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Parkinson's disease (PD) is a critical dopaminergic neuron problem that causes brain disorders. The 

early prediction of PD can save human lives. So, computer-aided detection (CAD) with artificial 

intelligence (AI) models can predict PD in a quick time as compared to manual prediction. Traditional 

machine learning (ML) methods, on the other hand, identified PD using either voice or image datasets. 

However, they resulted in poor PD detection performance, which caused misclassification. So, this work 

focused on the implementation of a deep learning (DL) mechanism for PD identification from both voice 

and image datasets, which is named ParkinsonNet. Initially, a combined dataset is considered, which 

contains the voice and image samples. Then, a data processing operation is performed to normalize the 

images to a uniform size, which also performs the data balancing operation in the voice dataset. Then, a 

voice-image ensemble-based convolutional neural network (VIE-CNN) model is trained with the pre-

processed voice-image data. Here, categorical cross entropy (CCE) is used to optimize the losses 

generated during the training. Then, the VIE-CNN model predicts the normal and abnormal classes from 

the test data. The simulation results show that the proposed ParkinsonNet achieved 99.67% accuracy on 

image data and 98.21% accuracy on voice data. The simulation results show that the proposed 

ParkinsonNet resulted in improved accuracy over conventional methods. 

Povzetek: Predstavljen je sistem ParkinsonNet, ki uporablja globoko učenje za identifikacijo 

Parkinsonove bolezni iz glasovnih in slikovnih podatkov. Pri tem dosega 99,67 % točnost pri slikovnih 

podatkih in 98,21 % pri glasovnih podatkih. 

 

1 Introduction 
PD is a neurological disorder that primarily affects people 

in their s and older [1]. It is often regarded as one of the 

ailments that are most difficult to cure in the current world. 

PD is characterized by tremors, bradykinesia, and postural 

instability. Parkinson's syndrome, which affects most 

sufferers, is a form of movement disorder [2]. The 

movement disorder's subtype associated with PD is by far 

its most prevalent symptom. The condition known as PD 

is the most prevalent cause of movement problems and the 

one that affects the most people. PD is a neurological 

ailment and a chronic sickness that mostly affects older 

people today. The symptoms include slowness of 

movement, stiffness, and tremors. Parkinson's disease's 

main clinical symptoms are tremors, rigidity, and 

slowness of movement (bradykinesia). Bradykinesia 

causes a noticeable slowing down of movement, rigidity 

causes resistance to motion in the muscles, and tremors are 

rhythmic shaking that most often affects the hands or 

fingers while at rest.  An approach that is both efficient 

and strong in its automation is required as a tool to be able 

to diagnose PD accurately in its early stages. Limited and  

 

noisy data, interpretability of complicated models, 

potential overfitting due to model complexity, and the  

requirement for expert expertise to properly preprocess 

and interpret results are some of the difficulties faced 

while utilizing deep learning to diagnose Parkinson's 

disease. One of the conditions that must be met before 

continuing is this. It is feasible to address these demands 

thanks to recent advancements in technical capabilities 

[3]. A harsh and breathy voice, reduced intensity, 

monotony of pitch and loudness, decreased tension, 

inappropriate silences, brief rushes of speech, fluctuating 

tempo, faulty consonant articulation, and inappropriate 

silences are all symptoms associated with PD (dysphonia). 

Because collecting speech data does not require any form 

of invasion of privacy and can simply be carried out using 

portable electronic equipment, there are grounds for hope 

for the construction of a prospective diagnostic tool that is 

used to treat a broad variety of voice-related ailments. 

When treating voice-related conditions, using speech data 

as a diagnostic tool has benefits over more conventional 

approaches. Unlike frequently subjective and less accurate 

traditional evaluations, it offers objective, quantitative 

analysis, enabling more accurate assessments and early 
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detection of errors. Obtaining high-quality, well-labeled 

data, selecting appropriate model architectures, 

optimizing hyperparameters, implementing regularization 

to prevent overfitting, prioritizing model interpretability, 

carrying out rigorous validation and testing, and adhering 

to ethical considerations, particularly about patient 

privacy and data transparency, are key principles when 

using Deep Learning techniques for diagnosis. 

