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Driver Drowsiness is considered one of the significant causes of road accidents and fatal injuries. Due 

to this, creating systems that can monitor drivers and detect early drowsiness has become an important 

field of research and a challenging task in recent years. Several research attempts were proposed to 

solve this problem based on several approaches and techniques. The Electroencephalogram (EEG) is 

one of the most efficient and reliable method, among the physiological signals-based monitoring 

approaches. In this area, many Machine Learning (ML) techniques have been used to detect EEG-based 

driver drowsiness. However, due to the limitations of ML techniques, many researchers have shifted 

their focus to the use of deep learning (DL) techniques, which have demonstrated superior performance 

in many fields including the physiological signals classification tasks. This paper reviews and discusses 

numerous new research papers that have proposed and implemented driver drowsiness detection 

systems based on EEG and deep learning techniques. In addition, we have outlined the limitations and 

difficulties of the existing works and highlighted and proposed some propositions that will help future 

field researchers enhance and generalize the results. Based on our thorough analysis, we have 

determined that the latest advancements in detecting driver drowsiness have employed the convolutional 

neural network (CNN) technique, which has demonstrated effective performance in classifying signals.  

Furthermore, the primary issue encountered in all works is developing a more precise and accurate 

method. Nevertheless, we seek a precise system capable of swiftly identifying a state of drowsiness while 

using minimal spatial memory and processing resources. 

Povzetek: Narejen je pregled objav za zaznavanje zaspanosti voznikov na osnovi EEG signalov z 

uporabo metod globokega učenja. CNN se izkaže za učinkovito metodo pri klasifikaciji signalov.

1 Introduction 

A significant number of individuals face extended 

periods of work during the night, including security 

officers, truckers, and medical personnel. Consequently, 

operating a motor vehicle while experiencing fatigue is 

widespread. It is likely something that the majority of 

drivers have done. It is crucial to develop a method for 

alerting drivers when their fatigue reaches a critical level, 

hindering their ability to drive safely. 

Drowsiness, known as fatigue, is a psychophysiological 

transition state between alertness and sleep. When a 

driver is in this state, his/her concentration and 

performance decrease, while his/her reaction time 

increases [1]. This state affects the results of some tasks 

requiring concentration, such as driving [2]. Driver 

drowsiness is the third cause of traffic accidents, and is 

responsible for 25% of road accidents, following high 

speed and alcoholism [3]. Studies have demonstrated that 

24-hour sleep deprivation induces the same degree of 

impairment as an individual with a blood alcohol 

concentration of 0.10%, which exceeds the legal limit. 

Based the National Highway Traffic Safety 

Administration (NHTSA), drowsy driving has caused 

100000 crashes, more than 1500 deaths, and $12.5 billion 

in monetary losses [4]. Nevertheless, the National 

Highway Traffic Safety Administration (NHTSA) 

acknowledges the difficulty in accurately quantifying the 

exact figures of accidents, injuries, or fatalities caused by 

drowsy driving. It recognizes that the reported statistics 

are lower than the actual occurrences. According to a 

study by the Foundation for Traffic Safety of the 

American Automobile Association, over 320,000 drowsy 

driving accidents occur annually, including 6400 crashes 

resulting in fatalities [56]. The statistics indicate that 
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driver drowsiness is a real problem; therefore, it is 

necessary to develop a system that can detect it quickly 

and accurately in its early stages and alarm the driver to 

prevent road accidents and reduce the fatality rate. In this 

regard, several researchers have proposed numerous 

approaches to detect drowsy drivers. These approaches 

can be categorized into three main categories: vehicle-

based, information obtained by monitoring the vehicle's 

movement and behavior; behavior-based, information 

obtained through the analysis of the driver's facial 

expressions and movements; and physiological signals-

based obtained by attaching specialized sensors to the 

driver's body as summarized in Figure 1 [5]. 

Physiological methods are the most used because they 

have proven to be effective, accurate, and reliable [5, 6]. 

Physiological signals such as Electrocardiogram (ECG), 

Electrooculogram (EOG), Photoplethysmogram (PPG), 

Electromyogram (EMG), and Electroencephalogram 

(EEG) were utilized to identify drowsy drivers because, 

they can detect the body signals changes and compare 

this change to the normal state [1]. 

The Electroencephalogram (EEG), a record of the 

electrical activities of different brain regions [1], is the 

most widely used of the Physiological signals. It is 

known as the gold standard for drowsiness detection due 

to its low cost, usability, and dependability [6]. EEG 

signals are measured and captured by placing a device 

containing a pattern of electrodes on the scalp based on 

the international 10-20 system of EEG electrode 

placement. These signals are subdivided into several 

bands based on frequency.  There are five well know 

bands: the delta band (0.5-3 Hz), the theta band (4-7 Hz), 

the alpha band (8- 13 Hz), the beta band (14-30 Hz), and 

gamma-band (greater than 30 Hz) [8]. 

To detect drowsiness state successfully, many 

researchers have proposed and implemented robust 

detection systems using two well-known mechanisms, 

Machine Learning (ML) and Deep Learning (DL). 

Machine Learning is a subfield of artificial intelligence. 

It has been used in several classification tasks [9]. Hu & 

Min. [10] have proposed a gradient boosting decision 

Tree (GBDT) to determine whether a driver is drowsy or 

not. They claim the accuracy reached 94%. In [11], Mu 

et al. used the SVM algorithm to classify a driver as tired 

or awake based on the forehead FP1 and FP2 electrodes. 

The accuracy of this approach is 85%. the following five 

ML techniques: the K-nearest neighbor (KNN), support 

vector machine (SVM), extreme learning machine 

(ELM), hierarchical extreme learning machine (H-ELM), 

and the modified hierarchical extreme learning machine 

algorithm with particle swarm optimization (PSO-H-

ELM) have been proposed in [12] to identify the 

drowsiness state using EEG signals. The achieved 

accuracy of these algorithms is 79.31%, 79.31%, 

74.08%, 81.67%, and 83.12%, respectively. 

Nevertheless, ML techniques have limitations, such the 

need for massive data and hand-crafted feature extraction 

as intermediary steps [3] (see Figure 2). 

