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 Convolutional neural networks (CNNs) have exceptionally performed across various computer vision 

tasks. However, their effectiveness depends heavily on the careful selection of hyperparameters. 

Optimizing these hyperparameters can be challenging and time-consuming, especially when working with 

large datasets and complex network architectures. In response, we propose a novel approach for 

hyperparameter optimization in CNNs using the Salp Swarm Algorithm (SSA). Based on the natural 

behavior of mollusks, SSA mimics the collective intelligence that governs feeding and navigation. Taking 

advantage of SSA's unique properties, our research thoroughly explores the hyperparameter space. This 

exploration aims to identify the algorithm that maximizes CNNs performance. This paper presents the 

architecture of the SSA-based framework for hyperparameter optimization and compares it to other 

established optimization techniques, such as Particle Swarm Optimization (PSO) and Genetic Algorithm 

(GA). We also present experimental results using the MNIST and fashion MNIST datasets, achieving an 

impressive classification accuracy of 99.46% for MNIST and 94.53% for fashion-MNIST. This case study 

not only contributes to the fields of deep learning and hyperparameter optimization by demonstrating the 

effectiveness of SSA in optimizing CNNs, but it also provides benefits to researchers and practitioners 

who are looking for optimal hyperparameter configurations for CNNs in a variety of computer vision 

applications. We also evaluate the scalability and robustness of our proposed method in the context of 

different CNNs structures. The insights we gained highlight SSA's potential for addressing challenges 

related to hyperparameter optimization. 

Povzetek: Članek predstavlja optimizacijo hiperparametrov v konvolucijskih nevronskih mrežah s 

pomočjo algoritma Salp Swarm, ki izboljša učinkovitost in natančnost. 

 

1 Introduction 
Deep learning has emerged as a powerful and versatile 

field within the broader domain of machine learning [1]. It 

has revolutionized various domains, such as computer 

vision, natural language processing, and speech 

recognition [2, 3]. One of the fundamental techniques used 

in deep learning is convolutional neural networks (CNNs), 

which have demonstrated exceptional performance in 

image recognition, object detection, and classification 

tasks. 

CNNs are designed to process grid-like data, such as 

images, by capturing spatial and hierarchical relationships 

between different features. Their architecture consists of 

multiple layers, including convolutional (Conv.), pooling, 

and fully connected layers (FC layers), allowing them to 

automatically extract meaningful features from input data 

[4]. This inherent capability makes CNNs highly effective 

in analyzing visual data and extracting intricate patterns 

that may not be discernible to the human eye [5]. 

While CNNs offer numerous advantages, including their 

ability to handle large amounts of data, learn complex 

representations, and achieve state-of-the-art performance 

in various tasks, they also possess specific weaknesses [6]. 

One of the critical challenges in utilizing CNNs effectively 

is selecting appropriate hyperparameters [7]. 

Hyperparameters are the configuration settings that 

control the behavior and performance of a CNNs model, 

such as learning rate, batch size, dropout rate, and kernel 

size [8]. 

The optimal selection of hyperparameters significantly 

impacts CNN models' performance and convergence 

speed. However, choosing the right combination of 

hyperparameters is a challenging and time-consuming 

task. Traditional methods, such as grid search, random 

search, and Bayesian optimization, suffer from 

computational inefficiency and may not explore the entire 

hyperparameter space effectively. Therefore, there is a 

need for advanced techniques that can efficiently and 

effectively optimize hyperparameters for CNNs [9]. 
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In recent years, metaheuristic optimization algorithms 

have gained significant attention in deep learning for 

hyperparameter optimization. One such algorithm is the 

salp swarm algorithm (SSA), inspired by the collective 

behavior of natural salp swarms. SSA is a population-

based metaheuristic algorithm that mimics the social 

behavior of salps to search for the global optimum in a 

given search space. It has shown promising results in 

solving various optimization problems since its proposal, 

including feature selection, neural network training, 

clustering analysis, image processing, engineering 

optimization, and financial portfolio optimization. 

The current work is a step forward in this regard. It focuses 

on investigating the effectiveness of SSA in optimizing 

hyperparameters for CNNs. We will conduct experiments 

using the MNIST dataset [10] and fashion MNIST [11] 

and compare the performance of SSA with other methods. 