As the illness advances, more symptoms appear, 

making it increasingly difficult to discover a therapy for 

PD. As a direct result of this, diagnostic instruments that 

have a higher level of sensitivity are necessary to make an 

accurate diagnosis of PD. The usage of AI-based CAD 

systems [4,5].  for illness, diagnosis has significantly 

increased in recent years, sometimes even in the early 

stages of the ailment. Because of the technical 

advancements that have been achieved in this field, it is 

now theoretically possible for this to become a practical 

reality. This pattern is projected to continue at least into 

the not-too-distant future, according to expectations. ML 

and DL algorithms have been developed to diagnose PD 

and provide answers to its diagnostic problems [6,7]. 

These diagnostic algorithms were developed to help in the 

diagnosis of PD, and they are based on several diagnostic 

techniques that are now being used in clinical practice. 

Integrating algorithm-based diagnostic techniques into 

Parkinson's disease clinical practice may result in earlier 

and more accurate diagnoses, personalized treatment, 

improved monitoring, and cost-efficiency. However, it 

also raises ethical and privacy issues, demanding careful 

data management and regulatory oversight. These 

diagnostic algorithms were created to identify PD. This 

study's goal is to analyze the diagnostic techniques that 

rely on differential diagnosis to find PD. Examples of the 

sorts of things that are discussed under this topic are the 

pre-processing of PD datasets [8], the extraction and 

selection of features [9], and classification. These and 

other strategies might be used. In addition, this selection 

of features may potentially include additional categories 

of items. Additionally, the use of such CAD systems for 

the diagnosis of PD from several modalities, such as 

speech signals, gait signals, magnetic resonance imaging, 

positron emission tomography, and single-photon 

emission computed tomography, has increased, as have 

the Dopamine Transporter Scan, a tremor signal, a 

handwriting signal, handwritten images, and a variety of 

other clinical characteristics. Voice, movement, and 

handwriting [10] are all examples of modalities that are 

used to send messages. In addition to evaluating existing 

literature, this effort looked at current and emerging 

research problems and potential answers to those 

problems. The findings of this research have uncovered 

several emerging tendencies as well as research functions 

that, when further investigated, will contribute to the 

advancement of automatic disease recognition. Modern 

trends in autonomous illness recognition are heavily 

influenced by technological developments since they 

make it possible for more sophisticated algorithms, better 

sensors, quicker data processing, and greater computer 

capacity. These advancements improve illness 

recognition's precision and effectiveness, which improves 

patient care and outcomes. These findings will aid in the 

diagnosis of PD as well as its incorporation into electronic 

healthcare systems. The novel contributions of this work 

are illustrated as follows: 

• The development of ParkinsonNet for the 

identification of PD from both voice and image 

datasets. 

• The design of the VIE-CNN model for normal and 

abnormal disease classification using pre-processed 

datasets. 

• The adoption of the CCE model for reducing losses 

during training, which also performs label-specific 

training for classificatiom. Classification. 

The rest of the paper is organized as follows: Section 2 

contains the literature survey and existing drawbacks. 

Section 3 contains a detailed analysis of the proposed 

method with sub-block explanations. Section 4 contains 

the detailed simulation analysis. Section 5 contains the 

conclusion. 

2 Literature survey 
[11] presented the several datasets that were used in the 

evaluation of the proposed PD identification algorithms. 

This review also looked into the model assessment metrics 

and cross-validation procedures that have been used in 

various studies on this topic. The authors [12] created the 

fundamental CNNs for learning characteristics from 

pictures formed by handwriting dynamics. These images 

capture various information relevant to the person being 

evaluated. In addition, to promote research that is 

associated with computer-assisted PD diagnosis, this 

study provides a dataset that is comprised of images and 

data based on signals that are available to the public. [13] 

conducted a comprehensive review of previous studies on 

the PD diagnosis and its several subtypes. They did this by 

analyzing the data using a computer program. Artificial 

neural networks (ANNs) are artificial versions of the 

brain's natural neural networks for the identification of 

PD. Dash [14] developed the ML approaches to solve 

these issues and to develop the processes for diagnosing 

and assessing PD. The categorization of individuals with 

PD, healthy controls, and patients whose clinical 

presentations were like those of PD patients were all able 

to be studied successfully thanks to the use of these 

approaches. Parkinson's disease mainly presents as motor 

symptoms in patients, such as tremors, bradykinesia 

(slowness of movement), rigidity, and postural instability. 

