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Pancreatic cancer's devastating impact and low survival rates call for improved detection methods. 

While Artificial Intelligence has shown remarkable progress, its increasing complexity has led to "black 

box" models, hindering their acceptance in critical fields like healthcare. To address this, Explainable 

Artificial Intelligence (XAI) has gained traction, aiming to create transparent AI systems. In this study, 

we propose a comprehensive approach that combines the power of Deep Learning for pancreatic 

cancer detection using Computed Tomography (CT) images and Machine Learning (ML) for survival 

prognosis based on clinical data. By leveraging CT images with Deep learning models such as 

Convolutional Neural Networks, VGG-16 and DenseNet-201, effective diagnosis of Pancreatic Cancer 

is achieved and comprehensive insights into the tumor's spatial characteristics are obtained. DenseNet-

201 outperformed the other models in terms of accuracy and interpretability with a predictive accuracy 

of 95%. The integration of ML techniques such as Stochastic Gradient Descent, Naïve Bayes and Extra 

Tree classifiers with clinical data predicts the chances of survival, providing vital information for 

treatment planning and personalized care. To validate the model's accuracy and interpretability, a 

comprehensive XAI validation is conducted using state-of-the-art techniques like Local Interpretable 

Model-agnostic Explanations and Shapley Additive Explanations. These methods provide localized 

explanations for predictions, allowing clinicians to understand risk and survival chances. This study 

holds immense potential to aid healthcare professionals in diagnosis, prognosis, and personalized 

treatment strategies, contributing to enhanced patient outcomes in the fight against pancreatic cancer. 

Povzetek: Analizirana sta napovedovanje in prognoza preživetja pri raku trebušne slinavke z uporabo 

globokega učenja in razložljive umetne inteligence (XAI) za interpretacijo napovedi, izboljšanje 

zaupanja v AI. 

 

1 Introduction 
Pancreatic cancer is a devastating malignancy that poses 

a significant global health challenge due to its aggressive 

nature and poor prognosis [1]. Despite advances in 

medical research and cancer treatments, the five-year 

survival rate for pancreatic cancer patients remains 

dishearteningly low, with many cases being diagnosed at 

advanced stages when effective interventions become 

limited. Cancer detection and chance of survival are 

critical factors that can significantly impact patient 

outcomes by enabling timely treatments and personalized 

therapeutic strategies. Consequently, there is an urgent 

need to explore novel approaches that offer deeper 

insights into pancreatic cancer development and patient 

survival rates. 

       Pancreatic cancer's clinical landscape is 

characterized by its insidious nature in the development 

stages, often presenting vague or non-specific symptoms. 

This lack of distinct clinical indicators makes early  

 

diagnosis challenging, resulting in delayed treatment 

initiation and reduced chances of successful 

interventions. Additionally, the intricate biology of 

pancreatic cancer necessitates a comprehensive 

understanding of the underlying molecular and genetic 

factors driving disease progression and influencing 

patient outcomes [2]. As such, the development of 

accurate predictive models that can identify individuals 

at high risk of developing pancreatic cancer and estimate 

patient survival probabilities becomes imperative in the 

fight against this lethal disease. 

      While current medical technologies have 

significantly contributed to cancer detection and 

diagnosis, they still face limitations. Imaging modalities 

such as Computed Tomography (CT), Magnetic 

Resonance Imaging (MRI), and endoscopic ultrasound 

provide valuable visualizations of pancreatic tumors and 

staging information. However, these imaging techniques 

may miss small lesions or produce ambiguous results in 

anatomically complex areas, leading to diagnostic 
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challenges. Furthermore, the use of biomarker analysis, 

including CA 19-9 and several other factors for 

monitoring treatment response and assessing disease 

progression may lack specificity and sensitivity, resulting 

in false-positive or false-negative outcomes. These 

limitations highlight the need for more accurate and 

comprehensive predictive tools for improved cancer 

detection and patient survival estimation. 

      Advancements in AI technology enabled the rapid 

and precise identification of cancer through diverse 

medical imaging methods. The Deep Learning (DL) 

algorithms have garnered significant attention in medical 

imaging analysis. DL algorithms, particularly 

Convolutional Neural Networks (CNNs), can 

automatically learn hierarchical representations from raw 

image data, such as CT scans. This unique capability 

enables DL models to detect complex patterns and 

features in medical images, offering great potential for 

aiding the detection and diagnosis of pancreatic cancer 

[3]. Additionally, deep learning can be integrated with 

clinical data, including patient demographics and medical 

history, to develop comprehensive predictive models that 

deliver more accurate and personalized survival 

estimates 

      Machine learning (ML) models can be trained on 

diverse clinical data to predict patient survival rates by 

considering factors such as age, tumor grade, CA 19-9 

levels, sex, and medical history. By leveraging these ML-

based approaches, clinicians can obtain individualized 

survival chances, which are essential for tailoring 

treatment plans and optimizing patient care. However, 

DL and conventional ML models often operate as black 

boxes, lacking transparency in their decision-making 

process. This opacity hinders the widespread adoption of 

DL and ML in critical clinical decision-making settings, 

where understanding the factors influencing predictions 

is paramount. 

     To address the interpretability challenge associated 

with DL and ML models, XAI techniques have emerged 

as a solution [4]. In this study, we propose a 

comprehensive approach that combines the power of 

Deep Learning for pancreatic cancer detection using CT 

images and Machine Learning for survival prognosis 

based on clinical data. To enhance the interpretability 

and trustworthiness of our model, we incorporate XAI 

techniques, specifically Local Interpretable Model-

agnostic Explanations (LIME) and Shapley Additive 

Explanations (SHAP). 

      LIME plays a crucial role in providing interpretable 

insights into the DL-based cancer detection model's 

predictions. By employing LIME, we can identify the 

specific regions within the CT images that significantly 

contribute to the model's decision-making process. These 

regions act as crucial markers for the presence of tumors 

and other abnormalities, enabling radiologists and 

clinicians to validate and understand the model's 

findings. Mapping CT image regions relevant to the 

model's predictions not only boosts confidence in AI-

driven detection but also assists medical professionals in 

recognizing subtle signs of pancreatic cancer, potentially 

enabling earlier diagnosis and timely intervention.  

     Additionally, SHAP plays a pivotal role in explaining 

machine learning-based survival rate predictions using 

clinical data. SHAP provides a quantitative measure of 

the influence of each clinical feature on the model's 

survival rate estimations. By identifying the most 

affected features, SHAP empowers healthcare 

professionals to understand the factors driving the 

model's predictions and their relative importance in 

determining patient survival probabilities. This level of 

interpretability allows clinicians to prioritize critical 

clinical factors and consider them in treatment planning 

and patient management. SHAP's ability to reveal the 

most influential clinical factors further enhances the 

personalized nature of our model's survival predictions, 

ensuring tailored and optimized patient care. 

