
 Informatica 29 (2005) 343–346 343

On the Security of a Digital Signature with Message Recovery Using
Self-certified Public Key
Jianhong Zhang1,2, Wei Zou1, Dan Chen3 and Yumin Wang3

1 Institution of Computer Science & Technology, Peking University,
Beijing, 100087 P.R.China
E-mail: jhzhs@eyou.com, zouwei@icst.pku.edu.cn

2 College of Sciences, North China University of Technology,
Beijing, 10041 P.R.China
E-mail: jhzhang@ncut.edu.cn

3 State Key Lab .of ISN, Xidian University,
Xi’an, Shaanxi, 70071 P.R.China
E-mail: ymwang@xidian.edu.cn

Keywords: digital signature, message recovery, self-certified public key, improved scheme

Received: April 7, 2005

Self-certified public keys are proposed to eliminate the burden of verifying the public key before using.
To alleviate reliance on system authority and strengthen the security of system, Chang et al propose a
new digital signature schemes, no redundancy is needed to be embedded in the signed messages in this
scheme. Moreover, Chang et al claimed that the schemes are still secure even without the trustworthy
system authority, and only the specified recipient can recover the message in his authentication
encryption schemes. Unfortunately, In this work, we analyze the security of Chang et al scheme and
show that if the system authority is trustless, the scheme is insecure, namely, the system authority can
recover the message without the private key of the recipient in Chang’ authentication encryption
schemes. Finally, we propose an improved scheme to overcome the weakness of Chang et al scheme.

Povzetek: Predstavljena je tehnika digitalnega certifikata z javnim ključem.

1 Introduction
 In traditional public cryptosystem, each user has two
keys, a private key and a public key. The user can use his
private key to produce a signature for a message, and any
verifier can check whether this signature is valid or not
by the user’s public key. The public key of all users is
public in a public directory. However, these systems
suffer from the well-known authentication problem. In
order to ensure the authenticity of published public keys,
usually there exists a certificate authority (CA) to issue a
certificate for every public key. Then every user relies on
CA to validate public keys in the system.
Shamir introduced in 1984 the concept of identity-based
cryptography[1]. The idea is that the public key of a user
be publicly computed from his identity (for example,
from a complete name, an email address or an IP
address). Then, the secret key is derived from the public
key. In this way, digital certificates are not needed,
because anyone can easily verify that some public key
PKU corresponds in fact to user U. However, the user’s
private key is chosen by a trusted authority (TA). This
approach makes user reliance on TA.

Based on the above ID-based cryptography’s problem,
the concept of self-certified public key was first
introduced by Girault[10] in 1999. In the self-certified
public key cryptosystem, each user’ public key is
generated by the CA, while the corresponding private
key in only known to the user. The authenticity of public
keys is implicitly verified without the certificate. That is,
the verification of the public keys can be carried out in
the signature verification phase simultaneously.
Recently, Tseng[8] et al proposed a new digital signature
scheme with message recovery and two variants based on
the self-certified public system above. There exists a
trusted system authority in Tseng et al schemes;
however, the trusted authority is not existent in real
world. Thereby, Ya-Fen Chang et al [3] propose a new
digital signature schemes with message recovery, which
provide the same function as Tseng et al ‘s scheme
without the assumption that TA is not necessary to be
reliable. To demonstrate conveniently, we call the
scheme of literature [3] as Chang scheme. In this work,
we give a security analysis of Chang scheme, and show

344 Informatica 29 (2005) 343–346 J. Zhang et al.

that the scheme is insecure, namely, the system authority
can recover the message without the private key of the
recipient in Chang’ authentication encryption schemes.
Finally, we give an improved scheme to overcome the
weakness.
The organization of this paper is shown as follows. In
Section 2, we review Chang et al’s digital signature
scheme and authentication encryption scheme. In Section
3, we give security analysis to Chang et al scheme. Our
improved digital signature scheme is presented in Section
4. Finally, we draw some conclusions.

2 Review of Chang et al Scheme
In the section, we will brief describe Chang et al’s digital
signature scheme with using self-certified public key and
his authentication encryption, the scheme consists of
three phases: the system initialisation phase, signature
generation and message recovery phase .

2.1 Signature Scheme with Message
Recovery

System initialization phase: in this phase, a system
authority (SA) is responsible for generating system
parameters; note that this system authority is trustless. He
selects two same size safe large primes p and q , which
satisfy 2 1p p′= + and 2 1q q′= + where p′ and q′ also
are large prime, and he computes RSA
modulus N p q= ⋅ . Then, he chooses a generator g of the
order p q′ ′⋅ and a public collision-resistant hash function

()h ⋅ which accepts a variant-length input string of bits
and produces a fix-length output string of bit as specified
in [2]. Finally, the system authority keeps

, , ,p q p q′ ′ secret, and publishes , , ()g N h ⋅ public.
When a user iU with his identity iID intends to join this
system, first he generates his public key. Therefore, he
randomly chooses a number ix as his private key and

computes modix
ip g N= . Then, the user iU sends

(,i iID p) to the system authority. After receiving
(,i iID p), the system authority computes the public

key
1 ()() modih ID

i i iy p ID N
−

= − of the user iU , the user

iU can verify whether it holds by the

equation () modi ih ID x
i ip ID g N+ = .

Signature generation phase: When a user iU wants to
sign a message M, the signing procedure is as follows:
Step1: the user iU chooses a random number k.
Step2: compute

1 modkr M g n−= ⋅ ,
1

2 modk rr M g n− ⋅= ⋅ and

1 2()is r k x h r= ⋅ − ⋅ .
The resultant signature on message M is 1 2(, ,)r r s .

Message recovery phase: after the recipient receives the
signature 1 2(, ,)r r s , he can verify the signature and
recover the message M by the following steps:
Step1: the verifier uses iID and ip of the signer to
recover the signed message M by computing

2() ()
2 () modih ID h rs

i iM r g p ID n= ⋅ ⋅ +
 Step2: after recovering the message, the verifier checks
the recovered message M further by the following
equation

11 1
1 2() mod modrr M n r M n− −⋅ = ⋅

After the above verifications passes, it means that the
signature is valid.

2.2 Authentication Encryption Scheme
Chang et al proposed two authentication encryption
schemes based on the scheme above. One is called
authentication encryption scheme which only allows that
a specified receiver can verify and recover the signed
message; the other is called authenticated encryption
scheme with message linkages that is used to transmit
large message. In fact, the second scheme is the
extension of the first authentication encryption. We only
consider the first scheme in the following. The scheme is
divided into three phases: system initialization phase,
signature generation phase, and message recovery phase.
 System Initialization Phase
The system initialization phase is the same as one of the
above Chang et al’s signature. Because the space is
limited, we omit it.