Deep learning is a subfield of machine learning that has 

been utilized in different fields, including speech 

recognition, computer vision, and natural language 

processing [13].  DL techniques have demonstrated their 

effectiveness in EEG task classification, especially 

convolutional neural network (CNN), because it does not 

require hand-crafted feature extraction. They can 

automatically detect and learn features through 

convolutional layers [14, 5]. 

This review aims to present and explain the pipeline of 

an EEG-Based driver drowsiness detection system using 

deep learning techniques. Then, analyze and discuss 

several new research papers that used deep learning 

techniques to detect and classify whether a driver is in a 

drowsy or awake state using EEG signals, especially 

those published over the past three years, by listing the 

extracted features, methods, classifiers, and the used 

datasets, and classification metrics such as accuracy, 

sensitivity, and precision. Finally, highlight the 

limitations and challenges of the reviewed papers and 

propose future improvements. The paper is organized as 

follows: The second section outlines the search strategy 

followed in this work. The third section describes the 

backgrounds and the related works cited in this literature 

review. The results are discussed in the fourth section. 

The fifth section presents the challenges and limitations 

of the discussed works furthermore some propositions 

that can be as future works. Finally, a conclusion is 

provided in the sixth section. 

 

 
Figure 1: Drivers’ fatigue detection methods [7] 
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Figure 2: EEG based drowsiness detection and warning scheme [1] 

 

2 Search strategy 
The keywords used for collecting the papers are 

"Driver Drowsiness", "Driver fatigue" "EEG", 

"Electroencephalogram", "Deep Learning", "Detection", 

and the query used in Google scholar was "deep learning 

for EEG-based driver drowsiness detection system" and 

"deep learning for EEG-based driver fatigue detection 

system". Furthermore, the papers were selected based on 

three criteria the paper must be: written in English, either 

a journal article or conference article (reviews papers 

were excluded), and new (last three years).  

Many researchers have employed deep learning 

techniques to detect driver drowsiness based on EEG 

signals. For example, Google Scholar results using this 

query "deep learning for EEG-based driver drowsiness 

detection system" have shown that from 2019 to 2022 

(03/04/2023), about 5240 works were published in this 

context (see Figure. 3). 

3 Deep learning for EEG-Based driver 

drowsiness 

Figure 4 illustrates a general architecture of an EEG-

based drowsiness detection system using deep learning 

techniques. The process starts by collecting EEG signals 

using one of the existing wearable devices placed on the 

scalp to acquire raw data; the obtained signals are then 

preprocessed to remove artifacts, normalize and prepare 

them for feeding into a DL model that classifies whether 

the individual is drowsy. 

3.1 Data acquisition 

The first step of an EEG-Based driver drowsiness system 

is acquiring and collecting Real-time EEG signals. 

However, because of safety concerns collecting real-time 

EEG is not feasible, leading many researchers to use 

driving simulators under several experimental protocols 

see Figure. 5. 

After preparing the simulated environment, a wearable 

device, a set of electrodes placed on the scalp based on 

the international 10-20 system, must be used to acquire 

the EEG data. However, a wearable device with 

numerous electrodes is expensive and may be 

uncomfortable for the driver. Due to these limitations, 

some researchers have focused on identifying the most 

effective and informative regions that can provide more 

information about drivers’ states using fewer electrodes 

[52].  

3.2 EEG- based drowsiness datasets 

A dataset is a collection of information on a specific 

subject that can be used by machine learning and deep 

learning methods for many purposes, such as 

classification and prediction. For example, there are 

various available online datasets on EEG-based 

drowsiness context. 

3.2.1 Sleep -EDF dataset 

The Sleep-EDF dataset [36] is obtained from the 

Physionet database [37], which contains 197 whole-night 

Polysomnographic (PSG) sleep recordings with EEG, 

EOG, chin EMG, and event markers. They were sampled 

at 100 Hz and 1 Hz.  

3.2.2 The Original EEG data for driver fatigue 

detection 

This dataset is generated by a 40-channel Neuroscan 

amplifier. It contains twelve healthy subjects and twelve 

drowsy subjects. The signals are obtained from a 32-

channel electrode cap (30 effective channels and two 

reference channels), and digitized at 1000 Hz [38, 42]. 
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Figure 3: Number of studies using deep learning for EEG-driver drowsiness detection during 2018 -2023 

 

 

 

 
 

Figure 4: General architecture of a DL based EEG drowsiness detection system 

 

 

 

 
 

Figure 5: The road scene of the driving simulator [5] 
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3.2.3 Multi-channel EEG recordings during 

a sustained-attention driving task 

This dataset consists of twenty-seven subjects that 

participate in a 90-minute driving task from the  

National Chiao Tung University. The signals were 

acquired using a 32 Ag/AgCl electrodes EEG wired 

cap (two reference electrodes) and digitized at 500 Hz. 

The Institutional Review Broad of Taipei Veterans 

General Hospital, Taiwan, had approved the 

experimental protocol [39]. 

 

3.2.4 MIT/BIH Polysomnographic EEG 

database 

The database is collected from 16 male subjects using 

the C3-O1, C4-A1, and O2-A1 EEG channels. The 

database contains 18 records, each with four files. The 

physiological signals were digitized at a sampling rate 

of 250 Hz [37, 40]. 

 

3.2.5 SEED-VIG dataset 

The SEED-VIG dataset is designed to investigate the 

vigilance estimation problem. It was collected from 23 

participants and lasted approximately 2 hours. The 

Dataset is acquired using 18 electrode channels 

according to the international standard 10-20 system 

and down-sampled to 200 Hz. The records were 

labeled using the SMI eye-tracking glasses with the 

PERCLOS indicator [41]. 

 

Table 1: Publicly available EEG dataset for driver fatigue 

Dataset Subjects Electrodes 
Sampling 

frequency 

Sleep-EDF [36, 37] / Fpz-Cz / Pz-Oz. 100 Hz 

The original EEG data [38, 42] 12 32 1000 Hz 

Multi-channel EEG recordings [39] 27 32 500 Hz 

MIT/BIH Polysomnographic EEG [37, 40] 16 
C3-O1, C4-A1, and O2-

A1channels 
250 Hz 

SEED-VIG [41] 23 18 200 Hz 

 

3.3 Preprocessing 

EEG signal preprocessing is an essential step that can 

be defined as a set of signal processing steps that 

transform raw EEG data into a more suitable form that 

can be easily analyzed and handled [22]. The 

preprocessing involves three steps (see Figure 6): 1) 

removing the noise and artifacts to get closer to real 

neural signals, 2) normalization to scale the values of all 

EEG signals, and 3) signal preparation or EEG analysis.  