The condition is characterized by these motor symptoms, 

which are frequently the most obvious. In  [15], the PD is 

identified using an incremental support vector machine 

(ISVM). An Incremental Support Vector Machine (ISVM) 

is used to accurately distinguish between cases of 

Parkinson's disease (PD) and cases without it by training 

the model on data samples, progressively updating it with 

fresh data, and modifying the decision boundary. In the 

framework of this inquiry, self-organizing maps and non-

linear iterative partial least squares were used to, first, 
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decrease the dimensionality of the data and, second, carry 

out the task of clustering. Both methods were found to be 

effective in accomplishing these goals. In [16], the authors 

developed a novel concept for an innovative PD detection 

system, and they based its construction on techniques of 

recurrent neural networks to analyze gait data. In [17], the 

authors obtained their forecasts for total prognoses 

regarding the progression of the disease (UPDRS) and 

motor-UPDRS with the use of SVM. The UPDRS 

(Unified Parkinson's Disease Rating Scale) is a 

comprehensive assessment tool that evaluates various 

aspects of Parkinson's disease, including motor and non-

motor symptoms. The motor-UPDRS specifically focuses 

on assessing motor symptoms such as tremors, rigidity, 

bradykinesia, and posture/gait issues. The accuracy of the 

results was therefore increased because of this. Within the 

scope of this inquiry, non-linear iterative partial least 

squares and self-organizing maps were used to, for 

starters, reduce the number of dimensions that the data 

had. 

The Voice Impairment Classifier is the name of two 

neural network-based models that were presented by [18] 

to assist medical professionals and patients in the process 

of illness diagnosis at an earlier stage. To effectively 

predict the illness, a comprehensive empirical evaluation 

of CNNs was performed on large-scale image 

classification of gait signals that were transformed into 

spectrogram images. In [19], the authors explored three 

distinct kinds of classifiers for the benchmark (voice) 

dataset. The multilayer perceptron, the SVM, and the K-

Nearest Neighbor (KNN) were the classifiers used to 

identify the PD. With a classification accuracy of 95.89%, 

it was found that the most successful classifier was KNN 

paired with the Levenberg–Marquardt method. The 

authors [20] created an ANN-SVM model for detecting 

Parkinson's disease from voice data. However, this 

method resulted in higher computational complexity. The 

authors [21] suggested using a random undersampling 

strategy to introduce more equilibrium into the training 

process. To achieve a higher level of precision when 

identifying PDs, the researchers who carried out this study 

came up with the idea of a cascaded learning system. The 

Chi2 model [22] and the adaptive boosting (Adaboost) 

[23] model is both included in this solution. The Chi2 is a 

model that analyses the feature space, ranks the important 

properties, and selects a subset of those characteristics to 

use in the Adaboost model's prediction of PD. The 

Adaboost model bases its evaluation of the subset of 

features on the evaluations, rankings, and selections made 

by the Chi2 model.  [24] presented a technique for the 

diagnosis of PD that makes use of vowels with extended 

phonation and an architecture of ResNet that was 

originally dedicated to the classification of pictures. The 

accuracy that was attained on the validation set is more 

than 90%, which is very low. Static and dynamic speech 

features were explored in connection to PD detection [25-

27]. They suggested using a bidirectional long-short-term 

memory (LSTM) model to identify PD by capturing the 

time-series dynamic properties of a speech signal. 

