
https://doi.org/10.31449/inf.v47i9.5148 Informatica 47 (2023) 133–144 133

Hyperparameter Optimization for Convolutional Neural Networks

using the Salp Swarm Algorithm

Entesar H. Abdulsaed1, Maytham Alabbas1*, Raidah S. Khudeyer2

1 Department of Computer Science, College of Computer Science and Information Technology, University of Basrah,

Basrah, Iraq.
2 Department of Computer Information Systems, College of Computer Science and Information Technology, University

of Basrah, Basrah, Iraq.

Email: hopidhadha@gmail.com, ma@uobasrah.edu.iq, raidah.khudayer@uobasrah.edu.iq
* Correspondence

Keywords: deep learning, convolutional neural networks, salp swarm algorithm, hyperparameters optimization

Received: November 22, 2023

 Convolutional neural networks (CNNs) have exceptionally performed across various computer vision

tasks. However, their effectiveness depends heavily on the careful selection of hyperparameters.

Optimizing these hyperparameters can be challenging and time-consuming, especially when working with

large datasets and complex network architectures. In response, we propose a novel approach for

hyperparameter optimization in CNNs using the Salp Swarm Algorithm (SSA). Based on the natural

behavior of mollusks, SSA mimics the collective intelligence that governs feeding and navigation. Taking

advantage of SSA's unique properties, our research thoroughly explores the hyperparameter space. This

exploration aims to identify the algorithm that maximizes CNNs performance. This paper presents the

architecture of the SSA-based framework for hyperparameter optimization and compares it to other

established optimization techniques, such as Particle Swarm Optimization (PSO) and Genetic Algorithm

(GA). We also present experimental results using the MNIST and fashion MNIST datasets, achieving an

impressive classification accuracy of 99.46% for MNIST and 94.53% for fashion-MNIST. This case study

not only contributes to the fields of deep learning and hyperparameter optimization by demonstrating the

effectiveness of SSA in optimizing CNNs, but it also provides benefits to researchers and practitioners

who are looking for optimal hyperparameter configurations for CNNs in a variety of computer vision

applications. We also evaluate the scalability and robustness of our proposed method in the context of

different CNNs structures. The insights we gained highlight SSA's potential for addressing challenges

related to hyperparameter optimization.

Povzetek: Članek predstavlja optimizacijo hiperparametrov v konvolucijskih nevronskih mrežah s

pomočjo algoritma Salp Swarm, ki izboljša učinkovitost in natančnost.

1 Introduction
Deep learning has emerged as a powerful and versatile

field within the broader domain of machine learning [1]. It

has revolutionized various domains, such as computer

vision, natural language processing, and speech

recognition [2, 3]. One of the fundamental techniques used

in deep learning is convolutional neural networks (CNNs),

which have demonstrated exceptional performance in

image recognition, object detection, and classification

tasks.

CNNs are designed to process grid-like data, such as

images, by capturing spatial and hierarchical relationships

between different features. Their architecture consists of

multiple layers, including convolutional (Conv.), pooling,

and fully connected layers (FC layers), allowing them to

automatically extract meaningful features from input data

[4]. This inherent capability makes CNNs highly effective

in analyzing visual data and extracting intricate patterns

that may not be discernible to the human eye [5].

While CNNs offer numerous advantages, including their

ability to handle large amounts of data, learn complex

representations, and achieve state-of-the-art performance

in various tasks, they also possess specific weaknesses [6].

One of the critical challenges in utilizing CNNs effectively

is selecting appropriate hyperparameters [7].

Hyperparameters are the configuration settings that

control the behavior and performance of a CNNs model,

such as learning rate, batch size, dropout rate, and kernel

size [8].

The optimal selection of hyperparameters significantly

impacts CNN models' performance and convergence

speed. However, choosing the right combination of

hyperparameters is a challenging and time-consuming

task. Traditional methods, such as grid search, random

search, and Bayesian optimization, suffer from

computational inefficiency and may not explore the entire

hyperparameter space effectively. Therefore, there is a

need for advanced techniques that can efficiently and

effectively optimize hyperparameters for CNNs [9].

mailto:ma@uobasrah.edu.iq

134 Informatica 47 (2023) 133–144 E.H. Abdulsaed et al.

In recent years, metaheuristic optimization algorithms

have gained significant attention in deep learning for

hyperparameter optimization. One such algorithm is the

salp swarm algorithm (SSA), inspired by the collective

behavior of natural salp swarms. SSA is a population-

based metaheuristic algorithm that mimics the social

behavior of salps to search for the global optimum in a

given search space. It has shown promising results in

solving various optimization problems since its proposal,

including feature selection, neural network training,

clustering analysis, image processing, engineering

optimization, and financial portfolio optimization.

The current work is a step forward in this regard. It focuses

on investigating the effectiveness of SSA in optimizing

hyperparameters for CNNs. We will conduct experiments

using the MNIST dataset [10] and fashion MNIST [11]

and compare the performance of SSA with other methods.

SSA is chosen for its ability to approximate optimal

solutions with satisfactory convergence rates and solution

space coverage. Its straightforward mathematical

framework makes it simpler to comprehend and

implement [12]. The results obtained will provide valuable

insights into the efficiency and effectiveness of SSA for

hyperparameter optimization in CNNs and contribute to

the ongoing research efforts in improving the performance

of deep learning models.

This paper is structured as follows: Section 2 delves into

prior research focused on enhancing CNNs. Moving to

Section 3, we explore the components and tools integral to

CNNs. Our proposed work is introduced in Section 4,

while Section 5 is dedicated to presenting our

experimental evaluation. The outcomes and analysis of our

experiments are detailed in Section 6, and in Section 7, we

conclude the paper while also addressing potential

avenues for future research.

