
https://doi.org/10.31449/inf.v48i4.4801 Informatica 48 (2024) 513–520 513

Online Bin Covering With Exact Parameter Advice
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We show an asymptotic 2/3-competitive strategy for the bin covering problem using O(b + logn) bits of
advice, where b is the number of bits used to encode a rational value and n is the length of the input se-
quence.

Povzetek: Raziskana je asimptotična 2/3-konkurentna strategija za problem pokrivanja binov, ki uporablja
O(b + log n) bitov svetovanja, kjer je b število bitov za kodiranje racionalne vrednosti, n pa dolžina vhod-
nega zaporedja. Pristop temelji na izboljšavi strategije Dual Harmonic (DHk) s svetovanjem.

1 Introduction
In the bin covering problem, we are given a set of items
of different sizes in the open range ]0, 1[ and the goal is
to find a maximum number of covered bins where a bin
is covered if the sizes of items placed in it is at least 1.
It has been shown that the bin covering problem is NP-
hard [1, 2]. The covering problem has applications in var-
ious situations in business and in industry, from packing
snack pieces into boxes so that each box contains at least its
defined net weight, to such complex problems as redistri-
bution tasks/items to a maximum number of factories/bins,
all working at or beyond the minimal feasible level.
In the online version, items are delivered successively

(one-by-one) and each item has to be packed, either in an
existing bin or a new bin, before the next item arrives. The
quality of online strategies is measured by their competitive
ratio, the minimum ratio between the quality of the strat-
egy’s solution and that of an optimal one. The first known
online strategy that has been proposed for the problem is
Dual Next Fit (DNF), analogous to Next Fit for the bin
packing problem. The competitive ratio of DNF is 1/2 as
proved by Assmann et al. [1]. Csirik and Totik [9] prove
that no online algorithm can achieve a competitive ratio
better than 1/2. Additional lower bounds are provided by
Balogh et al. [3].
The pure online framework is very restrictive in that it

allows an all-powerful adversary to construct the input se-
quence in the worst possible way for the strategy making a
competitive ratio better than 1/2 unattainable.
Boyar et al. [5] look at bin covering using extra advice. If

the input sequence consists of n items, they show that with
o(log logn) bits of advice, no strategy can have better com-
petitive ratio than 1/2. In addition, they show that a linear
number of bits of advice is necessary to achieve competitive
ratio greater than 15/16. Their main result is a strategy with

O(log logn) bits of advice having competitive ratio 8/15.
In order to provide exact advice values, e.g., an inte-

ger bounded by the number n, Ω(logn) advice bits are
required. As the strategy presented by Boyar et al. only
provides approximate values of certain key parameters to
achieve the 8/15 competitive ratio, one can therefore ask if
the competitive ratio can be improved if the oracle can give
exact parameter values as advice. We answer this question
affirmatively.

1.1 Our result
We show an asymptotic 2/3-competitive strategy for the
bin covering problem using O(b + logn) advice, where b
is the number of bits used to encode a rational value in the
input sequence and n is the length of the input sequence.

2 Preliminaries
The online bin covering problem we consider is, given an
input sequence σ = (v1, v2, . . .), of rational values vi ∈
]0, 1[, find the maximum number of unit sized bins that can
be covered online with items from the input sequence σ.
We define the load of a bin B to be

ld(B)
def
=

∑
v∈B

v. (1)

We can similarly define the load of a sequence σ to be
ld(σ) def

=
∑

v∈σ v.
A covering is a partitioning of the items into bins

B1, B2, . . . such that for each bin Bj

ld(Bj) ≥ 1 (2)

and our objective is to find the maximum number of bins
that satisfy Inequality (2). In contrast to the bin packing
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problem, a strategy can open any number of bins at any
time. However, only those that are filled to a load of at
least 1 are counted in the solution.
We measure the quality of an online maximization strat-

egy by its competitive ratio, the maximum bound R such
that ∣∣A(σ)∣∣ ≥ R ·

∣∣OPT(σ)
∣∣− C, (3)

for every possible input sequence σ, whereA(σ) is the solu-
tion produced by the strategy A on σ, OPT(σ) is a solution
on σ for which |OPT(σ)| is maximal, and C is some con-
stant. If C = 0, we say that the competitive ratio is strict
or absolute, otherwise it is asymptotic. The competitive ra-
tio R is thus a positive real value ≤ 1, where equality to 1
implies that the strategy is (asymptotically) optimal.
Of particular interest is the Dual Next Fit strategy (DNF).

