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This study describes a novel strategy for solving non-linear multi-objective optimization problems encoun-
tered in real-world engineering projects. To find the best trade-off points, a Lagrange’s Interpolation em-
bedded multi-objective genetic algorithm (LI-MOGA) is used. In this approach, Lagrange’s Interpolation
(LI) method is used to capture the non-linear relationship between time and cost. After that, LI is com-
bined with MOGA to create a comprehensive strategy for solving non-linear multi-objective optimization
problems in the real world. The study has implications for real-time monitoring and control of the project
scheduling process.

Povzetek: Predstavljen je nov pristop za reševanje nelinearnih večciljnih optimizacijskih problemov z
uporabo Lagrangeove interpolacije in večciljnega genetskega algoritma (LI-MOGA), ki optimizira čas
in stroške projektov.

1 Introduction

Multi-Objective Genetic Algorithm (MOGA) is an opti-
mization technique that utilizes genetic algorithms [1] to
solve problems with multiple conflicting objectives. In
contrast to traditional single-objective optimization prob-
lems, MOGA considers multiple objectives simultaneously
and aims to find the best possible trade-offs between them.
Typically, there are multiple solutions available rather than
just one, and all of these solutions are Pareto optimal [3].
MOGA is based on the principles of natural selection and
genetic recombination [1], [2]. It works by evolving a pop-
ulation of candidate solutions to the problem, which are
represented as chromosomes in a genetic algorithm. These
chromosomes are evaluated based on multiple objectives,
rather than a single objective, and a fitness score is assigned
to each chromosome based on its performance across all
objectives. The goal of MOGA is to find a set of solutions
that are Pareto-optimal, meaning that no other solution in
the search space is better in all objectives simultaneously.
This set of solutions is known as the Pareto Front, and the
process of searching for this front is known as Pareto opti-
mization. MOGA has applications in a wide range of fields,
including engineering, finance, and biology. It is partic-
ularly useful in situations where multiple objectives need
to be optimized simultaneously, and where there are trade-
offs between these objectives that need to be considered.

Agdas et al. [4] demonstrate that the meta-heuristic ap-
proach is efficient for large-scale constructing TCT prob-
lems and that GA can be utilized to solve vast benchmark
networks of variables with high levels of accuracy consis-
tently. Genetic algorithms (GA) and linear programming
(LP) are combined to create a hybrid GALP method, which
is used to address optimization problems. The outcomes of
the proposed model are described in [5]. Recent develop-
ments in the genetic algorithm were examined by Katoch
et al. [7]. In their research paper, they examine the po-
tential possibilities for future study in the fields of genetic
operators, fitness functions, and hybrid algorithms. The
competitive environment makes the relationship between
time and cost even more significant, as demonstrated by
Albayrak [8]. The two project components, which conflict
with one another and are affected by various project con-
straints, must be balanced. They presented a novel hybrid
algorithm (NHA) as a solution to the TCT problem, which
is viewed in their paper as a multi-objective optimization
problem. Likewise, several Multi-Objective Evolutionary
Algorithms (MOEAs) have been suggested to find the so-
lutions of multi-objective optimization problems. The goal
of Chassiakos and Rampis’ research, [9] is to examine and
assess the performance potential of various evolutionary al-
gorithms described in [9] in order to address the time-cost
trade-off problems. Venkatesh et al. [10] offered a new
variation of the genetic algorithm designed to solve multi-
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variable, multi-objective, and very high search space opti-
mization problems. Their outcomes demonstrate that this
algorithm is able to deliver positive and exact outcomes.
Since it is given in real-time applications, [11] the issue of
solving linear and nonlinear systems of equations is signifi-
cantly beneficial and of great importance. Hassan et al. [11]
introduced a comparison of several numerical approaches
and GAs for solving an equation system. To distinguish
between the best and worse options in order to get the best
solutions, the use of genetic algorithms in numerous fields
is demonstrated by Haldurai et al. [12] in their study along
with how GA may be integrated with a number of other ap-
proaches to arrive at an optimal solution. Sharma et al. [13]
provided a genetic algorithm-based TCTmodel, which was
developed in a way that makes it simpler to identify the best
techniques for finishing the project on schedule and for the
least amount of cost. Pathak et al. [14] explained in their
study how project uncertainties affect the non-linear time-
cost trade-off (TCT) profile of actual engineering projects.
Their study helps project managers come up with the opti-
mal strategy for finishing a project under ambiguous condi-
tions while also optimizing both costs and time. Most of the
researchers used the evolutionary multi-objective optimiza-
tion algorithms to solve linear multi-objective optimization
problems like time-cost trade-off problems. In these meth-
ods, genetic operators are crucial for locating the real Pareto
front.
But in non-linear MOOP, LI with evolutionary multi-