2.2.1 Signature Generation Phase
If the user iU wants to sign and encrypt a message M to a
specified receiver Uj, the generation procedure of the
signature is as follows.
Step1: first chooses a random number k .
Step2. compute

()
1 () modjh ID k

j jr M p ID n−= ⋅ +

 1()
2 () modjh ID kr

j jr M p ID n−= ⋅ + and

1 2()is r k x h r= ⋅ − ⋅ .
Step3: Ui sends the signature 1 2(, ,)r r s to the verifier Uj.

2.2.2 Message recovery phase
After receiving the signature 1 2(, ,)r r s , the verifier Uj
recovers the message M and verifies that the signature

1 2(, ,)r r s is valid by the following equations.
2() ()

2 (()) modji xh ID h rs
i iM r g p ID n= ⋅ ⋅ +

And the verifier Uj further checks whether
11 1

1 2() mod modrr M n r M n− −⋅ = ⋅ holds or not.

ON THE SECURITY OF A DIGITAL... Informatica 29 (2005) 343–346 345

3 Security Analysis of Chang et al
Signature and Authentication
Encryption

Chang et al claimed that their schemes are secure without
the assumption that system authority is trustworthy. In
his authentication encryption scheme, Chang et al
claimed that only the specified verifier can recover the
message M from the signature. Unfortunately, we show
that if the system authority is trustless, we can attack this
scheme.
First, we give a security analysis to Chang et al primitive
signature, and then we analyze the security of the
authentication encryption. Because the authentication
encryption is based on Chang et al signature scheme, if
Chang et al signature scheme is insecure, then
authentication encryption and the extension vision of this
authentication encryption is also insecure. In the
following, we will consider the security of the scheme.
According to the above signature phase of Chang et al
scheme, we know that a signature 1 2(, ,)r r s of a message
M satisfies

1 modkr M g N−= ⋅ ,

1
2 modk rr M g N− ⋅= ⋅

Supposed that the system authority is trustless, because

the system authority knows the factoring of n, he also

knows p q′ ′ , which is the order of the base g . Hence, he

can perform as follows.

Step1: this system authority computes

1(1)1

2

modk rr
g N

r
α − −= = .

Step2: compute 1
1(1) modr p qβ − ′ ′= −

Step3: compute
1

1 1 1(1) (1) (1)mod () mod () modk r k r rN g N g Nβ βγ α
−− − − − −= = =

modkg N−=

Step 4: recover the message M as the following

1 mod
r

M N
γ

=

The system authority can recover the message M from

the signature 1 2(, ,)r r s without the information (,i iID p)

of the signer Ui.

In the following, we consider how to attack the

Chang et al authentication encryption. According to the

signature phase of the Chang et al’s authentication

encryption scheme, we know that the signature

1 2(, ,)r r s satisfy the following relation

()
1 () modjh ID k

j jr M p ID N−= ⋅ +

1()
2 () modjh ID kr

j jr M p ID N−= ⋅ +

Supposed that the system authority is trustless, the

system authority knows the factoring of n. According to

the above way, the attack procedure is as follows:

Step1: this system authority computes

1() (1)1

2

() modjh ID k r
j j

r
p ID N

r
α − −= = + .

Step2: compute 1
1(1) modr p qβ − ′ ′= −

Step3: compute

1

1
1 1

() (1)

() (1)(1)

mod () mod

() mod

j

j

h ID k r
j j

h ID k r r
j j

N p ID N

p ID N

ββγ α
−

− −

− − −

= = +

= +

()() modjh ID k
j jp ID N−= +

Step 4: recover the message M as the following
1 mod
r

M N
γ

=

If the system authority intercepts the signature
1 2(, ,)r r s of the message M from the channel between the

signer Ui and the recipient Uj, then he can recover the
message M without the private key of the recipient Uj.
According to the way alike, the attack mounts to the
second authentication encryption.

4 An Improved Scheme
To overcome the weakness of Chang et al scheme, we
suggest an improved scheme. In our improved scheme,
System initialization phase is the same as one of Chang
et.al. scheme. The difference is Signing phase and
Verifying phase.
[Signing phase] If the user iU wants to sign and encrypt
a message M to a specified receiver Uj, the generation
procedure of the signature is as follows.
Step1: first chooses a random number k .
Step2. compute

() ()
1 () modjh ID kh M

j jr M p ID N−= ⋅ +
1()

2 () modjh ID kr
j jr M p ID N−= ⋅ + and

1 2()is r k x h r= ⋅ − ⋅ .
Step3: Ui sends the signature 1 2(, ,)r r s to the verifier Uj.
[Verifying phase] After receiving the signature 1 2(, ,)r r s ,
the verifier Uj recovers the message M and verifies that
the signature 1 2(, ,)r r s is valid by the following equations.

2() ()
2 (()) modji xh ID h rs

i iM r g p ID N= ⋅ ⋅ +
And the verifier Uj further checks whether

346 Informatica 29 (2005) 343–346 J. Zhang et al.

11 1 ()
1 2() mod () modr h Mr M N r M N− −⋅ = ⋅

holds or not.
Our improved scheme can extend to the same
authentication encryption as Chang et al scheme. Here
we omit it for the limited space.
By revising 1r into () ()

1 () modjh ID kh M
j jr M p ID N−= ⋅ + ,

we prevent the above attack and make that anyone
(except for the signer and the specified receiver) cannot
recover the message M from the signature 1 2(, ,)r r s , even
if the system authority can not recover the message.
Compared with the Chang et al scheme, only one more
hash function is required in the improvement scheme;
however, the hash computation is negligible. Therefore
the improvement preserves the Chang et al claiming
merits; namely, our scheme is secure without a trusted
system authority and efficient.

5 Conclusion
Self-certified public keys are proposed to eliminate the
burden of verifying the public key before using it.
However, there exists a trusted authority in ordinary self-
certified public key system; the trusted authority is not
guaranteed to be honest in the real world. To strengthen
the security of system, Chang et al propose a new digital
signature schemes, no redundancy is needed to be
embedded in the signed messages. Moreover, the
schemes are still secure even without the trustworthy
system authority. In this work, we give a security
analysis to Chang et al scheme and show that if the
system authority is trustless, the scheme is insecure.
Finally, we propose an improved scheme to overcome
the weakness of Chang et al scheme.

References
[1] A. Shamir, Identity-based cryptosystem based on

the discrete logarithm problem, in Proceedings of
CRYPTO_84, 1985, pp. 47–53.

[2] Zuhua Shao, “improvement of digital signature with
message recovery using self-certified public keys
and its variants” Applied Mathematics and
Computation 159 (2004) 391–399.

