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Diabetic retinopathy (DR) is a leading cause of blindness that occurs in different age groups. So, the early 

detection of DR can save millions of people from blindness issues. Further, the manual analysis of DR 

requires much processing time and experienced doctors. Hence, computer-aided diagnosis (CAD)-based 

artificial intelligence models have been developed for an early DR prediction. However, the state-of-the-

art methodologies failed to extract the deep balanced features, which resulted in poor classification 

performance. Therefore, this work implements the DR grading network (DRG-Net) using graph learning 

properties. Initially, the synthetic minority over-sampling technique (SMOTE) is applied to the EyePACS 

and Messidor dataset to balance the instances of each DR class into uniform levels. Then, a deep graph 

correlation network (DGCN) is applied to extract the class-specific features by identifying the 

relationship. Finally, an extreme gradient boosting (XGBoost) classifier is employed to perform the DR 

classification with the pre-trained balanced features obtained using SMOTE-DGCN. The obtained 

simulation results performed on the EyePACS dataset and the Messidor dataset disclose that the proposed 

DRG-Net resulted in higher performance than state-of-the-art DR grading classification approaches, with 

accuracy, sensitivity, and specificity of 99.01%, 99.01%, and 98.43% for the EyePACS dataset, 

respectively, and 99.6%, 99.08%, and 100% for the Messidor dataset. 

 

Povzetek: Članek opisuje novo metodo DRG-Net, ki uporablja grafovno učenje in ekstremno gradientn 

spodbujevalno učenje za zgodnje odkrivanje diabetične retinopatije.

1 Introduction  
Humans with DR pose a danger to their eyesight is 

expected to total 103.12 million besides 28.54 million, 

respectively, in the year 2021. The numbers are expected 

to rise to 160.50 million and 44.82 million by 2045 [1]. 

Additionally, in underdeveloped nations without access to 

basic healthcare facilities or a scarcity of 

ophthalmologists. The underserved regions of the 

developed world are likewise affected by this issue. Thus, 

early detection and routine screening may cut the chance 

of vision loss to 57.0% while also lowering treatment 

costs. The two major processes in DR detection are 

screening and diagnosis [2]. Fine pathognomonic DR  

 

signals are generally established for this purpose 

following dilation of pupils (mydriasis). For accurate 

diagnosis, early identification, patient education, and 

treatment planning, clear pathognomonic signals are 

essential. This improves healthcare workers' capacity to 

recognize and treat diabetic retinopathy. Then, DR 

screening is performed using slit lamp bio-microscopy 

with a + 90.0 D lens and direct indirect ophthalmoscopy 

[3]. Finding lesions associated with DR and comparing 

them to the criteria for the grading system allows one to 

diagnose DR. Figure 1 depicts the normal retinal vision 

and DR-related anomalies. Diabetes complications, such 

as diabetic macular edema (DME) and DR, are more 

common in those who are working age. 
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Figure 1: Normal retinal image and abnormalities. 

The complicated condition known as DR makes the 

retinal veins expand and leak blood and fluid [5]. DR 

causes an issue with visual impairment. Microvascular 

damage, blood vessel irregularities, inflammation, VEGF, 

ischemia, compromised blood-fluid barrier, 

hyperglycemia-induced metabolic alterations, and 

oxidative stress are some of the variables that contribute 

to diabetic retinopathy as well as produce retinal vein 

expansion and leaking. Effective electroretinography 

transformation, retinal vein type, and retinal blood flow 

may be used to provide a prompt identification of DR. 

Clear pathognomonic signals enhance patient care and 

management by improving diagnostic processes, 

communication, patient education, severity evaluation, 

treatment planning, early diagnosis, progression 

monitoring, and research breakthroughs for diabetic 

retinopathy. For the early diagnosis of diabetic 

retinopathy, electroretinography (ERG) is essential 

because it can spot tiny retinal changes before symptoms 

manifest. It aids in the distinction of illness phases, 

forecasts the likelihood of progression, tracks alterations, 

supports research, and directs individualized therapies. 

Diabetes patients are more prone to acquire DR if they 

experience unfavorable symptoms of the condition over an 

extended length of time [6]. During patients to be 

examined and during the initial phase of DR therapy to 

limit the possibility of vision loss, routine retinal screening 

is essential. DR can be identified by the presence of 

several signals on a retinal picture. Additionally, these DR 

symptoms include hard exudates (EX), hemorrhages 

(HM), soft exudates (EX), and microaneurysms (MA). A 

diagnostic test used to assess retinal reactions to light, the 

electroretinogram (ERG) looks for abnormalities that 

might be signs of diabetic retinopathy (DR). It aids with 

early discovery, DR severity evaluation, and prompt 

action. Based on the presence of these symptoms, the DR 

is divided into five phases: severe DR, no DR, moderate 

DR, mild DR, and proliferative DR (PDR), which are 

succinctly described in Table 1 [7].  Non-proliferative DR 

(NPDR) is used here to refer to all types of DR, including 

none, mild, moderate, and severe DR. Close examination 

and monitoring are crucial for patients in the mild stage of 

DR because they have at least one MA; for patients in the 

moderate stage who may have HM or MAs in one to three 

retinal quadrants; for patients in the severe stage who have 

intraretinal HM and venous beading in two or more 

quadrants; and for patients in the proliferative stage who 

need to see a doctor every six to eight months.  