      By integrating LIME and SHAP into our 

interpretable analytical model, we provide a 

comprehensive framework that not only accurately 

detects pancreatic cancer using CT images but also offers 

transparent and interpretable survival rate predictions 

based on clinical data. The combination of these XAI 

techniques not only bolsters the trustworthiness of the 

model's predictions but also empowers medical 

professionals to make informed decisions based on AI-

driven insights. Ultimately, our model's enhanced 

interpretability contributes to improved patient outcomes 

by facilitating earlier detection, more precise 

prognostication, and personalized treatment strategies for 

individuals battling pancreatic cancer. 

      The remainder of the paper is organized as follows. 

Section I provides the Introduction to the research. 

Section II presents the literature review of existing 

systems. Section III provides Dataset description. Section 

IV presents the proposed methodology and 

implementation details. Section V presents the results 

and discussion of the proposed system. Section VI 

concludes the work with future scope. 

2 Related work 
Pancreatic cancer remains a formidable and deadly 

malignancy, necessitating innovative approaches to 

improve early detection and prognostication for 

enhanced patient outcomes. The recent convergence of 

DL for cancer detection using CT images, ML for 

survival rate prediction based on clinical data, and the 

integration of XAI techniques have shown great potential 

in tackling the challenges presented by this devastating 

disease.  

      The incorporation of XAI methods, such as LIME 

and SHAP, enhances the interpretability and 

trustworthiness of AI-driven models, empowering 

medical professionals to comprehend the factors driving 

predictions and make well-informed clinical decisions. In 

this literature survey, we delve into research focused on 

the development and application of interpretable 

analytical models for pancreatic cancer detection and 

survival prognosis. By examining the advances and 

insights from these studies, we aim to provide a 

comprehensive understanding of the state-of-the-art 

techniques that hold the potential to revolutionize 
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pancreatic cancer management and contribute to 

improved patient care. 

      The recent convergence of DL techniques for cancer 

detection using CT images has shown significant promise 

in addressing the challenges posed by this devastating 

disease. Among the various DL approaches, CNNs and 

their extensions, such as recurrent CNNs, have emerged 

as particularly effective in the detection of pancreatic 

cancer. These methods have demonstrated impressive 

accuracy in identifying pancreatic tumors and 

differentiating them from normal tissues, as evidenced by 

multiple studies [3,5,6,7,8,9,10,11]. CNNs are well-

suited for processing the complex and high-dimensional 

data found in medical imaging, enabling them to extract 

intricate patterns and features that are indicative of 

cancerous tissues. The effectiveness of these models is 

largely attributed to their ability to learn from large 

datasets, which enhances their capacity to recognize 

subtle distinctions between malignant and benign tissues. 

Recurrent CNNs, which integrate temporal and spatial 

information, have further advanced the field by 

improving the detection accuracy and robustness of these 

models. This approach allows for the consideration of 

sequential dependencies in image slices, which is crucial 

for the accurate identification of tumors in CT scans. The 

application of DL models offers significant advantages 

over traditional diagnostic methods, including faster 

processing of large volumes of image data and higher 

accuracy in tumor detection. As a result, these 

advancements hold the potential to facilitate earlier 

diagnosis, thereby improving treatment outcomes. 

      To address the interpretability challenge associated 

with DL and ML models, XAI techniques have emerged 

as a solution. The incorporation of XAI methods, such as 

LIME and SHAP enhances the interpretability and 

trustworthiness of AI-driven models, empowering 

medical professionals to comprehend the factors driving 

predictions and make well-informed clinical decisions. 

To better understand the model's decision-making 

process, a limited number of studies have explored the 

use of LIME and SHAP for predictions. LIME, in 

particular, offers valuable insights by mapping regions 

on CT images and highlighting specific areas that 

influence the model's predictions and an attempt for such 

analysis has been made in [12]. In some research, LIME 

has been utilized for feature importance analysis in 

predicting Pancreatic cancer [13,14,15]. 

       Survival prediction in pancreatic cancer aids in 

improved treatment planning, provides realistic 

prognostic information for patients and their families, 

and supports the clinical trial design and assessment of 

new therapies. Research on predicting patient survival 

rates for pancreatic cancer using machine learning 

models based on clinical data has revealed promising 

results, demonstrating the potential to significantly 

improve patient outcomes. Various ML algorithms, such 

as random forests, support vector machines, logistic 

regression, nearest neighbor and gradient boosting, have 

been explored and assessed for their performance in 

survival prediction [16,17]. These models utilize 

extensive clinical datasets to identify patterns and 

correlations that might not be apparent to human 

clinicians. The effectiveness of these models in survival 

prediction is attributed to their capacity to process and 

analyze complex data, offering more accurate prognostic 

insights than traditional methods.  

      Despite these advancements, the lack of 

interpretability in these models poses a significant 

challenge, hindering their seamless integration into 

clinical practice and limiting clinician trust. To address 

this limitation XAI methods like SHAP have been 

incorporated [12,18,19]. The incorporation of SHAP was 

emphasized to elucidate the influential clinical factors 

driving survival predictions, aiding clinicians in making 

data-driven decisions for personalized treatment 

planning. 

      The literature review reveals that there have been 

limited research efforts focused on developing 

interpretable analytical models for pancreatic cancer 

detection and survival prognosis. The application of 

interpretability in this field is still in its early stages, with 

only a limited number of studies available. Table 1 

provides a summary of related works that utilize 

explainable AI models for pancreatic cancer prediction 

and survival prognosis. The integration of XAI 

techniques in these studies emphasizes the significance 

of transparency and trustworthiness in AI-driven medical 

applications. As these innovative methodologies continue 

to evolve, they hold the potential to revolutionize 

pancreatic cancer management and improve patient 

outcomes.  

      Another notable limitation observed across the 

surveyed papers is the absence of utilization of multiple 

models of DL and ML for interpretation and validation. 

The studies predominantly focused on applying specific 

XAI techniques to individual models, such as using 

LIME or SHAP for specific DL or ML models. 

Consequently, there was a lack of exploration into the 

advantages of employing a diverse set of DL and ML 

models for these purposes. This oversight hinders 

comprehensive comparison and validation of XAI 

techniques across different model architectures. There is 

a requirement to consider adopting multiple, diverse DL 

and ML models in their XAI framework to gain a more 

holistic understanding of the predictive features and 

foster the standardization of XAI practices in pancreatic 

cancer detection and survival prediction.  

      In conclusion, the literature survey has shed light on 

the progress made in developing interpretable analytical 

models for pancreatic cancer detection and survival 

prediction. The combination of DL, ML, and XAI 

techniques holds significant potential for enhancing early 

detection, personalized treatment planning, and 

ultimately improving patient care. 
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Table 1: Summary of related works with explainability of models in pancreatic cancer prediction and survival 

prognosis. 

 

Authors Focus Area Models Dataset Performance 

Metrics 

XAI 

Technique 

Key Findings 

Goel et al. 

(2021) [15] 

Pancreatic 

Cancer 

Detection 

Logistic 

Regression, 

Adaboost, 

Neural 

Network,  

ensemble 

model 

Gene 

Expression 

Omnibus- 

miRNA 

biomarkers 

Sensitivity – 

0.85,0.90,0.88, 

0.95. 

 

Specificity – 

0.98,0.94,0.96, 

0.98. 