DNF maintains one active bin B, and packs the items into
B until it is covered. It then opens a new empty bin as
the active bin and continues the process. As mentioned,
Assmann et al. [1] prove thatDNF has a competitive ratio of
1/2 and Csirik and Totik [9] prove that no online algorithm
can achieve a competitive ratio larger than 1/2.
If the input sequence has some further structure, we can

do slightly better as is shown in the next lemma that we will
make extensive use of in the sequel.

Lemma 1 The online strategy DNF for the bin covering
problem on an input sequence σα where the items have
weights bounded by α < 1 has cost∣∣DNF(σα)

∣∣ > 1

1 + α

∣∣OPT(σα)
∣∣− 1

1 + α
.

Proof: Assume that DNF opens s+1 bins when accessing
the sequence σα, s of which are covered. Since every item
has weight at most α, it means that each of the s covered
bins are filled to a total weight of less than 1+α. A bin not
obeying this limit would have been covered already before
DNF places the last item in it, a contradiction. Thus the
total load of the sequence σα is

(1 + α)s+ 1 > ld(σα) ≥
⌊
ld(σα)

⌋
≥

∣∣OPT(σα)
∣∣,

whereby |DNF(σα)| = s > |OPT(σα)|/(1+α)−1/(1+α)
as claimed. 2

Another strategy of interest is Dual Harmonic (DHk),
where the strategy subdivides the items by sizes into k
groups,

]0, 1/k[, [1/k, 1/(k − 1)[, . . . , [1/3, 1/2[, [1/2, 1[,

and packs items in each group, maintaining k groups, ac-
cording to DNF. Evidently, DHk is at best 1/2-competitive
using the same argument as in Csirik and Totik [9].
In certain situations, the complete lack of information

about future input is too restrictive. In a sense, the on-
line strategy plays a game against an all-powerful adversary
who can construct the input sequence in the worst possible
manner. To alleviate the adversary’s advantage, we con-
sider the following advice-on-tape model [7]. An oracle

has knowledge about both the strategy and the full input se-
quence from the adversary, it writes information encoded
in binary on an advice tape of unbounded length. The strat-
egy can read bits from the advice tape at any time, before
or while the requests are released by the adversary. The
advice complexity is the number of bits read from the ad-
vice tape by the strategy. Since the length of the advice bit
string is not explicitly given, the oracle is unable to encode
information into the length of the string, thereby requiring
some mechanism to infer howmany bits of advice the strat-
egy should read at each step. This can be done with a self-
delimiting encoding that extends the length of the bit string
only by an additive lower order term [6].
A bit string s is encoded as e(s) = u(s) ◦ b(s) ◦ s (◦

denotes concatenation), where b(s) is a binary encoding of
the length of the string s and u(s) consists of

∣∣b(s)∣∣ ones
followed by a single zero, thus indicating how many bits
the strategy needs to read in order to obtain the length of
the string s. The encoding has length at most |e(s)| =
|s|+2⌈log(|s|+1)⌉+1. We henceforth assume that all ad-
vice information is encoded in this way. An integer m can
thus be encoded exactly using O(logm) bits and a rational
value me/md, where me and md are integers can be en-
coded using O(logme + logmd) bits. If the rational value
lies in the interval [0, 1], then me ≤ md and the encoding
can be made using O(logmd) bits.
We will base our strategy on DHk with added advice to

improve on the competitive ratio, as do Boyar et al. [5].