Table 1: Various grades of DR are based on signs. 

DR severity 

grading 

Clas

s 

Signs 

No DR DR-

0 

Absence of 

various problems. 

Mild DR DR-

1 

The presence 

of MA. 

Moderate 

DR 

DR-

2 

Increase in 

MA count 

Severe DR DR-

3 

The 

intraretinal HM 

count raises more 

than twenty. 

Several quadrants 

of the vena cava 

show beading. 

Proliferativ

e DR 

DR-

4 

Significant 

intraretinal 

microvascular 

problem with 

neovascularizatio

n in more than one 

quadrant. Pre-

retinal and 

vascular HM. 

The diagnosing stage is currently carried out 

manually. This technique is expensive, time-consuming, 

and calls for professionals who have undergone extensive 

training and have excellent diagnostic skills. Even with all 
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these tools at hand, a misdiagnosis is still a possibility. The 

situation is difficult because of this reliance on manual 

review. Among the often-employed DR grading systems 

is the Early Treatment Diabetic Retinopathy Study 

(ETDRS) [10]. The ETDRS isolates highly precise DR 

characteristics using several layers. This system of 

grading applies to all seven retinal fundus Fields of View 

(FOV). Early diagnosis of eye disorders, monitoring 

health changes, avoiding vision loss, assessing systemic 

health issues, individualized treatment planning, patient 

education, and enhanced quality of life are all benefits of 

routine retinal exams. Even though ETDRS is the gold 

standard, due to implementation difficulty and 

technological limitations, alternate systems for grading are 

also used. One such system is the International Clinical 

Diabetic Retinopathy (ICDR) [11] scale, which is 

recognized in both clinical and Computer-Aided 

Diagnosis (CAD) environments. However, the 

conventional CAD methods [12] failed to result in 

maximum performance. So, this work is focused on the 

development of the following models: 

• The SMOTE method is adopted to perform 

the balancing of instances presented in 

EyePACS and Messidor datasets, which 

balances the instances of each DR class into 

a uniform level.  

• The DGCN i.e., graph learning method is 

developed, and used to extract the class-

specific features by identifying the 

relationship.  

• The XGBoost classifier is trained with 

balanced features and performs the multi-

class prediction operation.  

The remainder of the text is structured as follows: The 

overview of DR grading and detection techniques is 

included in section 2. The planned DRG-Net's analysis is 

covered in Section 3 along with a description of the sub-

modules. The performance comparison with cutting-edge 

techniques is covered in Section 4 along with a full 

examination of the simulation results suggested by DRG-

Net. The item is concluded in Section 5 with potential 

future application. 

2 Related work 

This section gives a detailed analysis of DR grading 

methods. In [12] authors presented the deep convolutional 

neural network (DCNN) model for DR classification. 

Dataset preparation begins with phases for data collecting 

and data annotation. Furthermore, a median filter was used 

for data pre-processing. Additionally, DR diagnosis is 

carried out using DCNN, which categorizes the classes as 

Normal, Moderate, Heavy, and Severe. This technique is 

also used in hospitals to provide patients with online 

services. In [13] authors explored an issue of automatic 

DR identification and suggested a new deep-learning 

hybrid to handle. It builds the hybrid model by adding a 

custom block of CNN layers on top of the pre-trained 

Inception-ResNet-v2 and using transfer learning on that 

network.  

In [14] authors used single color fundus image and 

suggested a novel automated deep learning-based 

technique for severity identification. The suggested 

method is to build a visual embedding using the 

DenseNet169 encoder. A convolutional Block Attention 

Module (CBAM) is also added on top of the encoder to 

boost its ability to discriminate. To improve network 

performance and model comprehension, the 

Convolutional Block Attention Module (CBAM) 

combines channel and spatial attention processes to boost 

feature identification in convolutional neural networks. 

However, this method has high loss values compared to 

machine learning models. In [15] authors used a fine-

tuned ResNet-50, which is developed using two-stage 

deep learning models. The architecture can effectively 

classify DR into one of three categories (normal, moderate 

DR, and severe DR).  Further classification of moderate 

DR was performed using a fine-tuned ResNet-18 [15], 

while classification of severe DR was performed using a 

fine-tuned ResNet-50.  

In [16] authors proposed the creation and 

Optimization CNN (OCNN) Model. The pre-trained 

OCNN model is initially used to extract the features. A 

classification layer based on gradient boosting is added to 

enhance features. The examination of the suggested 

system using a 10-fold cross-validation on two difficult 

problems shows that it performs better than cutting-edge 

approaches. In [17] authors proposed DR early detection 

based on multifractal geometry. Furthermore, automating 

the diagnostic process and increasing the resulting 

accuracy by employing a supervised machine learning 

technique like the Support Vector Machine (SVM) 

algorithm. In [18] authors proposed a new technique to 

identify DR using ensemble recurrent neural networks 

(ERNN). First, a two-stage classifier that uses an assembly 

approach to merge several machine learning algorithms 

for categorization. By merging separate predictions and 

applying a meta-classifier for final judgment, the two-

stage classifier assembly strategy, which incorporates 

numerous machine learning algorithms, improves 

categorization accuracy. The classifier is also used with 

DR. So, the issue is that it takes a long time to diagnose 

this condition, even though an early diagnosis is necessary 

to prevent total blindness. In [19] authors proposed an 
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early detection of DR using Principal Component 

Analysis (PCA) with Firefly optimization. Then, deep 

learning models were used to perform grading operations. 

