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This study aims to help users manage water resources and prevent flooding by creating an online monthly 

streamflow forecasting system. We have integrated a regression model into the system, using historical 

information on rainfall and streamflow selectivity from a number of monitoring stations in the Upper 

Cimanuk sub-basin. Users can access the online system to input and view rainfall and streamflow data 

and enumerate monthly streamflow rate projections. To verify the system's forecast accuracy, we 

compared it with manual calculations employing the velocity-area method and field observations. The 

system provides reasonably accurate forecasts, as indicated by the system's high coefficient of 

determination (R2) value of 0.91. Nevertheless, the differences between predictions and measurements 

suggest there is scope to improve the accuracy of the system by including additional variables and more 

comprehensive data. Future enhancements may include additional validation using a wider range of field 

data, as well as the inclusion of precipitation intensity, duration, catchment shape and size. The developed 

monthly streamflow forecasting system is a valuable tool for analyzing and forecasting streamflow rates, 

providing a basis for informed decision making in water resource management and flood disaster 

mitigation. 

Povzetek: V članku je predstavljen spletni sistem za napovedovanje mesečnega pretoka rek (opozorilo za 

poplave) v Cimanuku z visoko natančnostjo (R2 = 0.91).

1 Introduction 
[1] defines flooding as the inundation of an area that 

occurs when water overflows beyond its drainage 

capacity, causing physical, social, and economic losses. 

Flooding happens when the river or canal overflows on 

either its right or left side because the channel capacity 

cannot manage the streamflow. Flooding occurs due to 

overflowing to the left or right side of the river/canal 

because the capacity of the river channel is not sufficient 

for the streamflow [2]. The complexity of flooding in a 

basin involves numerous main elements, which function 

both as natural physical objects or targets, and as subjects 

or actors utilized by humans. The elements interact and 

mutually influence each other, leading to the hydrological 

condition of the basin [3].  

The Watershed Management Board of Cimanuk – 

Citanduy recorded flood and landslide report data, noting 

more than one flood event in the Upper Cimanuk Sub-

basin. Flooding struck Sindangsari Village, Garut 

Regency on March 28th, 2014, with runoff reaching 165 

cm. In 2015, floods took place between March 15 and 16 

with a streamflow of 384 m3/s. A flash flood hit Sukakarya 

Village, Tarogong Kidul Subdistrict, Garut Regency, on 

September 20, 2016, with a runoff of 50 - 200 cm,  

 

claiming three lives [4]. In terms of administration, two   

governmental regions divide the Upper Cimanuk sub-

basin: Garut Regency, which covers the majority with 20 

sub-districts, and Sumedang Regency, which covers the 

remaining 12 sub-basins with an area of 156,020 hectares 

[5]. 

Streamflow forecasting is used to try to anticipate 

flooding. Basin rivers take longer to observe precipitation 

observations than streamflow observations [6]. Studying 

the relationship between the two variables is important. 

We can express the relationship of hydrological variables 

in mathematical formulas, which can then be used for 

hydrological analysis, such as forecasting, extension, 

repair, and data filling [7]. 

In linear regression analysis, we examine the 

relationship between two or more variables. We use a 

linear regression model to establish the relationship 

between dependent and independent variables. Linear 

regression comes in two types: simple and multiple, 

depending on the number of independent variables. 

Multiple linear regression involves more than one 

independent variable, while simple linear regression 

involves only one [8]. In this study, we use simple linear 
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regression, treating precipitation as the independent 

variable. 

Considering the rise in internet users in Indonesia and 

the recurring floods in the Upper Cimanuk sub-basin, we 

plan to develop a monthly online streamflow forecasting 

system. This system will leverage widespread internet 

access to share crucial information about potential floods, 

thereby minimizing their adverse effects on local 

communities. According to the Indonesian Internet 

Service Providers Association survey, Indonesia has 204.7 

million active internet users, making up 74.23% of the 

total population. Java Island hosts the highest number of 

internet users, comprising around 43.92% of Indonesian 

users [9]. 

The relationship between precipitation and river flow 

is unidirectional in both the dry and wet seasons; as 

precipitation increases, so does river flow, and vice versa. 

We plan to build an online monthly streamflow 

forecasting system, considering the growing number of 

Internet users and the flooding in the Upper Cimanuk 

subbasin in Indonesia. We will implement a linear 

regression model to forecast streamflow, using 

precipitation as the independent variable and streamflow 

as the dependent variable. The system will analyze both 

variables to predict monthly streamflow. Given the 

substantial number of internet users in Indonesia, we 

believe this online system will be accessible to everyone 

who needs it and will help reduce flooding. 

The purpose of the study is to develop a web-based 

monthly streamflow forecasting system for the Upper 

Cimanuk sub-basin that users can access online to analyze 

and forecast streamflow. The system calculates 

streamflow forecasts using rainfall and streamflow 

information and compares the precision of its forecasts to 

manual calculations. The purpose of this study is to 

provide a tool for analyzing and predicting streamflow to 

serve as a foundation for decision-making in water 

resource management and flood disaster prevention. This 

research includes only the Upper Cimanuk sub-basin and 

focuses on developing and evaluating an online 

application that offers users access to precipitation and 

streamflow data and allows them to forecast streamflow 

based on the provided rainfall input. 