SSA is chosen for its ability to approximate optimal 

solutions with satisfactory convergence rates and solution 

space coverage. Its straightforward mathematical 

framework makes it simpler to comprehend and 

implement [12]. The results obtained will provide valuable 

insights into the efficiency and effectiveness of SSA for 

hyperparameter optimization in CNNs and contribute to 

the ongoing research efforts in improving the performance 

of deep learning models. 

This paper is structured as follows: Section 2 delves into 

prior research focused on enhancing CNNs. Moving to 

Section 3, we explore the components and tools integral to 

CNNs. Our proposed work is introduced in Section 4, 

while Section 5 is dedicated to presenting our 

experimental evaluation. The outcomes and analysis of our 

experiments are detailed in Section 6, and in Section 7, we 

conclude the paper while also addressing potential 

avenues for future research. 

2   Related work 
Many researchers have used different techniques to 

automatically set hyperparameters and choose the 

structure for CNNs. This is done to avoid the additional 

voltage and time required for manual network construction 

and to improve the performance of CNNs. In this section, 

we preview the state-of-the-art studies in this field and 

summarize them in Table 1. 

Some researchers use particle swarm optimization 

(PSO) to improve the accuracy of CNNs. In [13], PSO was 

recommended for use in CNNs. To increase accuracy, 

PSO is used in the training phase to optimize the results of 

the solution vectors on CNNs. 

In [14], CNNs were optimized using microcanonical 

annealing. As suggested by the authors, the performance 

of the original CNNs may be significantly improved using 

this proposed method. 

In [15], a genetic algorithm (GA) was used to optimize 

multiple parameters of CNNs at once. Various types and 

ranges of GA parameters were also used. After a lengthy 

process, an approximation to the global optimal solution 

emerged. Training a large amount of data at once did not 

result in high precision. 

In [16], the authors suggest using distributed particle 

swarm optimization (DPSO) to improve the 

hyperparameters of CNNs for image classification tasks. 

The DPSO method employs a mixed-variable encoding 

strategy and associated update operations for each particle 

to encode CNNs, enabling automatic and global search for 

the best CNNs model. The method also employs a 

distributed framework to reduce execution time and 

accelerate optimization. However, one possible drawback 

is the requirement for many particles to achieve good 

results, which can increase computational complexity. 

In [17], the authors proposed an automatic method 

incorporating enhanced metaheuristic algorithms (the tree 

growth and firefly algorithms) for optimizing 

hyperparameters and designing structures. However, the 

proposed methods had a higher computational cost, 

restricting the inclusion of more datasets in the study. 

In [18], the researchers proposed optimizing CNNs 

hyperparameters using linearly decreasing weight particle 

swarm optimization (LDWPSO). The architecture of this 

model is LeNet-5. They mentioned the need for additional 

research and testing to validate the method's effectiveness. 

Additionally, they did not discuss potential limitations or 

challenges associated with the proposed method, such as 

computational complexity or convergence issues. 

In [19], this work discusses a method for image 

classification that utilizes histograms of oriented gradient 

(HOG) features, gray-level co-occurrence matrix (GLCM) 

features, and support vector machine (SVM) for 

classification. The authors used the fashion-MNIST 

dataset to examine the accuracy of this method, and they 

obtained an accuracy of 91.59%. 

The work in [20] focuses on the swarm intelligence 

component of the OpenNAS system for neural architecture 

search (NAS). The authors use PSO and ACO swarm 

algorithms with transfer learning for feature extraction 

(VGG16). 

In [21], the study introduces the competitive 

activation function (CAF) concept and derives the 

parameter-free rectified exponential unit (PFREU) as a 

particular kind of CAF. The authors use two architectures 

for classification: LeNet-5 on fashion-MNIST and 

ResNet-110 on CIFAR-10. 

In [22], the authors presented IntelliSwAS, a method 

for optimizing deep neural network architectures for 

classification and regression tasks. They used DAGRNN 

[23] to improve the search technique. IntelliSwAS 

effectively located high-quality CNNs cells, but these cells 

had to be manually incorporated into larger CNNs 

architectures. 

In [24], this study proposed a hybrid particle swarm 

optimization and grey wolf optimization (HPSGW) 

algorithm to optimize these hyperparameters and enhance 

the accuracy of the CNNs model. 