 

 

For noise removal, many methods can be used. The most 

popular ones are finite impulse response (FIR) and 

infinite impulse response (IIR) filters. There exist various 

techniques, such as the min-max scaling, robust scaling, 

standard scaling and the z-score technique that can be 

used during the normalization step. Finally, different time 

domain, frequency, and time-frequency methods are 

employed to prepare the signals to be fed to a DL model, 

such as Fourier transform techniques, Component 

Analysis, and Wavelet Transform [23]. 

 
Figure 6: The EEG preprocessing pipeline  
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3.4 Review of deep learning techniques 

Deep learning (DL) is one of the main techniques of 

machine learning. Deep Learning techniques are 

algorithms capable of emulating the human brain's 

actions using artificial neural networks. These artificial 

neural networks are constructed of tens or hundreds of 

neuron layers. Each layer receives and interprets 

information from the previous layer [24]. No human 

intervention is required for DL; however, a large amount 

of data is needed to map the given input to specific labels 

[25]. DL allows feeding deep neural networks DNNs with 

the raw data with limited or no preprocessing. In addition, 

in DL, the feature extraction, selection, and classification 

are constructed as a single pipeline [26]. 

DL techniques can be categorized into three main groups: 

deep networks for supervised learning, deep networks for 

unsupervised learning, and deep networks for hybrid 

learning. In the first category, "supervised learning", 

there are three main techniques Multi-Layer Perceptron 

(MLP), Convolutional Neural Networks (CNN), and 

Recurrent Neural Networks (RNN). In the second 

category, "unsupervised learning" we find the Generative 

Adversarial Network (GAN) and Auto Encoder (AE) and 

Its Variants [27]. 

 

3.4.1 Convolutional neural networks (CNN) 
The Convolutional Neural Network (CNN) is one of 

the most popular supervised deep learning architectures 

that learn directly from the input without the need for 

handcraft feature extraction [27]. The basic CNN is like 

the multi-layer perceptron (MLP). It consists of many 

convolution layers that are followed by sub-sampling 

(pooling) layers that precede the last fully connected FC 

layers [25]. Initially, CNN was designed for image 

classification (two-dimensional input); but nowadays, it is 

also used to classify one-dimensional (1D) data such as 

biological signals (ECG, EMG, EEG...). 

 

A. 2D Convolutional Neural Networks (2D-CNNs) 

CNN is a deep learning model that is considered the 

most used, especially to deal with 2D shapes like images; 

therefore it is often called 2D-CNN.  It is used in other 

fields such as natural language processing and visual 

recognition [27]. CNN has many different variants, such 

as VGG, AlexNet, GoogleNet, and ResNet. Each one of 

these variants has a specific architecture. They have been 

employed in many fields [27]. Apostolopoulos and Tzani 

[30] have proposed VGG19 and the MobileNet v2 to 

detect Covid 19 from X-ray images. In [31], M. Hussain 

et al. have used the Inception-v3 on both the Caltech Face 

dataset and the CIFAR-10 dataset. 

The 2D-CNN has also been used to classify signals such 

as EEG signals for the diagnosis of neuronal disorders 

such as epilepsy and driver fatigue by transforming them 

into a two-dimensional spectrum (2D spectrogram) using 

various methods (continuous wavelet transform (CWT) 

[28] and Short-time Fourier transform (ST) [7]. Figure 7 

presents the architecture of a 2D-CNN used to classify 

EEG signals into two classes “Normal” or “Seizure”. 

 

B. 1D Convolutional Neural Networks (1D-CNNs) 

Recently, a 1D-CNN is proposed to deal with 1D signal 

and data repositories. It demonstrated excellent 

performance in many fields, including biomedical data 

classification [29] and EEG classification [5]. 1D-CNN is 

a modified version of 2D CNNs that use 1D convolution 

operation (scalar multiplications and additions). One of 

its significant advantages is that in terms of 

computational complexity, it is lower than the 2D-CNN 

[29]. 

Figure 8 presents the architecture of 1D-CNN that can be 

used for EEG signals classification and seizures 

detection.  

3.4.2 Recurrent neural networks (RNN)   
Another type of DL technique, RNN, is employed 

mostly to deal with time-series or sequential data such as 

signals, text, and videos. It is used often in natural 

language processing and speech recognition. RNN feeds 

the output of the previous step as an input to the current 

step; that is known as a circulation behavior. It requires 

integral memory cells that preserve the previous outputs, 

whereas the integrated memory cell has three gates titled 

input, output, and forget gates. The main challenge of the 

standard recurrent neural networks is learning long data 

sequences because of the vanishing issues gradients. The 

Long short-term memory (LSTM) and Gated recurrent 

units (GRUs) are RNN models used to minimize those 

issues, and that perform well in many domains and real-

world applications [26, 27]. 
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Figure 7: A typical 2D-CNN for EEG classification [23] 

 

 
Figure 8: A typical 1D-CNN that can be used for EEG classification [23] 

 

A. Long short-term memory (LSTM) 

The Long Short-Term Memory (LSTM) is an enhanced 

version of the Recurrent Neural Network (RNN) that 

addresses the gradient vanishing problem and long-term 

temporal dependencies. The LSTM layer is distinguished  

 

 

by memory blocks, which are hidden units [32]. Each 

memory block consists of recurrently connected memory 

cells, with each cell containing weights and three gates, 

"the input, forget, and output gates," which are the 

distinguishing feature of LSTM models (see Figure. 9) 

[33, 34].  
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Figure 9: A typical LSTM that can be used for EEG classification 

 

B. Gated recurrent units (GRUs) 

A Gated Recurrent Unit (GRU) is another popular 

variant of the recurrent network. It is considered a 

simpler version of LSTM. GRU includes gating units that 

modulate the flow of information inside the unit without 

any separate memory cells. However, instead of three 

gates, the GRU has only two: the reset gate and the 

update gate [35]. 