objective optimization algorithms has not been investigated
by researchers. This study describes an innovative and re-
liable approach, Lagrange’s Interpolation embedded multi-
objective genetic algorithm (LI-MOGA), that incorporates
LI and MOGA. In this approach, LI method [15] is used to
capture the non-linear relationship between time and cost.
Thereafter, LI is integrated with MOGA to create an ex-
haustive method for solving non-linear MOOP in the real
world.

2 Problem description
The non-linear relationship between project time and cost
of an activity is shown in Figure 1 [6]. Suppose that a
project network consists of n activities. Each activity i can
be performed with (αi) options with a corresponding cost
ci and time duration ti. Let us assume that the vector of
decision variables is taken as X = [x1, x2, ..., xi, ..., xn].
Now, the multi-objective TCT problem is defined by Eq.
(1) and Eq. (2), respectively:

minimize time T =

n∑
i=1

ti (1)

minimize cost C =

n∑
i=1

ci (2)

where ti and ci can take any (αi) options of ith activity.

The project duration T is determined by computing the
maximum path time (critical path method).

Figure 1: Non-linear time-cost trade-off relationship for an
activity

3 Modelling of time-cost
relationship with LI

Let’s assume we have a set of input-output pairs, where the
input represents the estimated completion time for a project,
and the output represents the estimated cost. We can repre-
sent this set of pairs as (x1, y1), (x2, y2), ..., (xn, yn).
Using Lagrange interpolation, [17], [18] we can estimate

the costC for any given completion time T within the range
of the collected input-output pairs. The Lagrange interpo-
lation formula is:

f(x) =
(x− x1)(x− x2)(x− x3)...(x− xn)

(x0 − x1)(x0 − x2)(x0 − x3)...(x0 − xn)
y0

+
(x− x0)(x− x2)(x− x3)...(x− xn)

(x1 − x0)(x1 − x2)(x1 − x3)...(x1 − xn)
y1 + ...

+
(x− x0)(x− x1)(x− x2)(x− x3)...(x− xn−1)

(xn − x1)(xn − x2)(xn − x3)...(xn − xn−1)
yn

(3)

To optimize the time and cost of the project simultaneously,
we can use LI-MOGA to search for the optimal project
completion time that minimizes cost while meeting the re-
quired project deadline. LI-MOGA generates a population
of project activity completion times and applies the La-
grange interpolation formula to estimate the corresponding
cost for each activity based on the project completion time.
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4 Preliminaries of LI-MOGA
The following are the preliminary concepts of the LI-
MOGA scheme for the MOOP, as used in this study:

4.1 Initial population
The initial population in LI-MOGA is typically generated
randomly within the feasible search space, subject to any
constraints that may be present in the problem. The initial
population serves as the starting point for the optimization
process and is evolved over multiple generations using ge-
netic operators. The mathematical formulation of an initial
population generated by LI-MOGA can be represented as
follows:
The initial population consists of np solutions, where the
solution is a string of type [t1, t2, ..., ti, ..., tn] (Figure 2)
such that CTi ≤ ti ≤ NTi and i = 1, 2, ....n, where CTi

and NTi is the respective crash time and normal time of
each activity.