In [25], the authors proposed a simple deterministic 

selection genetic algorithm (SDSGA) to optimize the 

hyperparameters of two well-known machine learning 

models: CNNs and the random forest (RF) algorithm. 

 

In [26], the authors use a multiple convolutional neural 

network (MCNN15) with 15 convolutional layers. 
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     In [27], the proposed work compared the performance 

of CNNs and ANNs for image classification on the 

Fashion-MNIST apparel dataset using various optimizers. 

         In [28], the study employed large-scale deep learning 

networks such as VGG16 and ResNet to enhance 

classification accuracy and an approximate dynamic 

learning rate update algorithm to ensure rapid convergence 

and reduced training time. 

     In [29], the authors utilized the local autonomous 

competitive harmony search (LACHS) algorithm to 

achieve the highest classification accuracy on the Fashion-

MNIST and CIFAR-10 datasets. The VGGNet was the 

main network used for experimental research in this work.  

 

 

 

Ref. year Method 
Parameters for 

optimization 
Limitations Dataset 

Accur

acy % 

[13] 2016 CNN-PSO kernel size, pool size, 

learning rate 
• CNNPSO consumes a longer time 

than CNN. 

• CNNPSO accuracy is slightly lower 

than CNN optimized with simulated 

annealing. 

MNIST 95.08 

 

[14] 2017 CNN-MAA kernel size, pool size • MA needs more processing time 

 

MNIST 98.75 

 

[15] 2019 GA Learning rate, dropout, 

batch size, no. of 

layers 

• The experiment took a long because 

of the large dataset. 

MNIST 99.4 

[16] 2020 PSO 

(DPSO) 

kernel size, type of 

pooling, Activ.Fun. in 

FC, dropout, Learning 

rate 

• Many particles required for good 

results can increase computational 

complexity. 

MNIST, 

Fashion-MNIST 

99.3, 

 92.92 

[17] 2020 SI (tree 

growth & 

firefly) 

algorithms 

no. of convolution,  

no. of FC,  

kernel size,  

no. of kernels per 

conv. layer,  

FC-layer size  

• Use a single dataset to evaluate the 

accuracy of the method. 

MNIST 99.18 

[18] 2020 PSO 

(LDWPSO) 

no. of kernels, kernel 

size, activation fun.,  

no. of neurons, batch 

size, optimizer  

• The technique uses a simple and 

basic CNN architecture (LeNet-5). 

• There is a lack of comparison with 

other optimization methods or CNN 

architectures. 

MNIST 98.95 

[20] 2020 PSO & ACO  no. of kernels, kernel 

size, dropout rate 
• There is no comparison with other 

neural architecture search methods 

and no performance-efficiency 

trade-off analysis. 

Fashion-MNIST 94.5 

[21] 2021 CAF activation fun. • There is no comparison to other 

state-of-the-art activation functions. 

• There is no theoretical analysis of 

CAF. 

• There is no investigation of 

hyperparameter impact on 

performance. 

Fashion-MNIST 91.21 

[22] 2022 PSO 
(IntelliSwAS) 

convolution, 

depthwise-separable 

convolution, dilated 

convolution 

• IntelliSwAS found high-quality 

CNN cells but required manual 

incorporation into larger CNN 

architectures. 

MNIST 95 

 

[24] 2022 PSO&GWO 

(HPSGW) 

No. of Kernel, Kernel 

Size, Batch size 

No. of Epochs 

• It can optimize a few CNN 

hyperparameters. 

• High computational cost. 

MNIST 99.4 

 

[25] 2022 GA 

SDSGA 

learning rate, 

batch size 
• Selection may reduce diversity, and 

a fixed mutation rate may not work 

for all problems. 

MNIST 99.2 

[26] 2022 MCNN15 no. of the kernel, 

kernel size, batch size, 

no. of neurons 

• There is no evaluation of model 

performance or comparison to state-

of-the-art. 

Fashion-MNIST 94.04 

Table 1: Summarization of the related works. 
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[27] 2022  ANN and 

CNN  

optimizer • Difficulty handling complex or 

novel images. 

• Sensitivity to hyperparameter 

choices. 

• High computational cost and time 

consumption. 