[3] Y.F.Chang, C.C.Chang, H.F.Huang, Digital
signature with message recovery using self-
certified public keys without trustworthy system
authority[J], Applied Mathematics and
Computation, Vol 161, in 2005, pp 211-227

[4] P. Horster, M. Michels, H. Petersen, Authenticated
encryption schemes with low communication costs,
IEE Electronics Letters 30 (15) (1985) 1212.

[5] K. Nyberg, R.A. Ruppel, Message recovery for
signature schemes based on the discrete logarithm,
in: Proceedings of EUROCRYPT_94, 1994, pp.
175–190.

[6] R.L. Rivest, A. Shamir, L. Adelman, A method for
obtaining digital signature and public key
cryptosystem, Communications of ACM 21 (2)
(1978) 120–126.

[7] A. Shamir, Identity-based cryptosystem based on
the discrete logarithm problem, in Proceedings of
CRYPTO_84, 1985, pp. 47–53.

[8] Y.M. Tseng, J.K. Jan, H.Y. Chien, Digital signature
with message recovery using self-certified public
keys and its variants, Applied Mathematics and
Computation 136 (2003) 203–214.

[9] W. Di.e, M.E. Hellman, New directions in
cryptography, IEEE Transactions on Information
Theory IT-22 (6) (1976) 644–654.

[10] M. Girault, Self-certified public keys, in:
Proceedings of EUROCRYPT_91, in 1991, LNCS,
springer-verlag, pp. 491–497.

 Informatica 29 (2005) 347–356 347

Object Grouping and Replication Algorithms for Word Wide Web
A. Mahmood
Department of Computer Science
University of Bahrain
Kingdom of Bahrain
E-mail: amahmood@itc.uob.bh

Keywords: Data mining, document clustering, object replication, Web, distributed web-server system, document
replication.

Received: December 4, 2004

This paper presents an algorithm to group correlated objects that are most likely to be requested by a
client in a single session. Based on these groups, a centralized algorithm that determines the placements
of objects to a cluster of web-servers is proposed to minimize latency. Due to the dynamic nature of the
Internet traffic and the rapid changes in the access pattern of the World-Wide Web, we also propose a
distributed algorithm where each site relies on some collected information to decide what object should
be replicated at that site. The performance of the proposed algorithms is evaluated through a simulation
study.
Povzetek: Grupiranje objektov na spletu.

1 Introduction
An ever-increasing popularity of Word Wide Web has
brought a huge increase in traffic to popular web sites.
As a result, users of such web sites often experience poor
response time or denial of a service (time-out error) if the
supporting web-servers are not powerful enough. Since
these sites have a competitive motivation to offer better
service to their clients, the system administrators are
constantly faced with the need to scale up site capacity.
There are generally two different approaches to
achieving this [1]. The first approach is to use powerful
server machines with advanced hardware support and
optimized server software. Unfortunately, this approach
is expensive and complicated one and the issue of
scalability and performance may persist with ever
increasing user demand.

The second approach, which is more flexible and
sustainable, is to use distributed and a highly
interconnected information system or distributed web
server system (DWS). A distributed web server system is
any architecture of multiple stand-alone web server hosts
that are interconnected together and act as a logically
single server [2]. A DWS is not only cost effective and
more robust against hardware failure but it is also easily
scalable to meet increased traffic by adding additional
servers when required. In such systems, an object (a web
page, a file, etc.) is requested from various
geographically distributed. As the DWS spreads over a
MAN or WAN, movement of documents between server
nodes in an expensive operation [1]. Maintaining
multiple copies of objects at various locations in DWS is
an approach for improving system performance (e.g.

latency, throughput, availability, hop counts, link cost,
and delay etc.) [1-3].

Web caching attempts to reduce network latency and
traffic by storing commonly requested documents as
close to the clients as possible. Since, web caching is not
based on the users’ access patterns, the maximum cache
hit ratio achievable by any caching algorithm is bounded
under 40% to 50% [4].

A Proactive web server system, on the other hand, can
decide where to place copies of a document in a
distributed web server system. In most existing DWS
systems, each server keeps the entire set of web
documents managed by the system. Incoming requests
are distributed to the web server nodes via DNS servers
[5-7]. Although such systems are simple to implement
but they could easily result in uneven load among the
server nodes due to caching of IP addresses on the client
side.

To achieve better load balancing as well as to avoid disk
wastage, one can replicate part of the documents on
multiple server nodes and requests can be distributed to
achieve better performance [8-10]. However, some rules
and algorithms are then needed to determine number of
replicas of each document/object and their optimal
locations in a DWS. Choosing the right number of
replicas and their locations can significantly reduce web
access delays and network congestion. In addition, it can
reduce the server load which may be critical during peak
time. Many popular web sites have already employed

348 Informatica 29 (2005) 347–356 A. Mahmood

replicated server approach which reflects upon the
popularity of this method [11].

Choosing the right number of replicas and their location
is a non-trivial and non-intuitive exercise. It has been
shown that deciding how many replicas to create and
where to place them to meat a performance goal is an
NP-hard problem [12,13]. Therefore, all the replica
placement approaches proposed in the literature are
heuristics that are designed for certain systems and work
loads.

This paper proposes a suit of algorithms for replica
placement in a Web environment. The first two
algorithms are centralized in nature and third is a
distributed one. For distribution of requests, we take into
account site proximity and access cost. A detailed
formulation of the cost models and constraints is
presented. Since most of the requests in web environment
are read requests, our formulation is in the context of
read-only requests.

The rest of the paper is organized as follow: Section 2
reviews some existing work related to object replication
in the web. Section 3 describes the system model,
centralized and distributed replications models and the
cost function. Section 4 presents an algorithm to cluster
highly correlated objects in a web environment. Section
5 presents a centralized and a distributed algorithm for
object replication. Section 6 presents the simulation
results and section 7 concludes the paper.

2 Related Work
The problem of replica placement in communication
networks have been extensively studied in the area of file
allocation problem (FAP) [14,15] and distributed
database allocation problem (DAP) [16,17]. Both FAP
and DAP are modeled as a 0-1 optimization problem and
solved using various heuristics, such as knapsack
solution [18], branch-and-bound [19], and network flow
algorithms [20]. An outdated but useful survey of work
related to FAP can be found in [14]. Most of the previous
work on FAP and DAP is based on the assumption that
access patterns are known a priori and remain
unchanged. Some solutions for dynamic environment
were also proposed [21-23]. Kwok et al. [24] and
Bisdikian Patel [25] studied the data allocation problem
in multimedia database systems and video server
systems, respectively. Many proposed algorithms in this
area try to reduce the volume of data transferred in
processing a given set of queries.