Here, the raw dataset is first normalized using the standard 

scalar approach, and the most important characteristics in 

the dataset are then extracted using PCA. Additionally, the 

Firefly algorithm is used to reduce the number of 

dimensions.  In [20] authors developed the deep belief 

neural network (DBNN) to predict DR. Here, the Grey 

Wolf Optimization (GWO) method is used to optimize the 

PCA features. Additionally, using GWO makes it possible 

to choose the best training parameters for the DBNN 

model.  

Various machine learning models like support vector 

machine (SVM) [21], decision tree, and random forest, are 

used to classify the DR grades from eye fundus images. 

Eye fundus pictures are entered into a connected graph 

approach, which represents them as a graph with nodes 

and edges. With the use of Graph Neural Networks, which 

analyze the graph and extract characteristics and 

contextual data, eye ailment diagnoses are now more 

accurate. Further, the application of different pre-trained 

convolutional neural network (CNN) [22] architectures 

was implemented to identify the DR from fundus pictures 

with rejection resampling (random under-sampling at 

mini-batch level) technique for effective performance in 

tackling different imbalanced scenarios of varied dataset 

sizes. To manage unbalanced datasets, a variety of 

strategies are utilized, including resampling, algorithm-

level, algorithmic, synthetic data creation, transfer 

learning, and hybrid methods. Experimentation is 

necessary for the best outcomes. Further, the classification 

of DR using the Ensemble of Machine Learning (EML) 

[23] classifier is implemented. However, this method 

contains higher computational complexity. Further, three-

dimensional semantic segmentation of DR lesions with 

grading operation is implemented using ResNet [24] based 

transfer learning. The marine predictor algorithm (MPA) 

is used to select the best features from available features. 

To address these shortcomings of traditional deep learning 

models, the explainable and interpretable diabetic 

retinopathy (ExplainDR) [25] grading approach was 

developed. Here, neural-symbolic learning is introduced 

for class-specific feature extraction. Then, a model called 

the Hinge Attention Network (HA-Net) [26] was created 

for a thorough study of several DR grades. The HA-Net 

uses the VGG16 model [27] for feature extraction and 

grading done by long short-term memory (LSTM). Then, 

to improve the DR findings, the residual attention network 

(RAN) [28] was invented. The attention mechanism 

performs the dilated convolution for feature analysis. In 

addition, DR diagnosis is carried out using transfer 

learning based InceptionResNetV2 [29], Xception, and 

EfficientNetB3 model. Here, InceptionResNetV2 resulted 

in superior performance. Then, Mask Region-based CNN 

(MRCNN) [30] was utilized instead of faster region-based 

CNN (Faster RCNN) and transferred learning model to 

classify DR grades [31]. 

3 Proposed system 
This section gives a detailed analysis of the proposed 

DRG-Net.  The DRG-Net is a hybrid learning model, that 

is developed by the properties of graph learning, deep 

learning, and machine learning models. Figure 2 shows 

the block diagram of the proposed DRG-Net. However, 

the EyePACS and Messidor datasets contain the five 

classes of DR, i.e., DR-0, DR-1, DR-2, DR-3, DR-4. 

However, the number of images in each grade is uniform, 

which results in imbalanced features. So, the SMOTE 

method is applied to balance the number of instances in 

each class, which maintains an equal number of features. 

Then, the DR contains the highly correlated features 

among PDR and NPDR classes. So, DGCN is applied to 

extract the DR grade-specific features by adopting the 

graph interconnections of features from SMOTE balanced 

features. Then, the XGBoost classifier is trained with 

DGCN balanced features and performs classification of 

multiple DR grades. Due to its excellent predictive 

strength and capacity to recognize complicated patterns, 

the Deep Graph Convolutional Network-trained XGBoost 

classifier excels at categorizing different diabetic 

retinopathy grades, although its success is reliant on 

factors like data variety and practitioner knowledge. 

3.1 SMOTE data balancing 

The dataset's irregular sizes hurt the performance of 

deep learning classifiers.  The datasets have distinct, 

imbalanced numbers in them. Therefore, most of the DR 

class features will be given the highest probabilities 

(priorities) by the XGBoost classifier, while the minority 

DR class features will be ignored. Using weighted loss 

functions, sampling techniques, and adaptable goal 

functions, XGBoost applies ways to ensure equitable 

minority class characteristics in the classification of 

unbalanced datasets. Misclassifications are minimized, 

and problems are addressed. This may lead to inaccurate 

categorization and inaccurate forecasting. The block 

diagram for the SMOTE data balancing approach is shown 

in Figure 3. It is an oversampling strategy that consistently 

raises the number of minority-class records. The 

oversampling procedure in this case generates duplicate 

samples using the closest possible combinations. The 

Synthetic Minority Over-Sampling Technique (SMOTE), 

which ensures variety while keeping patterns and carefully 
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chooses k nearest neighbors, is used in oversampling to 

create duplicated samples from minority class instances. 

The SMOTE method determines the overall dataset 

record count as well as the record count for every class. 