 

LIME 

SHAP 

Ensemble 

models with 

feature 

selection and 

improved 

diagnosis 

accuracy for 

pancreatic 

cancer detection 

Srinidhi B et. 

al. (2023) [12] 

Pancreatic 

Cancer 

Detection 

CNN 

SVM 

CT Images, 

Clinical Data 

from - The 

Cancer 

Imaging 

Archive 

None LIME 

SHAP 

Combined XAI 

with CNN and 

SVM for model 

interpretability 

on prediction 

Bobes-

Bascarán et al. 

(2024) [13] 

Pancreatic 

Cancer 

Detection 

Decision 

Trees, 

Random 

Forest,  

XGBoost 

Clinical Data 

from -The 

Cancer 

Genome Atlas 

Program 

Accuracy - 

0.66,0.54,0.66 

 
Precision - 

0.72,0.76,0.76 

 
Recall - 

0.66,0.54,0.66 

LIME 

SHAP 

Feature 

importance 

analysis for 

Pancreatic 

Cancer 

Dimitris et al. 

(2021) [19] 

Survival 

Prognosis 

Optimal 

Classification 

Tree, 

XGBoost 

Clinical data 

of 2,784 

Patients 

1-year   

AUC for OCT 

- 0.63 

 
3-year AUC - 

0.67 

SHAP SHAP was 

utilized to 

identify the best 

predictor 

Keyl et al. 

(2022) [18] 

Survival 

Prognosis 

Random 

Survival 

Forest 

Albumin, CT 

image, 

Radiomics 

data, 

Molecular 

data of 203 

Cohort 

C-index - 0.71 SHAP Feature 

importance 

analysis for 

survival 

prognosis from 

multi-modal 

data 

 

3 Dataset description 
In this research, we utilized the Cancer Imaging Archive 

(TCIA) dataset [20], a comprehensive collection of 

medical images and clinical data, to develop an 

interpretable analytical model for pancreatic cancer 

detection and survival rate prediction. The dataset 

comprises 100 cancer-positive CT images and 100 

cancer-negative CT images, offering a diverse set of 

cases for robust model training and evaluation. For 

cancer detection, we employed an 80-20% split, with 

80% of the images used for training the model and 20% 

for testing its performance. Furthermore, for survival 

prognosis, we utilized seven critical clinical features, 

including age, gender, KI-67 Index, PFS Months, 

Creatine, CA 19/9 U/ml and tumor grade. Around 50 

patient records were considered for this work to create  

 

a well-rounded prognostic model. Similar to the cancer 

detection model, the survival prediction model was 

trained on 80% of the clinical data and evaluated on the 

remaining 20% to ensure reliable and generalizable 

results. 

4 Methodology 
The proposed system in this research aims to develop an 

interpretable analytical model for pancreatic cancer 

detection and survival prognosis, leveraging a 

combination of CT images and clinical data. The 

preprocessing pipeline for the CT images involves initial 

RGB conversion, normalization, and conversion to an 

array format, ensuring standardized input for subsequent 

analysis. These preprocessed images are then fed to Deep 

Learning models such as CNN [21], VGG-16 [22] and 
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DenseNet-201 [23] to extract meaningful features and 

perform accurate cancer predictions. To enhance the 

interpretability of the deep learning model, the LIME 

algorithm is applied. LIME generates region marking for 

the CT images, highlighting specific areas influencing 

the model's predictions. This approach empowers 

radiologists and medical professionals to validate the 

model's decision process, instilling confidence in the AI-

driven diagnostic tool and enabling more informed 

decision-making for early cancer detection. 

       In parallel, the clinical data is preprocessed through 

label encoding and the removal of irrelevant columns to 

ensure data quality and uniformity. This preprocessed 

clinical data is then utilized to train and evaluate different 

machine learning models, such as Stochastic Gradient 

Descent (SGD) [24], Extra Tree [25], and Naïve Bayes 

[26], for survival rate prediction. To ensure 

interpretability in the machine learning models' survival 

predictions, the SHAP algorithm is employed. SHAP 

provides insights into the most influential clinical 

features affecting the model's prognostic outcomes, 

empowering medical practitioners to make data-driven 

decisions and design personalized treatment plans. 

      The suggested system's architecture is depicted in 

Figure 1. At the initial level of the architecture, data 

processing occurs, providing input for the deep learning 

and machine learning models. The outcomes are then 

validated using explainable artificial intelligence 

techniques. For cancer prediction, the data preparation 

includes image conversion, normalization, and image-to-

array. The pre-processed CT images will be fed to the 

DL models, and the predictions made by these models 

(CNN, VGG-16, DenseNet-201) will be validated using 

LIME. Similarly, the Machine learning models (Extra 

Tree, SGD, Naïve Bayes) are applied to the pre-

processed clinical dataset. To validate the model’s 

results, we have employed SHAP for the survival 

prognosis. 

4.1    Data pre-processing 

Before utilizing the dataset for model development, pre-

processing steps were undertaken to ensure data 

compatibility and optimize model performance. For CT 

images, a series of pre-processing steps were applied. 

First, to facilitate feature extraction, the images were 

converted from the native DICOM format to RGB (Red-

Green-Blue) representation. This conversion allowed the 

incorporation of color information, enabling the model to 

capture subtle patterns in the images effectively. 

Subsequently, to normalize the pixel values and bring 

them within a standardized range, a normalization [27] 

process was performed. This step ensures that the model 

is not overly influenced by variations in pixel intensity 

across different images, promoting consistent and 

reliable predictions. Finally, the processed CT images 

were transformed into arrays, facilitating their integration 

into the model. 

      Regarding the clinical data, appropriate pre-

processing steps were undertaken to optimize its usability 

in the model. Categorical variables in the clinical data, 

such as gender or tumor grade, were subjected to label 

encoding [28] to convert them into numerical 

representations. 

  

 

 

 

Figure 1: System architecture 
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This process enabled the model to work seamlessly with 

categorical data during the training and prediction 

phases. Additionally, to enhance model efficiency and 

eliminate irrelevant information, unwanted columns 

containing redundant or non-contributing features were 

removed from the clinical dataset. By streamlining the 

clinical data, the model can focus on relevant clinical 

factors that significantly influence the prognosis and 

improve the model's interpretability. 

      The pre-processing steps undertaken for both CT 

images and clinical data were essential to prepare the 

dataset for the subsequent model development. By 

ensuring data compatibility, standardization, and 

relevance, the interpretable analytical model can 

effectively leverage the combined information from CT 

images and clinical features to facilitate accurate 

pancreatic cancer detection and survival rate prediction, 

contributing to improved patient care and clinical 

decision-making. 

4.2    Deep learning models and architecture 

In this study, we have implemented a comprehensive 

framework for pancreatic cancer detection and survival 

prediction using state-of-the-art machine learning and 

deep learning models. For cancer prediction, we 

employed Deep learning models such as CNN, VGG-16 

and DenseNet-201, which are well-suited for cancer 

prediction tasks involving medical imaging data like CT 

scans. Pancreatic cancer diagnosis relies heavily on 

accurately detecting subtle abnormalities in CT images. 