2 Related work
Many researchers have used different techniques to

automatically set hyperparameters and choose the

structure for CNNs. This is done to avoid the additional

voltage and time required for manual network construction

and to improve the performance of CNNs. In this section,

we preview the state-of-the-art studies in this field and

summarize them in Table 1.

Some researchers use particle swarm optimization

(PSO) to improve the accuracy of CNNs. In [13], PSO was

recommended for use in CNNs. To increase accuracy,

PSO is used in the training phase to optimize the results of

the solution vectors on CNNs.

In [14], CNNs were optimized using microcanonical

annealing. As suggested by the authors, the performance

of the original CNNs may be significantly improved using

this proposed method.

In [15], a genetic algorithm (GA) was used to optimize

multiple parameters of CNNs at once. Various types and

ranges of GA parameters were also used. After a lengthy

process, an approximation to the global optimal solution

emerged. Training a large amount of data at once did not

result in high precision.

In [16], the authors suggest using distributed particle

swarm optimization (DPSO) to improve the

hyperparameters of CNNs for image classification tasks.

The DPSO method employs a mixed-variable encoding

strategy and associated update operations for each particle

to encode CNNs, enabling automatic and global search for

the best CNNs model. The method also employs a

distributed framework to reduce execution time and

accelerate optimization. However, one possible drawback

is the requirement for many particles to achieve good

results, which can increase computational complexity.

In [17], the authors proposed an automatic method

incorporating enhanced metaheuristic algorithms (the tree

growth and firefly algorithms) for optimizing

hyperparameters and designing structures. However, the

proposed methods had a higher computational cost,

restricting the inclusion of more datasets in the study.

In [18], the researchers proposed optimizing CNNs

hyperparameters using linearly decreasing weight particle

swarm optimization (LDWPSO). The architecture of this

model is LeNet-5. They mentioned the need for additional

research and testing to validate the method's effectiveness.

Additionally, they did not discuss potential limitations or

challenges associated with the proposed method, such as

computational complexity or convergence issues.

In [19], this work discusses a method for image

classification that utilizes histograms of oriented gradient

(HOG) features, gray-level co-occurrence matrix (GLCM)

features, and support vector machine (SVM) for

classification. The authors used the fashion-MNIST

dataset to examine the accuracy of this method, and they

obtained an accuracy of 91.59%.

The work in [20] focuses on the swarm intelligence

component of the OpenNAS system for neural architecture

search (NAS). The authors use PSO and ACO swarm

algorithms with transfer learning for feature extraction

(VGG16).

In [21], the study introduces the competitive

activation function (CAF) concept and derives the

parameter-free rectified exponential unit (PFREU) as a

particular kind of CAF. The authors use two architectures

for classification: LeNet-5 on fashion-MNIST and

ResNet-110 on CIFAR-10.

In [22], the authors presented IntelliSwAS, a method

for optimizing deep neural network architectures for

classification and regression tasks. They used DAGRNN

[23] to improve the search technique. IntelliSwAS

effectively located high-quality CNNs cells, but these cells

had to be manually incorporated into larger CNNs

architectures.

In [24], this study proposed a hybrid particle swarm

optimization and grey wolf optimization (HPSGW)

algorithm to optimize these hyperparameters and enhance

the accuracy of the CNNs model.

In [25], the authors proposed a simple deterministic

selection genetic algorithm (SDSGA) to optimize the

hyperparameters of two well-known machine learning

models: CNNs and the random forest (RF) algorithm.

In [26], the authors use a multiple convolutional neural

network (MCNN15) with 15 convolutional layers.

Hyperparameter Optimization for Convolutional Neural Networks… Informatica 47 (2023) 133–144 135

 In [27], the proposed work compared the performance

of CNNs and ANNs for image classification on the

Fashion-MNIST apparel dataset using various optimizers.

 In [28], the study employed large-scale deep learning

networks such as VGG16 and ResNet to enhance

classification accuracy and an approximate dynamic

learning rate update algorithm to ensure rapid convergence

and reduced training time.

 In [29], the authors utilized the local autonomous

competitive harmony search (LACHS) algorithm to

achieve the highest classification accuracy on the Fashion-

MNIST and CIFAR-10 datasets. The VGGNet was the

main network used for experimental research in this work.

Ref. year Method
Parameters for

optimization
Limitations Dataset

Accur

acy %

[13] 2016 CNN-PSO kernel size, pool size,

learning rate
• CNNPSO consumes a longer time

than CNN.

• CNNPSO accuracy is slightly lower

than CNN optimized with simulated

annealing.

MNIST 95.08

[14] 2017 CNN-MAA kernel size, pool size • MA needs more processing time

MNIST 98.75

[15] 2019 GA Learning rate, dropout,

batch size, no. of

layers

• The experiment took a long because

of the large dataset.

MNIST 99.4

[16] 2020 PSO

(DPSO)

kernel size, type of

pooling, Activ.Fun. in

FC, dropout, Learning

rate

• Many particles required for good

results can increase computational

complexity.

MNIST,

Fashion-MNIST

99.3,

 92.92

[17] 2020 SI (tree

growth &

firefly)

algorithms

no. of convolution,

no. of FC,

kernel size,

no. of kernels per

conv. layer,

FC-layer size

• Use a single dataset to evaluate the

accuracy of the method.

MNIST 99.18

[18] 2020 PSO

(LDWPSO)

no. of kernels, kernel

size, activation fun.,

no. of neurons, batch

size, optimizer

• The technique uses a simple and

basic CNN architecture (LeNet-5).

• There is a lack of comparison with

other optimization methods or CNN

architectures.

MNIST 98.95

[20] 2020 PSO & ACO no. of kernels, kernel

size, dropout rate
• There is no comparison with other

neural architecture search methods

and no performance-efficiency

trade-off analysis.

Fashion-MNIST 94.5

[21] 2021 CAF activation fun. • There is no comparison to other

state-of-the-art activation functions.