SMOTE is a strategy that enhances model performance by 

creating synthetic records for minority classes, 

recognizing them, figuring out the oversampling ratio, and 

arbitrarily choosing the nearest neighbors. Unbalanced 

data can impair DRG-Net's effectiveness by introducing 

biases, lowered sensitivity, false negatives, and 

overfitting. To create synthetic minority class samples, 

SMOTE is essential. The average record value will then 

be calculated. Then, SMOTE uses the notion of 

randomization to create KNNs for every data. Consider 

the dataset with 𝑋 minority class samples. Then, 

𝑦1, 𝑦2, ⋯ ,  𝑎𝑛𝑑 𝑦𝑁 represent the 𝑁 showed samples for 

each minority class. For model performance, SMOTE 

seeks to provide a balanced dataset; however, normalizing 

the dataset to equal samples defeats this goal. It is advised 

to preserve or lessen the class disparity when taking 

SMOTE. So, there must be more than N-number of KNN 

samples, i.e., 𝐾 > 𝑁. Following this, using the correlation 

among records, random samples were added to the 

database. The random correlation factor 𝑝𝑖  is constructing 

the interpolation operation. 

𝑝𝑖 = 𝑋 + 𝑟𝑎𝑛𝑑(0,1) × (𝑦𝑖 − 𝑋),          𝑖 = 1,2, ⋯ , 𝑁 

   (1) 

Here, it is expected that the random integer will fall 

between [0,1]. The 𝑦𝑖  denotes the nearest neighbor for 

sample 𝑖, the 𝑋 represents data records presented in each 

minority class. By performing the rounding operation to 

imbalanced minority class 𝑋𝐼𝐿, dataset balance was 

achieved. Due to biases, restricted minority learning, and 

other problems, deep learning classifiers have difficulty 

with unbalanced dataset sizes. Oversampling and under-

sampling are rebalancing approaches that enhance the 

accuracy of classifiers for both classes. 

𝑋𝐵 = 𝑟𝑜𝑢𝑛𝑑(𝑋𝐼𝐿) ∗ 𝑝𝑖     (2) 

Here, 𝑋𝐵 represents the balanced dataset. Lastly, 

SMOTE equalizes the whole feature set by inserting these 

random records into the minority class determined by 

KNN resemblance. 

 

Figure 2: Proposed DRG-Net block diagram. 
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Figure 3: Block diagram of data balancing with SMOTE. 

3.2 DGCN-based feature extraction 

Graph neural networks (GNNs) have made 

considerable strides in several practical applications 

recently, including drug discovery, medical image 

processing, and recommendation. The graph structure of 

the GNN technique for recognizing diabetic retinopathy 

(DR) makes use of both labeled and unlabeled data. By 

using data relationships, managing unlabeled data, and 

scaling effectively, it improves accuracy. Despite their 

success, deep GNNs' performance is still constrained by 

several fundamental factors, one of which is over-

smoothing. In deep Graph Neural Networks (GNNs), 

over-smoothing impairs generalization, reduces local 

structure capacity, impairs discrimination, and makes it 

difficult to capture higher-order connection patterns. 

Techniques like attentional processes and residual 

connections help to solve this problem. It shows that the 

stacked aggregators make the learned node 

representations almost impossible to discern. The 

performance deterioration of deep GNNs or their 

preference for feature correlation issues is examined. 

Performance problems with Deep Graph Neural Networks 

(GNNs) are brought on by feature correlation that results 

in noise, redundancy, and instability. To address these 

problems, preprocessing, feature selection, normalization, 

and regularisation approaches are required. To reduce the 

feature correlation issues, this work proposed DGCN for 

class-specific feature extraction from DR images. The 

Diabetic Retinopathy Grading Convolutional Network 

(DGCN), which is useful for automated diagnosis and 

grading, improves accuracy, lowers computational 

overhead, and enables robust feature extraction in diabetic 

retinopathy pictures. Figure 4 shows the DGCN feature 

extraction from SMOTE-balanced features. 

3.2.1 GNN 

The GNN approach moved the difficulty of DR 

recognition to semi-supervised learning on a graph by 

combining the properties of unlabelled vertices with those 

of neighboring labeled vertices.  Due to its versatility, 

capacity for handling a variety of data, and capacity for 

capturing both local and global information, Graph Neural 

Networks (GNNs) are an excellent choice for diagnosing 

diabetic retinopathy. The GNN feature recognition model 

is presented in Figure 5, which is a graph convolution 

network. The eye fundus images are used in this instance 

as input in a connected graph method, where each node 

denotes the ideal feature, and each edge denotes the 

disease severity of the same feature. 

 

Figure 4: Proposed DGCN-based feature extraction. 
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The input for a connected graph is denoted by 𝐺 =

 (𝑉, 𝐴), where 𝑉 stands for nodes (vertex) and A for an 

adjacency matrix. Furthermore, the edge weights for all 

directions are stored in this adjacency matrix. The graph 

kernel and layer characteristics affect how well GNN 

performs. The individual layer operation of the GNN is 

shown in equation (3). 

𝐻𝑙+1 = 𝜎(𝐷−0.5𝐴𝐷−0.5𝐻(𝑙)𝑊(𝑙))    (3) 

Here, l stands for the 𝑙𝑡ℎ layer, 𝑊 for the linked 

graph's weight, 𝐻 for its vertices, 𝜎(·) represents the 

Leaky-ReLU activation function, and D for the diagonal 

matrix of 𝑑𝑖,𝑗  components. When there is a lot of noise or 

outliers in the data: Leaky ReLU outperforms ReLU in 

situations when the data contains a lot of noise or outliers 

because it may produce a non-zero output for negative 

input values, preventing the loss of potentially crucial 

information. Additionally, the adjacency matrix 

element𝑎𝑖,𝑗 are used to create these 𝑑𝑖,𝑗 elements: 

𝑑𝑖,𝑗s a = ∑ 𝑎𝑖,𝑗
𝑁
𝑗=1        (4) 

 

Figure 5: Architecture for GNN feature analysis. 