CNNs are adept at automatically learning complex 

features from images, making them effective in capturing 

intricate patterns indicative of cancerous regions in 

pancreatic CT scans.  

       A standard CNN represents a fundamental deep 

learning architecture, known for its simplicity and 

effectiveness in various image classification tasks. It 

serves as a baseline to compare the interpretability and 

performance of more complex models. VGG-16 and 

DenseNet-201 are deep architectures with many layers, 

allowing them to extract and combine rich hierarchical 

features, which are beneficial for the challenging task of 

pancreatic cancer detection. VGG-16 architecture is 

deeper and more sophisticated than a basic CNN. VGG-

16 is a well-established model in the field of image 

recognition, known for its good performance and 

moderate complexity. DenseNet-201 is an advanced and 

highly deep architecture that includes dense connections 

between layers, enhancing feature propagation and their 

reuse.  

       By employing these three architectures, we can 

assess the effectiveness and consistency of 

interpretability methods across models of varying 

complexity. This enables us to understand whether these 

interpretability methods can provide reliable explanations 

for both simple and complex models, which is critical for 

their application in medical AI. 

 

 

 

4.2.1    CNN model 

In this study, we implemented Convolutional Neural 

Network model for pancreatic cancer detection using CT 

images as input and achieving binary yes/no predictions. 

The CNN architecture consists of two convolutional 

layers with a 3x3 filter size and 64 filters in each layer 

followed by a max-pooling layer with a pooling size of 

2x2 to downsample the feature maps. To prevent 

overfitting, we applied dropout regularization with a 

dropout rate of 0.25 after each convolutional layer. The 

CNN architecture is shown in Figure 2 [21]. The 

learning rate was set to 0.001, and we used the Adam 

optimizer [29] to efficiently update the model's 

parameters during training. 

 

 
 

Figure 2: CNN architecture 

 

      Due to the limited size of the dataset, we decided to 

conduct a smaller number of epochs for training the CNN 

models. Specifically, we set the number of epochs to 20. 

The rationale behind this decision was that with a 

minimal dataset, the model tends to reach a saturation 

point in learning after a few epochs. Continuing training 

beyond this point led to overfitting, where the model 

performs well on the training data but fails to generalize 

to unseen data as depicted in Figure 3. 

 

Figure 3: Epochs v/s Accuracy Graph 

 

       By fine-tuning the hyperparameters and training the 

CNN models with a reduced number of epochs, we 

aimed to strike a balance between achieving high 

accuracy on the training data and ensuring 

generalization performance on the testing data. This 

approach proved effective in managing the limited 
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dataset size and allowed us to develop reliable binary 

prediction models for pancreatic cancer detection using 

CT images as input. 

4.2.2    VGG-16 model  

The VGG-16 model architecture depicted in Figure 4   

consists of 13 convolutional layers, each with a filter size 

of 3x3. The number of filters in each consecutive block 

varies, starting from 64 in the initial layers and 

progressively increasing to 128, 256, 512, and finally 512 

in the deeper layers. Max-pooling is applied with a size 

of 2x2 to reduce spatial dimensions and extract relevant 

features effectively. To prevent overfitting, dropout 

regularization is incorporated with a rate of 0.5, 

randomly deactivating neurons during training to 

improve generalization. We used a learning rate of 

0.001, a batch size of 32, and trained the model for 20 

epochs. The decision to use 20 epochs was based on the 

limited size of the dataset and the observation that the 

error rate reached a stable value after these iterations. We 

used the Adam optimizer [29] to efficiently update the 

model's parameters during training. 

       

 

 

      The hyperparameters were carefully chosen to strike 

a balance between model performance and computational 

efficiency given the dataset constraints. Overall, the 

VGG-16 model implementation proved to be effective in 

generating binary yes/no predictions for pancreatic 

cancer detection, providing valuable insights into the 

potential of deep learning in early cancer diagnosis. 

 

4.2.3    DenseNet-201 

The DenseNet-201 architecture illustrated in Figure 5, is 

a deep convolutional neural network architecture for 

image recognition tasks. It employs a dense connectivity 

pattern where each layer receives direct input from all 

preceding layers, promoting feature reuse and enhancing 

gradient flow. The hyperparameters used for DenseNet-

201 were carefully selected to achieve optimal 

performance. The growth rate was set to 32, ensuring the 

network's ability to capture relevant features effectively. 

We employed 6 blocks, each consisting of 48 layers, to 

create a deep and expressive architecture capable of 

capturing intricate patterns in the CT images.  

 

 

 

 

Figure 4: VGG architecture 

 

                                                                                    

                                                         Figure 5: DenseNet-201 architecture 
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To prevent overfitting and improve generalization, we 

applied a compression factor of 0.5, which reduced the 

number of feature maps in transition layers. 

Additionally, dropout with a rate of 0.5 was introduced 

during training to regularize the model. We initialized 

the learning rate at 0.001 to facilitate a stable and 

effective optimization process. The choice of batch size 

was set to 32, balancing computational efficiency and 

model convergence. Considering the limited size of the 

dataset, we conducted training for 20 epochs, as 

observed that the error rate reached a near-constant level 

after this point. The model was trained over 20 epochs 

and for updating the model’s parameters during the 

training process, Adam optimizer [29] was utilized.  

       In our study, hyperparameter tuning was critical for 

optimizing model performance. We employed grid 

search to systematically evaluate combinations of key 

hyperparameters, including learning rate, dropout rate, 

and batch size for all three models. Specifically, we 

tested learning rates of [0.0001, 0.001, 0.01], dropout 

rates of [0.25, 0.5], and batch sizes of [16, 32, 64]. The 

Adam optimizer was used across all models to ensure 

robust performance metrics. This approach helped us 

identify the optimal settings that minimized validation 

loss and maximized the accuracy of the models. 

 

4.3    Machine learning models and 

architecture 

Survival prediction in pancreatic cancer refers to the 

estimation of a patient's likelihood of surviving for a 

certain period after diagnosis, typically measured in 

months or years. This prediction is based on various 

factors, including the stage of cancer at diagnosis, patient 

demographics, tumor characteristics, treatment options, 

and other clinical data. For survival prognosis using 

clinical data, the choice of algorithms depends on the 

nature of the features and the size of the dataset. State-of-

the-art Machine learning algorithms such as Stochastic 

Gradient Descent, Naïve Bayes and Extra Tree classifiers 

are utilized. The choice of these ML techniques is due to 

their diversity in model behavior.  

4.3.1    Stochastic gradient descent 

classifier 
Stochastic Gradient Descent is a widely used 

optimization algorithm suitable for large datasets with 

multiple features, as it can handle complex models 

effectively. This linear model is chosen for its simplicity 

and efficiency, particularly with large datasets. Its 

behavior is easy to interpret, which aligns well with the 

use of interpretability methods.  