3 Proposed methodology 
The use of DL, a subfield of AI, is quickly expanding to 

include a wide range of diagnostic activities in the medical 

field. Deep Learning has demonstrated effectiveness in the 

diagnosis of skin issues, the detection of retinal diseases, 

the prediction of cardiac and genetic disorders, and the 

detection of malignancies in images, all of which improve 

diagnostic precision and patient care. The diagnosis of a 

diverse range of disorders and conditions is included in 

these responsibilities. This chapter provided an overview 

of the applications of DL techniques and discussed several 

key principles necessary for the diagnosis of Parkinson's 

disease. The integration of speech and picture samples in 

ParkinsonNet supports the program's goals by enabling a 

more thorough and precise evaluation of Parkinson's 

disease patients. The holistic data approach enhances the 

monitoring, diagnosis, and customization of treatment 

plans, ultimately advancing ParkinsonNet's mission to 

improve the quality of life for people living with 

Parkinson's disease. Figure 1 shows the proposed 

ParkinsonNet block diagram. In the beginning, a 

combined dataset that includes both the speech and picture 

samples is taken into consideration. The decision to utilize 

a combined dataset comprising both speech and picture 

samples aims to offer a more comprehensive and multi-

modal perspective of the data. This approach can enhance 

accuracy and provide deeper insights, particularly in fields 

like medical diagnostics, where it allows for a more 

holistic assessment of a subject's condition or 

characteristics. Here, the handwritten patterns are 

considered the image dataset. Further, voice problems 

were shown to be related to symptoms in 90% of PD 

patients who were in the early stages of the illness. The 

progressive nature of Parkinson's disease (PD) makes it 

challenging to discover effective therapies because 

advancing symptoms diversify and intensify, making it 

harder to assess treatment impact. Moreover, variations in 

symptom patterns among individuals complicate the 

development of universally effective treatments. 

Parkinson's disease (PD) sufferers' voice issues are an 

important early warning indication. They frequently 

manifest before motor symptoms, allowing for early 

diagnosis and management, which can enhance patients' 

quality of life through prompt treatment and speech 

therapy. Through precise diagnostics, early warnings, 

individualized therapies, and data-driven assistance, 

advanced technology has significantly improved the 

accuracy and efficiency of identifying and treating 

illnesses in their early stages, improving patient outcomes 

and reducing costs. Because of this, there is an increasing 

amount of interest in the incorporation of speech 

characteristics into computer-assisted diagnosis and 

remote monitoring of people who are in the early stages of 

PD. Advanced machine learning models that evaluate 

vocal variables like pitch, tremor, and articulation are used 

to incorporate speech characteristics in computer-assisted 

diagnosis and remote monitoring of early-stage 

Parkinson's disease. These models employ speech data to 

identify small alterations suggestive of Parkinson's 

disease, providing a handy and non-invasive tool to 
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monitor disease development and aid in early diagnosis 

and treatment planning. 

Figure 1: Proposed ParkinsonNet block diagram. 

The contribution made by this research is an 

improvement in accuracy as well as a decrease in the 

number of vocal characteristics that are used in the process 

of PD identification. Next, a data processing operation is 

carried out to normalize the pictures to a size that is 

consistent throughout the board. This data processing 

operation also carries out a data balancing operation inside 

the voice dataset. It can be difficult to normalize images in 

a voice collection because of differences in lighting, 

backgrounds, and camera settings. Techniques including 

histogram equalization, color correction, background 

removal, and data augmentation are used in mitigation 

strategies to maintain consistent image quality and 

increase model robustness. Then, the dataset splitting 

operation is carried out, where 80% of the dataset is used 

for training and 20% of the dataset is used for testing. 

Following that, a VIE-CNN model is trained using the pre-

processed voice-image data. Here, the VIE-CNN contains 

the two standalone multi-dimension models, namely the 

Voice-CNN and the Image-CNN. Specifically, the Voice-

CNN model is used to train the pre-processed voice data, 

and the Image-CNN model is used to train the pre-

processed image data. Here, the Voice-CNN and Image-

CNN models are named based on their kernel size, such as 

1x1, 3x3, etc. In this instance, CCE is used to optimize the 

losses that are sustained during the training. Categorical 

Cross-Entropy (CCE) improves training by acting as the 

objective function for gradient descent-style optimization 

techniques. As a way to reduce the difference between 

expected and actual class probabilities, it directs 

parameter modifications. The approach computes 

gradients to repeatedly update parameters, lowering the 

CCE loss and improving the model's classification 

accuracy. Multi-class classification using machine 

learning employs the loss function known as categorical 

cross-entropy (CCE). It quantifies the disparity between 

anticipated class probability and actual class labels. It is 

determined mathematically by adding the negative 

logarithm of the anticipated probabilities for the true 

classes. CCE directs model training by penalizing greater 

differences between expected and actual probabilities, 

encouraging more precise predictions. In the output layer 

of neural networks, it is frequently used in conjunction 

with the softmax activation. After that, the VIE-CNN 

model uses the test data to make predictions about the 

normal and abnormal classes. 