The findings of this study will grant convenient access 

to information on streamflow and precipitation for users 

in the Upper Cimanuk sub-watershed, benefiting planning 

and growth activities in the area. 

2 Related works 
In recent years, there has been some interest in the field of 

water resource management and flood disaster mitigation. 

By integrating advanced modeling techniques and data-

driven approaches, these systems have paved the way for 

flood management strategies. Streamflow forecasting 

stands as water resource management and flood disaster 

mitigation tool. An array of methodologies has been 

cultivated for streamflow forecasting, spanning statistical 

methods, hydrological models, and machine learning 

techniques. This chapter offers an overview of researches 

within the integrated streamflow forecasting systems 

domain. 

The exploration into streamflow prediction has led to 

a series of investigations. Regression models have been a 

prominent focus, revealing their potential to forecast 

streamflow dynamics. [10] study investigates the marginal 

advantage of a different methods using initial hydrologic 

conditions (IHC), focusing on seasonal water supply 

forecasts (WSF) with case studies on five watersheds 

located in the US Pacific Northwest region. The 

researchers found that climate information can increase 

the reliability of forecasts from IHC, but strict control over 

sample size must be observed to avoid overtrained 

forecast solutions. 

The rise of online platforms has significantly 

impacted water resource management. [11] study 

introduces a serious gaming framework to assist 

stakeholders in the decision-making process for water 

resources scheming and disaster mitigation. The 

framework includes a Multi-Hazard Tournament (MHT) 

and a web-based decision support tool. The framework 

was evaluated in a case study and found to be effective in 

increasing collective understanding and awareness of 

water-related hazards and mitigation strategies. 

The validation of forecasting systems plays a crucial 

role in establishing their credibility. [12] introduced a 

machine learning model that can be used to predict 

drought events in the eastern Mediterranean. The bagging 

algorithm was the most accurate in the training stage, but 

the bagging and random forest algorithms were more 

dynamic in drought capturing. The results of the research 

can help decision-makers with drought mitigation plans. 

Spatial and temporal factors emerge as pivotal 

determinants of forecast accuracy. [13] developed a 

distributed hydro-meteorological forecasting approach to 

provide information at unexplored sites. The system was 

validated with respect to actual road inundations and the 

results are promising. The system could be used to identify 

areas at risk and adopt appropriate safety and rescue 

measures. 

The incorporation of additional variables has emerged 

as a promising avenue. [14] built a method for 

disaggregating daily rainfall observations into hourly 

rainfall. The method was applied in Singapore and was 

found to produce intensity–duration–frequency curves 

with significantly improved accuracy. 

One contemporary example of a forecast system 

model is presented by [15]. By employing a cross-

disciplinary collaboration between life scientists and 

expert users of Earth system models will greatly enhance 

the likelihood of developing robust evidence to address 

climate change challenges. This will make caveats more 

explicit and place decisions regarding potential tradeoffs 

in the hands of the user. 

Another notable example of how the use of big data 

and machine learning technologies has the potential to 

impact many facets of environmental and water 

management comes from the following research by [16]. 

They found that big data and machine learning have the 

potential and benefits to enable data-driven research in 

environmental and water management, provide an 
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overview of key concepts and approaches in big data and 

machine learning, and discuss key issues and challenges. 

Table 1 provides a summarized overview of key 

findings from various literature reviews concerning 

streamflow forecasting systems, encompassing those 

utilizing regression models and online platforms. The 

compilation underscores that while these state-of-the-art 

methodologies offer valuable insights, they often exhibit 

limitations in terms of accuracy and suitability for specific 

hydrological contexts. 

The significance of our work becomes apparent 

within the context of streamflow forecasting, owing to the 

following attributes: 

• Integrated Approach: Our study adopts an integrated 

methodology, amalgamating multiple techniques to 

enhance accuracy and resilience. 

• Online Accessibility: Implementation through an 

online platform expands accessibility to a diverse user 

base. 

• Real-world Validation: Evaluation using historical 

data from a practical watershed affirms the 

practicality of our approach. 

The outcomes of this endeavor suggest that our 

proposed system holds potential to furnish precise and 

trustworthy streamflow forecasts for an array of 

applications. Its implications extend to refining water 

resource management, mitigating flood disasters, and 

safeguarding lives and assets against inundation risks. 

3 Research methodology 
In this study we used (1) 10 years of precipitation data as 

the source of the database, collected from the Watershed 

Management Office West Java Region, (2) 10 years of 

streamflow data from the Watershed Management Office 

West Java Region to form the basis for streamflow 

forecasting, (3) a 1:50,000 scale map of the Upper 

Cimanuk Sub-basin, obtained from the Cimanuk - 

Table 1: Summary of: Related Works 

Author Results Advantages Disadvantages 

[10] Investigated seasonal water supply 

forecasts in five US Pacific Northwest 

watersheds. Found that climate information 

enhances forecast skill but cautioned 

against over-trained solutions. 