• There is no theoretical analysis of

CAF.

• There is no investigation of

hyperparameter impact on

performance.

Fashion-MNIST 91.21

[22] 2022 PSO
(IntelliSwAS)

convolution,

depthwise-separable

convolution, dilated

convolution

• IntelliSwAS found high-quality

CNN cells but required manual

incorporation into larger CNN

architectures.

MNIST 95

[24] 2022 PSO&GWO

(HPSGW)

No. of Kernel, Kernel

Size, Batch size

No. of Epochs

• It can optimize a few CNN

hyperparameters.

• High computational cost.

MNIST 99.4

[25] 2022 GA

SDSGA

learning rate,

batch size
• Selection may reduce diversity, and

a fixed mutation rate may not work

for all problems.

MNIST 99.2

[26] 2022 MCNN15 no. of the kernel,

kernel size, batch size,

no. of neurons

• There is no evaluation of model

performance or comparison to state-

of-the-art.

Fashion-MNIST 94.04

Table 1: Summarization of the related works.

136 Informatica 47 (2023) 133–144 E.H. Abdulsaed et al.

[27] 2022 ANN and

CNN

optimizer • Difficulty handling complex or

novel images.

• Sensitivity to hyperparameter

choices.

• High computational cost and time

consumption.

Fashion-MNIST 91

[28] 2023 VGG16,

ResNet, and

approximate

dynamic

learning rate

update

algorithm

learning rate • Deep network hierarchies and

complex parameters can overfit,

limiting training time, especially

with small samples.

Fashion-MNIST 93

[29] 2023 LACHS no. of the kernel,

kernel size, Activ.Fun.

in conv., no. of

neurons, learning rate,

batch size, Momentum

• No comparison to other

hyperparameter optimization

techniques makes it hard to evaluate

the usefulness and superiority of

LACHS.

Fashion-MNIST 93.34

3 Tools
In this section, we look at the necessary background for

the two main techniques used in our proposed approach:

CNNs and SSA.

3.1 Convolution neural networks (CNNs)

CNNs represent a category of deep neural networks that

have gained significant prominence in computer vision

applications. These networks have revolutionized the field

by achieving cutting-edge results across various tasks.

They have proven their mettle in diverse domains, such as

handwriting recognition [30], automotive safety [31],

video surveillance [32], face detection [33], semantic

segmentation [34], and speech recognition [35]. This

versatility has rendered them indispensable in modern

computing systems.

Explicitly designed for data with a grid-like structure, such

as images, CNNs have surged in importance due to their

capacity to automate the once manual and time-intensive

feature extraction process. At the heart of CNNs lies a

pivotal feature: weight sharing. By sharing weights, these

networks reduce the number of trainable parameters, a feat

that enhances generalization capabilities and curbs

overfitting issues.

Unlike traditional neural networks, CNNs capitalize on the

intrinsic spatial organization present in images. This

enables them to capture local relationships and learn

hierarchical representations. The architecture of CNNs

encompasses a multi-stage structure, integrating both

linear and nonlinear operations to undertake feature

extraction and classification.

The initial feature extraction stage encompasses a

sequence of primary layers, including the Conv. layer

housing an activation function (Act. Fun.) and a

subsequent pooling layer. Conversely, the classification

stage contains numerous FC layers [36]. It is important to

note that this architecture necessitates substantial data for

training, demanding a significant time investment and

considerable expertise for manual construction. To

address this, many optimization techniques have been

deployed to fine-tune hyperparameters and structures [37].

Researchers have engineered several CNNs models,

training them on specific problem areas using varied

datasets and achieving impressive results within these

domains. Leveraging a pre-trained network involves

tailoring it to a particular task. Commonly referred to as

"transfer learning," this approach enables the classification

of images across a vast array of 1,000 distinct categories,

avoiding the need to build CNNs from scratch. The fine-

tuning of hyperparameters through transfer learning can

involve freezing or unfreezing layers [38].

An array of pre-trained models, including DenseNet [25],

EfficientNet [26], MobileNetV3 [27], and more, offer

additional options for developers and researchers in this

realm.

The overall structure of the network is built in the form of

layers stacked on top of each other to process the data that

enters it, extract features from it, and classify it according

to the problem. These layers are:

3.2 Input layer

The input layer, which is the leftmost layer, represents the

input image to the CNNs.

3.3 Convolutional layers

The convolutional layers are the foundation of CNNs.

They contain the learned kernels (filters, weights) that are

used to extract features from images. This is done by

convolving the input image with a stack of kernels. Each

kernel extracts a specific feature, such as edges, textures,

or object parts [39]. By using multiple kernels, CNNs can

capture a variety of spatial patterns. This allows them to

automatically learn relevant visual features without

requiring manual feature engineering.

Each convolutional layer has a set of hyperparameters that

are initialized before the layer is used. These

hyperparameters determine the number of connections and

output size for the feature maps. The hyperparameters are:

Hyperparameter Optimization for Convolutional Neural Networks… Informatica 47 (2023) 133–144 137

• Number of filters: This determines the depth of the

resulting feature maps.

• Filter size: This gives the spatial dimensions of the

filters.

• Padding: This determines the amount of zero-padding

applied to the input data.

• Stride: This specifies the step size for shifting the filters

over the input.

After all layers with weights (also known as trainable

layers, such as Conv. layers and FC layers) in CNNs

architecture, nonlinear activation layers are used. The non-

linearity of the activation layers means that the mapping

from input to output is nonlinear. This allows the CNNs to

learn complex things [9]. CNNs commonly use the

rectified linear unit (ReLU), sigmoid, and hyperbolic

tangent (tanh) activation functions. ReLU is the most

popular Act. Fun. because of its simplicity and ability to

mitigate the vanishing gradient problem.