Fashion-MNIST 91 

[28] 2023 VGG16, 

ResNet, and 

approximate 

dynamic 

learning rate 

update 

algorithm 

learning rate • Deep network hierarchies and 

complex parameters can overfit, 

limiting training time, especially 

with small samples. 

Fashion-MNIST 93 

[29] 2023 LACHS no. of the kernel, 

kernel size, Activ.Fun. 

in conv., no. of 

neurons, learning rate, 

batch size, Momentum 

• No comparison to other 

hyperparameter optimization 

techniques makes it hard to evaluate 

the usefulness and superiority of 

LACHS. 

Fashion-MNIST 93.34 

3 Tools 
In this section, we look at the necessary background for 

the two main techniques used in our proposed approach: 

CNNs and SSA. 

3.1 Convolution neural networks (CNNs) 

CNNs represent a category of deep neural networks that 

have gained significant prominence in computer vision 

applications. These networks have revolutionized the field 

by achieving cutting-edge results across various tasks. 

They have proven their mettle in diverse domains, such as 

handwriting recognition [30], automotive safety [31], 

video surveillance [32], face detection [33], semantic 

segmentation [34], and speech recognition [35]. This 

versatility has rendered them indispensable in modern 

computing systems. 

Explicitly designed for data with a grid-like structure, such 

as images, CNNs have surged in importance due to their 

capacity to automate the once manual and time-intensive 

feature extraction process. At the heart of CNNs lies a 

pivotal feature: weight sharing. By sharing weights, these 

networks reduce the number of trainable parameters, a feat 

that enhances generalization capabilities and curbs 

overfitting issues. 

Unlike traditional neural networks, CNNs capitalize on the 

intrinsic spatial organization present in images. This 

enables them to capture local relationships and learn 

hierarchical representations. The architecture of CNNs 

encompasses a multi-stage structure, integrating both 

linear and nonlinear operations to undertake feature 

extraction and classification. 

The initial feature extraction stage encompasses a 

sequence of primary layers, including the Conv. layer 

housing an activation function  (Act. Fun.) and a 

subsequent pooling layer. Conversely, the classification 

stage contains numerous FC layers [36]. It is important to 

note that this architecture necessitates substantial data for 

training, demanding a significant time investment and 

considerable expertise for manual construction. To 

address this, many optimization techniques have been 

deployed to fine-tune hyperparameters and structures [37]. 

Researchers have engineered several CNNs models, 

training them on specific problem areas using varied 

datasets and achieving impressive results within these 

domains. Leveraging a pre-trained network involves 

tailoring it to a particular task. Commonly referred to as 

"transfer learning," this approach enables the classification 

of images across a vast array of 1,000 distinct categories, 

avoiding the need to build CNNs from scratch. The fine-

tuning of hyperparameters through transfer learning can 

involve freezing or unfreezing layers [38]. 

An array of pre-trained models, including DenseNet [25], 

EfficientNet [26], MobileNetV3 [27], and more, offer 

additional options for developers and researchers in this 

realm. 

The overall structure of the network is built in the form of 

layers stacked on top of each other to process the data that 

enters it, extract features from it, and classify it according 

to the problem. These layers are: 

3.2 Input layer 

The input layer, which is the leftmost layer, represents the 

input image to the CNNs.  

3.3 Convolutional layers 

The convolutional layers are the foundation of CNNs. 

They contain the learned kernels (filters, weights) that are 

used to extract features from images. This is done by 

convolving the input image with a stack of kernels. Each 

kernel extracts a specific feature, such as edges, textures, 

or object parts [39]. By using multiple kernels, CNNs can 

capture a variety of spatial patterns. This allows them to 

automatically learn relevant visual features without 

requiring manual feature engineering. 

Each convolutional layer has a set of hyperparameters that 

are initialized before the layer is used. These 

hyperparameters determine the number of connections and 

output size for the feature maps. The hyperparameters are: 
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• Number of filters: This determines the depth of the 

resulting feature maps. 

• Filter size: This gives the spatial dimensions of the 

filters. 

• Padding: This determines the amount of zero-padding 

applied to the input data. 

• Stride: This specifies the step size for shifting the filters 

over the input. 