Climate info improves seasonal 

forecasts<br>Insights into 

handling sample size limitations 

Limited to specific 

regions Risk of over-

training 

[11] Introduced a serious gaming framework for 

water resource planning and hazard 

mitigation. Evaluated effectiveness in a 

case study, enhancing awareness and 

understanding of hazards and mitigation 

strategies. 

Engages stakeholders through 

serious gaming<br>Enhances 

collective awareness 

Specific to decision-

making contexts, May 

require technological 

infrastructure 

[12] Introduced a machine learning model for 

drought prediction in the eastern 

Mediterranean. Bagging and random forest 

algorithms were dynamic in drought 

capturing. 

Machine learning for dynamic 

drought prediction<br>Insights 

for mitigation planning 

Focus on drought 

prediction, Algorithm 

complexity 

[13] Developed a distributed hydro-

meteorological forecasting approach to 

identify ungauged sites at risk of road 

inundation. Promising results for safety 

and rescue measures. 

Provides info for ungauged 

sites<br>Identifies at-risk areas 

for inundation 

Specific to road 

inundation, May require 

data infrastructure 

[14] Built a method to disaggregate daily 

rainfall into hourly observations. Applied 

in Singapore, producing improved 

accuracy in intensity–duration–frequency 

curves. 

Improved accuracy in rainfall 

curves<br>Valuable for 

hydrological modeling 

Focus on rainfall 

disaggregation, Regional 

applicability 

[15] Emphasized cross-disciplinary 

collaboration for robust climate change 

evidence. Advocated for informed 

decision-making by users through explicit 

caveats and tradeoff considerations. 

Integrates Earth system models 

and expert users, Enhances user 

decision-making 

Reliant on 

interdisciplinary 

collaboration, Potential 

for complex 

communication 

[16] Highlighted big data and machine 

learning's potential in environmental and 

water management research. Discussed 

concepts, approaches, benefits, and 

challenges. 

Enabling data-driven research, 

Overview of key concepts and 

approaches 

General overview, Lack 

of specific applications 
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Citanduy Watershed Management Board to create 

Thiessen polygons, and (4) Flood and Landslide Reports 

from the Cimanuk - Citanduy Watershed Management 

Board to determine the minimum streamflow required 

during flood events. 

The deliberate selection of the Upper Cimanuk sub-

basin as the focal point of our study is a result of careful 

deliberation guided by multifaceted considerations. 

Acknowledging the sub-basin's proclivity towards flood 

occurrences due to its heterogeneous topography, land use 

patterns, and hydrological attributes, our deliberate choice 

is anchored in the intention to confront the tangible 

challenges entwined with flood management and 

optimization of water resources. This regional spotlight 

provides an impeccable crucible for evaluating the 

efficacy of our integrated streamflow forecasting system 

amidst the complexities and dynamism of the 

environment. 

The Upper Cimanuk sub-basin offers a manifold of 

advantages stemming from its hydrological diversity, 

rendering it an invaluable paradigm for comprehending 

the dynamics of our system's performance across an array 

of terrains and land utilization. Simultaneously, the 

region's susceptibility to floods accentuates the criticality 

of precise streamflow forecasts as a bedrock for potent 

flood disaster mitigation strategies. 

Our methodology involved the comprehensive 

development and evaluation of a monthly streamflow 

forecasting system tailored specifically for the Upper 

Cimanuk sub-basin. At the heart of our Integrated 

Streamflow Forecasting System lies the intricate 

framework of the regression model. Our methodology 

seamlessly integrates a straightforward linear regression 

model, meticulously combining historical rainfall and 

streamflow data gathered from a diverse array of 

monitoring stations scattered throughout the expansive 

Upper Cimanuk sub-basin. This particular model is 

thoughtfully crafted to illuminate the complex interplay 

between rainfall patterns and the resulting streamflow 

rates unique to this region. 

To establish the relationship between rainfall and flow 

data, we incorporated a simple linear regression model 

into our system design process. This model helps to 

understand and describe the relationship between rainfall 

and river flow dynamics. To make things easy and 

accessible for users, we've developed this application 

using web-based technology. This lets you connect to the 

system from anywhere by simply using the internet. 

To ensure the system is functioning accurately, we 

execute manual computations employing the area velocity 

technique as a standard for precision in forecasting the 

river's flow. The velocity-area approach is a customary 

means of approximating the velocity of the river's current 

by gauging the dimensions of the river's cross-section and 

determining the speed of the water at various locations. 

We subdivided the length of the river into ten segments 

and gauged the swiftness of the water at particular depths 

(at 20% of the complete depth and at 80% of the entire 

depth) [17]. This technique depends on the principles of 

fluid dynamics to provide us with an estimate of the speed 

at which the fluid is traveling. 

The velocity-area approach is a frequently employed 

and comparatively straightforward method to employ. 