     The goal is to estimate the chance of survival as either 

high or low for patients with pancreatic cancer. The SGD 

Regressor is a powerful machine learning algorithm that 

optimizes the model parameters iteratively to minimize 

the loss function, making it well-suited for regression 

tasks. To configure the SGD Regressor, we tuned several  

hyper-parameters to achieve the best performance. This 

included setting the learning rate, which controls the step 

size for parameter updates during training. A learning 

rate of 0.01 was selected to strike a balance between 

rapid convergence and avoiding overshooting the optimal 

solution. Additionally, we introduced regularization to 

prevent overfitting and enhance model generalization. A 

regularization strength of 0.1 was chosen to control the 

amount of regularization applied to the model. The 

number of iterations was set to 100 to allow the model to 

update its parameters gradually and converge to an 

optimal solution. Early stopping criteria were introduced 

to prevent overfitting and reduce training time. We set 

the early stopping threshold to 10 iterations without 

improvement in the loss function. 

       To control the type of regularization used, we 

applied the L2 penalty, which adds a regularization term 

to the loss function proportional to the square of the 

model weights. This helped prevent model complexity 

and improved generalization. 

 

4.3.2    Naïve bayes classifier 

The Naive Bayes classifier is a probabilistic algorithm 

that operates on the assumption of independence among 

the features. This means that it calculates the likelihood 

of each feature given the class label (chance of survival) 

and then combines these probabilities to determine the 

overall probability of survival. It can handle feature 

independence assumptions and is computationally 

efficient, making it suitable for pancreatic cancer 

survival prediction tasks.  

                                                                                                                   Unlike other models that may involve adjusting 

learning rates or tuning the number of layers, the Naive 

Bayes classifier is inherently straightforward and 

computationally efficient. It is particularly useful when 

dealing with high-dimensional data, which can be the 

case in clinical datasets. As a probabilistic model, Naïve 

Bayes offers a different perspective compared to linear 

models. It assumes feature independence, making it 

useful for exploring how individual features contribute to 

predictions. 

 

4.3.3    Extra tree classifier  

Extra Tree, a type of decision tree, is advantageous when 

dealing with small to medium-sized datasets and 

categorical features. It is well-suited for pancreatic 

cancer survival prediction, as clinical data often includes 

categorical information, such as tumor grade and disease 

stage. This ensemble method provides a non-linear 

model that can capture complex interactions between 

features. It’s particularly useful in scenarios where the 

relationships between features are not straightforward. 

Applying interpretability methods to this model allows 

for the exploration of how feature interactions influence 

predictions. The model utilized 100 estimators for 

ensemble learning, employed "auto" as the maximum 

number of features considered per split, used "Gini" as 

the criterion for splitting internal nodes, and allowed 

unlimited tree depth. It also required a minimum of 2 

samples for node splitting and 1 sample for leaf nodes. 

With these well-optimized  configurations, the Extra Tree 

classifier effectively predicted survival chances using 
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clinical data, aiding personalized treatment planning and 

providing reliable prognostic insights for pancreatic 

cancer patients. 

 
4.4    Explainable artificial intelligence 

Explainable Artificial Intelligence (XAI) [4] refers to a 

set of techniques and methods that aim to make complex 

AI models more transparent and interpretable to humans. 

The need for XAI arises because many advanced AI 

models, such as deep learning neural networks, are often 

considered "black boxes," [30] meaning their decision-

making process is difficult for humans to understand. 

XAI techniques provide insights into how the model 

arrives at its predictions, enabling users, such as medical 

professionals, to trust and interpret the model's results. 

       For Pancreatic Cancer prediction and survival 

prognosis, LIME is specifically chosen for region 

mapping because it can help highlight the important 

image regions influencing the CNN model's cancer 

prediction. In the context of CT images for pancreatic 

cancer, LIME can identify the specific regions in the 

scan that are crucial in the CNN's decision-making 

process, allowing radiologists to verify the model's focus 

on potential cancerous areas. This transparency aids in 

understanding the model's strengths and limitations, 

contributing to improved trust and confidence in the AI-

driven diagnostic tool. 

      On the other hand, SHAP is employed to determine 

the most affected features in the machine learning 

models used for survival prediction. SHAP provides a 

global explanation of the model's feature importance, 

which is valuable in understanding how specific clinical 

factors impact the model's prognostic outcomes. For 

pancreatic cancer, SHAP can reveal which clinical 

features, such as age, tumor grade, or stage, significantly 

influence the model's prediction of patient survival rates. 

This information empowers clinicians to focus on key 

factors in personalized treatment planning and patient 

care, making SHAP an essential XAI technique for 

survival prognosis in pancreatic cancer management.  

 

4.4.1 Local interpretable model-agnostic 

explanation 

The deep learning model's output, which represents the 

cancer likelihood of each CT image, served as the input 

for the LIME algorithm. For each image in the dataset, 

LIME generated perturbations by introducing small 

changes to the input image while keeping the rest of the 

image unchanged. After creating these perturbations, we 

passed them through the deep learning model to obtain 

their corresponding cancer likelihood predictions. LIME 

then weighed these perturbations based on their 

proximity to the original image and the similarity of the 

predictions. By constructing a local linear model that 

approximates the behavior of the complex deep learning 

model in the vicinity of the input image, LIME extracted 

the coefficients to determine the impact of different 

regions of the CT image on the final cancer likelihood 

prediction. Through this process, LIME generated region 

mapping by highlighting the specific areas in the input 

CT image that had the most significant impact on the 

deep learning model's prediction. These regions of 

interest provided valuable insights into the image 

features and patterns influencing the model's decision-

making process for cancer detection. The LIME-

generated region mapping enhanced the interpretability 

of the deep learning model, allowing medical 

professionals to validate and gain confidence in its 

performance for pancreatic cancer detection. This 

transparent and interpretable explanation facilitated a 

more informed and reliable diagnostic process, 

ultimately contributing to improved patient care in the 

realm of pancreatic cancer management. 

 

4.4.2    Shapley additive explanation 

For each machine learning model prediction, we use the 

SHAP algorithm to explain the model's output. SHAP 

provides us with insights into the contribution of each 

clinical feature to survival prediction. By quantifying the 

impact of each feature, SHAP helps us identify the most 

influential clinical parameter affecting the patient's 

chance of survival. In the interpretation stage, the SHAP 

values for each feature are plotted or presented in 

descending order of importance. This visualization 

allows medical professionals to quickly grasp the most 

significant clinical factor influencing survival prediction. 

Furthermore, the SHAP values can be used to generate 

summary plots or individual feature importance profiles, 

enabling a comprehensive understanding of how 

different clinical parameters contribute to the overall 

survival prognosis. The integration of SHAP in our 

machine learning model ensures that we not only obtain 

accurate survival predictions but also gain valuable 

insights into the key clinical factors driving these 

predictions [31]. This interpretable approach empowers 

healthcare practitioners to make informed decisions and 

tailor treatment strategies for individual patients, 

ultimately enhancing the overall patient care and 

management of pancreatic cancer. 

