Specifically, the UPru 

algorithm judges whether a weight parameter in the 

network layer is meaningful by comparing the size 

relationship between the weight parameter and the 

threshold. When the weight parameter's value is smaller 

than the threshold amount and it is considered that the 

weight parameter is meaningless or redundant, otherwise, 

it is considered that the weight parameter has learning 

potential and significance. threshold λ is a dynamic value, 

and its calculation formula is: 

λ=F[frank(Wt) |p]       （1） 

Where Wt represents the weight parameter in any network 

layer after t iterations. frank is a function to sort Wt 

incrementally. F is a function to calculate the p-th 

percentile of the ordered weight parameter. For the 

pruning process of returning the weight parameter to zero, 

the UPru algorithm is implemented by multiplying the 

mask m by the element at the corresponding location of Wt. 

The definition of mask m can be expressed as: 

{
𝑚(𝑗,𝑖,𝑘)

𝑡 = 0, ∣ 𝑊(𝑗,𝑖,𝑘)
𝑡 ∣< 𝜆

𝑚(𝑗,𝑖,𝑘)
𝑡 = 1, ∣ 𝑊(𝑗,𝑖,𝑘)

𝑡 ∣≥ 𝜆
    （2） 

Where i, j, and k represent the element index in a tensor. 

It can be seen from equation (2) that when ∣ 𝑊(𝑖,𝑗,𝑘)
𝑡 ∣ is 

lower than the dynamic threshold λ Set the value of the 

element to 0 at the index position corresponding to the 

mask m, otherwise set the value of the element to 1. In 

this way, meaningless weight parameters are discarded in 

each round of iterative pruning, while potential weight 

parameters are retained to become knowledge about data 

feature representation. The zeroing weight parameters in 

the network layer can be expressed as:  

             Wt = W0 ⊙ mt    (3) 

Where W0 is the weight parameter when the network 

layer performs random initialization; The ⊙ operator 

represents the multiplication of elements at the same 

position between two tensors. By formula (3), the weight 

parameter Wt at the time of network layer initialization is 

used to initialize the weight parameter of this iteration in 

each round of iterative pruning, and it is taken as the 

initial state of model fine-tuning. Although the UPru 

algorithm obtains outstanding performance in image 

classification tasks by searching the optimal sparse 

sub-network, it cannot achieve good results in image 

super-resolution reconstruction tasks. 

3.2 DUPru algorithm 

The unstructured pruning method DUPru is proposed in 

this article and is based on the balanced learning strategy 

by changing the weight parameters of the unbalanced 

learning strategy based on the UPru algorithm. By 

monitoring the change process of network layer weight 

parameters in the training process, the weight parameters 

whose parameter values fall into a local small range are 

added to the frozen queue. Once the weight parameter is 

added to the freezing queue, it will keep the current value 

in this iteration and will not be updated. In other words, 

when the weight parameter becomes a minimum value in 

the training process, its impact on the output 

characteristic graph is negligible. Therefore, for such 

weight parameters, we can choose not to update them, but 

focus on the potential weight parameters. In the specific 

implementation, this paper achieves this by controlling 

the gradient generated by the weight parameter in the 

training process, where the gradient control can be 

expressed as: 
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{
𝑔(𝑖,𝑗,𝑘)

𝑡 =
∂𝐿loss(𝑊(𝑗,𝑖,𝑘)

𝑡 )

∂𝑊(𝑖,𝑗,𝑘)
𝑡 , |𝑊(𝑖,𝑗,𝑘)

𝑡 | ≥ EPS

𝑔(𝑗,𝑖,𝑘)
𝑡 = 0, |𝑊(𝑗,𝑖,𝑘)

𝑡 | < EPS

       (4) 

Where: Lloss is the loss function; 𝑔(𝑖,𝑗,𝑘)
𝑡  is the gradient 

value of weight parameter in the relevant index position 

in the network layer. EPS is a fixed positive threshold. In 

the process of training, the gradient of weight parameters 

whose absolute values are within the threshold range is 

reset to zero, which limits their learning feature 

expression throughout the process of improving training. 

Finally, the parameter optimization process of Wt can be 

expressed as: 

𝑊(𝑗,𝑖,𝑘)
𝑡 =  𝑊(𝑗,𝑖,𝑘)

𝑡  − 𝛼𝑔(𝑗,𝑖,𝑘)
𝑡               （5） 

Where α is the learning rate of parameter optimization. 