3.5 EEG-Based driver drowsiness systems 

In this Section we review and analyze some recent 

EEG-Based drowsiness detection schemes. Tables 2 and 

4 summarized the reviewed works. 

Houshmand et al. [5] designed three CNNs to detect 

driver drowsiness in the early stage based on single-

channel signal and EEG alpha spindles. The first one is a 

1D CNN with three convolution layers, three max-

pooling layers, and two fully connected layers. The 

second one is a 2D CNN with four convolution layers, 

four max-pooling layers, one fully connected layer, and 

one flattens layer. The third one is identical to the second 

but with different parameter values (number of filters and 

nodes). The activation function of the three models is 

dropout. The fed data to the models are raw EEG data for 

1D CNN, power spectrum analysis EEG data for the 

second CNN, and the CWT of EEG epochs for the third 

model. The P4 channel is determined to have the highest 

feature weight for drowsiness classification based on the 

neighborhood components analysis technique. The best 

results are obtained by CWT-CNN as follows: accuracy 

94%, recall 95%, precision 91%, and F1-score 93%. 

The author in [7] proposed a driver fatigue detection 

system based on a single channel EEG and transfer 

learning. The system works as follows: the acquired EEG 

raw data is passed through a preprocessing pipeline, and 

then the processed data is transformed into a two-

dimensional spectrum using the Short-time Fourier 

Transform (STFT). After that, the resulting spectrum is 

then fed to a modified AlexNet CNN model employing 

transfer learning to determine whether the driver is 

drowsy or alert. The author applied transfer learning 

using fine-tuning to the original AlexNet by replacing the 

final classification layer with another layer and reducing 

the last fully connected layer nodes number to 5. To find 

the best channel, the author compared the accuracy 

obtained by the AlexNet CNN of seven different channels 

(FP1, FP2, T3, T4, O1, O2, and Oz). The FP1 and T3 

channels achieved the best accuracy of 90% and 91%, 

respectively. 

Cheng et al. [18] have developed an EEG-based 

prediction system to estimate the drowsiness level of 

drivers. They use a raw EEG signal without utilizing any 

artifact removal methods. The 256-point fast Fourier 

transform (FFT) is used to transform the time-series EEG 

data into the frequency domain (an image-like feature 

map). In the final stage, the EEG images are passed into a 

CNN to classify them into two classes “Drowsy” or 

“Awake”. The used CNN is a basic CNN with two 

convolutional layers, two max-pooling layers, and one 

fully connected layer. Three training data sets are 

evaluated using a leave-one-subject-out cross-validation 
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strategy during the training phase. The proposed work 

outperforms the SVM classifier in both balanced (69.18 

%) and imbalanced (71.15 %) data. 

Guarda et al. [44] used convolutional neural 

networks (CNNs) to classify whether a driver is in a 

drowsy state or not based on EEG spectrograms. The 

proposed method is applied to the ULg Multimodality 

Drowsiness Database, where only the Fz and Pz channels 

are used to train the model. First, the raw EEG signals is 

transformed into spectrograms that have been converted 

into a gray-scale format. After the preprocessing and the 

generation of the gray-scale spectrograms, six sets of 

spectrograms are obtained. The proposed CNN has three 

convolutional layers, three pooling layers, and one fully 

connected layer. The input data are one or two 96*96 

images (depending on how many EEG sensors are used). 

The proposed model achieved an accuracy of 86.74% 

with Fz-Pz channels and 13 seconds signals which is the 

best compared to the other sets. The model outperformed 

SVM, NN, and RF in all metrics.  

Gao et al. [48] proposed a recurrence network-based 

convolutional neural network (RN-CNN) method to 

detect driver drowsiness using EEG signals. First, they 

collected EEG signals from 10 subjects and 30 channels 

using a simulated driving experiment and pre-processed 

the obtained signals. Then they used a recurrence network 

(RN), a complex network method that transforms raw 

EEG into a mutual information matrix of 30*30. Finally, 

they fed the mutual information matrix into CNN 

architecture to extract features and classify the driver 

state. The used CNN has two convolutional layers, two 

fully connected layers, and a softmax layer. The proposed 

approach achieved an accuracy of 92.25%. To evaluate 

the performance of the RN-CNN, the authors compared 

its result with other state-of-art works such as FT-CNN, 

PSD-SVM, CSP-SVM, and others. RN-CNN 

outperformed all the considered protocols. 

Chaabene et al. [3] proposed an EEG-based CNN 

Driver Drowsiness system. Data acquisition and model 

analysis are the two primary procedures of the proposed 

architecture. The data acquisition step is divided into two-

part: data collection using the Emotiv EPOC+ headset to 

record 14 channels and preprocessing. Data preparation 

to remove noise and artifacts, data annotation, and data 

augmentation to prevent overfitting and improve 

accuracy are parts of the preprocessing step. In the 

second step, "model analysis" a CNN with four 

convolution layers, one max-pooling layer, and two fully 

connected layers, is implemented. Two experiments were 

conducted to evaluate the system's performance using 

two classes (Drowsy/Awake); the first was conducted 

without data augmentation, with 2, 4, 7, and 14 channels, 

and the best accuracy (79.43%) is achieved with 14 

channels. However, data augmentation is used in the 

second experiment to reach 90.14% accuracy using seven 

channels.  

Balam et al. [6] have proposed CNN architecture for 

automated Driver Drowsiness detection based on a 

Single-Channel EEG signal. The used data are raw EEG 

signals from the physionet Pz-Oz dataset. To determine 

the best CNN model. The authors evaluated the 

performance of numerous CNN models with different 

kernel sizes, varying numbers of hidden layers, and 

multiple sets of filters. The proposed model is created by 

combining the best two evaluated CNN (CNN [4HL, 9F, 

3KS], CNN [3HL, 3F, 5KS]). For the evaluation of the 

model's performance, three different training strategies 

were utilized: subject-wise, cross-subject-wise, and 

combined-subjects-wise validations. The results indicate 

that the highest accuracy 94%) was achieved with 

combined subjects. A comparative study is conducted 

between the proposed model and other models that 

utilized the same dataset, and the results demonstrated 

that the employed CNN achieved the highest accuracy of 

94.87%. However, the results were close. 