 

After all layers with weights (also known as trainable 

layers, such as Conv. layers and FC layers) in CNNs 

architecture, nonlinear activation layers are used. The non-

linearity of the activation layers means that the mapping 

from input to output is nonlinear. This allows the CNNs to 

learn complex things [9]. CNNs commonly use the 

rectified linear unit (ReLU), sigmoid, and hyperbolic 

tangent (tanh) activation functions. ReLU is the most 

popular Act. Fun. because of its simplicity and ability to 

mitigate the vanishing gradient problem. 

 

3.4 Pooling layers  

Pooling layers are commonly used in CNNs to reduce the 

spatial dimensions of feature maps while preserving their 

most essential features. This helps to reduce the amount of 

computing power required to process data and makes the 

model more robust to small spatial variations. 

There are two main types of pooling layers: max pooling 

and average pooling. In max pooling, the maximum value 

in each region of the feature map is selected. In average 

pooling, the average value in each region is selected. 

The pooling size and stride are two hyperparameters that 

need to be specified for each pooling layer. The pooling 

size determines the size of the pooled region, and the stride 

determines the step size used to move the pooling region 

over the feature map. 

The features extracted by the pooling layers are then 

passed to the next layer in the CNN, which is typically an 

FC layer. The FC layer takes the features from the pooling 

layers and combines them to predict the input image. 

Prior to the entire FC layer, the previous layer's output 

must be transformed into a one-dimensional vector. This 

flattening process converts multidimensional feature maps 

into a format compatible with completely connected 

layers. 

3.5 Fully connected layers 

The FC layers are positioned just before a CNNs output 

layer. They are responsible for converting the learned 

features into class probabilities or regression values. 

FC layers connect every neuron in the previous layer to 

every neuron in the next layer. This allows them to 

combine high-level features and make accurate 

predictions. However, they also introduce many 

parameters, which can lead to overfitting if not carefully 

regularized. 

The number of neurons in an FC layer determines the 

layer's output size. The number of neurons required varies 

depending on the specific task being performed. For 

example, in image classification, the output layer may 

contain neurons representing different classes, while in 

object detection, it may contain neurons for bounding box 

coordinates and class probabilities. 

Here are some of the hyperparameters that need to be 

tuned for FC layers to give the best results in CNNs: 

• Number of hidden layers: The more hidden layers, the 

better the network performs, which can also lead to 

overfitting. A good starting point is to use two or three 

hidden layers. 

• Number of neurons: The number of neurons in each 

hidden layer should be related to the complexity of the 

task. The task requiring a higher level of prediction 

requires more neurons. 

• Activation function: The activation function determines 

how the output of each neuron is transformed. A 

commonly used Act. Fun. is the rectified linear unit 

(ReLU). 

• Weight initialization: The weights of the FC layers are 

initialized randomly. A suitable initialization method 

can help to prevent the network from converging to a 

suboptimal solution. 

• Regularization: Regularization techniques can help to 

prevent overfitting. A commonly used regularization 

technique is dropout. 

3.6 Output layer 

The output layer is the final layer of neurons in CNNs. It 

generates the network output, typically a class prediction 

or a regression value. 

The output layer is typically an FC layer, which means that 

each neuron in the output layer is connected to all of the 

neurons in the previous layer. This allows the output layer 

to combine the features extracted by the earlier layers and 

make a prediction about the input data. 

The choice of activation function in the output layer is 

determined by the specific task being performed by the 

CNN. For classification tasks, a commonly used activation 

function is the softmax function. The softmax function 

takes a vector of outputs from the previous layer and 

transforms it into a vector of probabilities, where each 

probability represents the likelihood that the input data 

belongs to a particular class. Figure 1 shows the general 

architecture of CNNs. 

 

 
Figure 1: Simple structure of CNNs 
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CNNs are trained using backpropagation, which involves 

iteratively passing data through the network (forward 

propagation) and then adjusting the network weights based 

on the error (backpropagation). The number of Conv., 

pooling, and FC layers can vary depending on the task and 

the available computational resources. 

CNNs have several strengths, including understanding 

spatial hierarchies of features, handling large amounts of 

data, and generalizing well to new data. However, they 

also have limitations, such as the need for extensive 

training data and the computational expense. 