Another important data replication problem exists in
Content Delivery Networks (CDN). Unlike FAP and
DAP, in a CDN, a unit of replication/allocation is the set
of documents in a website that has registered for some
global web hosting service. In [26], the replica placement
problem in CDN is formulated as an uncapacitated
minimum K-median problem. In [27], different heuristics
were proposed based on this K-median formulation to

reduce network bandwidth consumption. The authors of
[28] take storage constraint into consideration and reduce
the knapsack problem to replica placement problem in
CDNs. Li [11] proposed a suit of algorithms for
determining the location of replica servers within a
network. The objective of this paper is not to determine
the placement of objects themselves but to determine the
locations of multiple servers within a network such that
the product of distance between nodes and the traffic
traversing the path is minimized.

Wolfson et al. [29] proposed an adaptive data replication
algorithm which can dynamically replicate objects to
minimize the network traffic due to “read” and “write”
operations. The proposed algorithm works on a logical
tree structure and requires that communication traverses
along the paths of the tree. They showed that the
dynamic replication leads to convergence of the set of
nodes that replicate the object. It, however, does not
consider the issue of multiple object replications. Further,
given that most objects in the Internet do not require
“write” operation, the cost function based on “read” and
“write” operations might not be ideal for such an
environment.

Bestavros [30] considered the problem of replicating
contents of multiple web sites at a given location. The
problem was formulated as a constraint-maximization
problem and the solution was obtained using Lagrange
multiplier theorem. However, the solution does not
address the issue of selecting multiple locations through
the network to do replication. In [31], the authors have
studied the page migration problem and presented a
deterministic algorithm for deciding on where to migrate
pages in order to minimize its access and migration costs.
This study, however, deals only with page migration
assuming that the network has k copies of a page. In
addition, it does not address the problem of adding and
deleting replicas to the system and presents no special
algorithm for replica selection. It only assumes that the
reads are done only from the nearest replica.

Tensakhti et al. [13] present two greedy algorithms, a
static and a dynamic one, for replicating objects in a
network of web servers arranged in a tree-like structure.
The static algorithm assumes that there is a central server
that has a copy of each object and then a central node
determines the number and location of replication to
minimize a cost function. The dynamic version of the
algorithm relies on the usage statistics collected at each
server node. A test is performed periodically at each site
holding replicas to decide whether there should be any
deletion of existing replicas, creation of new replicas, or
migration of existing replicas. Optimal place of replica in
trees has also been studied by Kalpakis at el. [3]. They
considered the problem of placing copies of objects in a
tree network in order to minimize the cost of serving read
and write requests to objects when the tree nodes have
limited storage and the number of copies permitted is
limited. They proposed a dynamic programming
algorithm for finding optimal placement of replicas.

OBJECT GROUPING AND REPLICATION... Informatica 29 (2005) 347–356 349

The problem of documents replication in extendable
geographically distributed web server systems is
addressed by Zhuo et al [1]. They proposed four
heuristics to determine the placement of replica in a
network. In addition, they presented an algorithm that
determines the number of copies of each documents to be
replicated depending on its usage and size. In [32] the
authors also proposed to replicate a group of related
documents as a unit instead of treating each document as
a replication unit. They also presented an algorithm to
determine the group of documents that have high
cohesion, that is, they are generally accessed together by
a client in a single session.

Xu el al. [33] discussed the problems of replication proxy
placement in a tree and data replication placement on the
installed proxies given that maximum M proxies are
allowed. The authors proposed algorithms to find number
of proxies needed, where to install them and the
placement of replicas on the installed proxies to
minimize the total data transfer cost in the network.
Karlsson et al. [34] developed a common framework for
the evaluation of replica placement algorithms.

Heddaya and Mirdad [35] have presented a dynamic
replication protocol for the web, referred to as the Web
Wave. It is a distributed protocol that places cache copies
of immutable documents on the routing tree that connects
the cached documents home site to its clients, thus
enabling requests to stumble on cache copies en route to
the home site. This algorithm, however, burdens the
routers with the task of maintaining replica locations and
interpreting requests for Web objects. Sayal el al. [36]
have proposed selection algorithms for replicated Web
sites, which allow clients to select one of the replicated
sites which is close to them. However, they do not
address the replica placement problem itself. In [37], the
author has surveyed distributed data management
problems including distributed paging, file allocation,
and file migration.

3 The System Models
A replicated Web consists of many sites interconnected
by a communication network. A unit of data to be
replicated is referred as an object. Objects are replicated
on a number of sites. The objects are managed by a
group of processes called replicas, executing at replica
sites. We assume that the network topology can be
represented by a graph G(V, E), in which VN = is the

number of nodes or vertices, and E denotes the
number of edges (links). Each node in the graph
corresponds to a router, a switch or a web site. We
assume that out of those N nodes there are n web servers
as the information provider. Associated with every node
v ∈ V is a set of nonnegative weights and each of the
weights is associated with one particular web server. This
weight can represent the traffic traversing this node v and
going to web server i (i = 1,2,…,n). This traffic includes

the web access traffic generated at the local site that node
v is responsible for and, also, the traffic that passes
through this it on its way to a target web server.
Associated with every edge is a nonnegative distance
(which can be interpreted as latency, link cost, or hop
count, etc.).

A client initiates a read operation for an object k by
sending a read request for object k. The request goes
through a sequence of hosts via their attached routers to
the server that can serve the request. The sequence of
nodes that a read request goes through is called a routing
path, denoted by π. The requests are routed up the tree to
the home site (i.e. root of the tree). Note that a route from
a client to a site forms a routing tree along which
document requests must follow. Focusing on a particular
sever i, the access traffic from all nodes leading to a
server can be best represented by a tree structure if the
transient routing loop is ignored [11,13,29]. Therefore,
for each web server i, a spanning tree Ti can be
constructed rooted at i. Hence, m spanning trees rooted at
m web servers represent the entire network. The spanning
tree Ti rooted at a site i is formed by the clients that
request objects from site i and the processors (clients)
that are in the path π of the requests from clients to
access object k at site i.

3.1 The Object Replication Models
In this paper, we consider two object replication models:
centralized and distributed. In the centralized model,
each read request for an object is executed at only one of
the replicas, the best replica. If kℵ is the set of sites that

have a replica of object k and
i
kLCi

kC , denotes the cost of
accessing object k at site i from the least cost site
(denoted by i

kLC), then

iLC i
k = , if a replica of k is locally available at i

k
ji

k
i
k jCjLC ℵ∈= allover minimum is such that ,

, otherwise

That is, for a given request for an object k at site i, if
there is a local replica available, then the request is
serviced locally incurring a cost ii

kC , , otherwise the
request is sent to site j having a replica of object k with
the least access cost.