3.1 Dataset 

This work considered both voice and image datasets. 

Further, the image-based PD dataset is also considered 

because it is available on open-access platforms. There are 

a total of 204 images in the dataset, with 102 images 

marked as PD and 102 images marked as normal. Figure 

2 shows the sample images from the dataset. Then, the 

voice samples of people with PD are obtained from the 

UCI-ML library. Voice samples from the UCI-ML library 

are used because changes in voice patterns can indicate 

Parkinson's disease.  
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Figure 2: Sample images from the Image-PD dataset. 

The voice-PD dataset contains a total of 240 records, 

120 of which are normal and 120 of which are PD. The 

columns of the voice-PD dataset are ID, Recording, 

Status, Gender, and Jitter_rel Jitter_abs, Jitter_RAP, 

Jitter_PPQ, Shim_loc HNR05, HNR15, HNR25, HNR35, 

HNR38, RPDE, DFA, PPE, GNE, MFCC0, MFCC1, 

MFCC2, MFCC3, MFCC4, MFCC6, MFCC7, MFCC8, 

MFCC9, MFCC10, MFCC11, MFCC12, Delta0, Delta1, 

Delta2, Delta3, Delta4, Delta5 and Delta6. Differentiating 

PD images from normal images involves features like 

altered vocal pitch, tremor-induced variations, and 

irregular speech patterns due to motor symptoms like 

bradykinesia and rigidity. Here, all these columns are 

different spectral-spatial features of the human voice. 

Parkinson's disease poses a difficult challenge to treatment 

due to its complicated, progressive nature, dual 

presentation of motor and non-motor symptoms, 

ambiguous etiology, and incomplete understanding of its 

underlying mechanisms. Current medical practices tackle 

symptoms rather than the underlying cause of the disease, 

searching for a cure a drawn-out and challenging 

procedure. 

3.2 VIE-CNN 

The VIE-CNN model contains separate training models 

for voice and images, which are voice-CNN and image-

CNN. Standard pre-processing techniques are necessary 

before studying speech and image collections. Noise 

reduction, feature extraction, and normalizing are 

examples of these processes for speech data, whereas 

scaling, normalization, and data augmentation are 

frequently used for image data. By performing these 

procedures, the data is prepared for machine learning 

analysis, improving its precision and caliber.  

Convolutional layers are used for image analysis in the 

VIE-CNN model, and recurrent layers are used for voice 

analysis. These models have distinct training models for 

voice and images. Through the use of combined data, this 

design enables the model to learn specific properties from 

both modalities, improving its ability to diagnose 

Parkinson's disease. Here, the kernel sizes in Voice-CNN 

and Image-CNN are different. However, the number of 

layers and their operations remain the same. Figure 3 

shows the block diagram of Voice-CNN, which contains 

1D kernels of size 1x1. Figure 4 shows the block diagram 

of Image-CNN with a kernel size of 3x3. Convolutional 

layers for feature extraction, pooling layers for 

downsampling, and fully connected layers for 

classification are the main phases in an Image-CNN 

(Convolutional Neural Network). The operation of each 

layer is illustrated as follows: 