3.7 Salp Swarm Algorithm (SSA) 

SSA is a population-based metaheuristic algorithm 

inspired by the chain formation behavior of salps, which 

are gelatinous marine organisms [40]. The SSA algorithm 

maintains a population of solutions, each representing a 

salp. The salps move towards better solutions by adjusting 

their positions and velocities. The movement of a salp is 

influenced by three main factors: the current location of 

the best solution, the position of the best solution in its 

neighborhood, and a randomization factor [41]. 

The SSA algorithm has been shown to be effective for 

various optimization problems, including function 

optimization, engineering design, and parameter 

estimation.  

The SSA algorithm has several advantages over other 

metaheuristic algorithms, such as PSO, GA, and DE. 

These advantages include [42]: 

 

• Simple to implement: The SSA algorithm is relatively 

simple to implement, making it easy to understand and 

use. 

• Fewer parameters: The SSA algorithm has fewer 

parameters than other metaheuristic algorithms, making 

tuning easier. 

• Robust: The SSA algorithm is robust to noise and 

outliers, making it a good choice for problems with 

noisy data. 

• Efficient: The SSA algorithm is efficient, making it a 

good choice for large-scale optimization problems. 

The pseudocode for the SSA algorithm is clearly 

illustrated in Figure 2. 

 

Initialize the salp population 𝑥𝑖 (i= 1, 2, ..., n) considering ub and lb  

While (end condition is not satisfied) 

    Calculate the fitness of each search agent (salp) 

     F=the best search agent 

     Update c1 by use:   𝑐1 =  2𝑒−(
4𝚤

𝐿
)

2
  
 

     For each salp (𝑥𝑖) 

           if (𝑖 ==1) 

                Update the position of the leading salp using: 

                         𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)          𝑐₃ ≥ 0

𝐹𝑗 − 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗)          𝑐₃ < 0
 

           else  

                Update the position of the follower salp using: 

                         𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1) 

           endif 

      endfor 

     Amend the salps based on the upper and lower bounds of variables 

endwhile 

return F 

Figure 2: Pseudocode of the SSA algorithm 

4 Current work 
In the present work, we use the SSA to identify the optimal 

hyperparameter settings for enhancing the performance of 

CNNs. We strategically select six key hyperparameters: 

the number of kernels, kernel size, pool size, dropout rate, 

hidden units, and learning rate. The learning rate is 

particularly influential, as it profoundly impacts the 

network's operation. The number of available network 

weights limits the scale of the candidate solution 

population. We can address this challenge by creating 

multiple iterations of the CNNs architecture. We create 

distinct versions of the CNNs by assigning various values 

to each of the six identified hyperparameters. We then use 

the SSA to individually train each version, using a diverse 

set of candidate solutions for training. This diversified 

approach to hyperparameters primarily aims to maximize 

the classification accuracy of CNNs. By systematically 

exploring and optimizing the hyperparameters, we aim to 

extract the best possible performance from CNNs, pushing 

the boundaries of their classification capabilities.  

4.1 Individual representation  

To scrutinize the scalability and robustness of the SSA-

CNNs method, we undertook extensive training and 

evaluation across multiple CNN architectures, datasets, 

and a range of hyperparameter configurations. This 

iterative process led us to the current set of 

hyperparameters and settings. 

The current individual is characterized by a 6-dimensional 

vector corresponding to the following hyperparameters for 

CNNs. Each of them is defined within specific ranges, 

with lower and upper boundaries as follows: 

• Number of kernels: 32, 64, 128, 256, 512, or 1024 

• Kernel size: 3, 5, or 7 

• Pool size: 3, 5, or 7 

• Dropout rate: 0.2, 0.3, or 0.4 

• Learning rate: 0.001, 0.0001, or 0.00001 

• Hidden units: 64, 128, 256, 512, or 1024 

 

Figure 3 shows a visual representation of an individual in 

the context of this work. 

 
Number 

of 

kernels 

Kernel 

size 

Pool 

size 

Dropout 

rate 

Learning 

rate 

Hidden 

units 

 

Figure 3: Presentation of SSA individual 

 

4.2 Fitness evaluation 

Our method's goal, consistent with the principles of all 

metaheuristic algorithms, is to quickly identify an 

individual with superior accuracy (or minimized errors). 

In our current approach, fitness evaluation involves 

assessing the accuracy of individual CNNs, each of which 

is represented as an independent entity. 