In the centralized model, there is a central arbitrator that
decides on the number of replicas and their placement
based on the statistics collected at each site. Upon
determining the placement of replicas for each object, the
central arbitrator re-configures the system by adding
and/or removing replicas according to the new placement
determined by the arbitrator. The location of each replica
is broadcasted to all the sites. In addition each site i
keeps the following information:

350 Informatica 29 (2005) 347–356 A. Mahmood

i
kLC : The least cost site to i that has a replica

of object k.
ji

kC , : The cost of accessing object k at site i
from site j on π.

ji
kf , : The access frequency of object k at site i

from site j on π.

kℵ : The set of sites that have a replica of
object k

In the distributed model, there is no central arbitrator.
Similar to centralized model, for a given request for an
object k at site i, if there is a local replica available, then
the request is serviced locally incurring a cost ii

kC , ,
otherwise the request is sent to site j having a replica of
object k with the least access cost. After every time
period T, each site makes the decision about acquiring or
deleting a copy of an object based on the local statistics.

3.2. The Cost Model

Determining an optimal replication involves generating
new allocations and determining their goodness. The
evaluation is done in terms of an objective function
subject to system constraints. The designation of an
objective function reflects the view of goodness of object
replication with respect to system design goals. It is not
feasible to completely describe a system with just one
objective function; instead the objective function should
only capture the critical aspects of the system design.
Also, the form and the parameters of the objective
function should be proper. That is, if the objective
function indicates that an allocation is better than the
other one then the actual measurements should concur.
Keeping in mind these considerations, we develop the
objective function for object replication problem as
follow:

Suppose that the vertices of G issue read requests for an
object and copies of that object can be stored at multiple
vertices of G. Let there are total n sites (web servers) and
m objects. Let ji

kf , is the number of read requests for a
certain period of time t issued at site i for object k to site j
on π. Given a request for an object k at site i, if there is a
local replica available, then the request is serviced locally
with a cost ii

kC , , otherwise the request is sent to site j
having a least access cost replica of object k with a cost

i
kLCi

kC , as explained earlier. If X is an n × m matrix

whose entry 1=ikx if object k is stored at site i and

0=ikx otherwise, then the cost of serving requests for

object k)1(mk ≤≤ at site i)1(ni ≤≤ is given by

ii
k

ii
kik

LCi
k

LCi
kik

i
k CfxCfxTC

i
k

i
k ,,,,)1(+−=
 (1)

The cost of serving requests for all the objects at site i is:

[]∑∑
=

=

=

=

+−==
mk

k

ii
k

ii
kik

LCi
k

LCi
kik

mk

k

i
k CfxCfxTCTC

i
k

i
k

1

,,,,

1
)1((2)

Hence, the cumulative cost over the whole network for
all the objects can be written as:

∑∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

n

i

m

k

ii
k

ii
kik

LC

LCi
k

LCi
kik CfxCfxXCC

i
k

i
k

i
k

1 1

,,,,)1()((3)

Now, the replica placement problem can be defined as a
0-1 decision problem to find X that minimizes (3) under
certain constraints. That is, we want to

∑∑ ∑
= = ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−=

n

i

m

k

ii
k

ii
kik

LC

LCi
k

LCi
kik CfxCfxXCC

i
k

i
k

i
k

1 1

,,,,)1(min)(minimize

 (4)

Subject to

mkx
n

i
ik ≤≤≥∑

=

1 allfor 1
1

 (5)

miTSsx
m

k
ikik ≤≤≤∑

=

1 allfor
1

 (6)
jixik , allfor },1,0{∈

 (7)

The first constraint specifies that each object should have
at least one copy. If sk denotes size of object k and TSi is
the total storage capacity of site i then the second
constraint specifies that the total size of all the objects
replicated at node i should not exceed its storage
capacity.

4 Object Grouping
Almost all the proposed object/document placement and
replication algorithms for web on web servers decide
about the placement/replication of a complete web site or
individual objects comprising a web site. Both of these
methods are not realist. It has been shown in various
studies that each group of users generally accesses a
subset of related pages during a single session.
Therefore, it is logical to group documents which have
high correlation – that is, the documents that are very
likely to be requested by a client in a single session. This
would reduce the HTTP redirection throughout a HTTP
session and hence improve the response time. Each group
then can be replicated on web servers as a unit hence
reducing the search space.

In this section, we propose an algorithm to group objects
that are highly correlated in the sense that they have high

OBJECT GROUPING AND REPLICATION... Informatica 29 (2005) 347–356 351

probability of being accessed by a client in a single
session. The proposed algorithm is an adaptation of the
algorithm proposed in [38]. The major difference is that
the algorithm in [38] produces non-overlapping groups,
that is, each document is placed in a single group but the
proposed algorithm may include an object in more than
one group. This is particularly important since different
users may request for different correlated objects during
each session. Also, we use multiple sessions, instead of a
single session, originating from a client to obtain object
groups for the reasons explained.

The proposed algorithm groups the objects into
correlated object clusters based on the user access
patterns which are stored in the system access log files.
An access log file typically includes the time of request,
the URL requested, and the machine from which the
request originated (i.e. IP address of the machine).
Below, we explain major steps of the algorithm.

1. First the log file is processed and divided into
sessions where a session is a chronological
sequence of document requests from a particular
machine in a single session. We assume that
each session spans over a finite amount of time.
It is important to note that the log file may have
multiple sessions for the same user. This gives a
better picture of the usage pattern of a user.
Also, note that we have to make sure that each
request from a machine should be recorded in
the log file to obtain an accurate access pattern
of users. This can be accomplished by disabling
caching, that is, every page sent to a machine
contains a header saying that it expires
immediately and hence browsers should load a
new copy every time a user views that page.

2. In step 2, we create a correlation matrix. The
correlation between two objects O1 and O2 is the
probability that they are accessed in the same
user session. To calculate correlation between
O1 and O2, we scan the log file and count the
number of distinct sessions in which O1 was
accessed after O2 (count(O1,O2)) and calculate
p(O1|O2)=count(O1,O2)/s(O1), where p(O1|O2) is
the probability of a client visiting O1 if it has
already visited O2 and s(O1) is the number of
sessions in which O1 was accessed by a client.
Similarly, we compute p(O2|O1)=count(O2,
O1)/s(O2), where p(O2|O1) is the probability of
O2 being accessed after O1 in a session,
count(O2, O1) is the number of sessions in
which O2 is accessed after O1 and s(O2) is the
total number of sessions in which O2 is
assessed. The correlation between O1 and O2 is
the min(p(O1|O2), p(O2|O1)) to avoid mistaking a
asymmetric relationship for a true case of high
correlation.