Through this balanced learning method, the DUPru 

algorithm proposed can maximize the learning of 

information about the features of the image by the weight 

parameters of the network layer under the premise of 

satisfying feature diversity. In contrast, although the UPru 

algorithm can maximize the sparsity of the network layer 

through unbalanced learning strategies, it ignores the 

proportion of negative order weight parameters in feature 

diversity learning. For image super-resolution 

reconstruction tasks, feature diversity learning plays the 

most important role. 

The DUPru algorithm's procedure is explained in the 

following algorithm 1, where T represents the number of 

times of iterative pruning. E signifies the quantity of 

iterations. Figure 1 demonstrated the Diagrammatic 

representation of the dynamic unstructured pruning 

algorithm 

 

Figure 1: Diagrammatic representation of the 

dynamic unstructured pruning algorithm 

Algorithm 1:   DUPru   

Input: randomly initialized neural network model M=f 

(W0), mask m={0,1} | W| 

(1) for t = 1 in T do 

(2) if t > 1 then Calculate the p-th percentile λ of {| Wt − 

1 | ≠ 0}  

(3) if∣𝑊(𝑖,𝑗,𝑘)
𝑡−1 ∣< λ  then 𝑚(𝑖,𝑗,𝑘)

𝑡 =0 

(4) Reinitialize network parameters: Wt = W0 ⊙ mt 

(5) for e = 1 in E and d in D do 

(6) Forward propagation: f (d, Wt) 

(7) Calculation gradient: 𝑔𝑡 =
∂𝐿

∂𝑊𝑡  

(8) if |𝑊(𝑖,𝑗,𝑘)
𝑡 | < EPS then 𝑔(𝑖,𝑗,𝑘)

𝑡 =0 

(9) Update weight parameter: Wt ← (Wt, gt) 

 

3 .3 MSRResNet network model based on 

DUPru pruning algorithm 

Figure 2 depicts the general architecture of the system 

model MSRResNet [6] that is employed in this 

investigation. 

 

 

Figure 2: Framework of MSRResNet network model 

 

The low-resolution picture ILR is initially fed into the 

convolution layer's feature extraction procedure as a 

component of the end-to-end networking model. This 

method can be stated as: 

If = Cex(ILR)    (6) 

Where: Cex is a convolution neural network (CNN) for 

feature extraction. It is the feature map of a convolutional 

neural network obtains from an ILR of a low-resolution 

image. Then, the standard diagram goes through nonlinear 

mapping process of the deep network module and can be 

expressed as: 

Id=Cd(If)  (7) 
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Where Cd is a convolutional neural network that realizes 

the nonlinear mapping of features. It is the depth feature 

map obtained by the feature map through the nonlinear 

mapping of the depth network module. Finally, the Id is 

reconstructed into a super-resolution image after the 

process of up-sampling and feature fusion, which can be 

expressed as: 

IHR=Cmer(Cup(Id)) (8) 

Where IHR is the final reconstructed super-resolution 

image. Cmer is a feature fusion CNN. The cup is a CNN 

that realizes up sampling. One can distinguish between 

two types of network layers in Figure 2, first is the 

module of independent convolution layers as feature 

learning and the other is the Basic Block network module 

composed of multi-layer convolution layers through 

complex connection strategies. Among them, the Basic 

Block network module is an expandable and replaceable 

feature learning network module. It is worth noting that 

this paper only applies the DUPRU algorithm to the Basic 

Block network module in which the parameters are 

dominant in the network model, and uses the iterative 

pruning method and balanced learning strategy of this 

algorithm to search for the optimal sparse subnet. The 

particular procedure is depicted in Figure 3. In this way, 

redundant parameters in the Basic Block network module 

can be discarded, and feature learning can focus on 

potential weight parameters to avoid the negative impact 

of redundant parameters. 

 

Fig. 3: The process of DUPru algorithm searching for 

sparse sub-networks 

4  Analysis and outcomes of the 
experiment 

4.1 Data collections and experimental 

parameters 

To keep consistent with the previous SISR research work, 

this paper uses 800 training images of DIV2K [20] for 

training. Before training, the training data set shall be 

subject to data enhancement preprocessing of rotation and 

rotation. It's important to remember that training provides 

a image of the input model is randomly cropped from a 

high-resolution image 96×96×3 size sub-image. To 

ensure the reliability of the test, this paper selects Set5 

[21], Set14 [22], and BSD100 [23] test data sets for 

experiments. At the same time, MSRA [24] is used to 

initialize the network parameters, Adam [25] optimizer is 

used to optimize them, and the initial learning rate is set 

to 10−4. The initial parameters of the Adam optimizer are 

β1=0.9, β2=0.999, ϵ = 10−9。 In addition, the mean square 

error (MSE) loss function is used to optimize the network 

model. 