Ding et al. [15] have implemented a Deep Learning 

architecture on a mobile device that uses a single-channel 

EEG signal to Detect Driver Drowsiness. Their study 

aims to get high accuracy with a small model size and 

predict latency compared to the existing models. The 

components of the proposed architecture are an EEG 

signal collector, a trained model integrated into a 

Smartphone to predict the state of the driver then alert 

him/her, a cloud database that serves as a backend, and a 

web page that contains a remote monitor to observe the 

real-time condition and historical record from the 

backend. The employed model is a Cascaded CNN with 

an attention mechanism layer; it is made of three blocks: 

Dimension Reduced Level, Feature Extract Level, and 

Full Connect Level.  In terms of accuracy and recall, the 

proposed model was compared to other deep learning and 

machine learning architectures. The latter outperformed 

the others with an accuracy of 97.26% and a recall of 

96.56%. In addition, the model size (1.61 MB) and 

latency (26s/epoch) are more suitable for a real-time 

mobile system. 

The authors in [16] developed a system capable of 

detecting vehicle driver drowsiness using a wearable 

EEG device and CNN. The proposed system consists of a 

wearable device to acquire EEG signals, a preprocessing 

step to remove artifacts and improve the information's 

quality, a trained model based on CNN for signal 

classification, and, as a final step, an early warning 

strategy to restore the driver attention. Two models were 

used for the classification step: a CNN with an Inception 

module containing five convolutional layers, two pooling 

layers, three Inception modules, and three fully connected 

layers, and the Modified AlexNet model that includes 

eight convolutional layers, four pooling layers, and three 

fully-connected layers. The obtained accuracy of the 

inception model is 95.69%, which is greater than the 

accuracy obtained by the modified AlexNet model 

(94.68%).  

A novel framework entitled EEG-based spatial-

temporal CNN (ESTCNN) developed by Gao et al. [14] 

to detect driver fatigue from EEG signals. The ESTCNN 

contains two main procedures: a Core Block to deal with 

the information on the temporal dimension and a dense 

layer to fuse the spatial features among the electrodes. 



368 Informatica 48 (2024) 359–378 I. Latreche et al. 

The authors implemented a CNN with 14 layers: three 

core blocks (where each block contains three convolution 

layers and one max-pooling layer), two dense layers, and 

a softmax layer. To validate the performance of the 

proposed framework, the ESTCNN was trained on ten 

cross-validations for each subject with an average 

accuracy of 97.37%. In addition, a comparative study of 

three studies and five competitive models was conducted, 

and the proposed model demonstrated the highest 

accuracy of 97.37%. 

To solve the drawbacks of the current functional 

brain network methods (ignore some features of the 

original EEG signals) and the preprocessing methods 

(filter out the most noises from signals), Lin et al. [17] 

proposed three-part architecture for identifying driver 

drowsiness based on EEG signals. The first part, called 

front-end CNN is responsible for denoising the raw EEG 

signal. The second part contains a brain network 

construction method used to increase the connectivity of 

EEG channels on a fixed functional brain network with 

less redundancy. The last part, called the back-end graph 

neural network, is the fatigue driving recognition model. 

The proposed framework achieved the highest 

recognition accuracy of 98.98% compared to commonly 

used classifiers. In addition, it demonstrated the ability to 

maintain an accuracy greater than 95% when many 

channels are affected by noise.  

Ko et al. [43] proposed an EEG-based driver 

drowsiness detection system using differential entropy 

(DE) with a novel deep convolutional neural network 

named VIGNet. The raw EEG data features were 

extracted using the DE method, a conventional machine 

learning-based method for feature extraction. The 

extracted features are the inputs to a CNN model with 

three convolutional layers designed to extract deep and 

hierarchical features and a dense layer that maps the 

extracted features to the decision layer. Experiments were 

conducted on the publicly accessible SEED-VIG dataset. 

The accuracy of the VIGNet model was 96 %, 

outperforming the accuracy of the SVM and ESTCNN 

models. 

Chen et al. [47] have used in this study a 

convolutional neural network (ConvNets) to detect driver 

drowsiness using raw Multi-Channel EEG signals 

without using any extraction or selection methods. The 

proposed architecture consists of 12 layers: five 

convolutional layers, three max-pooling layers, one 

mean-pooling layer to extract discriminative features, and 

three fully-connected layers that optimize the 

classification process (end-to-end manner). In addition, 

the authors used a data augmentation strategy to prevent 

overfitting. To evaluate the used model, the authors used 

10- fold cross-validation. based on the obtained, 

ConvNets performed well compared to other state-of-the-

art systems, achieving an accuracy of 97.02 % and a 

precision of 96.74 %. 

Zeng et al. [49] used two classification models, the 

EEG convolutional (EEGConv) and the EEG 

convolutional residual (EEG-Conv-R), to classify drivers' 

mental states using raw EEG signals. Data were collected 

from ten subjects using 16 channels. The EEGConv 

architecture contains eight layers: the input layer, three 

convolutional layers, a pooling layer, an LRN (Local 

Response Normalization) layer, a fully connected layer, 

and the output layer. The EEG-Conv-R architecture 

combines the EEG-Conv with two residual blocks. The 

two models' evaluation was tested using intra- and inter-

subject. EEGConv and EEG-Conv-R achieved greater 

accuracy than LSTM and SVM models, with 91.788 and 

92.682 % accuracy using intra-subjects and 82.95 % and 

84.38% accuracy using inter-subjects, respectively. 

However, the EEG-Conv-R converges faster than the 

EEGConv. 
  

 

Table 2: Summarized studies of driver drowsiness detection based-EEG using CNNs 

Authors Techniques 
Type of 

channels 

Classification Results 

Chaabene et al 

[3] 

• 7 channels. 

• 7 Layer CNN Model.  

• Data augmentation. 

 

Multi-

Channel 

 

Best classification accuracy: 

90.41% 

Balam et al [6] 

• Pz-Oz. 

• Combination of two CNN models. 

• Subject-wise, cross-subject-wise, 

and combined-subjects-wise 

validations. 

 

Single-

Channel 

Best classification accuracy: 

combined subjects validation at 94%. 

Ding et al [15] 

• Dimension Reduced Level, Feature 

Extract Level, and Full Connect 

Level.   

• 15 Layer Cascaded CNN with an 

attention mechanism layer. 