3.4 Pooling layers

Pooling layers are commonly used in CNNs to reduce the

spatial dimensions of feature maps while preserving their

most essential features. This helps to reduce the amount of

computing power required to process data and makes the

model more robust to small spatial variations.

There are two main types of pooling layers: max pooling

and average pooling. In max pooling, the maximum value

in each region of the feature map is selected. In average

pooling, the average value in each region is selected.

The pooling size and stride are two hyperparameters that

need to be specified for each pooling layer. The pooling

size determines the size of the pooled region, and the stride

determines the step size used to move the pooling region

over the feature map.

The features extracted by the pooling layers are then

passed to the next layer in the CNN, which is typically an

FC layer. The FC layer takes the features from the pooling

layers and combines them to predict the input image.

Prior to the entire FC layer, the previous layer's output

must be transformed into a one-dimensional vector. This

flattening process converts multidimensional feature maps

into a format compatible with completely connected

layers.

3.5 Fully connected layers

The FC layers are positioned just before a CNNs output

layer. They are responsible for converting the learned

features into class probabilities or regression values.

FC layers connect every neuron in the previous layer to

every neuron in the next layer. This allows them to

combine high-level features and make accurate

predictions. However, they also introduce many

parameters, which can lead to overfitting if not carefully

regularized.

The number of neurons in an FC layer determines the

layer's output size. The number of neurons required varies

depending on the specific task being performed. For

example, in image classification, the output layer may

contain neurons representing different classes, while in

object detection, it may contain neurons for bounding box

coordinates and class probabilities.

Here are some of the hyperparameters that need to be

tuned for FC layers to give the best results in CNNs:

• Number of hidden layers: The more hidden layers, the

better the network performs, which can also lead to

overfitting. A good starting point is to use two or three

hidden layers.

• Number of neurons: The number of neurons in each

hidden layer should be related to the complexity of the

task. The task requiring a higher level of prediction

requires more neurons.

• Activation function: The activation function determines

how the output of each neuron is transformed. A

commonly used Act. Fun. is the rectified linear unit

(ReLU).

• Weight initialization: The weights of the FC layers are

initialized randomly. A suitable initialization method

can help to prevent the network from converging to a

suboptimal solution.

• Regularization: Regularization techniques can help to

prevent overfitting. A commonly used regularization

technique is dropout.

3.6 Output layer

The output layer is the final layer of neurons in CNNs. It

generates the network output, typically a class prediction

or a regression value.

The output layer is typically an FC layer, which means that

each neuron in the output layer is connected to all of the

neurons in the previous layer. This allows the output layer

to combine the features extracted by the earlier layers and

make a prediction about the input data.

The choice of activation function in the output layer is

determined by the specific task being performed by the

CNN. For classification tasks, a commonly used activation

function is the softmax function. The softmax function

takes a vector of outputs from the previous layer and

transforms it into a vector of probabilities, where each

probability represents the likelihood that the input data

belongs to a particular class. Figure 1 shows the general

architecture of CNNs.

Figure 1: Simple structure of CNNs

138 Informatica 47 (2023) 133–144 E.H. Abdulsaed et al.

CNNs are trained using backpropagation, which involves

iteratively passing data through the network (forward

propagation) and then adjusting the network weights based

on the error (backpropagation). The number of Conv.,

pooling, and FC layers can vary depending on the task and

the available computational resources.

CNNs have several strengths, including understanding

spatial hierarchies of features, handling large amounts of

data, and generalizing well to new data. However, they

also have limitations, such as the need for extensive

training data and the computational expense.

3.7 Salp Swarm Algorithm (SSA)

SSA is a population-based metaheuristic algorithm

inspired by the chain formation behavior of salps, which

are gelatinous marine organisms [40]. The SSA algorithm

maintains a population of solutions, each representing a

salp. The salps move towards better solutions by adjusting

their positions and velocities. The movement of a salp is

influenced by three main factors: the current location of

the best solution, the position of the best solution in its

neighborhood, and a randomization factor [41].

The SSA algorithm has been shown to be effective for

various optimization problems, including function

optimization, engineering design, and parameter

estimation.

The SSA algorithm has several advantages over other

metaheuristic algorithms, such as PSO, GA, and DE.

These advantages include [42]:

• Simple to implement: The SSA algorithm is relatively

simple to implement, making it easy to understand and

use.

• Fewer parameters: The SSA algorithm has fewer

parameters than other metaheuristic algorithms, making

tuning easier.

• Robust: The SSA algorithm is robust to noise and

outliers, making it a good choice for problems with

noisy data.

• Efficient: The SSA algorithm is efficient, making it a

good choice for large-scale optimization problems.

The pseudocode for the SSA algorithm is clearly

illustrated in Figure 2.

Initialize the salp population 𝑥𝑖 (i= 1, 2, ..., n) considering ub and lb

While (end condition is not satisfied)

 Calculate the fitness of each search agent (salp)

 F=the best search agent

 Update c1 by use: 𝑐1 = 2𝑒−(
4𝚤

𝐿
)

2

 For each salp (𝑥𝑖)

 if (𝑖 ==1)

 Update the position of the leading salp using:

 𝑥𝑗
1 = {

𝐹𝑗 + 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐₃ ≥ 0

𝐹𝑗 − 𝑐1((𝑢𝑏𝑗 − 𝑙𝑏𝑗)𝑐2 + 𝑙𝑏𝑗) 𝑐₃ < 0

 else

 Update the position of the follower salp using:

 𝑥𝑗
𝑖 =

1

2
(𝑥𝑗

𝑖 + 𝑥𝑗
𝑖−1)

 endif

 endfor

 Amend the salps based on the upper and lower bounds of variables

endwhile

return F

Figure 2: Pseudocode of the SSA algorithm

4 Current work
In the present work, we use the SSA to identify the optimal

hyperparameter settings for enhancing the performance of

CNNs. We strategically select six key hyperparameters:

the number of kernels, kernel size, pool size, dropout rate,

hidden units, and learning rate. The learning rate is

particularly influential, as it profoundly impacts the

network's operation. The number of available network

weights limits the scale of the candidate solution

population. We can address this challenge by creating

multiple iterations of the CNNs architecture. We create

distinct versions of the CNNs by assigning various values

to each of the six identified hyperparameters. We then use

the SSA to individually train each version, using a diverse

set of candidate solutions for training. This diversified

approach to hyperparameters primarily aims to maximize

the classification accuracy of CNNs. By systematically

exploring and optimizing the hyperparameters, we aim to

extract the best possible performance from CNNs, pushing

the boundaries of their classification capabilities.