Figure 2: Time of the project schedule

The shortest time that may be used to complete an
activity for a project is known as the crash time, and the
expense that goes along with it is known as the crash
cost and vice-versa. Each string’s associated with project
duration (T ) and project costs (C) are determined by
calculating the maximum path time and adding the costs
for each activity, which is provided by LI respectively.
These solutions are known as ‘parents’.

4.2 Trade-off points and convex hull
In LI-MOGA, trade-off points and the convex hull of the
Pareto Front are important concepts used to analyze the
trade-offs between different objectives and identify the best
solutions for a given problem. Trade-off points refer to the
points on the Pareto Front that represent the optimal trade-
offs between two objectives. Mathematically, for two ob-
jectives f1 and f2, the trade-off points can be defined as
follows:
For a given solution xi, let fi(xi) be the value of the ith
objective function. Then, the trade-off point t(f1, f2) be-
tween objectives f1 and f2 can be defined as: t(f1, f2) =
(f1(xi), f2(xi)) where xi is a non-dominated solution that
lies on the Pareto Front.
The convex hull of the Pareto front is a geometric shape

that represents the set of all possible trade-offs between the

objectives. The convex hull of the Pareto Front can be de-
fined as follows:
Let N be the set of non-dominated solutions on the Pareto
Front. Then, the convex hull of N can be represented as a
set CH(N), which contains all the extreme solutions and
all the trade-off points between the objectives. Also, the
extreme solution is a solution that is not dominated by any
other solution in N .

4.3 Distance vs. fitness measure
The smallest distance (di) between the parent and each con-
vex hull segment is determined as

fi = dmax − di (4)

pi =
fi∑
fi

(5)

where pi = probability of choosing parent i; fi = fitness
value of parent i; di = minimal distance between parent i
and each segment j of CH; and di = min (dij , for all j).

4.4 Crossover operator used in LI-MOGA
Crossover is one of the important genetic operators [7] used
in multi-objective genetic algorithms to generate new can-
didate solutions from parent solutions. The crossover oper-
ator involves exchanging genetic information between two
parent solutions to create a new offspring solution.
The mathematical formulation of crossover can be repre-
sented as follows:
Let P be the population of candidate solutions, and let
xi and xj be two parent solutions selected from P for
crossover. Letn be the number of decision variables in each
solution. The crossover operator involves randomly select-
ing a crossover point k, whereas k lies between 1 ≤ k ≤ n
and exchanging the genetic information between the par-
ents at this point. First k positions of child are taken from
first k positions of xi while remaining (n−k) positions are
defined by (n− k) positions of xj .
The offspring solutions are then evaluated based on their
fitness using the fitness function. The offspring solutions
can also undergo mutation, another genetic operator, to in-
troduce further genetic diversity into the population as de-
fined in the subsection 4.5.

4.5 Mutation opertor used in LI-MOGA
Mutation is a genetic operator [7] used in multi-objective
genetic algorithms to introduce new genetic material into
the population of candidate solutions. The mutation oper-
ator involves randomly changing the value of a decision
variable in a candidate solution to create a new offspring
solution.
Let P represent the population of candidate solutions,

and let xi ∈ P be a parent solution selected for mutation,
where xi = [xi1, xi2, . . . , xin] is a vector of n decision



702 Informatica 48 (2024) 699–706 M. Kapoor et al.

variables. The mutation operator involves randomly select-
ing a decision variable j (1 ≤ j ≤ n) and changing its value
to a new value x′

ij within the feasible search space. The re-
sulting offspring solution yi can be expressed as:

yi = [xi1, xi2, . . . , xi(j−1), x
′
ij , xi(j+1), . . . , xin] (6)

Here, xij is the original value of the j-th decision variable
in the parent solution xi, and x′

ij is the new value assigned
to the j-th decision variable, generated within its allowable
range. After mutation, the offspring solution yi is evaluated
using the fitness function. If the new solution improves the
population’s diversity or satisfies specific selection criteria,
it may replace an existing solution in P to maintain a con-
stant population size.