Single-

Channel 

 

Best classification accuracy and 

Recall: 97.26% and 96.56% 

respectively. 
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Zhu et al [16] 

• CNN with an Inception module.  

• Modified AlexNet.  
Multi-

Channel 

Best classification accuracy : 95.69% 

with Inception and 94.68% with 

AlexNet. 

 

Lin et al [17] 

• Front-end CNN for denoising the 

raw EEG signal.  

• Brain network construction 

method. 

• Back-end graph neural network.  

 

Multi-

Channel 

Best classification accuracy : 98.98% 

Gao et al [14] 

• EEG-based spatial–temporal CNN 

(ESTCNN). 

• 3 Core Blocks, two Dense layers, 

and a Softmax layer. 

•    Ten cross-validations.  

 

Multi-

Channel 

Best classification accuracy : 

97.37% 

Ko et al [43] 

• SEED-VIG dataset. 

• DE method.  

• VIGNet Deep Learning Model. 

 

Multi-

Channel 
Best classification accuracy : 96% 

Zeng et al [49] 

• Ten subjects and 16 channels.  

• The EEGConv and EEG-Conv-R 

architectures.  

• Intra- and inter-subject evaluation 

methods. 

  

Multi-

Channel 

Best classification accuracy : 

91.78% for EEG-Conv and 

92.68% EEG-Conv-R using intra-

subjects 

Chen et al [47] 

• ConvNets with 12 Layers. 

• Data augmentation strategy. 

• The 10- fold cross-validation.  

Multi-

Channel 

Best classification accuracy and 

precision: 97.02% and 96.74 %. 

Houshmand et 

al [5] 

 

• 1D CNN and two 2D CNN with 

different parameters. 

• Dropout activation function.  

• Raw EEG data, power spectrum 

analysis EEG data CWT of EEG 

epochs.  

• The P4 channel  

Single-

Channel 

Best classification scores: 

accuracy 94%, recall 95%, precision 

91%, and F1-score 93% with CWT-

CNN. 

Shalash [7] 

 

• AlexNet CNN model 

• Short-time Fourier Transform 

(STFT). 

•  a modified AlexNet CNN model.  

• seven different channels (FP1, 

FP2, T3, T4, O1, O2, and Oz).  

Single-

Channel 

Best classification accuracy: 91% 

with The T3 channel. 

Guarda et al 

[44] 

 

• CNN 

• ULg Multimodality Drowsiness 

Database. 

• Fz and Pz channels. 

•  Gray-scale EEG spectrograms. 

•  Seven Layers CNN.  

Single-

Channel 

Best classification accuracy : 

86.74% 

Cheng et al • Raw EEG signal.  Multi-  
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[18] 

 
• 256-point FFT.  

• Basic CNN model. 

• Leave-One-Subject-Out Cross-

Validation.  

 

Channel Best classification accuracy : 71.15% 

Gao et al [48] 

• RN-CNN. 

• 10 subjects and 30 channels. 

 

Multi-

Channel 

Best classification accuracy : 

92.25% 

    

 

 
Figure 10: The obtained accuracy (%) by various study using 1D-CNN and 2D-CNN 

 

Budak et al. [19] developed a hybrid model for detecting 

drowsiness using EEG signals. The developed model 

utilizes the majority ensemble model to combine three 

distinct models. Three different groups of features are 

extracted. The first block extracts frequency, energy, 

entropy, and rate distribution. The second block extracts 

Statistical features. In the third block, deep features are 

extracted from EEG spectrogram images using AlexNet 

and VGG16. The features extracted from each block are 

fed into an LSTM network classification model. The 

result is three different models fused by the majority 

ensemble model to form the primary model. The authors 

used the MIT-BIH Polysomnographic database and ten-

fold cross-validation to evaluate the performance of the 

constructed primary model. The obtained average 

accuracy is 94.31%. 

Lee et al. [45] employed a deep neural network with four 

LSTM layers to classify driver drowsiness based on EEG 

signals and identify the optimal electrodes. They utilize 

three classification classes: awakeness, drowsiness, and 

sleep. In this experiment, 18 EEG channels were used and 

categorized into eleven groups based on Frontopolar 

(FP), Dorsolateral Prefrontal Cortex (DLPFC), and 

Premotor Cortex (PMC). The results indicate that the 

most accurate group was the FP &DLPFC group, which 

utilized nearly all channels. Its accuracy was 82.8 %. In 

this study, the authors observed that the accuracy of 

awakeness was greater than that of drowsiness across all 

channel sets, leading them to conclude that the proposed 

model classified drowsiness data as sleep more frequently 

than awakeness. 

Khessiba et al. [32] proposed two deep learning 

architectures for detecting drowsiness states in drivers 

using single-channel EEG signals (Pz-Oz). The proposed 

models are the 1D-UNet model, designed only with deep 

1D-CNN layers, and 1D-UNet-long short-term memory 

(1D-UNet-LSTM). They were applied to spectral band 

energy features captured with FFT. The performance of 

the proposed models is better than other shallow and deep 

architectures such as the Learning Vector Quantization 

LVQ, MLP, LSTM, and 1D-CNN-LSTM. The obtained 

accuracies are 79.3% and 79.4% for 1D-UNet and 1D-

UNet-LSTM, respectively, using the ReLU activation 

function. However, when the SPOCU is used as the 
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activation function, the accuracies are 82% for 1D-UNet 

and 84% for 1D-UNet-LSTM. The authors implemented 

the proposed DL models on the RPi 3 device to obtain a 

real-world evaluation of the proposed drowsiness system. 

The results indicate that the proposed system slightly 

increases execution time while maintaining high 

performance. 

Turkoglu et al. [46] proposed a novel hybrid model 

consisting of deep rhythm features and an LSTM network 

for EEG-based driver drowsiness detection. The STFT 

method converts raw EEG signals into time-frequency 

EEG images. First, five different rhythm images are 

extracted from the EEG images and fed to CNN pre-

trained models ResNet 18, ResNet 50, and ResNet 101 to 

extract deep features. Next, the extracted features are fed 

into LSTM layers connected and followed by a fully 

connected layer, softmax layer, and classification layer to 

classify whether a driver is in drowsiness or awake state. 

Two experiments were applied to evaluate the 

performance of the proposed scheme. The first step 

involves feeding the EEG images to the features 

extraction phase without extracting the rhythms images. 