Nevertheless, its precision can be affected by numerous 

factors such as disparities in flow velocity at distinct 

segments of the river, turbulence, and errors committed by 

individuals. To guarantee the tool functions correctly in 

measuring river flow, we perform a form of testing known 

as black box testing. This approach aids us in verifying 

that every facet of the tool operates precisely and in 

accordance with user requirements [18]. We employ black 

box testing to assess: user registration pages, sign-in 

pages, user-submitted flow forecast pages, and flow 

prediction pages. 

Application of the approach entails statistical 

analysis, software development, and system assessment 

through juxtaposition with manual computations, field 

inspection tasks, and black box testing. The objective is to 

furnish a user-friendly monthly river flow prediction 

system for planning and development endeavors in the 

Cimanuk Hulu sub-basin. 

3.1 Data collection 

In this study, we utilized a quantitative research method. 

By obtaining secondary data from the Cimanuk - Citanduy 

Watershed Management Board, the Upper Cimanuk Sub 

Basin map, and a Flood and Landslide Report, which 

includes 10 years of rainfall data and water flow data. 

3.2 Determination of simple linear 

regression equation 

The coefficient of determination of a simple linear 

regression equation is used to study the relationship 

between two variables, the independent variable (X) and 

the dependent variable (y). This allows researchers to 

develop a linear mathematical model to predict the value 

of the dependent variable, Y, based on the value of the 

independent variable, X [8], [19]. 

We are using rainfall as the independent variable (X), 

while flow is representing the dependent variable (Y). We  

develop the model to investigate the relationship between 

rainfall and runoff and predict runoff [20]. 

The steps to determine the simple linear regression 

equation include: 

1. Obtaining precipitation (X) and streamflow (y) data 

from relevant sources, such as the West Java 

Provincial Watershed Management Office. 

2. Calculating mean values for the independent variable 

(X) and dependent variable (y). 

3. Measuring the correlation coefficient (R) between the 

independent variable (X) and dependent variable (y) 

to determine the strength of the linear relationship 

between the two variables. 

 
We calculate regression coefficients (a and b) using a 

predetermined formula. Coefficient a is a constant, while 

coefficient b is the slope of the regression line [19]. 
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a = R(
σ𝑦

σ𝑥
) 

b = R(
σ𝑥

σ𝑦
) 

 

We can construct a simple linear regression equation 

with the calculated regression coefficients (a and b) in the 

form of: 

  

y = a + bX 

 

By evaluating the fit of the regression model, we can 

calculate the coefficient of determination (R2). The value 

of R2 ranges from 0 to 1, where a higher value indicates a 

better model in explaining the variation in the data. After 

forming the simple linear regression equation, we validate 

and interpret the resulting model. We will use the 

formulated regression model to forecast streamflow based 

on observed precipitation and aid in water resources 

planning and management in the Upper Cimanuk sub-

basin region. 

3.3 Determining the thiessen polygon value 

We use the Polygon Thiessen technique in spatial analysis 

to estimate variables in a region based on values observed 

at specific measurement points [21]. In this research, we 

employ Thiessen polygons to ascertain the scope of the 

Upper Cimanuk sub-basin by considering the location of 

weather stations in the region. 

We split the Cimanuk Hulu sub-basin into sections 

based on the position of the weather stations using ArcGIS 

software. This process entails developing Thiessen 

polygons, where each weather station point becomes the 

nucleus of the polygon. Every Thiessen polygon 

represents a region nearest to its core weather station. 

After Thiessen polygons are generated, we calculate 

each polygon area to determine the monthly precipitation 

at the closest weather station to the streamflow station 

[13]. As a result, past data from weather stations can be 

used to estimate precipitation and flow at different points 

in the Upper Cimanuk catchment area. 

The Thiessen polygon method is critical for regional 

water resource management, strategy development and 

decision making, as it provides accurate precipitation and 

runoff information on the sub-basin distribution [21], [22]. 

3.4 Overview of system design  

The main system architecture objective is to enable people 

in the Upper Cimanuk sub-basin to evaluate rainfall and 

streamflow data for flood forecasting and management 

purposes. Users must either log in (if they already have an 

account) or register (if they do not) to access the database. 

By visiting the database page, users can search for data 

and observe how it has changed over time. They can also 

calculate streamflow by selecting that option from the 

streamflow calculation menu, which aids in planning and 

determining flood management and water resource 

administration in the region. 

Users can access the streamflow calculation menu 

page without logging in. This page offers a tool that 

calculates streamflow based on user-provided inputs, such 

as precipitation and station information, and generates 

estimated streamflow to assist in planning and decision-

making. Figure 1 displays the system's site map. 

Therefore, the system provides easy and quick access 

to relevant precipitation and streamflow information and a 

 

 
Figure 1: Site map of streamflow forecast system 

 

 
(a) 

(b) 

Figure 2: (a) Data context diagram (b) Data flow 

diagram of streamflow forecast system 
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useful streamflow calculation tool for users like students, 

lecturers, researchers, and practitioners in the field of 

water resources management. 