5 Working methodology of
LI-MOGA

The Lagrange interpolation method is a mathematical tech-
nique for constructing a polynomial that passes through a
given set of data points. Multi-objective genetic algorithm
are a class of optimization algorithms that use genetic op-
erators such as selection, crossover, and mutation to search
for solutions that optimize multiple objectives simultane-
ously. The LI-MOGA combines these twomethods to solve
optimization problems.
Here, LI-MOGA scheme can be summarized as follows:

1. Define the problem: Identify the problem to be solved
and the objective functions to be optimized.

2. Generate the initial population: Create an initial pop-
ulation of candidate solutions using random values
within the problem’s constraints as mentioned in sub-
section 4.1.

3. Select the sets of individuals i.e. non-dominating so-
lutions known as trade-off points and draw the convex
hull as given in subsection 4.2.

4. Calculate fitness: Evaluate the fitness of each candi-
date solution as detailed out in subsection 4.3.

5. Select parents: Use the tournament selection method
to choose parent solutions for the next generation.

6. Crossover: Perform crossover on the selected parents
to create new candidate solutions, refer subsection 4.4.

7. Mutation: Apply mutation to the new candidate solu-
tions to introduce additional diversity in the population
as mentioned in subsection 4.5.

8. Replace the intial population with new population.

9. Repeat: Repeat steps 3-8 until a stopping criterion is
met, such as reaching a maximum number of genera-
tions or achieving a satisfactory level of convergence.

6 Benchmark problems using
MOGA

Using MOGA, two common test problems Zitzler-Deb-
Thiele’s (ZDT1 and ZDT2) with convex Pareto-optimal
front are successfully attempted [16]. It is evident from
visualising the findings (as shown in graphs) that MOGA
generates non-dominating solutions which are acceptable
from the perspectives of diversity and convergence.

6.1 ZDT1 benchmark problem
The ZDT1 benchmark problem has two objectives which
have to be minimized as illustrated below:

ZDT1 :


f1(v) = v1

f2(v) = h(v)[1−
√

v1
h(v) ]

h(v) = 1 + 9
n−1

∑n
i=2 vi

This problem [16] has 30 design variables which lie in the
range [0, 1] and convex Pareto-optimal solutions lies in the
range 0 ≤ v∗1 ≤ 1 and v∗i = 0 for i = 2, 3, ..., 30. Ac-

Figure 3: ZDT1 benchmark problem using MOGA

cording to Figure 3, the non-dominated solutions obtained
using the MOGA technique are well dispersed throughout
the solution space and matches the Pareto-optimal front in a
reasonable way. Thus, the MOGA technique proves its ca-
pacity for convergence to the Pareto-optimal front and for
discovering a variety of solutions for complex situations.

6.2 ZDT2 benchmark problem
The ZDT2 function has a non-convex Pareto-optimal front.
The objective functionas are as mentioned below;

ZDT2 :


f1(v) = v1
f2(v) = h(v)[1− ( v1

h(v) )
2
]

h(v) = 1 +
9(

∑n
i=2 vi)

n−1
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Thirty design variables vi ; i = 1, 2, ..., n were selected for
this ZDT2 function (n = 30). Every design variable had a
value between 0 and 1. When h = 1.0, the Pareto-optimal
front arises [16]. The Pareto-optimal front is where the non-
dominated solutions from the MOGA technique reside, and
the solutions are well dispersed in the solution space (Figure
4). This demonstrates how the MOGA technique for this
test problem converges to the Pareto-optimal front.

Figure 4: ZDT2 benchmark problem using MOGA

7 Results and discussion
As a test problem, the real-world project network shown
in Figure 5 [3] is appropriately modified to include a
non-linear relationship between activity time and cost.
The problem is then tackled using the proposed approach
(LI-MOGA). Table 1 also displays the various aspects of
each activity.