The adjacency matrix and diagonal matrix must be 

constructed effectively to classify and grade DR using 

GNN. By recording spatial correlations and aiding feature 

propagation, the adjacency matrix is essential in Graph 

Neural Networks (GNNs) for diagnosing and grading 

diabetic retinopathy, increasing accuracy and 

interpretability. There are a total of five DR severity 

grades in the sample. As a result, each vertex in the linked 

graph layer bears a separate severity grade, and the 

adjacency matrix is designated as 𝐴 ∈  𝑎5×5. During 

training, an adjacency matrix is created based on the 

regularity of co-occurrences of various severity classes. In 

graph-based methods like Graph Neural Networks 

(GNNs), appearance probabilities are essential for 

directing connections and affecting graph sparsity. They 

boost GNN performance, information flow, and the 

graph's capacity to capture significant linkages. 

Additionally, each vertex is represented by a single hot 

encoding, allowing for simplex connections across graphs 

without any overlap. The adjacency matrix is produced 

during GNN training by computing the probabilistic co-

occurrence probabilities. The appearance probability, 

𝑃𝑖𝑗  =  𝑃(𝐿𝑖/𝐿𝑗), is developed here by estimating the 

conditional probability (𝑃()) between DR characteristics. 

Here, 𝐿𝑗 stands for the likelihood of the test features, and 

𝐿𝑖  for the likelihood of the train features. By binarizing 

𝑃𝑖𝑗 , the binary adjacency matrix (𝐴′) is created, improving 

the generalization stability of the model. Additionally, by 

taking into account the conditional probability-based 

weight bounds, A' is re-estimated, avoiding the over-

smoothing issues brought on by features training. Here is 

how to represent the final conditional probability (𝐴𝑓): 

𝐴𝑖𝑗
′ = {

0, 𝑃𝑖𝑗 < 𝑗

1, 𝑃𝑖𝑗 ≥ 𝑗
      (5) 

𝐴𝑓 = {
𝐴𝑖𝑗

′ , 𝑖 ≠ 𝑗

1 − 𝑃𝑖𝑗 , 𝑖 = 𝑗
      (6) 

Here, 𝑃𝑖𝑗  has a range of 0 to 1, depending on the 

random weight probability (τ). Additionally, at τ = 0.3, the 

optimal value of 𝑃 is achieved as 0.25. Based on the 

updated 𝐴𝑓, the graph hidden layer operation is derived as 

follows: 

𝐻𝑙+1 = 𝕗(𝐻𝑙 , 𝐴𝑓)      (7) 

𝕗(𝐻𝑙 , 𝐴𝑓) = 𝜎(𝐴𝑓 , 𝐻𝑙 , 𝑊𝑙)     (8) 

In this case, the multi-grade feature separation is 

carried out using the feature matrix produced by the 

SoftMax classification operation, denoted by the symbol 

𝕗(·). A weight matrix for the lth neural network layer is 

called 𝑊𝑙. 
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3.2.2 Graph correlation layer 

The GNN output features (𝕗(𝐻𝑙 , 𝐴𝑓)) were supplied 

to the graph correlation layer to identify the correlation 

among various features. Due to its effective use in medical 

data analysis, particularly for learning inherent 

correlations among various samples, DGCN is chosen to 

build learn graph feature representations and topological 

structure. To link each sample to the mini-batch of 𝑂𝑓 is 

𝐺𝑏, this research first creates graph correlations for the 

feature set 𝐺𝑏 = [𝐺1, … ,  𝐺𝑘, … ,  𝐺𝐵], where 𝐵 was the 

batch size and 1 ≤ 𝑘 ≤ 𝐵. By creating an adjacent matrix 

𝐴 from this, DGCN links sample 𝐺𝑘 with its K-nearest 

neighbors (KNN). 

𝐴𝑘𝑗 = {
0, 𝑖𝑓 𝑗 ∈ 𝐾𝑘

1, 𝑖𝑓 𝑗 ∈ 𝐾𝑘
}    

    (9) 

The 𝐾𝑘 is a group of KNN of 𝐼𝑘, and 𝐴𝑘𝑗 stands for 

the correlation between the kth and jth samples. The graph 

correlations are developed by the mini batch 𝐺(𝐺𝑏 , 𝐴) 

from the learned GNN feature 𝐺𝑏 and neighboring matrix 

(𝐴). One input layer, hidden graph correlation layers, and 

dense layers make up the DGCN used in this work. The 

hidden graph correlation layer operates in the manner 

described below. 

𝑋(𝑙) =

[𝐺1
(𝑙)

, … , 𝐺𝑘
(𝑙)

, … , 𝐺𝐵
(𝑙)

]. 𝜎(𝐷−1/2𝐴𝐷−1/2𝑋(𝑙−1)𝑊(𝑙)) 

   (10) 

Here, the diagonal of the neighboring matrix is 

represented by 𝐷, and 𝑋(𝑙) indicates the result of the 

hidden graph correlation layer with l samples.  