4 Proposed system 
The system forecasts streamflow, particularly in the Upper 

Cimanuk sub-basin. Users can access the database only 

after logging in. As for streamflow forecasting, users do 

not need to log in. The user's experience with the system 

starts with the Data Context Diagram (DCD), shown in 

Figure 2a. The DCD visually represents the framework 

and primary components of the monthly streamflow 

forecasting system. It shows the interaction between users 

and the system, as well as the underlying processes that 

occur when the system processes user input [23]. The 

DCD helps describe the flow of information and 

interactions between the user and the system, and provides 

an overview of how the monthly streamflow forecasting 

system works.  

Figure 2b shows the Data Flow Diagram (DFD) of the 

system development. The DFD models the flow of data 

through a system or process, as well as how the data is 

processed and stored. The DFD is more detailed than the 

DCD in describing the system flow process. In the 

monthly streamflow forecasting system, users must log in 

to access the database. The system matches the username 

and password entered by the user with the registered data 

in the user database. A successful login provides users 

with streamflow and precipitation data according to the 

desired annual data of the selected station. The DFD helps 

acknowledge how data flows through the system and how 

the system produces the desired output. It also makes it 

easy to point out and enhance the processes that occur in 

the monthly streamflow forecasting system [24].  

 
Figure 3: Home page of online streamflow forecast system 

 
Figure 4: Entity relationship diagram of streamflow forecast system 
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The Entity Relationship Diagram (ERD) defines the 

data structure and system entities relationships. The ERD 

helps identify the main entities and their interaction with 

each other [25]. Figure 4 illustrates the relationship 

between user, precipitation, and streamflow entities; its 

interpretation is as follows (1) After successful login, 

users have access to precipitation data and streamflow 

data, (2) Precipitation and streamflow data are used in the 

calculation process of streamflow forecasting. The ERD 

model makes it easier to explain the data structure and 

relationships between entities in the monthly streamflow 

forecasting system. With ERD, system developers can 

design and optimize the system's data structure more 

efficiently. 

5 Results and discussion 
An online web application is the monthly streamflow 

forecasting system. Users can use Internet-connected 

desktops, laptops, tablets, and smartphones to access the 

system. Users can access the system anytime and 

anywhere as needed. When first accessing the system, 

users will see a home view that contains general 

information about the monthly streamflow forecasting 

system. Figure 3 illustrates the home view. To access the 

features in the system, users must log in by entering their 

registered username and password. If the user does not 

have an account, they can register through the join menu 

available on the login page. The upper center of the web 

application will show log on username signifying that they 

have successfully entered the system and can use its 

features as shown in Figure 5.  

Users can access precipitation and streamflow 

database menus through the monthly streamflow 

forecasting system after logging in successfully as shown 

in Figure 6. Users will see the feature menu located in the 

upper center corner of the system page. Users will have 

access to precipitation data, streamflow data, and 

streamflow calculations. This menu provides access to 

precipitation data based on weather stations in the Upper 

Cimanuk sub-basin and the selected year. By selecting 

from the menu in the middle, users can also access the 

streamflow database. Streamflow menu has the same 

presentation as the precipitation database, including the 

choice of annual streamflow station data. 

 When users search for the desired data, they will get 

a tabular perspective of precipitation data from the annual 

elected weather station data as shown in Figure 7. In 

addition, users will also see a small map showing the area 

of the weather station. With this online monthly 

streamflow forecasting system, users can easily access 

information on precipitation and streamflow in the Upper 

Cimanuk sub-basin for analysis, planning, and 

development purposes in various related fields.  

5.1 System evaluation 

We assess the monthly streamflow forecasting system by 

comparing its calculation results with manual calculations. 

The results obtained are in accordance with the manual 

method, indicating that the system works accurately. The 

system conducts the calculation process from user input. 

The user inputs precipitation and streamflow data twelve 

times, representing monthly data, and then compares the 

data with manual calculations. After the user inputs the 

data, the system displays the final calculation table used to 

determine the regression equation, correlation coefficient 

(R), and coefficient of determination (R2). The system 

provides a limit of two decimal digits to facilitate data 

reading by the user. 

Comparison results show that the R, R2, and 

regression equation values obtained from both methods 

are quite close, indicating that the system is accurate. The 

system displays streamflow forecasting based on previous 

calculations by substituting precipitation values into the 

regression equation. However, the system has the 

disadvantage of not being able to provide 

recommendations for users in preventing flood hazards. 

The system can only display monthly streamflow 

forecasting based on precipitation values that will occur. 

 
Figure 5: Dashboard of online streamflow forecast system as seen by registered user 
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 The system calculates the streamflow forecasting 

result for each unique streamflow station. We perform 

ground check operations to verify that the predicted 

streamflow values are consistent with the measured values 

in the field. These ground check activities serve to verify 

the accuracy of the data and ensure consistency between 

the data analysis results and the real-world conditions in 

the field. 