3 Exact advice-based strategies for
bin covering

Each item v in the input sequence corresponds to a rational
value 0 < v < 1, since any v above or equal to 1 will cover
a bin and then the optimal solution can be assumed to place
v alone in a bin to cover it. Also, values of size 0 could be
placed in the first covered bin without loss of generality.
Fix an integer k ≥ 2. We will subdivide the set of items

into k subsets, such that 1/t ≤ v < 1/(t − 1) for each
integer 2 ≤ t ≤ k, the t-items, and items v < 1/k, the
small items.
Consider a fixed optimal covering OPT(σ) for the in-

put sequence σ. We can partition the solution OPT(σ) into
groups, Gt1t2···tj , where the index t1t2 · · · tj , with 2 ≤ t1 ≤
t2 ≤ · · · ≤ tj ≤ k, denotes that each bin in group Gt1t2···tj
contains one t1-item, one t2-item, etc, multiplicity denot-
ing the number of times each item type occurs in the bin.
The group of bins that are only covered by small items is
denoted by GS .
We say that a bin in group Gt1t2···tj is easy, if∑
t∈{t1,t2,...,tj} 1/t ≥ 1 and we can assume without loss

of generality that easy bins contain no small items. Fur-
thermore, we assume that, if the bins in Gt1t2···tj are easy,
then any bin group Gt1t2···tj+l

is empty, if t1t2 · · · tj is a
prefix of t1t2 · · · tj+l, as any tj+i-item, 1 ≤ i ≤ l, in a bin
B in Gt1t2···tj+l

can be moved to other bins while B is still
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covered. As an example, G22 are those bins that each con-
tain two 2-items, so those bins are easy since two 2-items
together guarantee that the bin is covered and if a bin in
an optimal solution contains two 2-items, we assume that it
does not contain any other items. As we noted, such items
can be moved to other non-easy bins.
The non-easy bins may contain small items. Consider a

bin in G23, if k ≥ 3. It contains one 2-item and one 3-item.
If the 2-item is 0.62 and the 3-item is 0.41, then the items
cover the bin but this is not necessarily guaranteed since, if
the two items are 0.55 and 0.35, there must be small items
in the bin for it to be covered.
We also say that a bin in Gt1t2···tj is a gap bin, if∑
t∈{t1,t2,...,tj} 1/(t − 1) < 1, as each of these bins

must contain small items to the total amount of more than
1−

∑
t∈{t1,t2,...,tj} 1/(t− 1) to be covered. For example,

the bins in G3 are gap bins since they all have to contain
small items to a total amount of more than 1/2 to be cov-
ered.
The size of the optimal solution is given by

|OPT(σ)| =
∑

∀t1t2···tj

|Gt1t2···tj |+ |GS |, (4)

for all valid index combinations t1t2 · · · tj .
We modify DHk to operate on advice and describe this

strategy, denoted DHb+lgn
k , dependent on the parameter k,

the number of item types used to partition the items into.
The superscript indicates the amount of advice that the strat-
egy admits. Let x1, . . . , xn, n = |σ|, be an ordering of the
items in σ, such that xi ≥ xi+1, for 1 ≤ i < |σ|. The oracle
provides the strategy with an integer m and the value xm

through a self-delimiting encoding as previously described.
The objective of providing the parameters m and xm is

to give the strategy enough information to emulate the con-
struction of the bin group G2 in an optimal solution, inde-
pendently of the ordering in which items of the input se-
quence occur. The value of m is balanced by the size |G2|,
also designating the number of 2-items packed alone but
together with small items in the bins of G2, and the amount
of small items present in the bins of G2. In the optimal so-
lution, each of these bins could be covered to exactly the
value 1 but any online strategy may have to overfill by an
amount < 1/k.
The oracle, given the knowledge of the input sequence

and the strategy DHb+lgn
k , can determine the best value for

m by emulating DHb+lgn
k on the input sequence, for each

integer 0 ≤ m ≤ |G2|, if it knows an optimal solution. If it
does not, it counts the number of 2-items, n2, in the input
sequence and tries all values between 0 ≤ m ≤ n2 and
reports an m value for which DHb+lgn