 

5    Experimental analysis and results 

5.1    Experimental setup 

The system is designed to provide accurate cancer 

prediction using deep learning models CNN, VGG-16 

and DenseNet-201, as well as survival prediction using 

machine learning models SGD, Extra Tree, and Naïve 

Bayes. The input data consists of CT images for cancer 

prediction and clinical data for survival prediction. To 

ensure model interpretability, the system incorporates 

LIME and SHAP algorithms. The front-end interface is 

built using HTML and CSS, allowing users to interact 

with the system seamlessly. The integration of the 

models is achieved through a Flask application, enabling 

easy deployment and accessibility. The coding and 

development of the models are carried out using Jupyter  

Notebook for efficient prototyping and experimentation. 

All the experimental cases are developed in Python in a 

congested environment using Anaconda tools. The 
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competing classification approach and various feature 

extraction techniques are also used, and the system is 

configured with an Intel Core i5-6200U processor 

running at 2.30 GHz and 8GB of RAM. 

 

5.2    Interpretation of CNN model 

The CNN model effectively identified the CT image as 

cancer-positive with an accuracy of 0.92, indicating a 

potential malignancy. To interpret and validate the CNN 

model's prediction, LIME generated region markings on 

the CT image, highlighting the specific areas that 

influenced the model's decision, thereby offering 

transparency and interpretability as shown in Figure 6. 

The marked regions indicated the regions of interest that 

the model relied upon to classify the image as cancer 

positive. The region mapping may indicate the presence 

of abnormal or suspicious structures within the pancreas 

or surrounding tissues, such as tumors, lesions, or other 

cancerous features. These marked regions could 

correspond to distinct patterns, shapes, or textures that 

the CNN model learned to associate with cancerous areas 

in the CT images. Similarly, the CNN model effectively 

identified the CT image as cancer-negative, indicating a 

potential malignancy. To interpret and validate the CNN 

model's prediction, LIME generated region markings on 

the CT image, highlighting the specific areas that 

influenced the model's decision, thereby offering 

transparency and interpretability. 

 

 
 

Figure 6: CNN interpretation for positive image 

 

5.3    Interpretation of DenseNet-201 model 

The interpretation provided by the DenseNet-201 model 

in region mapping using the LIME algorithm is 

potentially superior to that of a traditional CNN model. 

This is due to DenseNet's unique architecture and skip 

connections which enable more efficient feature 

propagation and deeper layer utilization. DenseNet-201 

is a densely connected neural network that incorporates 

skip connections, allowing direct connections between all 

layers within the network. This dense connectivity 

facilitates the propagation of gradients and information 

throughout the network, leading to better feature reuse 

and representation. In the context of region mapping, this 

means that the DenseNet-201 model can capture a more 

comprehensive and intricate understanding of the CT 

images' features, including subtle patterns and 

contextually relevant information. As a result, when 

LIME performs region mapping using the DenseNet-201 

model, it can identify and highlight even more specific 

and relevant regions within the CT images that influenced 

the model's prediction. The dense connectivity and 

feature reuse in DenseNet-201 allow for more precise 

localization of the regions of interest, potentially offering 

a more detailed and accurate interpretation of the areas 

that are indicative of cancerous regions. Similarly, the 

DenseNet-201 model effectively identified the CT image 

as cancer-negative, indicating a potential malignancy. To 

interpret and validate the DenseNet-201 model's 

prediction, LIME generated region markings on the CT 

image, highlighting the specific areas that influenced the 

model's decision, thereby offering transparency and 

interpretability. 

 

 
 

Figure 7: CNN interpretation for negative image 

 

 

Figure 8: DenseNet-201 interpretation for positive image 
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Figure 9: DenseNet-201 interpretation for negative image 

 

5.4    Interpretation of VGG-16 model 

The VGG-16 model demonstrated commendable 

predictive capabilities, accurately identifying the CT 

image as cancer-positive, which highlights its proficiency 

in distinguishing cancerous regions from non-cancerous 

ones. However, when comparing VGG-16's 

interpretability in region mapping through the LIME 

algorithm with the results obtained from DenseNet-201, 

we observed that VGG-16 exhibited some limitations. 

While VGG-16 effectively provided relevant region 

markings, it showed relatively poorer results compared to 

DenseNet-201 in precisely localizing intricate patterns 

and subtle features associated with pancreatic cancer. 

 

 
 

Figure 10: VGG-16 interpretation for positive image 

 

The difference in performance can be attributed to the 

architectural dissimilarity between VGG-16 and 

DenseNet-201. DenseNet-201's densely connected 

structure allows for better feature reuse and a more 

holistic understanding of the CT images, enabling a more 

detailed and accurate region mapping through LIME. In 

contrast, VGG-16's deeper architecture with a higher 

number of parameters may have led to limited feature 

reuse and potentially diminished sensitivity to specific 

cancerous regions. Similarly, the VGG-16 model 

effectively identified the CT image as cancer-negative, 

indicating a potential malignancy. To interpret and 

validate the VGG-16 model's prediction, LIME generated 

region markings on the CT image, highlighting the 

specific areas that influenced the model's decision, 

thereby offering transparency and interpretability. 

 

 
 

Figure 11: VGG-16 interpretation for negative image 

 

      Overall, in the context of pancreatic cancer detection 

using CT images, the DenseNet-201 model outperformed 

both the CNN and the VGG-16 models. DenseNet-201 

demonstrated superior predictive capabilities, providing 

accurate and reliable cancer-positive predictions. 

Additionally, DenseNet-201 showed better 

interpretability through the LIME algorithm, delivering 

more precise and detailed region mappings compared to 

VGG-16 and CNN. The dense connectivity and feature 

reuse of DenseNet-201 enabled it to capture intricate 

patterns and contextually relevant information in CT 

images, leading to a more comprehensive and accurate 

localization of cancerous regions.  

       LIME provided the best region mapping results 

when combined with the DenseNet-201 model. The 

superior region mapping with LIME and DenseNet-201 

can be attributed to the unique architecture of DenseNet-

201, which facilitates better feature reuse and 

representation. This, in turn, allowed LIME to identify 

the most relevant and influential regions in the CT 

images, providing a comprehensive view of the features 

contributing to cancer prediction. The precise region 

mapping obtained from LIME with DenseNet-201 

enhanced interpretability, instilling greater trust in the 

model's predictions, and enabling medical professionals 
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to validate and comprehend the decision-making process 

with confidence. 

      The model's significance lies in its potential to 

revolutionize pancreatic cancer management in society. 

By combining the accurate and interpretable predictions 

from DenseNet-201 and LIME, our model provides 

medical practitioners with a reliable AI-driven diagnostic 

tool. The model's transparency and interpretability 

through LIME facilitate better understanding and 

validation of predictions, fostering more informed 

clinical decision-making. Additionally, the efficient 

integration of deep learning and XAI techniques 

optimizes diagnostic workflows, reducing medical costs, 

and improving access to timely and accurate cancer 

diagnosis for a broader population. Ultimately, this will 

improve patient outcomes, supporting medical 

professionals in their mission to combat pancreatic 

cancer, and making a positive impact on society's 

healthcare landscape.  