In this phase, the ResNet 18, ResNet 50, and ResNet 101 

were used as feature extractors, while the CNN and SVM 

were used as classifiers. According to the results, ResNet 

18+CNN achieved the highest accuracy of 84.78 %. The 

second experiment consists of evaluating the proposed 

rhythm-based-deep features and LSTM networks by 

changing each time the features extractor. The best result 

was 97.92% obtained from the three-way concatenation 

of the ResNet18, ResNet50, and ResNet101 models. 

Jeong et al. [50] developed Deep Spatio-Temporal 

Convolutional Bidirectional LSTM Network (DSTCLN) 

model to classify pilots' mental states from EEG signals. 

Based on KSS values, the authors utilized two classes 

(awakeness, drowsiness) and five classes known as 

drowsiness classes (very alert (VA), fairly alert (FA), 

neither alert nor sleepy (NAS), sleepy but making no 

effort to stay awake (SNEA), and very sleepy (VS)). The 

data is preprocessed after collecting EEG signals from a 

simulation environment using 30 EEG channels. The 

authors used five convolutional blocks of a Spatio-

Temporal CNN to extract high-level Spatio-temporal 

features. The extracted features were fed into a Bi-LSTM 

with four Bi-LSTM layers, and a dropout layer was used 

to reflect the temporal information of time-series data 

using. The classification layer consists of three fully 

connected layers and a softmax layer. The deep model 

achieved an accuracy of 87% for 2-class and 69% for 5-

class. Comparing the proposed model to other 

conventional techniques revealed that the DSTCLN 

achieved the best classification performance. 

Michielli et al. [51] developed a novel cascaded RNN 

architecture based on long short-term memory (LSTM) 

for classifying sleep stages based on Single-Channel EEG 

signals. They proposed two RNNs-based LSTM models 

common in the three first steps: data acquisition, signal 

preprocessing, and feature extraction. Fifty-five features 

were extracted (time domain and frequency domain). In 

the selection process, which reduces the computation cost 

and selects the most relevant features, the minimum 

redundancy maximum relevance (mRMR) was utilized in 

the first model. In contrast, the Dimensionality reduction 

(PCA) has been used in the second model. In the 

classification step, the first model inputs are the outputs 

of the mRMR to classify 4-class, and the second network 

uses the outputs of the PCA method to classify 2-class; 

finally, the two models were connected using a cascaded 

architecture to classify five sleep stages. The cascaded 

RNN architecture achieved an average accuracy of 

86.7%. 

 

 

 

 

 

Table 3: Summarized studies of driver drowsiness detection based-EEG using RNNs 

Authors Techniques Type of channels 
Classification Results 

Budak et al [19] 

• Hybrid model. 

• Majority ensemble model. 

• Three groups of features.  

• EEG spectrograms  

• LSTM network model. 

• MIT-BIH database.  

• Ten-fold cross-validation. 

 

Multi-Channel 

Best classification 

accuracy: 94.31% 

Lee et al [45] 
• Identify the optimal 

electrodes. 
Multi-Channel Best classification 
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• Three classification classes. 

• 18 EEG channels. 

• LSTM network model. 

 

accuracy: 82.8% 

Khessiba et al [32] 

• Pz-Oz Channel.  

• 1D-UNet-LSTM.  

• Spectral band energy features 

captured with FFT.  

• RPi 3 device for a real-world 

evaluation. 

 

Single-Channel 

Best classification 

accuracy: 84% 

Turkoglu et al [46] 

• STFT time-frequency EEG 

images.  

• ResNet 18, ResNet 50, and 

ResNet 101 as extractors.  

• LSTM classification model. 

• ResNet+LSTM model. 

 

Multi-Channel 

Best classification 

accuracy: 97.92% 

Jeong et al [50] 

• 30 EEG channels.  

• Spatio-Temporal CNN. 

• Bi-LSTM model. 

• DSTCLN 

 

Multi-Channel 

Best classification 

accuracy: 87% (2-class) 

69% (5-class) 

Michielli et al [51] 

• Cascaded RNN  

• Fifty-five features. 

•  (mRMR) and (PCA). 

 

Single-Channel 
86.7% 

 

 
 

Figure 11: The obtained accuracy (%) by various study using RNNs 

4 Discussion 

Detecting drowsiness has been and remains an 

essential task because it affects the performance and 

throughput of persons and can lead to various negative 

outcomes, such as car accidents and crashes. EEG signals 

are the gold standard for monitoring drowsiness. In the 

past, many researchers have focused their studies on 

which brain regions are most informative in detecting 

drowsiness (see [1]). Most studies found that frontal, 

parietal, and occipital regions are the most informative 

[1]. In addition, some researchers oriented their research  

 

 

on which are the informative electrodes to reduce 

electrodes numbers. Researchers recently adopted 

artificial intelligence techniques to classify whether a 

driver is in a drowsy or awake state such as machine 

learning methods, which gave good results [10, 53, 54, 

and 55]. However, they required features extraction 

(hand-crafted extraction) and features selection (optional) 

steps that influence the results. Due to the existing of 

many methods and techniques in this area, they also need 

a massive amount of data. According to these limitations 

in the last years, most studies have used deep learning 

techniques such as CNN and its variants, RNNs, and its 
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variants to detect drowsiness based on EEG signals. DL 

techniques have shown notable results in processing 

biomedical signals.  

 Our analysis shows that the most recent driver 

drowsiness-based deep learning works have used the 

convolutional neural network (CNN). The latter showed 

efficient performances in signals classification.  The 

results in Table 2 have proved this where all the obtained 

accuracies exceed 90% except on [18], which was 

71.15%, which is a good result considering the use of raw 

EEG signal without using any artifact removal methods. 

RNN networks also have been used as they perform well 

in time-series and sequential data; the results shown in 

Table 3 demonstrate that they are good candidates for this 

aim, where the highest accuracy was 97.92 % [46] and 

the lowest was 82.8% [45]. However, it isn't easy to 

compare the reviewed works due to the use of different 

datasets, types of channels, types of inputs, and 

classification model architectures. If we take the [3] and 

[16] works, both have used multi-channel EEG signals 

and EEG signals as data and CNN as a classifier. Still, 

they have got different results because they used different 

CNN architectures where the model of [3] contains four 

convolutional layers, one max-pooling layer, and two 

fully connected layers. However, in [16], it contains five 

convolutional layers, two pooling layers, three Inception 

modules, and three fully connected layers. 