k delivers as large a
solution as possible. Since n2 ≥ |G2| the best solution is no
worse than ifm is restricted to be ≤ |G2|. Given a specific
integer m, the oracle can provide the value xm using the
standard selection algorithm [4].
The strategy DHb+lgn

k initially reads the parameters m
and xm and opensm bins that we call critical bins and that
will each be coveredwith one of them largest 2-items of the

input sequence σ together with small items. Initially, each
critical bin is assumed to have a virtual load of xm. When
an item of size ≥ xm is placed in a critical bin, its virtual
load is increased to the actual value of the item. The strat-
egy further opens a t-bin for every item type t ∈ {2, . . . , k},
and a small bin for the small items. As the next item v of
the input sequence arrives, it is handled as follows:
1. if 1/2 ≤ xm ≤ v, place v in the next critical bin that does

not yet contain a 2-item and update the virtual load of the
critical bin. If all critical bins already contain 2-items, go to
the next step,

2. if 1/2 ≤ v < xm or xm ≤ v and all critical bins contain a
2-item, place v in the 2-bin using DNF. If the bin becomes
covered, close it and open a new 2-bin,

3. if 1/k ≤ v < 1/2 is a t-item, place v in the corresponding
t-bin using DNF. If the bin becomes covered, close it and
open a new t-bin,

4. if v < 1/k is small, place v in the next critical bin that does
not contain small items up to a virtual load of at least 1 and
update the virtual load of this critical bin. If all critical bins
are filled up to a virtual load of 1, place v in the small bin
using DNF. If the small bin becomes covered, close it and
open a new small bin.

Consider the following example input sequence

σ =
(
0.25, 0.8, 0.72, 0.2, 0.9, 0.45, 0.51, 0.67, 0.45, 0.6,

0.42, 0.55, 0.53, 0.28, 0.11, 0.15, 0.52, 0.15, 0.51,

0.41, 0.15, 0.35, 0.1, 0.35, 0.3, 0.3, 0.4, 0.18
)
,

taken from [5] and slightly modified. Figure 1 shows the
optimal solution and the DHb+lgn

3 solution on the sequence
σ, for k = 3, given that the oracle provides the valuesm =
2 and xm = 0.8.
We prove the following intermediate result to give the

idea of the analysis for the more extended version in Theo-
rem 2.

Theorem 1 Assume that the strategy DHb+lgn
2 has access

to the exact values of m and xm, then it has asymptotic
competitive ratio∣∣DHb+lgn

2 (σ)
∣∣ ≥ 3

5

∣∣OPT(σ)
∣∣− 19

15
,

for serving any sequence σ of size n.

Proof: Since k = 2, our strategy uses only two item types,
2-items and small items. The optimal solution consist of
three bin groups with |OPT(σ)| = |G22|+ |G2|+ |GS |. Note
that the number of 2-items in σ is exactly

T2 = 2|G22|+ |G2|. (5)

Consider now some arbitrary set of covered bins G,
where each bin only contains small items. Assume that
these bins have a total load of S =

∑
B∈G ld(B) ≥ |G|

and that the input sequence restricted to these small items
is σS . From Lemma 1 we have that∣∣DNF(σS)

∣∣ > 2

3
S − 2

3
≥ 2

3

∣∣G∣∣− 2

3
(6)
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Figure 1: (top) An optimal covering for instance σ with 11 bins. (bottom) A DHb+lgn
3 covering with 9 bins.

We let SS
def
=

∑
B∈GS

ld(B) be the total load of the small
items covering the bins in GS .
Next, we analyze the competitive ratio of the critical bins.