4.1 Individual representation

To scrutinize the scalability and robustness of the SSA-

CNNs method, we undertook extensive training and

evaluation across multiple CNN architectures, datasets,

and a range of hyperparameter configurations. This

iterative process led us to the current set of

hyperparameters and settings.

The current individual is characterized by a 6-dimensional

vector corresponding to the following hyperparameters for

CNNs. Each of them is defined within specific ranges,

with lower and upper boundaries as follows:

• Number of kernels: 32, 64, 128, 256, 512, or 1024

• Kernel size: 3, 5, or 7

• Pool size: 3, 5, or 7

• Dropout rate: 0.2, 0.3, or 0.4

• Learning rate: 0.001, 0.0001, or 0.00001

• Hidden units: 64, 128, 256, 512, or 1024

Figure 3 shows a visual representation of an individual in

the context of this work.

Number

of

kernels

Kernel

size

Pool

size

Dropout

rate

Learning

rate

Hidden

units

Figure 3: Presentation of SSA individual

4.2 Fitness evaluation

Our method's goal, consistent with the principles of all

metaheuristic algorithms, is to quickly identify an

individual with superior accuracy (or minimized errors).

In our current approach, fitness evaluation involves

assessing the accuracy of individual CNNs, each of which

is represented as an independent entity.

The architectural details of the salp are stored in the

population. These details are then transferred to CNNs

with the corresponding architecture. The CNNs model is

Hyperparameter Optimization for Convolutional Neural Networks… Informatica 47 (2023) 133–144 139

then trained on the supplied training data using multiple

epochs to evaluate the "salp."

Figure 4 depicts the flowchart of the present method.

Figure 4: Flowchart of the current work

5 Experimental evaluation

• Dataset

To assess the effectiveness of our approach, we selected

the MNIST and Fashion-MNIST datasets for their

widespread use in the deep learning community,

manageable dataset sizes, and diverse content, enabling us

to effectively assess the generalizability of the current

work across different domains.

▪ The MNIST dataset. This dataset is a widely used

benchmark for image classification tasks, and it

consists of 70,000 grayscale images of handwritten

digits. The images are 28 × 28 pixels in size [17], and

they have been preprocessed, normalized, and

formatted to improve their consistency [43]. The

MNIST dataset is divided into two sets: 60,000

images for training and 10,000 images for testing. The

training set is used to train the image recognition

model, and the test set is used to evaluate the model's

performance. The MNIST dataset is valuable for

developing and evaluating image recognition models.

It is a standardized benchmark that allows researchers

to compare their results with other researchers.

▪ The Fashion-MNIST dataset comprises 70,000

grayscale images of fashion items from 10 categories,

each having 7,000 images. The images are of size 28

× 28 pixels. The dataset has a training set of 60,000

images and a test set of 10,000 images. This dataset is

intended to replace the original MNIST dataset as it

has the exact image dimensions, data format, and

training/testing split structure [11].

• Parameters Setting

To understand the parameters used in this study, please

refer to Table 2. The table has two categories of

parameters: CNNs Training and SSA.

The first category of parameters defines the basic CNNs

architecture. These include the number of convolutional

layers, the number of pooling layers, the activation

function for convolutional layers, the stride, the padding

configuration, the specifications for hidden layers, the

activation function for FC layers, the activation function

for the output layer, the chosen loss function, the optimizer

selection, the metrics used, the designated epochs, and the

batch size.

The second category of parameters controls the behavior

of the SSA. This category has two variables: the number

of salps and the maximum number of generations.

Table 2: Parameters used for evaluating the current work.

 CNNs parameters values

1 No. of convolutional layers 2

2 No. of pooling layers 2

3 Activation function for

convolutional layers

Relu

4 Stride 1

5 padding same

6 Hidden layers 3

7 Activation function for FC

layers
Relu

8 Activation function for the

output layer
softmax

9 Loss function Categorical-

crossentropy

10 Optimizer Adam

11 Metrics accuracy

12 epochs 10

13 Batch-size 128

 SSA parameters values

1 Number of salps 15

2 Max-generations 100

We utilized Google Colab, which offers a cost-free

environment and hardware acceleration for Python 3

programming, equipped with the GPU T4.

140 Informatica 47 (2023) 133–144 E.H. Abdulsaed et al.

6 Results and analysis
We present the results of our approach and compare it to

other methods in terms of their accuracies on the MNIST

and fashion-MNIST datasets. We also show the optimal

architectures found in this work.

Tables 3-4 show the experimental results of our approach

compared to other methods.

Table 3: Comparison of accuracy of the current work and

different models on the MNIST dataset.

Ref. Method Acc.%

[13] CNN-PSO 95.08

[14] CNN-MAA 98.75

[15] GA 99.4

[16] PSO (DPSO) 99.3

[17] SI (tree growth & firefly) algorithms 99.18

[18] PSO(LDWPSO) 98.95

[22] PSO (IntelliSwAS) 95

[24] PSO&GWO (HPSGW) 99.4

[25] GA(SDSGA) 99.2

 Our method (SSA-CNNs) 99.46

Table 4: Comparison of current work accuracy and

different models on the fashion-MNIST dataset.