3. At step three, we first create a graph
corresponding to correlation matrix in which
each object is a vertex and each non-zero cell of
the correlation matrix is mapped to an edge. The

length of an edge is equal to the correlation
probability between two vertices. The edges
with a small value are removed from the graph.
We then group documents by identifying cliques
in the graph. A clique is a subgraph in which
each pair of vertices has an edge between them.
The algorithm to identify cliques if given in
figure 1. The algorithm always starts with a pair
of vertices that have the longest edge between
them. Both of these vertices are included in the
group and edge is removed. Then we examine
the rest of the vertices that have not been
included in the group and select the next best
vertex (a vertex with the highest edge value)
that is connected to the vertices already included
in the group and include it in the group. In this
way we choose the objects that are highly
correlated. The size of the clique is bounded by
the longest session of its members since there is
no need of including an object to a group if it is
not accessed in the longest session. Each vertex
that is not included in any of groups is included
in a separate group having that vertex as its only
member.

Figure 1.Object grouping algorithm

R = {vertices connected to at least one edge}
while (R ≠ φ) {

Find the longest edge in R with vertices O1
and O2
V = { O1 , O2}
G = R \ V, C = φ
l=maximum size of V
while (|V| ≤ l) {

for (each vertex O in G) {
if (O is connected to all vertices in
V){

Record the shortest edge
between o and vertices in V
Add O to V

}
}
if (C ≠ φ) {

Choose the vertex O whose
shortest edge to V is longest
Add O to V
Delete O from G and R
C = φ
l=l+1

}
else {

delete O1 and O2 O1 and O2 from
G and R
break

}
}
Construct a group for each remaining vertex

352 Informatica 29 (2005) 347–356 A. Mahmood

5 Object Placement and Replication
Algorithms

The replica placement problem described in the previous
section reduces to finding 0-1 assignment of the matrix X
that minimizes the cost function subject to a set of
constraints. The time complexity of this type of problems
is exponential. In the next section, we present our
proposed centralized object replication algorithms.

5.1 Centralized Greedy Algorithm
Our first algorithm is a polynomial time greedy
algorithm that is executed at a central server and decides
the placements of replicas for each object. The algorithm
proceeds as follows: First all the objects groups are
organized in descending value of their density to make
sure that the objects that are heavily accessed are
assigned to the best server. For each object, we determine
the number of replicas that should be assigned to various
servers using the algorithm proposed in [32] (Rk denotes
the number of replica each object k should have). The
first object in a group is assigned to most suitable server
and then all the other objects in the same group are

allocated to the same server if it has enough capacity.
The idea is that the documents in the same group have
high probability of being accessed in the same session by
a client; therefore, keeping them together will improve
the response time. If an object cannot be assigned to the
same server then we find a server with minimum access
cost and assigned the object on that server. After a copy
of an object is assigned, then we assign the remaining
replica of each object to best servers not having a copy of
that object and have the capacity for that object. The
complete algorithm is given in figure 2.

5.2. Distributed Object Replication Algorithm

The algorithm presented in the previous section are
centralized in the sense that a central arbitrator collects
all the necessary statistics, determines the placement of
the objects, and reconfigures the system in accordance
with the newly determined allocation. This might involve
removing/deleting replicas and adding or migrating
replicas by the central arbitrator. However, in the
distributed model, there is no central arbitrator. Rather,
each site determines for itself which objects it should
add/remove based on the current replica placement and

Group objects using object group algorithm
Arrange object groups in descending order of their density
Arrange objects in each group in descending order of their density
Determine the number of replicas for each object
for (k=1; k<= no_of_objects; k++) replica_assignedk=0
for g = 1 to no_of_groups {

while (Gi ≠ φ) {
k = first_object_in _Gi
A = k // set of objects allocated to j
if (k has not been allocated) {

j = site with minimum value of (2) such that no constraint is violated if a
replica of k is allocated to j
Allocate k at j
replica_assignedk = replica_assignedk + 1

}
Gi = Gi - k
while (j has capacity and Gi ≠ φ and) {

k = first_object_in _Gi
Allocate k at j
replica_assignedk = replica_assignedk + 1
Gi = Gi - k
A= A ∪ k

}
 for (each k in A) {

 for (r= replica_assignedk; r ≤ Rk ; r++) {
Find a site i not having a replica of k and has minimum value of ij

kC , and if a
replica of k is assigned at j and no constraint is violated
Assigned k at j
replica_assignedk = replica_assignedk + 1

} }
}

}

Figure 2: Proposed replication algorithm (algorithm 1)

OBJECT GROUPING AND REPLICATION... Informatica 29 (2005) 347–356 353

locally collected statistics as described in section 3.1.

Our proposed distributed object replication algorithm is a
polynomial time greedy algorithm where each site keeps
the replicas of those objects that are locally evaluated to
be the best replicas. Assume that X (an n × m matrix)
represents the current object replication. Initially X can
be determined by using the algorithm proposed in the
previous section. If iK and iξ is the set of objects that
are replicated at site i and the set of objects that are not
replicated at site i respectively then each site, after every
time period t, determines which objects it should
add/remove based on the current replica placement and
locally collected statistics using the following proposed
algorithm. The algorithm first calculates the unit
loss/profit of removing the local replicas and then the
unit profit of having replicas of those objects which are
not available locally. It then sorts all the objects in
descending values of their profit and replicates top n
objects which it can accommodate without violating the
constraints. The complete algorithm is given in figure 4.

6 Experimental Results
This section presents some performance measures
obtained by simulation of the proposed algorithms. We
have run several simulation trials. In each simulation run,
we model the web as a set of trees having 100-600 sites.
The total objects to be replicated were 2000 in all the
simulation runs. We use different object sizes which
follows a normal distribution. The average object size is
taken as 10 KB and maximum size was taken as 100KB.
About 64% objects sizes were in the range of 2KB and
16KB. The storage capacity of a server was set randomly
in such a way that total storage of all the servers was
enough to hold at least one copy of each object at one of
the servers. In each trial, we run the replica placement
algorithms for 200,000 requests for different objects. We
created log files by generating requests for objects for

multiple sessions. This log file was used to group objects.
The same log file was used by the proposed algorithms to
collect various statistics.

During a simulation run, each site keeps a count c of the
total number of requests it receives for an object. The
latencies are updated periodically for each replica using
the formula)/(1 λµ −=T where λ is the average
arrival rate and µ is the average service time. Exponential
service time is assumed with an average service rate of
100 transactions/second. The value of T is propagated to
the clients in the shortest path spanning tree. The cost
(latency) at different sites is computed as follows: At the
replica site, the average arrival rate is computed and the
latency)/(1 λµ −=T is broadcast to all the sites of
the tree rooted as this replica. At a site i of the tree, the
communication cost (set randomly) at the neighboring
site j from which T is propagated is added to T. This
quality will be the cost of accessing the replica from site
i. At the end of every 20,000 requests, the mean latency
required to service all the 20,000 requests is calculated
and used as a performance measure of the simulated
algorithms.