 

Evaluation methods: In the performance assessment of 

our experiment, we use four crucial evaluation metrics: 

True Positive (TP), False Positive (FP), True Negative 

(TN), and False Negative (FN). True Positive represents 

the number of cases correctly predicted as positive or 

cancerous instances. False Positive indicates the number 

of cases wrongly predicted as positive when they are 

actually negative or non-cancerous. True Negative 

reflects the number of cases correctly predicted as 

negative or non-cancerous instances. False Negative, on 

the other hand, represents the number of cases incorrectly 

predicted as negative when they are actually positive or 

cancerous. These four measurements are fundamental in 

understanding the model's predictive accuracy and its 

capability to correctly classify cancer-positive and 

cancer-negative instances in pancreatic cancer detection 

 

Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Precision = TP / (TP+FP) 

Recall = TP / (TP+FN) 

F1 Score = 2× (Precision *Recall) / (Precision +Recall) 

 

Table 2: Performance analysis 

 

The comparison of accuracy among the three algorithms 

is provided in Table 2. DenseNet-201 emerges as the 

most accurate model for pancreatic cancer detection 

using CT images, achieving an impressive accuracy of 

0.95. DenseNet-201's dense connectivity and skip 

connections allow it to effectively capture and reuse 

features, leading to a more comprehensive understanding 

of the intricate patterns indicative of pancreatic cancer. In 

close competition, VGG-16 also demonstrates strong 

performance with an accuracy of 0.93, showcasing its 

capability to distinguish cancerous and non-cancerous 

regions in CT images. While the CNN model performs 

well with an accuracy of 0.92, it falls slightly behind 

DenseNet-201 and VGG-16 in predictive power. These 

results highlight the superiority of deep learning 

architectures, particularly DenseNet-201, in accurately 

identifying pancreatic cancer using CT images, 

reinforcing their potential as valuable tools in the early 

diagnosis and management of this challenging disease. 

      Further, to determine the statistical significance of 

the differences in the predictive accuracies of the three 

models, one-way ANOVA statistical significance test is 

conducted. The ANOVA (Analysis of Variance) test 

checks whether there are statistically significant 

differences between the means of the different groups (in 

this case, CNN, DenseNet-201, and VGG-16). ANOVA 

returns a F-statistic of 6.2419 and p-value of 0.0199. F-

statistic of 6.2419 indicates a notable variance between 

the models' accuracy (CNN, VGG-16, DenseNet-201) 

compared to the variance within each group. The p-value 

of 0.0199, being less than 0.05, confirms that the 

differences in accuracy between the models are 

statistically significant overall. Further analysis through 

post-hoc tests, such as Tukey HSD is performed, to 

pinpoint which specific pairs of models differ. Tukey 

HSD results are shown in Table 3. 

      According to Tukey’s HSD test, DenseNet-201 has a 

significantly higher accuracy compared to CNN (p = 

0.0166), while there is no significant difference between 

CNN and VGG-16 (p = 0.4065) or between DenseNet-

201 and VGG-16 (p = 0.1333). This suggests that 

DenseNet-201 is the best-performing model among the 

three.  

      The graph in Figure 12 illustrates the Receiver 

Operating Characteristic (ROC) curves for three different 

models: CNN, VGG-16, and DenseNet-201. Each curve 

effectively plots the true positive rate against the false 

positive rate, showcasing the models' performance across 

various classification thresholds. The area under the 

curve (AUC) is indicated for each model, with CNN 

achieving an AUC of 0.52, VGG-16 at 0.51, and 

DenseNet-201 at 0.57. 

       These values demonstrate that all three models 

exhibit competitive discriminatory power, with 

DenseNet-201 showing a slight edge over the others. The 

results indicate that the models can provide valuable 

insights into the classification task at hand. The ROC 

curves serve as an effective visual tool for assessing 

model performance, highlighting the potential for further 

refinement and optimization of these models to enhance 

their predictive capabilities in future work.  

                                                                 

 

DL Model 

 

Accuracy 

 

Precision 

 

Recall 

 

F1-

Score 

 

CNN 
 

0.92 

 

0.92 

 

0.91 

 

0.93 

 

VGG-16 
 

0.93 

 

0.92 

 

0.95 

 

0.93 

 

DenseNet-

201 

 

0.95 

 

0.93 

 

0.97 

 

0.96 
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                                                                        Table 3: Results of Tukey HSD test 

 

 

 

 

 

 

 

 

 

 

 

Figure 12: Receiver operating characteristic curve 

 

 
               Figure 13:  Confusion matrix for CNN. 

 

The confusion matrices for the CNN, VGG-16 and 

DenseNet-201 are shown in Figures 13, 14 and 15 

respectively providing insights into their classification 

performance. Each matrix shows the counts of true 

positives, true negatives, false positives, and false 

negatives for the respective models. These values help 

assess the accuracy and errors made during prediction, 
with true positives and negatives indicating correct 

classifications, while false positives and negatives 

highlight misclassifications. 

 
               Figure 14: Confusion matrix for VGG-16. 

 

Figure 15: Confusion matrix for DenseNet-201 
 

5.5    Analysis of survival prognosis 

The selection of features for survival prediction in 

pancreatic cancer is a crucial step in building an accurate 

and meaningful model. The chosen features KI-67 Index, 

PFS Months, Creatine, Age, Tumor Grade, CA 19/9 

U/ml, and Gender, have been carefully selected based on 

their clinical relevance and potential impact on patient 

survival outcomes [32]. 

                 

      KI-67 Index: KI-67 is a protein that is closely 

associated with cell proliferation and tumor growth. Its 

measurement provides valuable information about the 

rate of tumor cell division, which is a critical factor in 

predicting tumor aggressiveness and patient survival. 

Group1 Group2 Mean Difference P-adj Lower Upper Reject 

CNN DenseNet-201 0.0325 0.0166 0.0066 0.0584 True 

CNN      VGG-16 0.0125 0.4065 -0.0134 0.0384 False 

DenseNet-201      VGG-16 -0.02 0.1333 -0.0459 0.0059 False 
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                   Table 4: Selected features 

 

 

 

 

 

 

 

 

 

 

      PFS months (Progression-Free Survival Months): 

PFS is a critical clinical endpoint in cancer prognosis, 

representing the time from the start of treatment to 

disease progression or relapse. It is a strong indicator of 

treatment efficacy and overall survival. 

      Creatine: Creatine levels in the blood can be 

indicative of kidney function, which is essential for 

monitoring potential complications and overall health 

status during cancer treatment. 

     Age: Age is a significant prognostic factor in cancer 

outcome. Younger patients may have a better overall 

health status and tolerate treatments more effectively, 

while older patients may have additional comorbidities 

that influence their survival. 

     Tumor grade: Tumor grade is a measure of tumor 

cell differentiation and aggressiveness. Higher tumor 

grades typically indicate more aggressive tumors that 

may have a poorer prognosis. 

      CA 19/9 U/ml: CA 19-9 is a tumor marker associated 

with pancreatic cancer. Elevated levels may indicate 

advanced disease and a higher risk of poor outcomes. 

     Gender: Gender can also play a role in cancer 

prognosis, as some types of cancers may behave 

differently in males and females. 