Convolution Neural Layer: The deep VIE-CNN is a 

multi-layered neural network that has seen recent usage in 

solving a variety of difficult issues. The synapses of the 

neurons that make up a convolution layer are coupled to 

the region of the input data. A convolutional layer enables 

each neuron to process a particular geographic area and 

capture local information by connecting its synapses to 

confined portions of the incoming data through 

constrained receptive fields. The receptive field of a 

neuron refers to the maximum extent to which it can 

process incoming data; this field is expanded by stacking 

the convolution layers. The portion of the input space that 

specifically affects a neuron's activity is known as the 

receptive field (for example, the visual field for a visual 

neuron). It is the spectrum of stimuli or inputs that the 

neuron reacts to. To comprehend the way neurons or units 

process data from their environment, that concept is 

frequently employed in fields like computer vision and 

neuroscience. The convolution procedure is expressed as 

the equation (1) with input data as 𝐼𝑛𝑀𝑎𝑝, where 𝑤  stands 

for the convolution kernel weights and its bias term (𝐵𝑘), 

respectively, and 𝑜𝑢𝑡𝑀𝑎𝑝 is the output expression of the 

convolution technique. 

𝑜𝑢𝑡𝑀𝑎𝑝 = (𝐼𝑛𝑀𝑎𝑝𝑤) + 𝐵𝑘   

     (5) 
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Convolution is an operation that is formed by 

combining one or more of these kernels in various ways. 

In the suggested model, each layer of convolution is 

followed by a batch normalization layer, and the activation 

function is a leaky version of the rectified linear unit 

(ReLU). The leaky ReLU is a modified version of the 

rectified linear unit (ReLU) activation function that allows 

a small gradient for negative inputs, addressing the "dying 

ReLU" problem where some neurons become inactive. 

 

Figure 3: Voice-CNN model. 

ReLU activation function: Within a neural network, 

the activation functions also perform the duties of the 

transfer functions. The findings of the layer before this one 

is altered by these layers so that they are mapped onto the 

information that was provided as the ground truth. There 

are two different types of activation functions, namely the 

linear activation function and the nonlinear activation 

function. Activation in VIE-CNNs is often accomplished 

via the use of a variety of nonlinear function types. It is 

possible to activate VIE-CNNs (View-Invariant 

Embedding Convolutional Neural Networks), which 

enable the network to recognize and represent a variety of 

features and patterns across various views or perspectives 

of the input data. In most cases, these functions are 

included so that the nonlinearity idea is preserved inside 

the network. For VIE-CNNs to be able to recognize 

complex and nonlinear patterns in the data, nonlinearity 

must be included. The model's ability to learn complex 

associations is improved by nonlinear activation 

functions, which also improves the model's overall 

performance when handling real-world data. ReLU is a 

linearly rectified function. In the absence of negative 

input, the output of the ReLU function is always zero; in 

all other cases, the input is left unaltered (see equation 2). 

During backpropagation, the model parameters are 

updated based on input values that are not negative. 

Because of this, the dying ReLU problem arises, and the 

leaky ReLU activation function has been implemented in 

our network to solve this problem. The "dying ReLU 

problem" in neural networks occurs when ReLU 

activations always output zero for particular inputs, 

rendering neurons inactive during training. Gradient 

updates are interfered with, training is slowed down, and 

learning of complicated features is constrained. Leaky 

ReLU and related variations address issues by permitting 

modest gradients for negative inputs, improving training 

effectiveness and network expressiveness. In this case, the 

negative slope does not have a value of zero and instead 

has a tiny value; as a result, its derivative will have 

nonzero values for any data that is supplied. The equation 

that corresponds to the mathematical representation is 

provided by equation (2), while the equation that 

corresponds to the function's derivatives is given by 

equation (3).  

𝑅𝑒𝐿𝑈(𝑧) = max⁡{𝑧, 0}   

    (3) 

𝑓(𝑧) = {
𝑧, 𝑧 ≥ 0,
∝ 𝑧, 𝑧 < 0.

}    

   (4) 
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MaxPooling layer: To broaden the scope of the 

network's receptive field, the MaxPooling layer is 

implemented. This process brings down the total cost of 

computing while also decreasing the size of the feature 

maps in terms of their spatial dimensions. Only the height 

and breadth of the supplied data are reduced by this 

process. There is no change to the total number of feature 

channels. It is similar to the method of using sliding 

windows with the maximum element operation selected. 

The size decrease achieved is proportional to the length of 

the sliding operation's stride. The pooling operation in the 

proposed network makes use of a pooling size and takes 

strides to accomplish its goals. Since the pooling layer is 

nonparametric, there are no learning parameters at this 

stage. 