We studied the performance of our proposed algorithms
and compared it with that of random allocation algorithm
[28] and greedy algorithm [13]. The random algorithm
stores replicas at randomly selected nodes subject to
system constraints. The number of replicas for each
object was determined by density algorithm [1]. We pick
one replica at a time with uniform probability and one
node also with uniform probability; and store that replica
at that node. If the node already has a replica of that
object or allocation of replica at that node violates any of
the constraints then another node is selected randomly
until the replica is placed at a node. Since the object
placement problem is NP-Complete and hence optimal
solution cannot be obtained for large problems in a

for (each object iKk ∈) {
If (server i is the only server having a replica of object k)

profitk = a_max_number
else

 profitk= k
ii

k
ii

k
i
k sCfTC /)(,,−

// i
kTC then the cost of serving requests for object k

// at site i from the least cost site ij ≠
}
for (each object ik ξ∈) {

profitk= k
LCi

kk
ii

k
ii

k
i
k sCsCfTC

i
k //)(,,, −−

}
Sort all the objects in iiK ξ∪ in descending order of their profit values.
Replicate the objects from the sorted list one by one until there is space available on

server i.

Figure 4. The proposed distributed algorithm (algorithm 2)

354 Informatica 29 (2005) 347–356 A. Mahmood

reasonable amount of time, the random algorithm
provides a good basic on which we can determine how
good a heuristic performs than that of a simple random
algorithm.

Figure 5 shows the average latency for all the simulation
runs for different tree sizes. The figure shows that the
average latency decreases for all the algorithms as the
number of sites increases in the system. This is because
of the fact that as the number of sites increases, more
replica of an object can be placed. Also, note that the
performance of algorithm 1 and algorithm 2 is
comparable demonstrating the effectiveness of the
distributed algorithm. The figure 6 shows the average
performance of the algorithms for all the system
configurations. It is evident that the proposed algorithms
perform, on average, better than the greedy and the
random algorithm.

To demonstrate how algorithm 2 adapts to the access
patterns, we performed a set of experiments. The initial
allocation was obtained by randomly placing replicas of
each object as explained before. After each 20000
requests, the algorithm is run on each site. We observed
the improvement in latency, first by calculating the
latency if no reallocation of objects is done and then by
allowing the algorithm to adjust the replication using the
statistics. The results are shown in figure 7. It is evident
from the figure that the algorithm reduces the latency
every time it is executed. Initially the improvement is
significantly high since the initial allocation was obtained
randomly. After a number of runs, the performance of
algorithm 2 is comparable with that of algorithm 1.

7 Conclusions
Object replication on a cluster of web servers is a
promising technique to achieving better performance.
However, one needs to determine the number of replicas
of each object and their locations in a distributed web
server system. Choosing right number of replicas and
their location is a non-trivial problem. In this paper, we
presented an object grouping algorithm and two object
replication algorithms. The object grouping algorithm
groups web objects based on the client access patterns
stored in access log file. The documents that are
correlated and have high probability of being accessed by
a client in a single session are put into the same group so
that they can be allocated, preferably on the same server.
The first proposed for object replication is a centralized
one in the sense that a central site determines the replica
placement in a graph to minimize a cost function subject
to the capacity constraints of the sites. The second
algorithm is a distributed algorithm and hence does not
need a central site for determining object placement.
Rather, each site collects certain statistics and decisions
are made locally at each site on the objects to be stored at
the site. Taken each algorithm individually, simulation
results show that each algorithm improves the latency of
the transactions performed at different sites as the
number of sites is increased. A comparison of the

proposed algorithms with greedy and random algorithms
demonstrates the superiority of the proposed algorithms.

50
100
150
200
250
300
350
400
450
500

100 200 300 400 500 600

of sites

 A
ve

ra
ge

 L
at

en
cy

Alg. 1 Alg. 2 Greedy Random

Figure 5. Mean latency for different tree sizes

50

100

150

200

250

300

350

400

Alg. 1 Alg. 2 Greedy Random

A
ve

ra
ge

 L
at

en
cy

Figure6. Average latency for all simulation runs

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Run#

%
 Im

pr
ov

em
en

t

Figure 7. Average % improvement in latency achieved

by algorithm 2

References
[1] ZHUO, L., WANG, C-L. and LAU, F. C. M.,

Document Replication and Distribution in
Extensible Geographically Distributed Web
Servers, J. of Parallel and Distributed Computing,
Vol. 63, 2003, No. 10, pp. 927-944.

[2] PHOHA, V. V., IYENGAR S. S. and KANNAN,
R., Faster Web Page Allocation with Neural

OBJECT GROUPING AND REPLICATION... Informatica 29 (2005) 347–356 355

Networks. IEEE Internet Computing, Vol. 6, 2002,
No. 6, pp. 18-25.

[3] KALPAKIS, K., DASGUPTA, K. and WOLFSON,
O., Optimal Placement of Replicas in Trees with
Read, Write and Storage Costs. IEEE Trans. On
Parallel and Distributed Systems, Vol. 12, 2001,
No. 6, pp. 628-637.

[4] ABRAMS, M., STANDRIDGE, C. R., ABDULLA,
G., WILLIAMS, S., and FOX, E. A., Caching
Proxies: Limitations and Potentials. Proc. 4th
International World Wide Web Conference, Boston,
Dec. 1995, pp. 119-133.

[5] CARDELLINI, V. COLAJANNI, M., and YU, P.
S., Dynamic Load Balancing on Web-Server
Systems. IEEE Internet Computing, Vol. 3, 1999,
No. 3, pp. 28-39.

[6] COLAJANNI, M., YU, P. S., Analysis of Task
Assignment Policies in Scalable Distributed Web
Server Systems. IEEE Trans. On Parallel and
Distributed Systems, Vol. 9, 1988, No. 6, pp. 585-
600.

[7] KWAN, T. T., MCGRATH, R. E. and REED, D.
E., NCSA’s World Wide Web Server: Design and
Performance. IEEE Computer, Vol. 28, 1995, No.
11, pp. 68-74.

[8] BAKER, S. M. and MOON, B., Scalable Web
Server Design for Distributed Data Management.
Proc. Of 15th Int. Conference on Data Engineering,
Sydney, March 1999, pp. 96-110.

[9] LI, Q. Z. and MOON, B., Distributed Cooperative
Apache Web Server. Proc. 10th Int. World Wide
Web Conference, Hong Kong, May 2001.