Ref. Method Acc.%

[16] PSO (DPSO) 92.92

[20] PSO & ACO 94.5

[21] CAF 91.21

[26] MCNN15 94.04

[27] Multioptimizers 91

[28] approximate dynamic learning rate

update algorithm

93

[29] LACHS 93.34

 Our method (SSA-CNNs) 94.53

Table 3 illustrates that the SSA-CNNs method (99.46%)

outperforms most other techniques on the MNIST dataset.

Specifically, SSA-CNNs achieved higher accuracy than

CNN-PSO (95.08%), CNN-MAA (98.75%), PSO (DPSO)

(99.3), PSO (LDWPSO) (98.95), PSO (IntelliSwAS) (95),

and SI (tree growth & firefly) algorithms (99.18). It also

performed on par with the best-performing techniques, GA

(99.4), PSO&GWO (HPSGW) (99.4), and GA (SDSGA)

(99.2). These results suggest that the SSA-CNNs method

is highly competitive and may offer superior accuracy

compared to other optimization techniques when applied

to the MNIST dataset. It showcases the effectiveness of

SSA in enhancing CNNs for image classification tasks.

Table 4 shows that the SSA-CNNs method achieves

the best accuracy on the Fashion-MNIST dataset, with an

accuracy of 94.53%. This is higher than the accuracy of

any of the other techniques listed, including PSO (DPSO)

(92.92%), PSO & ACO (94.5), CAF (91.21), MCNN15

(94.04), Multioptimizers (91), approximate dynamic

learning rate update algorithm (93), and LACHS (93.34).

This suggests that the SSA-CNNs method is a promising

approach for image classification tasks and may be

particularly well-suited for datasets such as Fashion-

MNIST, which contain many classes.

Overall, the SSA-CNNs technique has proven to be a

highly effective method for image classification on both

the MNIST and Fashion-MNIST datasets. With a

remarkable 99.46% accuracy on MNIST and a competitive

94.53% accuracy on Fashion-MNIST, SSA-CNNs

showcases its versatility and robustness. This approach,

which integrates SSA with CNNs, offers a promising path

for optimizing image classification tasks, consistently

delivering outstanding results.

The top-performing individuals achieving the highest

accuracy on MNIST and Fashion-MNIST are depicted in

Figures 5 and 6, respectively.

Number of

kernels
Kernel size Pool size

Dropout

rate

Learning

rate

Hidden

units

512 3×3 3×3 0.3 0.001 512

Figure 5: Best individual for MNIST dataset.

Figure 5 presents the best individual layered architecture

for MNIST.

Number of

kernels
Kernel size Pool size

Dropout

rate

Learning

rate

Hidden

units

512 5×5 5×5 0.3 0.0001 128

Figure 6: The best individual for the fashion-MNIST

dataset.

Figure 7: The present method of layered architecture for

MNIST dataset.

7 Conclusion
We present a new approach to optimizing CNNs using the

SSA method. This approach has several advantages. It

balances accuracy, computational efficiency, and training

time well. It also achieves exceptional classification

accuracy on the MNIST and fashion-MNIST datasets.

This SSA-based optimization method outperforms other

Hyperparameter Optimization for Convolutional Neural Networks… Informatica 47 (2023) 133–144 141

algorithms that require significant computational

resources and time, making it a promising candidate for

practical applications.

The proposed method allows seamlessly integrating CNNs

into real-world scenarios, particularly in resource-

constrained and time-sensitive settings. Future research

could explore the adaptability of the SSA-based

optimization technique to other deep-learning

architectures and tasks beyond computer vision.

Additionally, delving into the theoretical underpinnings of

the SSA algorithm and refining parameter tuning

strategies could help broaden its adoption in optimization

and machine learning.

Our plan to improve the SSA-based hyperparameter

optimization framework involves four main goals. Firstly,

we will test the effectiveness of the SSA-based framework

on different CNN architectures and datasets. Secondly, we

intend to create new or improved SSA variants for

hyperparameter optimization. Thirdly, we will integrate

the SSA-based framework with other hyperparameter

optimization techniques to develop a hybrid approach.

Lastly, we will apply the SSA-based framework to other

machine learning tasks, like natural language processing

and computer vision. By pursuing these goals, we aim to

make essential contributions to hyperparameter

optimization.

References

[1] Gadri, S., Developing an efficient predictive model

based on ml and dl approaches to detect diabetes.

Informatica, 2021. 45(3).

http://dx.doi.org/10.31449/inf.v45i3.3041

[2] Abdulla, M. and A. Marhoon, Agriculture based on

Internet of Things and Deep Learning. Iraqi Journal for

Electrical and Electronic Engineering, 2022. 18(2): p.

1-8. http://dx.doi.org/10.37917/ijeee.18.2.1

[3] Xu, Y., et al., Batch normalization with enhanced

linear transformation. arXiv preprint

arXiv:2011.14150, 2020.

 https://doi.org/10.48550/arXiv.2011.14150

[4] Shrestha, A. and A. Mahmood, Review of deep

learning algorithms and architectures. IEEE access,

2019. 7: p. 53040-53065.

http://dx.doi.org/10.1109/access.2019.2912200

[5] Hassan, N.F.A., A.A. Abed, and T.Y. Abdalla, Face

mask detection using deep learning on NVIDIA Jetson

Nano. International Journal of Electrical & Computer

Engineering (2088-8708), 2022. 12(5).

http://dx.doi.org/10.11591/ijece.v12i5.pp5427-5434

[6] Gaafar, A.S., J.M. Dahr, and A.K. Hamoud,

Comparative Analysis of Performance of Deep

Learning Classification Approach based on LSTM-

RNN for Textual and Image Datasets. Informatica,

2022. 46(5). http://dx.doi.org/10.31449/inf.v46i5.3872

[7] Wang, Y., H. Zhang, and G. Zhang, cPSO-CNN: An

efficient PSO-based algorithm for fine-tuning hyper-

parameters of convolutional neural networks. Swarm

and Evolutionary Computation, 2019. 49: p. 114-123.

http://dx.doi.org/10.1016/j.swevo.2019.06.002

[8] Darwish, A., D. Ezzat, and A.E. Hassanien, An

optimized model based on convolutional neural

networks and orthogonal learning particle swarm

optimization algorithm for plant diseases diagnosis.