Figure 4:  Image-CNN model. 

Dense layer: The research has shown that the training 

of VIE-CNNs is a difficult process that involves a variety 

of hyperparameters. In most cases, the computational 

network of a deep neural model has a larger depth, which 

results in the phenomenon known as the convergence 

issue. Hyperparameter adjustment and convergence offer 

difficulties while training VIE-CNNs. The intricacy of the 

model makes it challenging to choose the appropriate 

hyperparameters and reach convergence; this frequently 

necessitates careful initialization, large amounts of data, 

and powerful computing power. There are a few solutions 

that have been offered to remedy this problem. The dense 

layer is used in the suggested model to manage the 

convergence issue and speed up the training of the 

network. The dense layer is usually placed immediately 

after the activation layers. After activation layers, adding 

a dense layer aids the network in learning complicated 

representations from the activated features, allowing it to 

recognize complex patterns in the input. 

SoftMax classifier: SoftMax Classifier is also an 

activation function for activating hyperbolic tangents. It's 

a form of logistic sigmoid activation function, and it has a 

significant meaning in terms of the biological neurons. 

One of the most distinguishing features of a SoftMax 

tangent function is that its upper derivatives disappear as 

they approach zero. This is because the SoftMax tangent 

function keeps its acceptable property of learning 

discriminative features from a greater variety of varied 

data samples.  The SoftMax activation function has the 

feature of yielding its normalized score in the range of the 

output scale. Finally, the SoftMax classifier of the VIE-

CNN model is used to classify the PD and normal classes, 

which compares the test probabilities with trained 

memory. Probabilities provide a measure of confidence in 

a machine learning model's classification, influencing the 

final decision by allowing the adjustment of threshold 

values for precision and recall trade-offs. The PD 

(Parkinson's disease) and normal classes in the VIE-CNN 

model are classified using the SoftMax classifier by 

turning the raw scores from the last layer into 

probabilities. It gives each class a probability distribution, 
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enabling the model to determine which class is most likely 

given an input. 

4 Results and discussion 
This section gives a detailed performance analysis of the 

proposed ParkinsonNet. The performance of the proposed 

method is measured using several performance metrics, 

such as accuracy, sensitivity, specificity, F1-measure, and 

precision. All these metrics are measured for proposed 

methods as well as existing methods. Then, all the 

methods use the same dataset for performance 

estimations. 

4.1 Prediction performance evaluation 

Figure 5 shows the predicted outcomes using the proposed 

ParkinsonNet. Figure 5 (a) shows that the outcome is 

Parkinson's. Here, the two probabilities are generated as 

0.9 and 0.1, where the first position contains the maximum 

value, so the output is detected as Parkinson. Figure 5(b): 

A healthy outcome is detected. Clinical symptoms, 

medical history, diagnostic testing (such as imaging and 

blood tests), and professional medical evaluation are all 

taken into account to interpret probability and determine 

with certainty whether a patient has Parkinson's disease or 

a healthy outcome. Although a final diagnosis is normally 

made by healthcare experts based on a thorough 

evaluation of all available data, machine learning 

algorithms may use these elements to provide probability 

scores. Here, the two probabilities are generated as 0.2 and 

0.8, where the second position contains the maximum 

value, so the output is detected as healthy.   

  

(a)     (b) 

Figure 5:  Predicted outcomes using ParkinsonNet. 