Table 1: Alternatives of test problem

ID Time Cost ID Time Cost
1 14 2400 10 15 450
1 15 2150 10 22 400
1 16 1900 10 23 390
1 18 1750 10 27 345
1 21 1500 10 28 330
1 23 1300 10 30 325
1 24 1200 10 33 320
2 15 3000 11 12 450
2 17 2630 11 13 420
2 18 2400 11 14 370

Continued on next page

Continued from previous page
ID Time Cost ID Time Cost
2 20 1800 11 16 350
2 21 1720 11 17 305
2 23 1500 11 19 300
2 25 1000 11 20 300
3 15 4500 12 22 2000
3 17 4415 12 24 1750
3 19 4220 12 25 1690
3 22 4000 12 27 1525
3 25 3730 12 28 1500
3 30 3375 12 29 1200
3 33 3200 12 30 1000
4 12 45000 13 14 4000
4 13 44300 13 15 3795
4 15 38450 13 16 3500
4 16 35000 13 18 3200
4 18 33700 13 21 2750
4 19 32400 13 23 2155
4 20 30000 13 24 1800
5 22 20000 14 9 3000
5 24 17500 14 10 2930
5 25 16400 14 12 2825
5 26 15900 14 14 2605
5 27 15700 14 15 2400
5 28 15000 14 17 2295
5 30 10000 14 18 2200
6 14 40000 15 10 6525
6 16 39200 15 13 5990
6 17 34500 15 14 4500
6 18 32000 15 16 3500
6 20 27700 15 17 3355
6 22 20300 15 18 2600
6 24 18000 15 20 1930
7 9 30000 16 20 3000
7 11 27200 16 22 2000
7 13 26100 16 24 1750
7 14 25600 16 26 1685
7 15 24000 16 28 1500
7 17 22300 16 29 1385
7 18 22000 16 30 1000
8 14 220 17 14 4000
8 15 215 17 16 3700
8 16 200 17 17 3455
8 17 190 17 18 3200
8 21 167 17 21 2780
8 23 150 17 23 2335
8 24 120 17 24 1800
9 15 300 18 9 3000
9 16 280 18 10 2900
9 18 245 18 12 2790
9 21 175 18 14 2565
9 22 135 18 15 2400
9 24 115 18 16 2315
9 25 100 18 18 2200

Initial population (np), mutation rate (pm), and
crossover rate (cr) are defined, respectively, as 540, 0.02,
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Figure 5: Network of test problem

Figure 6: Initial generation

Figure 7: Intermediate generation

and 1.0. Additionally, as 5 consecutive iterations were de-
termined to be a sufficient amount, the search is configured
to end when the trade-off profile does not change during

Figure 8: Final generation

that time. Initial population np of 540 strings is randomly
selected. An exhaustive experiment is used to select an ini-
tial population, and 540 is ultimately determined to be a
suitable number. Because the population’s diversity is pre-
served and the convergence period is short, the population
is scattered across all feasible spaces. Figure 6 illustrates
how np is dispersed throughout the solution space and does
not concentrate in any particular area. The new population
shifts in the direction of axes with intermediate improve-
ments in trade-off profile and convex hull are shown in Fig-
ure 7. A clear improvement in trade-off points and con-
vex hull across generations can be seen in the best-attained
trade-off points and their convex hull (Figure 8). This pro-
file is determined to be the best TCT profile according to
LI-MOGA search criteria because the trade-off profile does
not improve further.

8 Conclusion

LI-MOGA can identify optimal activity allocation using
any time-cost functions, and it is not constrained by the
form of the activity time-cost relationship. In order to val-
idate the performance of the MOGA utilized, two com-
mon test problems are effectively addressed. LI’s versa-
tility and higher modeling capacity are demonstrated by
providing various cost-evaluation options for each activ-
ity. The integrated approach uses a novel combination
of LI and MOGA to address non-linear multi-objective
optimization problems. This is a powerful and efficient
multi-objective optimization technique that can search for
a near-optimal/optimal realistic TCT profile after exploring
a small search space. The proposed approach can assist in
real-time to choose the best alternative among non-linear
TCT profiles to execute the real world projects.
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