 We used the current meter to gauge the speed of the 

river's flow while measuring the streamflow using the 

velocity-region technique. As part of the ground check 

procedures, we take streamflow field measurements to 

utilize the velocity-region technique. For this study, we 

estimated the average velocity of the river by taking 

readings at two depths (0.2d and 0.8d) from the total 

depth. We determined the surface region of each segment 

by looking at whether the segment was triangular or 

trapezium shaped. Using the below formula, we 

determined the streamflow at each individual segment: 

 

Q = A * V  

(streamflow = surface region * flow velocity) 

 

and then summed the value of each segment to obtain the 

total streamflow. By comparing the forecasted streamflow 

values of the system with the measured values, we can 

gain insights into the validation of our streamflow 

forecasting results. Table 2 presents a comprehensive 

comparison between field-measured streamflow values 

and the forecasted streamflow values produced by our 

system. The results affirm that our system offers relatively 

accurate forecasting outcomes, yet disparities exist 

between the forecasted and observed results. 

 

Table 2: Comparison of measurement results at several 

weather station 

Location Qground (m3/s) Qforecast (m3/s) 

Bayongbong 2.46 3.37 

Bojongloa 3.01 4.49 

Cibatu 4.14 11.96 

Leuwidaun 5.29 19.79 

Leuwigoong 4.85 12.26 

 

Analyzing the data in Table 2, we observe distinct 

variations among different weather stations. For instance, 

at the Bayongbong streamflow station, the observed 

streamflow (Q) value is recorded as 2.46 m3/s, while the 

corresponding estimated Q value is 3.37 m3/s, indicating 

a slight difference between the two. Conversely, at the 

Leuwidaun streamflow station, the observed Q value is 

5.29 m3/s, significantly deviating from the estimated Q 

value of 19.79 m3/s, marking the largest discrepancy in 

this comparison. 

The observed discrepancies can be attributed to a 

variety of factors. One significant factor is the absence of 

certain data points used in our study. Additionally, other 

variables that were not included in the regression process 

for streamflow forecasting, such as precipitation intensity, 

duration of precipitation time, and basin shape and size, 

play a role in these differences. These unaccounted 

variables can influence the accuracy of our calculations, 

leading to discrepancies between forecasted and measured 

streamflow values. 

This underscores the importance of considering a 

broader spectrum of variables that impact streamflow. By 

incorporating these additional variables into our 

forecasting model, we can enhance the accuracy of our 

streamflow predictions. As part of further research, we 

recommend the collection of supplementary data and a 

comprehensive analysis to refine the accuracy of our 

streamflow forecasting system. Incorporating these 

relevant variables will bring our forecasting results closer 

to real-world field conditions, ultimately providing more 

precise and valuable insights for a range of analytical, 

planning, and developmental applications in related 

domains. 

s

 
Figure 6: Rainfall database of online streamflow forecast system as seen by registered user 
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From Figure 8, a high value of 0.91 for R² shows that 

the forecasting results in this study have high accuracy and 

are close to the original data value, because an R² value 

close to one indicates that the regression model used can 

explain the data variation. Based on the comparison 

between the value of the system forecasting calculation 

and field measurements, we conclude that the system 

produces good forecasts. Although differences exist 

between the forecasted results and the field measurements, 

the system can produce streamflow estimates that are 

useful in the context of this study. 

The limitations and challenges of the system include 

the absence of data used in the study and other variables 

not included in the regression process of streamflow 

forecasting, such as precipitation intensity, duration of 

precipitation time, basin shape and size, among others. 

Researchers can collect additional data and conduct a 

more comprehensive analysis to enhance the accuracy of 

the streamflow forecasting system, as well as incorporate 

additional relevant variables in the forecasting model. 

Additionally, regular updates of the system with new data 

can help improve its accuracy over time. Integrating the 

current system with other tools or systems is possible to 

provide additional, more comprehensive information and 

recommendations for flood hazard prevention and water 

resource management. 

5.2 Black box testing 

Black box testing on this monthly streamflow forecasting 

system aims to check each part of the system's functions 

to see if they run well or not. This test includes: 

• User register page: If a user leaves fields blank, the 

system displays an error message, limits character 

filling in the username field, and checks username 

availability, 

• Login page: If a user leaves fields blank or the 

username and password don't match, the system 

displays an error message. The forgotten password 

and unregistered functions also work well, 

• Flow-rate forecasting page from the user: The 

calculate flow rate button works well. The system 

displays a warning if there are empty fields or input 

other than numbers. If everything checks out, the 

system previews a monthly forecast of streamflow. 

• Flow rate forecasting page from the database: All 

buttons work properly, including the streamflow 

station select box and the beginning and ending year 

select boxes. The final year select box adjusts to the 

selected initial year select box, facilitating user 

selection and preventing errors. 

With this black box test, the monthly streamflow 

forecasting system successfully ensures that all functions 

run properly and in accordance with user needs. 

5.3 Discussion 

In the realm of integrated streamflow forecasting systems, 

our study embarks on an expansive discourse, intricately 

juxtaposing our freshly conceived forecasting system with 

the landscape outlined in Table 2. This illuminating 

comparative analysis serves as a prism, elucidating 

profound insights into the diverse echelons of forecast 

accuracy achieved through various methodologies. Most 

notably, it unveils the distinctive advantages harnessed 

from the harmonious amalgamation of a regression model 

with historical rainfall and streamflow data. 