Swarm and evolutionary computation, 2020. 52: p.

100616.

http://dx.doi.org/10.1016/j.swevo.2019.100616

[9] Alzubaidi, L., et al., Review of deep learning: concepts,

CNN architectures, challenges, applications, future

directions. J Big Data, 2021. 8(1): p. 53 DOI:

10.1186/s40537-021-00444-8.

[10]LeCun, Y., The MNIST database of handwritten

digits. http://yann. lecun. com/exdb/mnist/, 1998.

[11]Xiao, H., K. Rasul, and R. Vollgraf, Fashion-mnist: a

novel image dataset for benchmarking machine

learning algorithms. arXiv preprint arXiv:1708.07747,

2017.

 https://doi.org/10.48550/arXiv.1708.07747

[12]Zhang, H., et al., Differential evolution-assisted salp

swarm algorithm with chaotic structure for real-world

problems. Eng Comput, 2022. 39(3): p. 1735-1769

DOI: 10.1007/s00366-021-01545-x.

[13]Syulistyo, A.R., et al., Particle swarm optimization

(PSO) for training optimization on convolutional

neural network (CNN). Jurnal Ilmu Komputer dan

Informasi, 2016. 9(1): p. 52-58.

http://dx.doi.org/10.21609/jiki.v9i1.366

[14]Ayumi, V., et al. Optimization of convolutional neural

network using microcanonical annealing algorithm. in

2016 International Conference on Advanced Computer

Science and Information Systems (ICACSIS). 2016.

IEEE. http://dx.doi.org/10.1109/icacsis.2016.7872787

[15]Yoo, J.-H., et al. Optimization of hyper-parameter for

CNN model using genetic algorithm. in 2019 1st

International conference on electrical, control and

instrumentation engineering (ICECIE). 2019. IEEE.

http://dx.doi.org/10.1109/icecie47765.2019.8974762

[16]Guo, Y., J.-Y. Li, and Z.-H. Zhan, Efficient

hyperparameter optimization for convolution neural

networks in deep learning: A distributed particle

swarm optimization approach. Cybernetics and

Systems, 2020. 52(1): p. 36-57.

http://dx.doi.org/10.1080/01969722.2020.1827797

[17]Bacanin, N., et al., Optimizing Convolutional Neural

Network Hyperparameters by Enhanced Swarm

Intelligence Metaheuristics. Algorithms, 2020.

13(3).DOI: 10.3390/a13030067.

[18]Serizawa, T. and H. Fujita, Optimization of

convolutional neural network using the linearly

decreasing weight particle swarm optimization. arXiv

preprint arXiv:2001.05670, 2020.

 https://doi.org/10.48550/arXiv.2001.05670

[19]Greeshma, K. and J.V. Gripsy, Image classification

using HOG and LBP feature descriptors with SVM and

CNN. Int J Eng Res Technol, 2020. 8(4): p. 1-4. DOI

: 10.17577/IJERTCONV8IS04021

[20]Lankford, S. and D. Grimes, Neural architecture

search using particle swarm and ant colony

optimization. 2020.

[21]Ying, Y., et al., Improving convolutional neural

networks with competitive activation function.

http://dx.doi.org/10.31449/inf.v45i3.3041
http://dx.doi.org/10.37917/ijeee.18.2.1
http://dx.doi.org/10.1109/access.2019.2912200
http://dx.doi.org/10.11591/ijece.v12i5.pp5427-5434
http://dx.doi.org/10.31449/inf.v46i5.3872
http://dx.doi.org/10.1016/j.swevo.2019.06.002
http://dx.doi.org/10.1016/j.swevo.2019.100616
http://yann/
http://dx.doi.org/10.21609/jiki.v9i1.366
http://dx.doi.org/10.1109/icacsis.2016.7872787
http://dx.doi.org/10.1109/icecie47765.2019.8974762
http://dx.doi.org/10.1080/01969722.2020.1827797

142 Informatica 47 (2023) 133–144 E.H. Abdulsaed et al.

Security and Communication Networks, 2021. 2021: p.

1-9.

[22]Nistor, S.C. and G. Czibula, IntelliSwAS: Optimizing

deep neural network architectures using a particle

swarm-based approach. Expert Systems with

Applications, 2022. 187: p. 115945.

http://dx.doi.org/10.1016/j.eswa.2021.115945

[23]Moodie, E.E. and D.A. Stephens, Comment:

Clarifying endogeneous data structures and consequent

modelling choices using causal graphs. 2020.

http://dx.doi.org/10.1214/20-sts777

[24]Challapalli, J.R. and N. Devarakonda, A novel

approach for optimization of convolution neural

network with hybrid particle swarm and grey wolf

algorithm for classification of Indian classical dances.

Knowledge and Information Systems, 2022. 64(9): p.

2411-2434. http://dx.doi.org/10.1007/s10115-022-

01707-3

[25]Raji, I.D., et al., Simple deterministic selection-based

genetic algorithm for hyperparameter tuning of

machine learning models. Applied Sciences, 2022.

12(3): p. 1186. http://dx.doi.org/10.3390/app12031186

[26]Nocentini, O., et al., Image classification using

multiple convolutional neural networks on the fashion-

MNIST dataset. Sensors, 2022. 22(23): p. 9544.

http://dx.doi.org/10.3390/s22239544

[27]Sumera, S.R., N. Anjum, and K. Vaidehi,

Implementation of CNN and ANN for Fashion-

MNIST-Dataset using Different Optimizers. Indian

Journal of Science and Technology, 2022. 15(47): p.