The accuracy and loss values are shown along the y-

axis, while the training epoch is shown along the x-axis in 

Figure 6. We can see that as the number of training epochs 

rose, the accuracy improved while the loss reduced, and 

that by the time the training was finished, the accuracy was 

coming closer to 1 and the loss was getting closer to 0. The 

graph that can be seen above shows that the blue line in 

the graph denotes the accuracy of the image, the red line 

denotes the accuracy of the voice, the green line denotes 

the loss of the image, and the yellow line denotes the loss 

of the voice. Table 1 compares the performance of various 

methods on the voice dataset. Here, the ParkinsonNet 

resulted in improved performance over various existing 

methods, such as KNN [19], ANN-SVM [20], and 

Adaboost [23].  Here, the ParkinsonNet has increased 

accuracy by 5.74%, sensitivity by 7.61%, specificity by 

6.23%, F-measure by 2.26%, precision by 7.24%, and 

Mathew's correlation coefficient (MCC) by 3.23%, as 

compared to the KNN [19]. In the third column, the 

ParkinsonNet has an accuracy of 4.52%, sensitivity of 

3.99%, specificity of 6.42%, F-measure of 6.56%, 

precision of 2.41%, MCC by 1.08% as compared to ANN-

SVM [20]. In the last column, ParkinsonNet has an 

accuracy of 8.29%, sensitivity of 2.34%, specificity of 

0.90%, F-measure of 2.75%, precision of 5.71%, and 

MCC of 0.92% as compared to Adaboost [23]. 
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Figure 6: Accuracy and Loss outcomes using ParkinsonNet. 

Table 1: Performance comparison of various methods on 

voice dataset. 

Metric KN

N 

[19] 

ANN

-

SVM 

[20] 

Adaboo

st [23] 

Proposed 

ParkinsonN

et 

Accurac

y (%) 

92.8

4 

93.9

2 

90.65 98.17 

Sensitivit

y (%) 

91.7

5 

94.9

5 

96.48 98.74 

Specificit

y (%) 

91.7

2 

91.5

6 

96.57 97.44 

F-

measure 

(%) 

95.6

9 

91.8

3 

95.24 97.86 

Precision 

(%) 

91.0

4 

95.3

4 

92.36 97.64 

MCC 

(%) 

94.3

8 

96.3

8 

96.54 97.43 

Table 2 compares the performance of various methods 

on the image dataset. Here, the ParkinsonNet resulted in 

improved performance over various existing methods, 

such as ANN [13], ISVM [15], and UPDRS [17]. Here, 

the ParkinsonNet has increased accuracy by 3.47%, 

sensitivity by 3.89%, specificity by 3.37%, F-measure by 

6.56%, precision by 4.35%, and MCC by 0.76% as 

compared to the ANN [13]. In the third column, the 

ParkinsonNet has increased accuracy by 3.67%, 

sensitivity by 5.84%, specificity by 7.45%, F-measure by 

4.23%, precision by 5.43%, MCC by 0.76% as compared 

to ISVM [15]. In the last column, the ParkinsonNet has 

increased accuracy by 9.09%, sensitivity by 6.88%, 

specificity by 6.65%, F-measure by 1.33%, precision by 

3.04%, MCC by 1.52% as compared to UPDRS [17]. 

Table 2: Performance comparison of various methods on 

image dataset. 

Metric AN

N 

[13] 

ISV

M 

[15] 

UPDR

S [17] 

Proposed 

ParkinsonN

et 

Accuracy 

(%) 

93.8

9 

92.16 96.27 99.65 

Sensitivit

y (%) 

95.6

9 

92.06 97.75 99.12 

Specificit

y (%) 

91.9

4 

94.00 96.69 98.45 

F-

measure 

(%) 

94.3

1 

93.35 95.51 98.54 

Precision 

(%) 

96.9

8 

92.50 96.25 99.77 

MCC 

(%) 

93.8

9 

92.16 91.27 99.67 

5 Conclusion  
This work implemented the ParkinsonNet using the VIE-

CNN model. In the beginning, a combined dataset that 

includes both the speech and picture samples is taken into 

consideration. Next, a data processing operation is carried 

out to normalize the pictures to a size that is consistent 

throughout the board. This data processing operation also 
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carries out a data balancing operation inside the voice 

dataset. Following that, a VIE-CNN model is trained using 

the pre-processed voice-image data. In this instance, CCE 

is used to optimize the losses that are sustained during the 

training. The VIE-CNN model is developed by combining 

Voice-CNN and Image-CNN, where an ensemble model 

is used to predict PD from both test samples. After that, 

the VIE-CNN model uses the test data to make predictions 

about the normal and abnormal classes. Here, the 

ParkinsonNet improved accuracy by 3.4% on image data 

and 2.36% on voice datasets as compared to existing 

methods. Further, this work can be extended with 

advanced transfer learning methods for multi-class PD 

identification. 
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