Our crafted monthly streamflow forecasting system, a 

testament to our study's rigor, proudly bears the emblem 

of precision, conspicuously manifested by the substantial 

R² value of 0.91 underscored in Figure 8. This robust 

correlation serves as an unequivocal testament to the 

prowess of our regression model, proficiently dissecting 

and explicating a significant fraction of the data variance. 

The upshot is an assemblage of forecasts that 

harmoniously converge with authentic streamflow values. 

Though discernible disparities linger between our 

 
Figure 7: Weather station location and streamflow database as seen by registered user 
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foreseen outcomes and the tangible field observations, the 

prognostications furnished by our system remain germane 

within the contextual contours of our study's purview. 

In juxtaposition to antecedent inquiries, our study 

discerns its stronghold through a nuanced interplay of 

advantages. Within the annals of streamflow prediction, 

the focus on regression models, as evidenced by the 

endeavors of [10], has unfurled a promising tapestry of 

potential. Noteworthy is their aptitude in illuminating the 

dynamics of streamflow, as proven by their ability to 

forecast with precision. Our comparative analysis with 

this lineage underscores a pivotal divergence, attributed to 

the infusion of a regression model with historical rainfall 

and streamflow data. This synergy of variables serves as 

our study's fulcrum, endowing our system with an elevated 

plane of accuracy and efficacy. 

Moreover, the rise of online platforms, as propounded 

by [11], has ushered an epoch of transformation in water 

resource management. Our innovative solution further 

amplifies this transformative spirit by seamlessly 

integrating an online platform. This dynamic interplay 

empowers stakeholders, offering not only forecasting 

insights but also interactive tools for decision-making. By 

enhancing collective awareness and understanding of 

water-related hazards and mitigation strategies, our 

system underscores a pivotal shift in the approach to 

resource management, surpassing mere prediction and 

ushering in the era of informed, preemptive action. 

Validation, a cornerstone of credibility, as 

emphasized by [12], forms a fundamental tenet of our 

approach. We champion this by grounding our system in 

meticulous validation processes, ensuring its robustness 

and reliability. Furthering the thread of augmentation, 

spatial and temporal factors, as underscored by [13], etch 

their influence onto our methodology. The systematic 

inclusion of these factors enriches the predictive prowess 

of our system, enabling us to identify at-risk areas and 

extend timely safety measures, thereby fostering a 

paradigm of proactive risk mitigation. 

Incorporating additional variables, as exemplified by 

[14], kindles a beacon of promise. Our study inherently 

heeds this call by embracing historical rainfall and 

streamflow data as pivotal components in our predictive 

framework. This infusion enhances our accuracy, aligning 

our forecasts more closely with real-world dynamics. 

Moreover, the fusion of cross-disciplinary collaboration 

and the insights of expert users, as illuminated by [15], 

epitomizes our journey. We seamlessly weave life 

sciences and Earth system models, fusing empirical 

evidence with expert intuition. By doing so, we endow 

decision-makers with a holistic and nuanced 

understanding, empowering them to navigate complex 

climate change challenges with clarity and astuteness. 

Yet another facet, resonating with [16], unearths the 

transformative potential of big data and machine learning 

technologies. Our system, founded upon these very 

principles, encapsulates the transformative spirit of data-

driven environmental management. In doing so, we bridge 

the gap between theoretical concepts and practical 

application, rendering our solution not merely a scholarly 

endeavor but a dynamic instrument to revolutionize the 

very landscape of water resource management. 

In synthesis, our study's discourse within the domain 

of integrated streamflow forecasting unfolds as a 

testament to the fusion of innovation, validation, and 

cross-disciplinary insights. By synergizing the potency of 

regression models with historical data, augmenting our 

platform with dynamic online tools, and embracing the 

nuances of spatial, temporal, and additional variables, our 

approach stands as a beacon of advancement. It is an 

embodiment of the metamorphosis in water resource 

management, forging an informed and empowered future, 

where foresight marries action to harmoniously navigate 

the dynamic tapestry of our hydrological world. 

 
Figure 8: Comparison of measurement results between field measurements and system 

measurements 
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The novelty of our integrated streamflow forecasting 

system, which transcends its technical intricacies, lies in 

its profound impact within the domains of flood 

management and water resource optimization. A hallmark 

of our solution is the seamless integration of an online 

platform, endowing users with real-time interactive 

capabilities for data input and visualization. This aspect 

significantly amplifies the pragmatic utility and versatility 

of our forecasting system. 

Central to the efficacy of the online platform is its 

ability to provide facile access to monthly streamflow and 

precipitation data. This resource-rich accessibility 

empowers decision-makers to make well-informed 

choices concerning water resource development within 

the Upper Cimanuk sub-basin. Furthermore, our platform 

serves as a conduit for timely initiation of proactive flood 

disaster mitigation strategies, including early warning 

systems and evacuation plans, all rooted in accurate and 

promptly delivered information. 