2639-2645.

http://dx.doi.org/10.17485/ijst/v15i47.1821

[28]Shin, S.-Y., G. Jo, and G. Wang, A Novel Method for

Fashion Clothing Image Classification Based on Deep

Learning. Journal of Information and Communication

Technology, 2023. 22(1): p. 127-148.

http://dx.doi.org/10.32890/jict2023.22.1.6

[29]Liu, D., et al., Hyperparameters Optimization of

Convolutional Neural Network Based on Local

Autonomous Competition Harmony Search

Algorithm. Journal of Computational Design and

Engineering, 2023: p. qwad050.

http://dx.doi.org/10.1093/jcde/qwad050

[30]Altwaijry, N. and I. Al-Turaiki, Arabic handwriting

recognition system using convolutional neural

network. Neural Computing and Applications, 2021.

33(7): p. 2249-2261.

http://dx.doi.org/10.1007/s00521-020-05070-8

[31]Ren, L., et al., A data-driven auto-CNN-LSTM

prediction model for lithium-ion battery remaining

useful life. IEEE Transactions on Industrial

Informatics, 2020. 17(5): p. 3478-3487.

http://dx.doi.org/10.1109/tii.2020.3008223

[32]Ashraf, A.H., et al., Weapons detection for security

and video surveillance using cnn and YOLO-v5s.

CMC-Comput. Mater. Contin, 2022. 70: p. 2761-2775.

http://dx.doi.org/10.32604/cmc.2022.018785

[33]Zamir, M., et al., Face Detection & Recognition from

Images & Videos Based on CNN & Raspberry Pi.

Computation, 2022. 10(9): p. 148.

http://dx.doi.org/10.3390/computation10090148

[34]Li, C., et al., Segmenting objects in day and night:

Edge-conditioned CNN for thermal image semantic

segmentation. IEEE Transactions on Neural Networks

and Learning Systems, 2020. 32(7): p. 3069-3082.

http://dx.doi.org/10.1109/tnnls.2020.3009373

[35]Haque, M.A., et al. Experimental evaluation of CNN

architecture for speech recognition. in First

International Conference on Sustainable Technologies

for Computational Intelligence: Proceedings of

ICTSCI 2019. 2020. Springer.

http://dx.doi.org/10.1007/978-981-15-0029-9_40

[36]Khudeyer, R.S. and N.M. Almoosawi, Combination of

machine learning algorithms and Resnet50 for Arabic

Handwritten Classification. Informatica, 2023. 46(9).

http://dx.doi.org/10.31449/inf.v46i9.4375

[37]Fregoso, J., C.I. Gonzalez, and G.E. Martinez,

Optimization of convolutional neural networks

architectures using PSO for sign language recognition.

Axioms, 2021. 10(3): p. 139.

http://dx.doi.org/10.3390/axioms10030139

[38]Alhijaj, J.A. and R.S. Khudeyer, Integration of

EfficientNetB0 and Machine Learning for Fingerprint

Classification. Informatica, 2023. 47(5).

http://dx.doi.org/10.31449/inf.v47i5.4724

[39]Al, N.M.A.-M.M. and R.S. Khudeyer, ResNet-34/DR:

a residual convolutional neural network for the

diagnosis of diabetic retinopathy. Informatica, 2021.

45(7). http://dx.doi.org/10.31449/inf.v45i7.3774

[40]Mirjalili, S., et al., Salp Swarm Algorithm: A bio-

inspired optimizer for engineering design problems.

Advances in engineering software, 2017. 114: p. 163-

191.

http://dx.doi.org/10.1016/j.advengsoft.2017.07.002

[41]Duan, Q., et al., Improved salp swarm algorithm with

simulated annealing for solving engineering

optimization problems. Symmetry, 2021. 13(6): p.

1092. http://dx.doi.org/10.3390/sym13061092

[42]Faris, H., et al., Salp swarm algorithm: theory,

literature review, and application in extreme learning

machines. Nature-inspired optimizers: theories,

literature reviews and applications, 2020: p. 185-199.

http://dx.doi.org/10.1007/978-3-030-12127-3_11

[43]Wu, H., CNN-Based Recognition of Handwritten

Digits in MNIST Database. Research School of

Computer Science. The Australia National University,

Canberra, 2018.

http://dx.doi.org/10.1016/j.eswa.2021.115945
http://dx.doi.org/10.1214/20-sts777
http://dx.doi.org/10.1007/s10115-022-01707-3
http://dx.doi.org/10.1007/s10115-022-01707-3
http://dx.doi.org/10.3390/app12031186
http://dx.doi.org/10.3390/s22239544
http://dx.doi.org/10.17485/ijst/v15i47.1821
http://dx.doi.org/10.32890/jict2023.22.1.6
http://dx.doi.org/10.1093/jcde/qwad050
http://dx.doi.org/10.1007/s00521-020-05070-8
http://dx.doi.org/10.1109/tii.2020.3008223
http://dx.doi.org/10.32604/cmc.2022.018785
http://dx.doi.org/10.3390/computation10090148
http://dx.doi.org/10.1109/tnnls.2020.3009373
http://dx.doi.org/10.1007/978-981-15-0029-9_40
http://dx.doi.org/10.31449/inf.v46i9.4375
http://dx.doi.org/10.3390/axioms10030139
http://dx.doi.org/10.31449/inf.v47i5.4724
http://dx.doi.org/10.31449/inf.v45i7.3774
http://dx.doi.org/10.1016/j.advengsoft.2017.07.002
http://dx.doi.org/10.3390/sym13061092
http://dx.doi.org/10.1007/978-3-030-12127-3_11