The architectural details of the salp are stored in the 

population. These details are then transferred to CNNs 

with the corresponding architecture. The CNNs model is 
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then trained on the supplied training data using multiple 

epochs to evaluate the "salp." 

Figure 4 depicts the flowchart of the present method. 

 

 
 

Figure 4: Flowchart of the current work 
 

5 Experimental evaluation 

• Dataset 

To assess the effectiveness of our approach, we selected 

the MNIST and Fashion-MNIST datasets for their 

widespread use in the deep learning community, 

manageable dataset sizes, and diverse content, enabling us 

to effectively assess the generalizability of the current 

work across different domains. 

▪ The MNIST dataset. This dataset is a widely used 

benchmark for image classification tasks, and it 

consists of 70,000 grayscale images of handwritten 

digits. The images are 28 × 28 pixels in size [17], and 

they have been preprocessed, normalized, and 

formatted to improve their consistency [43]. The 

MNIST dataset is divided into two sets: 60,000 

images for training and 10,000 images for testing. The 

training set is used to train the image recognition 

model, and the test set is used to evaluate the model's 

performance. The MNIST dataset is valuable for 

developing and evaluating image recognition models. 

It is a standardized benchmark that allows researchers 

to compare their results with other researchers.  

▪ The Fashion-MNIST dataset comprises 70,000 

grayscale images of fashion items from 10 categories, 

each having 7,000 images. The images are of size 28 

× 28 pixels. The dataset has a training set of 60,000 

images and a test set of 10,000 images. This dataset is 

intended to replace the original MNIST dataset as it 

has the exact image dimensions, data format, and 

training/testing split structure [11]. 

 

• Parameters Setting 

To understand the parameters used in this study, please 

refer to Table 2. The table has two categories of 

parameters: CNNs Training and SSA. 

The first category of parameters defines the basic CNNs 

architecture. These include the number of convolutional 

layers, the number of pooling layers, the activation 

function for convolutional layers, the stride, the padding 

configuration, the specifications for hidden layers, the 

activation function for FC layers, the activation function 

for the output layer, the chosen loss function, the optimizer 

selection, the metrics used, the designated epochs, and the 

batch size. 

The second category of parameters controls the behavior 

of the SSA. This category has two variables: the number 

of salps and the maximum number of generations. 

 

Table 2: Parameters used for evaluating the current work. 

 

 CNNs parameters values 

1 No. of convolutional layers 2 

2 No. of pooling layers 2 

3 Activation function for 

convolutional layers 

Relu 

4 Stride  1 

5 padding same 

6 Hidden layers 3 

7 Activation function for FC 

layers 
Relu 

8 Activation function for the 

output layer 
softmax 

9 Loss function Categorical-

crossentropy 

10 Optimizer Adam 

11 Metrics accuracy 

12 epochs 10 

13 Batch-size 128 

 SSA parameters values 

1 Number of salps 15 

2 Max-generations 100 

 

 

We utilized Google Colab, which offers a cost-free 

environment and hardware acceleration for Python 3 

programming, equipped with the GPU T4. 
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6 Results and analysis 
We present the results of our approach and compare it to 

other methods in terms of their accuracies on the MNIST 

and fashion-MNIST datasets. We also show the optimal 

architectures found in this work. 

Tables 3-4 show the experimental results of our approach 

compared to other methods. 

 

Table 3: Comparison of accuracy of the current work and 

different models on the MNIST dataset. 

Ref. Method Acc.% 

[13] CNN-PSO  95.08 

[14] CNN-MAA 98.75 

[15] GA                                                      99.4 

[16] PSO (DPSO)                                      99.3  

[17] SI (tree growth & firefly) algorithms      99.18 

[18] PSO(LDWPSO)                                98.95  

[22] PSO (IntelliSwAS)                            95 

[24] PSO&GWO (HPSGW)                     99.4 

[25] GA(SDSGA)                                     99.2 

 Our method (SSA-CNNs) 99.46 

 

Table 4: Comparison of current work accuracy and 

different models on the fashion-MNIST dataset. 