Consider a bin B in G2. It contains precisely one 2-item
having some weight ≥ 1/2. Assume that we have sorted
the bins in G2 in order of decreasing weight of its 2-item,
i.e., we have an ordering of the binsB1, . . . , B|G2| such that
the weight if the 2-item in Bi is wi, 1 ≤ i ≤ |G2| and wi ≥
wi+1 for 1 ≤ i ≤ |G2|−1; see Figure 2. Let ui = ld(Bi)−
wi be the weight of the small items in Bi and let S2 =∑

1≤i≤|G2| ui be the total load of the small items covering
the bins in G2. It is clear that S2 ≥ (|G2|−m)(1−wm) for
arbitrary choice of m ≤ |G2| since Bm+1, . . . , B|G2|, each
contains at least 1− wm amount of small items.
Let Ci, 1 ≤ i ≤ m, be the critical bins opened by our

strategy in the order they are constructed. Let ai ≥ xm ≥
wm denote the weight of the 2-item in Ci, let zi be the
weight of the last small item placed in Ci by our strategy,
and let yi = ld(Ci)−ai−zi be the weight of the remaining
small items in Ci. By construction, yi ≤ 1 − wm for each
1 ≤ i ≤ m; see Figure 2.
Let I2(m) ⊆ {1, . . . ,m} be the set of indices i such

that the last small element (of weight zi) that was placed in
critical bin Ci was placed by the optimal solution in a bin
in G2. Similarly, let IS(m) = {1, . . . ,m} \ I2(m) be the
set of remaining indices. The possible values of m range
between 0 ≤ m ≤ m+ = ⌊(|G2| − |I2(m+)|)/2⌋, where
m+ is the largest integer such that 2m++|I2(m+)| ≤ |G2|,
since the strategy needs to guarantee that it can cover all the
critical bins.
The oracle can ascertain the value m+ by emulating the

strategy over all possible integer values and it reveals the
values m = m+ = ⌊(|G2| − |I2(m+)|)/2⌋ and xm =

xm+ , the size of the mth largest item in the input sequence
σ to the strategy. The strategy constructs m critical bins,
⌊(T2 − m)/2⌋ 2-bins and some bins corresponding to the
amount of unused small items, giving us

∣∣DHb+lgn
2 (σ)

∣∣ > m+

⌊
T2 −m

2

⌋
+

2

3

(
SS + S2

−
( m∑

i=1

yi + zi

))
− 2

3

≥ m+
T2 −m

2
− 1

2
+

2

3

(
SS + S2 −

m∑
i=1

(1− wm)

−
m∑
i=1

zi

)
− 2

3

=
m

2
+

T2

2
+

2

3

(
SS −

∑
i∈IS(m)

zi

)

+
2

3

(
S2 −

m∑
i=1

(1− wm)−
∑

i∈I2(m)

zi

)
︸ ︷︷ ︸

≥0

−7

6

≥ m

2
+

T2

2
+

2

3

(
SS −

∑
i∈IS(m)

zi

)
− 7

6

≥ m

2
+

T2

2
+

3

5

(
SS −

∑
i∈IS(m)

zi

)
− 7

6

>
m

2
+

T2

2
+

3SS

5
− 3|IS(m)|

10
− 7

6

=
m

5
+

T2

2
+

3SS

5
+

3|I2(m)|
10

− 7

6

=
⌊(|G2| − |I2(m)|)/2⌋

5
+

2|G22|+ |G2|
2

+
3SS

5

+
3|I2(m)|

10
− 7

6
≥ |G22|+

3|G2|
5

+
3|GS |
5

− 19

15
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Figure 2: The critical bins and their relationship to the G2-bins in the optimal covering. In the G2-bins, blue are 2-items
and light green are small items. In the critical bins, red represents the last small item placed in the bin, dark green are the
remaining small items, grey items are the 2-items, and dark grey represents the overlap between the virtual and actual load
of the 2-item.

bins, by applying Equality (5) in the last inequality. In ad-
dition, we use that each zi < 1/2, that SS ≥

∑
i∈IS(m) zi,

that critical binCi can be covered by a 2-item of size at least
wm plus the small items from a bin amongBm+1, . . . , B|G2|
and possibly one extra small item from a bin among{
Bm+1, . . . , B|G2|

}
∪GS ; see Figure 2. Furthermore,m =

|I2(m)|+ |IS(m)|, for anym. The competitive ratio is the
smallest coefficient of any of the terms corresponding to bin
groups, since an adversary can ensure that the groups with
larger coefficient contain no bins. This gives a competitive
ratio of 3/5 = 0.6. 2

We have presented the proof for two item types to illustrate
the general idea of the next result. For two item types, the
number of bin groups is three, whereas for four item types,
the number of bin groups increases to 20, but the proof steps
are exactly the same. For completeness we mention that
|DHb+lgn

3 (σ)| ≥ 9|OPT(σ)|/14 − 97/42, where 9/14 ≈
0.64285 . . ..