Beyond its applications in flood management, our 

forecasting system bears relevance to diverse sectors 

encompassing agriculture, irrigation, and hydropower. By 

delivering precise streamflow predictions, it optimizes 

irrigation scheduling, enabling farmers to maximize crop 

yields while conserving water resources.  

The harmonization of an online platform with our 

regression model engenders a synergy, positioning our 

integrated streamflow forecasting system as an instrument 

in the realm of smart flood management. The intuitive user 

interface augments the accessibility and usability of our 

findings, rendering our approach highly pertinent in the 

context of contemporary water resource management 

practices. 

6 Conclusion 
The monthly streamflow forecasting system generates 

proportionate precise forecasting results that resemble 

values of original data. This is evident from the 100% 

coefficient of determination (R²) value, which indicates 

that the regression model can adequately explain the 

differences in the data. Nevertheless, there is potential to 

develop and improve the accuracy and precision of 

forecasting. There may be discrepancies between 

predicted and measured results due to lack of data and the 

exclusion of other variables from the streamflow 

regression prediction process. These include the intensity 

and duration of precipitation, also the shape and size of the 

catchment area. 

To improve the quality of the system's predictions, we 

recommend adding more variables affecting flow and 

collecting more data. Extensive field data validation can 

also optimize the performance of the forecasting system. 

The developed monthly flow forecasting system can be 

considered as a valuable tool in the decision making 

process through flow analysis and forecasting in water 

resource management and flood prevention. 

We highlight several limitations and challenges 

associated with the developed system. Firstly, the system 

accuracy is affected by the exclusion of other variables, 

such as rainfall intensity, rainfall duration, basin shape and 

size, etc. Next, the system only displays monthly 

streamflow forecasts based on past rainfall, and does not 

provide recommendations or next steps to prevent flood 

hazards. 

To address these limitations and challenges, we 

propose multiple methods for improving the performance 

of the system. Initially, researchers can collect additional 

data, conduct a more thorough analysis, and incorporate 

additional relevant variables into the forecasting model. 

This can enhance the accuracy and precision of the 

forecasting. Second, improved system capabilities can 

provide users with recommendations for the next steps to 

prevent flood hazards. For instance, the system can 

recommend flood prevention measures based on the 

anticipated streamflow values. Thirdly, we are conducting 

field data validation to optimize system performance. This 

will help confirm the forecasting accuracy and provide 

valuable selective data for examination, strategy 

development, and the enhancement of related fields. 

7 Implications and future work 
Our integrated streamflow forecasting system holds 

significant potential for various real-world water resource 

management scenarios. By focusing on the Upper 

Cimanuk sub-basin, a region characterized by 

heterogeneous topography and hydrological attributes 

prone to flooding, our system directly confronts the 

challenges inherent in flood management and water 

resource optimization. This region serves as a testing 

ground for evaluating the system's efficacy within the 

complexities of its environment, making it an ideal 

crucible for assessing performance across diverse terrains 

and land use patterns. Moreover, the sub-basin's 

susceptibility to floods accentuates the critical role of 

precise streamflow forecasts in underpinning effective 

flood disaster mitigation strategies. 

The intricacies of our methodology revolve around 

the development and evaluation of a bespoke monthly 

streamflow forecasting system tailored to the Upper 

Cimanuk sub-basin. Central to this system is a 

sophisticated regression model that seamlessly blends 

historical rainfall and streamflow data gleaned from an 

extensive network of monitoring stations across the sub-

basin. This model artfully elucidates the intricate interplay 

between regional rainfall patterns and the resulting 

streamflow dynamics. 

Our methodology deliberately incorporates a 

straightforward linear regression model to establish a 

coherent link between rainfall and streamflow data. This 

model serves to illuminate the complex relationships 

underpinning these variables. At the same time, we ensure 

seamless access and engagement through our user-centric 

web application. This platform allows users to interact 

with our forecasting system from any internet-connected 

device, making forecasting easy and convenient to use. 

7.1 Challenges and limitations 

It is important to recognise the potential challenges of real-

world implementation, although our system offers 
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promising results. Missing data points and unaccounted 

for variables such as rainfall intensity, rainfall duration, or 

basin shape and size can affect the accuracy of the 

calculations. These factors contribute to the difference 

between the predicted value and the manual measurement 

value. In addition, although widely used, the velocity-area 

method is difficult to detect the dynamics of flow 

variations when extreme events or irregular river shapes 

occur. 

Other important considerations include scalability, 

performance and data availability. Forecast accuracy and 

real-time data acquisition become critical as systems scale 

to larger areas. To guarantee forecast accuracy, it is 

important to have consistent and reliable data sources. 

7.2 Areas of improvement 

We suggest several alternatives to improve system 

accuracy. Incorporating additional variables such as 

rainfall intensity, duration and watershed characteristics, 

can improve forecast accuracy and minimize gaps 

between predictions and observations. In addition, 

exploring the integration of machine learning and artificial 

intelligence techniques could be a promising technology 

for enhancing predictive capabilities. The system can 

provide more dynamic and accurate predictions, 

especially for extreme events, by training machine 

learning models on large data sets. 
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