In addition, we have observed that in recent years, 

researchers in the driver drowsiness-based EEG field 

have shifted their focus toward using Single-Channel 

EEG recordings rather than Multi-Channel [6, 15, 5, 32, 

51, and 7]. The main reason for this redirection is that the 

Multi-Channel EEG signals require a larger storage 

capacity and high computing time and are more 

expensive than single-channel records. We cannot 

compare the obtained results in terms of single or multi-

channel. Each work employs different wearable devices, 

preprocessing techniques, and models. However we can 

say that single-channel research papers have yielded 

prominent results (see Tables 2 and 3). Perhaps in the 

future, they will be more accurate. 

Another point to discuss is that in some works, 

instead of using EEG as signals, the authors have used 

some methods such as the continuous wavelet transform 

(CWT) [5] and Short-time Fourier Transform (STFT) [7]; 

to convert EEG signals to time-frequency domain images 

(2D spectrogram). The 2D spectrograms are then fed to 

CNN model that demonstrated high image classification 

and pattern detection performance. For example, in [5], 

three models were developed 1D CNN with raw EEG 

data, 2D CNN with power spectrum analysis EEG data 

and CWT-CNN with 2D spectrogram; the highest 

accuracy was 91% obtained by CWT-CNN. The results 

of [5] and [7] are encouraging, and we believe that using 

power preprocessing methods and the CNN model with 

spectrogram images will be much better. 

After reading many papers on driver drowsiness 

detection and especially on deep learning for EEG-based 

driver drowsiness detection, we have noticed that all 

works' main problem is developing a higher accuracy 

system. However, we need an accurate system that can 

detect a drowsy state in a short time and requires small 

spatial memory and few computational resources. A short 

time because the early detection helps to avoid accidents. 

Memory space and computational resources must be 

reduced because the device where the model is integrated 

will be in the vehicle, which is usually a smartphone. A 

smartphone with an enormous capacity costs a lot. 

5 Challenges and future works 

In conclusion, EEG sensors are useful for detecting 

weariness and drowsiness using DL techniques. 

However, various challenges and constraints persist 

today, impeding the development of real-world 

applications. The first one is the lack of data. Most of the 

studies have used a few participants (50 participants or 

less), which can influence the results of the proposed 

models. As it is common knowledge, DL models require 

enormous data for training. In addition, the datasets 

should be diversified so that the models can be general, 

efficient, and robust. The second challenge is comparing 

model performance with other states of the art, as in most 

papers, to validate that the proposed model is better than 

others. However, this comparison is not reliable and 

unfair, as each study uses different datasets collected 

under different experimental conditions, the number of 

electrodes, sampling frequency, and the number of 

participants. Therefore, to obtain a fair comparison, it is 

recommended that all models utilize the same dataset, 

which is challenging due to the use of private datasets. 

The third challenge is the need for powerful 

preprocessing methods and techniques to remove artifacts 

and unwanted signals from the original EEG signals 

without information loss. The raw EEG signal (original) 

is affected by various noises, such as eye blinking and 

muscle noises, which decrease its quality and, as a result, 

affect the detection model's performance. So, a 

preprocessing step is required to clean the signals and 

improve their quality. 

Deep layer models with massive data may give high 

performance and accuracy but require high computational 

resources. Therefore, the last challenge is the need for 

powerful hardware to implement, train, and store Deep-

layer models with massive data. 

The fifth challenge is that most researchers typically 

use virtual or simulated environments to conduct their 

studies and develop their final system outcomes. 

Nevertheless, it is important to note that these results may 

not accurately reflect actual driving conditions, which 

impacts the system's reported accuracy. 

The sixth challenge is that the driver may be 

uncomfortable because of the equipment and sensors 

attached to his body. In addition, even minor motion can 

introduce noise into the extracted signals, diminishing 

their precision. 

 

For future studies, we recommend: 

• Using data augmentation techniques and 

strategies to overcome the lack of data, improve 
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accuracy, and achieve an acceptable 

generalization. 

• Use available online datasets to make a reliable 

comparison of models, and choose the most 

powerful one for detecting drowsiness instead of 

using private datasets.   

• Combine the EEG with other physiological 

signals such as EOG to get more accurate and 

efficient results. 

• Implementing deeper models (with more layers) 

to automatically learn and extract the most 

prominent EEG features. 

• The use of single-channel EEG signals that 

require low storage capacity, low computing 

time, and cost less than the multi-channel record, 

with CNN, to achieve prominent results.  

• Use the cloud to avoid the necessity of powerful 

hardware to train it with massive data. 

• Verify the accuracy of the system's findings by 

conducting an actual driving situation. 

• After determining that the driver is experiencing 

drowsiness, the system should promptly notify 

the driver or any close traffic patrol about their 

possible loss of focus by generating noise or 

causing the steering wheel or seat to vibrate. The 

system may additionally prompt the driver to 

pause and rest, particularly if they have been 

driving for a prolonged duration, or enable a 

smooth transition to autonomous driving mode. 

• Utilizing sensors to monitor the road ahead and 

detect probable collisions to prevent accidents 

caused by proximity with other cars. Once the 

system detects an impending accident, it can 

autonomously engage the brakes or issue visual 

and auditory alerts. This action mitigates the 

impact's severity or entirely averts the collision. 

6 Conclusion 
 

This paper has reviewed novel research papers on 

detecting driver drowsiness or fatigue using EEG and 

deep learning techniques such as CNNs and RNNs 

models. Efficient results were obtained from both DL 

instances, where the higher accuracy is 98.98%, and the 

low accuracy is 71.15% without using any artifacts 

removals, which is an acceptable score. In addition, we 

have discussed the reasons for utilizing single-channel 

EEG signals rather than multi-channel EEG signals in 

certain works and the reasons for using 2D spectrogram 

EEG images rather than EEG signals. At last, we have 

focused on some limitations of the proposed systems. For 

example, the importance of considering the time, 

accuracy, and costs (reducing the spatial memory and 

computational resources), the lack of data, and others are 

mentioned as challenges. 
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