Lemma 2 Assume that the strategy DHb+lgn
4 has access to

the exact values of m and xm, then it has asymptotic com-
petitive ratio∣∣DHb+lgn

4 (σ)
∣∣ ≥ 2

3

∣∣OPT(σ)
∣∣− 173

60

for serving any sequence σ of size n.

Proof: The number of t-items, for t = 2, 3, and 4, in the
instance is

T2 = |G2|+ 2|G22|+ |G23|+ |G24|+ |G233|+
+ |G234|+ |G244|, (7)

T3 = |G3|+ |G23|+ 2|G33|+ |G34|+ 2|G233|+
+ |G234|+ 3|G333|+ 2|G334|+ |G344|+
+ 2|G3344|,+|G3444|, (8)

T4 = |G4|+ |G24|+ |G34|+ 2|G44|+ |G234|+
+ 2|G244|+ |G334|+ 2|G344|+ 3|G444|+
+ 2|G3344|+ 3|G3444|+ 4|G4444|. (9)

For each non-easy bin group G2, . . . ,G444 (there are eight
of them), let St1···t4 denote the weight of the small items
that the optimum solution packs in the bins of group Gt1···t4 .
In addition, we denote by SS =

∑
B∈GS

ld(B) the total
load of the small items covering the bins in GS .

As in the previous proof, we first consider some arbitrary
set of covered bins G, where each bin only contains small
items. Assume that these bins have a total load of S =∑

B∈G ld(B) ≥ |G| and that the input sequence restricted
to these small items is σS . From Lemma 1 we have that

∣∣DNF(σS)
∣∣ > 4

5
S − 4

5
≥ 4

5

∣∣G∣∣− 4

5
(10)

We can analyze the competitive ratio of the critical bins
exactly as in the previous proof. First consider a decreasing
ordering of the bins B1, . . . , B|G2| in G2 by the weight of
their 2-item, wi. We let ui = ld(Bi)− wi be the weight of
the small items inBi, whereby S2 ≥

(
|G2|−m

)
·
(
1−wm

)
,

for arbitrary choice of m ≤ |G2|. Each critical bin, Ci,
1 ≤ i ≤ m, contains one 2-item of weight ai, a small item
of weight zi that was the last small item placed inCi by our
strategy, and small items to the weight of yi = ld(Ci) −
ai − zi. Again, yi ≤ 1− wm, for each 1 ≤ i ≤ m.
Consider next the gap bins in the optimal solution. These

are the bins in groups G3, G4, G34, and G44. Each bin in these
groups is guaranteed to have small items to the amount of
at least 1/2, 2/3, 1/6, and 1/3, respectively. Thus, for each
of those groups we have S3 ≥ |G3|/2, S4 ≥ 2|G4|/3, S34 ≥
|G34|/6, and S44 ≥ |G44|/3.
For each group of non-easy bins G2, . . . ,G444, let

It1···t4(m) ⊆ {1, . . . ,m} be the set of indices i such that
the last small element (of weight zi) that was placed in
critical bin Ci was placed by the optimal solution in a bin
from bin group Gt1···t4 . Also, let IS(m) =

{
1, . . . ,m

}
\(⋃

t1···t4 ̸∈Easy It1···t4(m)
)
be the set of remaining indices.