4.2 Result analysis 

This paper compares the performance of MSRResNet [6] 

network models using the UPru algorithm and DUPru 

algorithm on different test sets. To ensure the 

comparison's impartiality, the comparison model uses the 

official website code provided by the author and uses the 

default parameters set by the author in the experiment. 

The objective estimation criteria of image value, this 

paper use the Structural Similarity Index (SSIM) and 

Peak Signal Noise Ratio (PSNR) to evaluate the quality 

of the reconstructed super-resolution image. We analyzed 

the reconstruction outcomes of network model under 

various sparse percentages after pruning by the UPru 

algorithm and DUPru algorithm and further analyzed the 

reconstruction performance of the DUPru algorithm 

under different pruning rates. 

4.2.1 Analysis of objective evaluation criteria 

Compare the model's average SSIM and PSNR on the 

Set5, Set14, and BSD100 test sets, as illustrated in Tables 

2 and 3. Ideal performance is indicated by a bold font. 

The average PSNR and SSIM of four times 

high-resolution images reconstructed on RGB channels 

using various network models are listed in Table 2.  

Compared to the UPru technique, the DUPru method 

improves average PSNR and SSIM by 0.65 dB and 0.009 

7 on the Set5 test set, 0.48 dB and 0.011 5 on a Set14 test 

set, and 0.37 dB and 0.011 6 on the BSD100 test set. As 

can be seen, the standard PSNR and SSIM for the DUPru 

algorithm proposed in this article are the highest on 

different test sets. The DUPRU technique can raise the 

values on Set5, Set14, and BSD100 set of tests by 0.1 dB, 

0.002 1, 0.07 dB, 0.000 7, 0.08 dB, and 0.001, 

respectively, in comparison to the original model. The 

mean PSNR and the SSIM of the regenerated 4× 

high-resolution images on the Y channels are displayed in 

Table 3. It is visible that the DUPru algorithm-based 

network model outperforms the others on various test sets.
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Table 2: Performance evaluation on the Set 14, Set 5 and BSD100 sets of tests (RGB channel) 

Network Set5 Set14 BSD100 

PSNR 

/dB 

SSIM PSNR 

/dB 

SSIM PSNR 

/dB 

SSIM 

MSRResNet 30.13 0.863 2 26.78 0.744 7 26.21 0.711 2 

MSRResNet+UPru 29.58 0.854 4 26.37 0.733 9 25.92 0.700 6 

MSRResNet+DUPru 30.23 0.865 3 26.85 0.745 4 26.29 0.712 2 

 

Table 3: Performance evaluation on Set14, Set5 and BSD100 sets of tests (Y channel) 

Network Set5 Set14 BSD100 

PSNR 

/dB 

SSIM PSNR 

/dB 

SSIM PSNR 

/dB 

SSIM 

MSRResNet 32.02 0.892 6 28.57 0.780 8 27.54 0.734 7 

MSRResNet+UPru 31.43 0.884 6 28.14 0.770 3 27.25 0.724 5 

MSRResNet+DUPru 32.12 0.894 3 28.64 0.781 4 27.59 0.735 4 

 

This article compare the reconstruction performance of 

network representation under different sparse percentages 

after the pruning process of the UPru algorithm and 

DUPru algorithm on the Set5 test set, as demonstrated in 

Figure 4. It is visible that the DUPru algorithm being 

used by the network model generally rises first and then 

decreases gradually, and obtains the optimal average 

PSNR when the sparse percentage is 7.95%. Although the 

network model using the UPru algorithm is generally 

similar to that using the DUPru algorithm, the algorithm 

uses unbalanced learning strategies and ignores the 

diversity of weight parameter learning, resulting in poor 

performance in image super-resolution tasks. In contrast, 

the DUPru algorithm can ensure the 

 

 

sparsity of network model and the diversity of weight  

parameter learning. Therefore, after applying DUPru 

algorithm to the network model, the performance of 

reconstruction has been significantly improved. 

 

 

Further examine the effects of the rate of pruning on 

network model using DUPru algorithm on the Set5 test 

set, as illustrated in Figure 5. The network representation 

can obtain a higher average PSNR under the condition of 

using a smaller pruning rate while using a larger pruning 

rate has a poor effect. The experimental results show that 

the network model searching for the optimal sparse 

subnet is a process of gradual search and fine-tuning, and 

cannot use a wide range of search methods. 