Ref. Method Acc.% 

[16] PSO (DPSO)                                      92.92 

[20] PSO & ACO  94.5 

[21] CAF 91.21 

[26] MCNN15 94.04 

[27] Multioptimizers 91 

[28] approximate dynamic learning rate 

update algorithm 

93 

[29] LACHS 93.34 

 Our method (SSA-CNNs) 94.53 

 

Table 3 illustrates that the SSA-CNNs method (99.46%) 

outperforms most other techniques on the MNIST dataset. 

Specifically, SSA-CNNs achieved higher accuracy than 

CNN-PSO (95.08%), CNN-MAA (98.75%), PSO (DPSO) 

(99.3), PSO (LDWPSO) (98.95), PSO (IntelliSwAS) (95), 

and SI (tree growth & firefly) algorithms (99.18). It also 

performed on par with the best-performing techniques, GA 

(99.4), PSO&GWO (HPSGW) (99.4), and GA (SDSGA) 

(99.2). These results suggest that the SSA-CNNs method 

is highly competitive and may offer superior accuracy 

compared to other optimization techniques when applied 

to the MNIST dataset. It showcases the effectiveness of 

SSA in enhancing CNNs for image classification tasks. 

Table 4 shows that the SSA-CNNs method achieves 

the best accuracy on the Fashion-MNIST dataset, with an 

accuracy of 94.53%. This is higher than the accuracy of 

any of the other techniques listed, including PSO (DPSO) 

(92.92%), PSO & ACO (94.5), CAF (91.21), MCNN15 

(94.04), Multioptimizers (91), approximate dynamic 

learning rate update algorithm (93), and LACHS (93.34). 

This suggests that the SSA-CNNs method is a promising 

approach for image classification tasks and may be 

particularly well-suited for datasets such as Fashion-

MNIST, which contain many classes. 

Overall, the SSA-CNNs technique has proven to be a 

highly effective method for image classification on both 

the MNIST and Fashion-MNIST datasets. With a 

remarkable 99.46% accuracy on MNIST and a competitive 

94.53% accuracy on Fashion-MNIST, SSA-CNNs 

showcases its versatility and robustness. This approach, 

which integrates SSA with CNNs, offers a promising path 

for optimizing image classification tasks, consistently 

delivering outstanding results. 

The top-performing individuals achieving the highest 

accuracy on MNIST and Fashion-MNIST are depicted in 

Figures 5 and 6, respectively. 

 
Number of 

kernels 
Kernel size Pool size 

Dropout 

rate 

Learning 

rate 

Hidden 

units 

512 3×3 3×3 0.3 0.001 512 

Figure 5: Best individual for MNIST dataset. 

 

Figure 5 presents the best individual layered architecture 

for MNIST. 

 
Number of 

kernels 
Kernel size Pool size 

Dropout 

rate 

Learning 

rate 

Hidden 

units 

512 5×5 5×5 0.3 0.0001 128 

Figure 6: The best individual for the fashion-MNIST 

dataset. 

 

 
Figure 7: The present method of layered architecture for 

MNIST dataset. 

 

7 Conclusion 
We present a new approach to optimizing CNNs using the 

SSA method. This approach has several advantages. It 

balances accuracy, computational efficiency, and training 

time well. It also achieves exceptional classification 

accuracy on the MNIST and fashion-MNIST datasets. 

This SSA-based optimization method outperforms other 
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algorithms that require significant computational 

resources and time, making it a promising candidate for 

practical applications. 

The proposed method allows seamlessly integrating CNNs 

into real-world scenarios, particularly in resource-

constrained and time-sensitive settings. Future research 

could explore the adaptability of the SSA-based 

optimization technique to other deep-learning 

architectures and tasks beyond computer vision. 

Additionally, delving into the theoretical underpinnings of 

the SSA algorithm and refining parameter tuning 

strategies could help broaden its adoption in optimization 

and machine learning. 

Our plan to improve the SSA-based hyperparameter 

optimization framework involves four main goals. Firstly, 

we will test the effectiveness of the SSA-based framework 

on different CNN architectures and datasets. Secondly, we 

intend to create new or improved SSA variants for 

hyperparameter optimization. Thirdly, we will integrate 

the SSA-based framework with other hyperparameter 

optimization techniques to develop a hybrid approach. 

Lastly, we will apply the SSA-based framework to other 

machine learning tasks, like natural language processing 

and computer vision. By pursuing these goals, we aim to 

make essential contributions to hyperparameter 

optimization. 
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