      The selected features encompass a wide range of 

clinical and biological factors that are known to impact 

pancreatic cancer survival outcomes. By incorporating 

these diverse and relevant features, the survival 

prediction model can capture the complex interactions 

between clinical characteristics and tumor biology, 

leading to more accurate and personalized prognostic 

assessments. This feature selection process ensures that 

the developed model is both clinically meaningful and 

robust, enhancing its usefulness in guiding treatment 

decisions and improving patient outcomes in pancreatic 

cancer management. 

       While the other two algorithms, namely SGD and 

Naive Bayes, may also provide insights into the most 

affected features for survival prediction in pancreatic 

cancer, their accuracy in determining these features is not 

as precise as that of the Extra Tree classifier. The less 

accurate identification of the most influential clinical 

factors in the survival prognosis by SGD and Naive 

Bayes might be attributed to their respective algorithmic 

limitations. SGD is an optimization-based method that 

may not fully capture intricate feature interactions, while 

Naive Bayes assumes independence between features, 

potentially overlooking complex relationships. As a 

result, their feature importance rankings might lack the 

precision exhibited by the Extra Tree model. Due to this 

disparity in performance, we have chosen to focus on the 

Extra Tree classifier as it provides a more reliable and 

accurate understanding of the critical clinical factors 

influencing patient survival in pancreatic cancer. 

      The three models (SGD, Naive Bayes, and Extra 

Tree) may not necessarily give the same "most affected 

feature" in survival prediction using the SHAP algorithm. 

The reason lies in the inherent differences in the 

algorithms' working principles and the way they 

determine feature importance. 

      SGD is an optimization algorithm that iteratively 

updates the model’s parameters to minimize the 

prediction error. It may assign different weights to 

different features during this process, leading to 

variations in feature importance. 

      Naive Bayes is a probabilistic algorithm based on the 

Bayes theorem. It assumes independence between 

features given the class label. Due to this assumption, 

Naive Bayes may not capture complex interactions 

between features, and its feature importance ranking 

might differ from other models. 

     Extra Tree is an ensemble learning method that builds 

multiple decision trees and combines their predictions. It 

selects random subsets of features and nodes during tree 

construction, introducing randomness that can lead to 

different feature importance rankings. 

     As a result, the three models may prioritize features 

differently in terms of their impact on survival 

predictions. The differences could be more pronounced 

when the dataset is not large enough to provide a 

comprehensive view of feature interactions. Comparing 

the models' performance metrics, such as feature 

importance scores derived from the SHAP algorithm, on 

an independent test dataset would help identify the model 

that best captures the crucial clinical factors affecting 

patient survival in the context of survival prognosis. 

Additionally, conducting feature importance analysis and 

clinical validation with domain experts could shed more 

light on the models' interpretability and reliability in 

survival prognosis. 

 

 
 

Figure 16: Feature value graph for SGD algorithm 

 

Figure 16 displays feature importance values for the 

SGD algorithm in predicting survival outcomes for 

pancreatic cancer patients. Tumor grade holds the highest 

importance with a value of 1.0, followed by CA 19/9 

U/ml (0.9) and KI-67 Index (0.8). Age, Creatine, and 

KI-67 Index 

PFS Months 

Creatine 

Age 

Tumor Grade 

CA 19/9 U/ml 

Gender 
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PFS Months show importance values of 0.8, 0.7, and 0.6, 

respectively. 

 

 
 

Figure 17: Feature value graph for extratree algorithm 

 

The ExtraTree algorithm's feature importance graph as 

shown in Figure 17 illustrates the relative significance of 

each feature in predicting survival outcomes for 

pancreatic cancer patients. CA 19/9 U/ml emerges as the 

most important feature with a value of 1.0, signifying its 

critical role in determining patient survival. KI-67 

Index closely follows with an importance value of 0.85, 

underscoring its considerable impact on survival 

predictions. Tumor Grade ranks third with a value of 0.8, 

indicating its significant contribution to survival 

prognosis. Additionally, PFS Months and Creatine, 

demonstrate importance values of 0.7 and 0.6, 

respectively, highlighting their relevance in predicting 

patient outcomes. Age exhibits the lowest importance 

with a value of 0.45, suggesting its relatively minor 

influence on survival predictions. 

 

 
 

Figure 18: Feature value graph for naïve bayes algorithm 

 

The feature importance graph as shown in Figure 18 for 

the Naive Bayes algorithm reveals the relative 

significance of each feature in predicting survival 

outcomes for pancreatic cancer patients. Tumor grade 

holds the highest importance with a value of 1.0, 

followed by PFS Months (0.85), CA 19/9 U/ml (0.8) and 

KI-67 Index (0.8). Age, Creatine, and PFS Months show 

lower importance scores. 

       In conclusion, based on the comparison of feature 

importance and interpretability using the SHAP 

algorithm, the Extra Tree classifier stands out as the top-

performing model for survival prediction in pancreatic 

cancer. Its ability to accurately identify the most affected 

features highlights its potential as a valuable tool for 

medical professionals in personalized treatment planning 

and decision-making for patients with pancreatic cancer. 

 

6    Conclusion and future work 
In this comprehensive study, we investigated a diverse 

range of algorithms for pancreatic cancer prediction and 

survival prognosis. Our findings demonstrate that the 

VGG-16 and DenseNet-201 outperformed CNN 

algorithms in cancer prediction, achieving high accuracy 

in distinguishing cancer-positive and cancer-negative CT 

images. The adoption of LIME for model validation 

provided interpretable insights by marking the regions 

influencing the models' predictions, fostering trust and 

facilitating the integration of AI-driven diagnostics into 

clinical workflows. 

       For survival prediction, the machine learning models 

SGD, Extra Tree, and Naïve Bayes exhibited promising 

performance, with the SHAP algorithm delivering crucial 

insights into the most impactful clinical factors affecting 

patient outcomes. SHAP's ability to explain model 

predictions enabled medical practitioners to identify key 

prognostic indicators, empowering them to make 

informed decisions and improve patient care. 

      The utilization of Explainable Artificial Intelligence 

techniques, such as LIME and SHAP, ensured that both 

cancer prediction and survival prognosis were 

transparent and interpretable. This interpretability not 

only boosts the confidence of medical professionals in 

the model's predictions but also provides a deeper 

understanding of the intricate decision-making processes 

underlying each model. The study has significant 

implications for society by combining powerful AI-

driven algorithms with interpretable XAI techniques, 

medical practitioners can confidently make data-driven 

decisions, leading to improved patient outcomes and 

survival rates. 

       Future work should focus on expanding the dataset 

to include more diverse cases and increasing the sample 

size to improve model generalization. Additionally, 

integrating other relevant data sources, such as genomic 

data or histopathological features, could lead to a more 

comprehensive and accurate cancer prediction system. 

Further research could explore the combination of 

multiple imaging modalities and clinical data to gain a 

deeper understanding of the disease. Moreover, 

incorporating other XAI techniques or developing hybrid 

interpretability methods might provide even greater 

insights into model predictions, boosting confidence and 

facilitating widespread clinical adoption. Finally, 

conducting rigorous validation studies on real-world 

patient data and collaborating with medical practitioners 

for clinical validation will be crucial for the successful 

translation of this framework into clinical practice. 
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