𝐷 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝐵)    (11) 

𝑑𝐵 = ∑ 𝐴𝑘𝑗
𝐵
𝑗=1     (12) 

The ReLU activation function is represented by 

𝜎(. ), the many diagonal components (𝑑) that develop the 

𝐷 matrix. Then, under the restrictions of a graph-center 

loss, DGCN builds a KNN graph by calculating 

similarities to choose the top 𝐾 samples. Similar features 

may be brought closer to one another, and discriminant 

correlations can be created by these methods for DGCN. 

This scenario shows the lack of correlation between head 

classes and tail classes during the dataset training". So, the 

hidden graph correlation layer effectively trains the 

features of head and tail classes by forming multi-level 

correlations. Finally, the DGCN consists of two dense 

layers with ReLU and SoftMax activation functions. 

These dense layers with activation functions formed as the 

fully connected layer. Here, the SoftMax classifier 

identifies the disease-specific features. The SoftMax 

classifier uses a labeled dataset to learn correlations 

between attributes and grades, giving test cases the grade 

with the best likelihood to help with multi-class grading 

problems like detecting diabetic retinopathy. 

3.3 XGBoost classifier 

As seen in Figure 6, the DGCN collected and 

balanced data samples are used as input to the XGBoost. 

In this case, to identify between the different assaults from 

test data, the XGBoost classifier is used. The training and 

testing process will employ the XGBoost ensembles of the 

XGBoost classifier. To deal with classification and 

regression problems, the XGBoost ensemble learning 

method, based on DT, is used. A decision tree ensemble 

learning method called XGBoost is applied to 

classification and regression problems. It is a potent 

machine-learning technique that predicts class labels and 

continuous target variables using gradient boosting and 

regularization. The well-known machine learning method 

XGBoost combines gradient boosting, parallelism, and 

sparsity awareness for resilience and flexibility. It 

effectively handles classification and regression problems. 

XGBoost falls under the umbrella of boosting algorithms 

since it strengthens a collection of poor learners over time. 

There are several advantages to using XGBoost. First, 

compared to previous boosting strategies, it learns from 

the data more quickly since it builds trees concurrently 

instead of consecutively. 
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Figure 6: XGBoost classifier block diagram for obtaining prediction outcome. 

Second, to reduce overfitting, XGBoost has a 

regularisation technique built in. Thirdly, it uses an 

approximation strategy to speed up the model training 

process. Therefore, XGBoost supports out-of-core 

processing and effectively manages weighted and sparse 

data. These elements have contributed to the XGBoost 

supervised learning algorithm, which is based on DT, 

becoming widely used. Due to its outstanding 

performance, efficiency, adaptability, resilience to 

overfitting, comprehension, community support, 

flexibility, and availability, XGBoost is a well-liked 

supervised learning strategy and a top pick among 

machine learning practitioners. Consider dataset, 𝐷 =

{(𝑥𝑖 , 𝑦𝑖)}, with |𝐷| = 𝑛, 𝑥𝑖𝜖𝑅𝑚 and 𝑚 features and 𝑛 

samples to illustrate how XGBoost works. The model 

output of a boosting technique utilizing T trees is defined 

as follows: 

�̂�𝑖 =  ∑ 𝑓𝑘(𝑥𝑖),𝑇
𝑡=1  𝑓𝑡 ∈ ℱ    

     (13) 

Where 𝐹 = {𝑓(𝑥) = 𝜔𝐼𝐼 (𝑥)} is a collection of trees 

constructed to address a classification problem. A tree is 

divided into two sections by each 𝑓𝑡: the leaf weight 

component (𝜔) and the structural part. With the use of 

objective functions like mean squared error or log-loss, the 

decision tree model's performance is assessed both before 

and after a node split. In XGBoost, the iterative procedure 

optimizes the tree structure to reduce loss and boost model 

precision. By reducing the following objective function, 𝑓𝑡 

may be discovered: 

𝒪 = ∑ ℓ(�̂�𝑖𝑦𝑖)𝑖 + ∑ Ω(𝑓𝑡)𝑡   (14) 

In this case, the distance between the prediction (�̂�𝑖) 

and object (𝑦𝑖) is measured by a training loss function 

called ℓ, which stands for the cost of model complexity. 

Conventional methods fail to optimize a boosting 

algorithm with the aim function denoted by equation (4) 

in Euclidean space. In the gradient boosting approach, the 

prediction, and the objective function of the k-th iteration 

are specified as follows: 

�̂�(𝑘) = �̂�(𝑘−1) + 𝑓𝑘(𝑥)   (15) 

𝒪(𝑘) =  ∑ ℓ(𝑦𝑖 , �̂�𝑖
(𝑘−1)

+ 𝑓𝑘(𝑥𝑖)) +𝑛
𝑖=1  Ω(𝑓𝑘)  (16) 

The second-order Taylor expansion is used by 

XGBoost to closely approach Equation (7). The goal 

function is expressed as follows: 

𝒪(𝑘) ≃ �̃�(𝑘) = ∑ [ℓ(𝑦𝑖 , �̂�𝑖
(𝑘−1)

) +}𝑖𝑓𝑘(𝑥𝑖) +𝑛
𝑖=1

||𝑖(𝑓𝑘(𝑥𝑖))2

2
] +  Ω(𝑓𝑘)   (17) 

Here 𝑘𝑖 represents second-order gradient probability, 

which depends on the loss function, and 𝒪(𝑘)  represents 

first-order gradient probabilities. Following is a definition 

of the XGBoost: 