[10] RISKA, A. Sun, W., SMIMI, E, and CIARDO, G.,
ADATPTLOAD: Effective Load Balancing in
Clustered Web Servers Under Transient Load
Conditions. Proc. 22nd Int. Conf. on Distributed
Systems, Austria, July 2002.

[11] LI, B., Content Replication in a Distributed and
Controlled Environment. J. of Parallel and
Distributed Computing, Vol. 59, 1999, No. 2, pp.
229-251.

[12] KARLSSON, M. and KARAMANOLIS, C.,
Choosing Replica Placement Heuristics for Wide-
Area Systems. International Conference on
Distributed Computing Systems (ICDCS) 2004,
available at
http://www.hpl.hp.com/personal/Magnus_Karlsson.

[13] TENZAKHTI, F., DAY, K. and OLUD-KHAOUA,
M., Replication Algorithms for the Word-Wide
Web. J. of System Architecture, Vol. 50, 2004, pp.
591-605.

[14] DOWDY, L. and FOSTER, D., Comparative
Models of the File Assignment Problem. Computer
Surveys, Vol.14, 1982, No. 2, pp. 287-313.

[15] CHU, W. W., Optimal File Allocation in a Multiple
Computer System. IEEE Trans. On Computers,
Vol. 18, 1969, No. 10, pp. 885-889.

[16] OZSU, M. T. and VALDURIEZ, P., Principles of
Distributed Database System. Englewood Cliff, N.
J.: Prentice Hall, 1999.

[17] APERS, P. G. M., Data Allocation in Distributed
Database Systems. ACM transactions on Database
Systems, Vol. 13, 1998, No. 3, pp. 263-304.

[18] CERI, S., MARTELLA, G. and G. PELAGATTI,
G., Optimal File Allocation in a Computer
Network: A Solution Method Based on Knapsack
Problem. Computer Networks, Vol. 6, 1982, No.
11, pp. 345-357.

[19] FISHER, M. K. and HOCHBAUM, D. S., Database
Location in Computer Networks. J. ACM, Vol. 27,
1980, No. 10, pp. 718-735.

[20] CHANG, S. K. and LIU, A. C., File Allocation in
Distributed Database. Int. J. Computer Information
Science. Vol. 11, 1982, pp. 325-340.

[21] AWERBUCH, B., BARTAL, Y. and A. FIAT, A.,
Competitive Distributed File Allocation. Proc. 25th
Annual ACM Symposium on Theory of
Computing, Victoria, May 1993, pp. 164-173.

[22] LOIKOPOULOS, T. and AHMED, I., Static and
Dynamic Data Replication Algorithms for Fast
Information Access in Large Distributed Systems.
20th IEEE conference on Distributed Computing
Systems, Taipei, 2000.

[23] GAVISH, B. and SHENG, O. R. L., Dynamic File
Migration in Distributed Computer Systems.
Comm. of ACM, Vol. 33, 1990, No. 1, pp. 177-189.

[24] KWOK, Y. K., KARLAPALEM, K., AHMED, I.
and PUN, N. P., Design and Evaluation of Data
Allocation Algorithms for Distributed Multimedia
Database Systems. IEEE J. Selected Areas of
Communications, Vol.17, 1996, No. 7, pp. 1332-
1348.

[25] BISDIKIAN, C. and PATEL, B., Cost-Based
Program Allocation for Distributed Multimedia-On-
Demand Systems. IEEE Multimedia, Vol. 3, 1996,
No. 3, pp. 62-76.

[26] QIU, L., PADMANABHAM, V. N. and
VOELKER, G. M., On the Placement of Web
Server Replicas. In Proc. Of 20th IEEE INFOCOM,
Anchorage, USA, April 2001, pp. 1587-1596.

[27] RADOSLAVOV, P., GOVINDAN, R. and
ESTRIN, D., Topology Informed Internet Replica
Placement. Proc. 6th Int. workshop on Web
Caching and Content Distribution, Boston, June
2001, Available at
http://www.cs.bu.edu/techreports/2001-017-
wcw01-proceedings.

[28] KANGASHARJU, J., ROBERTS, J. and ROSS, K.
W., Object Replication Strategies in Content
Distribution Networks. Computer Communications,
Vol. 25, 2002, No. 4, pp. 367-383.

[29] WOLFSON, O. JAJODIA, S. and HUANG, Y., An
Adaptive Data Replication Algorithm. ACM Trans.
Database Systems, Vol. 22, 1997, No. 2, pp. 255-
314.

[30] BESTAVROS, A.: Demand-Based Document
Dissemination to Reduce Traffic and Balance Load
in Distributed Information Systems. Proc. IEEE
Symp. On Parallel and Distributed Processing,
1995, pp. 338-345.

356 Informatica 29 (2005) 347–356 A. Mahmood

[31] BARTAL, Y., CHARIKAR, M. and INDYK, P.,
On Page Migration and Other Relaxed Task
Systems. Theory of Computer Science, Vol. 281,
2001, No. 1, 2001, pp. 164-173.

[32] ZHUO, L., WANG, C-L., and LAU F. C. M.,
Document Replication and Distribution in
Extensible Geographically Distributed Web
Servers. 2002, Available at
http://www.cs.hku.hk/~clwang/papers/JPDC-
EGDWS-11-2002.pdf

[33] XU, J., LI, B. and LEE, D. L., Placement Problems
for Transparent Data Replication Proxy Services.
IEEE J. on Selected Areas in Communications, Vol.
20, 2002, No. 7, pp. 1383-1398.

[34] KARLSSON, M., KARAMANOLIS, C. and
MAHALINGAM, M., A Framework for Evaluating
Replica Placement Algorithms. Tech. Rep. HPL-

2002, HP Laboratories, July 2002,
http://www.hpl.hp.com/personal/magnus_karlsson.

[35] HEDFDAYA, A. and MIRDAD, S., Web Wave:
Globally Load Balanced Fully Distributed Caching
of Hot Published Documents. Proc. 17th IEEE int.
Conf. On Distributed Computing Systems, 1997,
pp. 160-168.

[36] SAYAL, M., BREITBART, Y,
SCHEURERMANN, P. and VINGRALEK, R.,
Selection of Algorithms for Replicated Web Sites.
Performance Evaluation Review, Vol. 26, 1998,
No. 1, pp. 44-50.

[37] BARTEL, Y., Distributed Paging. Proc. Dagstuhl
Workshop On-line Algorithms, 1997, pp. 164-173.

[38] PERKOWITZ, M. and ETZIONI, O., Adaptive
Web Sites: Automatically Synthesizing Web Pages.
Proc. AAAI’98, 1998, pp. 722-732.