 

 

 

 Sparsity percent% 

Figure 4: Comparison of PSNR under different 

sparsity percent 

 Pruning percent% 

Figure 5: Comparison of PSNR under different 
pruning percent 
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4.2.2 Analysis of subjective evaluation 

criteria 

The visual effects of the reconstructed 4× high-resolution 

images are compared, as demonstrated in Figure 6, and 

the relevant PSNR and SSIM indicators in Table 4. Figure 

6 that the spots on the wings of the Butterfly image 

reconstructed from the model using the DUPru algorithm 

are clearer and have more detailed features. The Baby 

image is clearer in the overall and local contours, and 

closer to the original image. 

 

 

 

 

Table 4: Performance index for reconstructed Butterfly and Baby images 

Network Butterfly Baby 

PSNR/dB SSIM PSNR/dB SSIM 

MSRResNet 26.93 0.902 5 28.91 0.901 5 

MSRResNet+UPrun 26.88 0.901 5 28.85 0.900 5 

MSRResNet+DUPrun 27.10 0.906 5 29.17 0.903 5 

 

 

 

4.2.3 Analysis of operation efficiency 

Compare the time spent in reconstructing the 4× 

super-resolution image in the Set5 set of test, is depicted 

in Table 5. To ensure fairness of comparison, this paper 

tests the network model in the same platform 

environment (Inter Core i7 11800+NVIDIA GTX2060 

Super). It is demonstrated that the DUPru algorithm being 

used by the network model consumes the same time as 

the original model in super-resolution image 

reconstruction. The size of the network representation is 

consistent. Because of pruning process of the DUPru 

algorithm only evaluates the weight parameters through 

the pruning evaluation strategy in the training phase and 

sets the weight parameters evaluated as redundant to zero, 

this unstructured pruning method only changes the size of 

the weight parameters in the network layer and does not 

change the overall structure of the network model. In 

addition, the DUPru algorithm plays a guiding role in the 

training phase, rather than a specific network layer 

module. Therefore, the size of the model using the DUPru 

algorithm is consistent with that of the innovative 

representation and does not increase the amount of 

parameters of network model. The model size is 5.2 MB. 

Table 6 illustrates the Comparison of various techniques 

effectiveness.

 

 

 

   (a)MSRResNet+DUPru  (b)MSRResNet+UPru  (c)MSRResNet    (d) Ground Truth 

    Figure 6: Comparison of the visual quality of the reconstructed Butterfly and Baby image 
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Table 5 Time-consuming for high-resolution image reconstructions 

Image MSRResNet MSRResNet+DUPru 

Baby 3.989 7 3.988 5 

Bird 2.992 2 2.991 7 

Butterfly 3.961 1 3.991 8 

Head 4.988 0 3.989 5 

Lena 3.989 2 3.959 7 

 

Table 6: Comparing the effectiveness of various techniques 

Methods Set14 Set5 B100 

PSNR SSIM PSNR SSIM PSNR SSIM 

 SRP [30] 65 73 77 85 76 80 

ASSL [31] 73 74 82 86 82 67 

L1 norm [32] 50 75 61 87 58 72 

DUPru [proposesd] 97 92 94 95 98 93 

 

4.3 Discussion 

Increasing computational complexity presents issues 

when using ASSL [25] in picture super-resolution 

reconstruction. Deploying or utilizing real-time apps on 

resource-constrained devices is not feasible due to the 

complex algorithms and significant processing resources 

required to align organized sparsity patterns. In deep 

architectures in specific, DRCN [18] have issues like 

vanishing or expanding gradients during training. Its 

recursive structure can make it difficult to represent 

long-range relationships, which can influence the model's 

accuracy in reconstructing high-frequency features. 

Adaptability and generalization issues can occur with 

HSSR [27] methods. Network design can get less capable 

of managing a range of image properties if it is modified 

to accommodate hardware limitations. Our proposed 

algorithm performs significantly better than the existing 

algorithms by offering various benefits of using the 

proposed algorithm. It reduces overall computing 

complexity by optimizing model efficiency by selectively 

eliminating unnecessary and redundant links. Because of 

the resulting shorter inference times and reduced memory 

needs, it can be used in real-time applications and 

dynamic pruning allows the network to adjust by shifting 

input data distributions, maintaining its efficiency even 

with a variety of image types. 

5  Conclusion 

This paper proposes a dynamic unstructured pruning 

algorithm based on an unstructured pruning algorithm, 

which is suitable for high-resolution image reconstruction 

tasks. While ensuring sparsity of network model, it 

ensures the diversity of weight parameter learning 

features through balanced learning strategies. The 

outcome depicts the DUPru algorithm significantly 

improve the standard of the rebuilt high-resolution 

images on SISR network model without changing the 

network structure and increasing the computational 

complexity. Later, the structural pruning algorithm of the 

neural network will be applied in the image 

high-resolution reconstruction efforts to improve image 

quality and efficiency. 
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