Ω(𝑓) = 𝛾𝐿 +
1

2
𝜆‖𝜔‖2    (18) 
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The number of leaves on the tree in this case is 𝐿. Take 

ℒ𝑗 = {𝑖: 𝐼𝐼(𝑥𝑖) = 𝑗} as an example of an instance asset. By 

adding a coefficient, equation (8) may now be readily 

expressed as Ω follows:  

�̃�(𝑘) = ∑ [(∑ }𝑖𝑖∈𝐼𝑗
) 𝜔𝑗 +

1

2
(∑ ||𝑖 + 𝜆𝑖∈𝐼𝑗

) 𝜔𝑗
2] +𝐿

𝑗=1

𝛾𝐿    (19) 

The leaf 𝑗's solution weight (𝜔𝑗
∗) for a tree structure 

may be calculated by: 

𝜔𝑗
∗ = −

∑ }𝑖𝑖∈𝐼𝑗

∑ ||𝑖+𝜆𝑖∈𝐼𝑗

    (20) 

Equations (19) and (20) put together, we may create.  

�̃�(𝐼𝐼) = −
1

2
∑

(∑ }𝑗𝑖∈𝐼𝑗
)

2

∑ ||𝑗+𝜆𝑖∈𝐼𝑗

+ Υ𝐿𝐿
𝑗=1   (21) 

Tree II(x) may be evaluated using equation (11) to 

find the best tree architectures. From a single leaf, the 

structure is gradually increased by adding branching after 

every repetition. A single leaf node is the starting point for 

decision tree algorithms like XGBoost, which divides it 

into two child nodes based on the cost or impurity 

measure. This procedure is performed several times, 

increasing the complexity of the tree, and limiting 

overfitting to produce an ensemble model. To add a 

specific split to the existing structure, the following 

method must be called: 

𝒪𝑠𝑝𝑙𝑖𝑡 =
1

2
[

(∑ }𝑗𝑖∈𝐼𝑙
)

2

∑ ||𝑖+𝜆𝑖∈𝐼𝑙

+
(∑ }𝑖𝑖∈𝐼𝑟 )

2

∑ ||𝑖+𝜆𝑖∈𝐼𝑟

+
(∑ }𝑖𝑖∈𝐼 )2

∑ ||𝑗+𝜆𝑖∈𝐼
] − 𝛾 

    (22) 

where = 𝐼𝑙 ∪ 𝐼𝑟 , 𝐼𝑙 , and 𝐼𝑟  represent the instance sets 

of the left and right nodes after the split. The performance 

of the model as determined by the objective function is 

taken into account following a node split in the tree. If 

performance has improved, the appropriate split will be 

put into effect; if not, it will be stopped. Additionally, 

while enhancing the target function, XGBoost frequently 

encounters less overfitting than other boosting algorithms 

because of this regularisation. The target function, which 

specifies the desired prediction of the model, serves as the 

foundation for supervised learning. It directs the learning 

process by generating the necessary output for the inputs. 

4 Results and discussion 
This section gives a detailed analysis of simulation 

results performed using the proposed DRG-Net approach 

and existing DR grading classification methods which are 

verified using various parameters through the same 

dataset. 

4.1 Dataset description 

EyePACS dataset: There are 1427 images in the 

dataset. The training and validation sets were created by 

dividing the dataset's pictures 80:20. This division uses a 

random-split methodology throughout many training runs. 

A multi-stage training procedure was used to train several 

models. Multi-stage training includes simultaneously or 

sequentially training several models, assessing, and 

improving performance at each step, maybe modifying 

parameters, and applying ensemble approaches for 

improved accuracy. A training set was used for each run's 

training, and a validation set was used for each run's 

hyperparameter tuning. 

Messidor dataset: The dataset contains 1744 fundus 

images with varied pixel sizes, which were obtained from 

three ophthalmologic departments. Due to characteristics 

including illness incidence, case diversity, clinical 

significance, patient consent, anonymization, 

standardization, and availability, the Messidor dataset is 

preferred for ophthalmological research. Stage 1 scans 

include those with MA. Stage 2 scans are those discovered 

in both MA and HM, while stage 3 scans are those 

discovered in high levels of MA and HM. Table 2 shows 

the dataset properties for the EyePACS and Messidor 

datasets. After applying the SMOTE data balancing, the 

dataset is normalized to equal numbers i.e., 25810 in 

EyePACS and 1017 in Messidor datasets. 

Table 2: Number of instances in each dataset.  

Dataset EyePAC

S 

Messido

r 

Class No. of 

Instances 

No. of 

Instances 

Normal 

(No-DR) 

25810 1017 

Mild DR 2443 270 

Moderate 

DR 

5292 347 

Severe DR 873 75 

Proliferativ

e DR 

708 35 

 

4.2 Prediction results 

Figure 7 shows the predicted grading outcomes using 

the proposed DRG-Net. Here, the proposed method 

performs grading operations based on maximum feature-

specific probability analysis. The suggested grading 

technique determines the grade with the highest likelihood 

based on each feature's specific contribution, allowing for 
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more precise and informed grading. These grades were 

identified by comparing the test features with the trained 

dataset using the SoftMax classifier. There are five distinct 

samples considered, and the yellow color-outlined values 

indicate the proposed DRG-Net probability estimate by 

the SoftMax classifier. Here, the DR grade is finalized 

based on the maximum value. For example, consider 

Figure 7 (a), which has probability values as 0.91, 0.02, 

0.03, 0.03,0.01. Here, 0.91 is the maximum achieved 

accuracy, which has the first position, so the output grade 

is classified as “No-DR”.   

 

   

0.91, 0.02, 0.03, 0.03,0.01 0.08, 0.82, 0.01, 0.06,0.03 0.04, 0.05, 0.78, 0.01,0.12 

(a) (b) (c) 

  

0.03, 0.06, 0.01, 0.74,0.16 0.02, 0.08, 0.07, 0.03,0.70 

(e) (f) 

Figure 7: Obtained results for DR grading prediction. 

4.3 Ablation study 
Ablation study is the process of performance 

estimation of DRG-Net in the presence and absence of 

various modules. The ablation research seeks to assess 

DRG-Net's constituent parts, such as feature importance, 

architecture choices, hyperparameters, loss functions, 

ensemble components, preprocessing techniques, data 

augmentation, regularisation techniques, and class 

balancing strategies. Table 3 and Table 4 show the 

ablation study of the proposed DRG-Net on both 

EyePACS and Messidor datasets. Here, the proposed 

method in the presence of all modules (SMOTE, DGCN, 

XGBoost) resulted in superior performance as compared 

to the absence of individual modules. Specifically, the 

absence of SMOTE data balancing and DGCN feature 

extraction resulted in poor performance. Combining real 

and fake data, changing the input layer, training, and 

assessing performance are the steps involved in 

incorporating balanced SMOTE data features into a 

dynamic graph convolutional system. 

Table 3: Ablation study of proposed DRG-Net on 

EyePACS Dataset. 

Pre

sented 

module

s 

Ab

sence 

modul

es 

Ac

curacy 

Sen

sitivity 

Spe

cificity 

DG

CN, 

XGBoo

st 

S

MOTE 

93.

01 

92.3

5 

96.1

2 

SM

OTE, 

D

GCN 

97.

54 

93.4

8 

97.4

5 



182 Informatica 48 (2024) 171–184 V.K.R. Poranki et al. 

XGBoo

st 

SM

OTE, 

DGCN 

X

GBoos

t 

97.

89 

94.7

8 

98.1

2 

SM

OTE, 

DGCN, 

XGBoo

st 

- 99.

016 

99.0

19 

98.4

375 

 

Table 4: Ablation study of proposed DRG-Net on 

Messidor Dataset. 

Pre

sented 

module

s 

Ab

sence 

modul

es 

Ac

curacy 

Sen

sitivity 

Spe

cificity 

DG

CN, 

XGBoo

st 

S

MOTE 

90.

35 

93.1

9 

95.6

1 

SM

OTE, 

XGBoo

st 

D

GCN 

96.

60 

97.5

3 

98.0 

SM

OTE, 

DGCN 

X

GBoos

t 

97.

34 

96.3

5 

96.4

5 

SM

OTE, 

DGCN, 

XGBoo

st 

- 99.

60 

99.0

8 

100.

00 

4.4 Performance evaluation 

Table 5 shows the performance comparison of the 

proposed DRG-Net method with DCNN [12], CBAM 

[14], OCNN [16], and DBNN [20] using the EyePACS 

dataset. Here, the proposed method resulted in superior 

performance in terms of accuracy, sensitivity, and 

specificity, respectively. Table 6 shows the performance 

comparison of the proposed DRG-Net method with ERNN 

[18], Firefly-CNN [19], HA-Net [26], and MRCNN [30]. 

Here, the proposed method resulted in superior accuracy 

performance in contrast with other approaches using the 

Messidor dataset. 

Table 5: Performance evaluation on EyePACS 

dataset. 

Clas

s 

Accur

acy 

Sensiti

vity 

Specifi

city 

DC

NN [12] 

93.13

4 

93.616 94.755 

CB

AM 

[14] 

94.36

8 

95.711 95.300 

OC

NN [16] 

95.11

6 

96.068 95.304 

DB

NN [20] 

96.19

5 

97.244 95.463 

DR

G-Net 

99.01

6 

99.019 98.437

5 

 

Table 6. Performance evaluation on Messidor dataset 

Class Accu

racy 

Sensiti

vity 

Specifi

city 

ERN

N [18] 

93.35

2 

93.324 93.569 

Firefl

y -CNN 

[19] 

94.73

5 

93.797 94.255 

HA-

Net [26] 

96.51

1 

95.389 94.322 

MRC

NN [30] 

97.58

8 

95.648 95.503 

DRG

-Net 

99.60 99.08 100.00 

5 Conclusion 
This work developed DRG-Net by making use of the 

features of graph learning, and deep learning. Datasets, the 

datasets EyePACS and Messidor are subjected to the 

SMOTE algorithm, which brings the number of instances 

belonging to each DR class down to a standard level. So, 

the number of images in each class is maintained the same. 

After that, DGCN is used to extract the features that are 

unique to each class by locating the relationship between 

the classes. In addition, the prediction operation is carried 

out by an XGBoost classifier that has been trained with 

balanced feature sets. The results of the simulations 

performed on the EyePACS and Messidor datasets 

showed that the DRG-Net outperformed the more 

conventional methods in terms of performance. For 

improved performance, this work can be expanded with 

feature selection techniques.  
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