As before, the possible values of m range between 0 ≤
m ≤ m+ =

⌊
(|G2| − |I2(m+)|)/2

⌋
, where m+ is the

largest integer such that 2m+ + |I2(m+)| ≤ |G2|, since
the strategy needs to guarantee that it can cover all the crit-
ical bins. The oracle ascertains the maximum integer m+

and reveals the valuesm = m+ =
⌊
(|G2| − |I2(m+)|)/2

⌋
and xm = xm+ , so our strategy constructs m critical bins,⌊
(T2 − m)/2

⌋
2-bins,

⌊
T3/3

⌋
3-bins,

⌊
T4/4

⌋
4-bins, and

bins corresponding to the amount of unused small items,
giving us
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∣∣DHb+lgn
4 (σ)

∣∣ > m+

⌊
T2 −m

2

⌋
+

⌊
T3

3

⌋
+

⌊
T4

4

⌋
+

4

5

(
SS + S2 + S3 + S4 + S34 + S44

−
( m∑

i=1

yi + zi

))
− 4

5

≥ m

2
+

T2

2
+

T3

3
+

T4

4
+

4

5

(
SS −

∑
i∈IS(m)

zi

)

+
4

5

(
S3 −

∑
i∈I3(m)

zi

)
+

4

5

(
S4 −

∑
i∈I4(m)

zi

)

+
4

5

(
S34 −

∑
i∈I34(m)

zi

)
+

4

5

(
S44 −

∑
i∈I44(m)

zi

)

+
4

5

(
S2 −

m∑
i=1

(1− wm)−
∑

i∈I2(m)

zi

)
︸ ︷︷ ︸

≥0

−163

60

≥ m

2
+

T2

2
+

T3

3
+

T4

4
+

2

3

(
SS −

∑
i∈IS(m)

zi

)

+
2

3

(
S3 −

∑
i∈I3(m)

zi

)
+

5

8

(
S4 −

∑
i∈I4(m)

zi

)

+
1

2

(
S34 −

∑
i∈I34(m)

zi

)
+

1

2

(
S44 −

∑
i∈I44(m)

zi

)
− 163

60

≥ m

2
+

T2

2
+

T3

3
+

T4

4
+

2SS

3
− |IS(m)|

6

+
2S3

3
− |I3(m)|

6
+

5S4

8
− 5|I4(m)|

32

+
S34

2
− |I34(m)|

8
+

S44

2
− |I44(m)|

8
− 163

60

≥ m

2
+

T2

2
+

T3

3
+

T4

4
+

2SS

3
− m

6
+

|I2(m)|
6

+
|I3(m)|

6
+

|I4(m)|
6

+
|I34(m)|

6
+

|I44(m)|
6

+
2S3

3
− |I3(m)|

6
+

5S4

8
− 5|I4(m)|

32

+
S34

2
− |I34(m)|

8
+

S44

2
− |I44(m)|

8
− 163

60

=
2|G2|
3

+
2|G3|
3

+
2|G4|
3

+
2|G33|

3
+

2|G34|
3

+
2|G44|

3

+
2|GS |
3

+
3|G24|

4
+

3|G444|
4

+
5|G23|

6
+

5|G344|
6

+
11|G334|

12
+ |G22|+ |G244|+ |G333|+ |G4444|

+
13|G234|

12
+

13|G3444|
12

+
7|G233|

6
+

7|G3344|
6

− 173

60

≥ 2

3
|OPT(σ)| − 173

60

bins, by applying Equalities (7)–(9) in the second to last in-
equality above. We further use that each zi < 1/4, that
SS ≥

∑
i∈IS(m) zi and St1···t4 ≥

∑
i∈It1···t4 (m) zi, for

each bin group Gt1···t4 . Every critical bin Ci can be cov-
ered by a large item of size at least wm plus the small
items from a bin among the last bins Bm+1, . . . , B|G2| in
G2 and possibly one extra small item from a non-easy bin

in the optimal solution; see Figure 2. Furthermore, m =
|IS(m)| +

∑
t1···t4 |It1···t4(m)|, for any m. The compet-

itive ratio is the smallest coefficient of any of the terms
corresponding to bin groups, since an adversary can ensure
that the groups with larger coefficient contain no bins. This
gives a competitive ratio of 2/3 ≈ 0.6666 . . .. 2

The two advice valuesm ≤ n and xm can be represented
by O(logn) bits and O(b) bits respectively, where b is the
number of bits required to represent the integer denomina-
tor of the rational value xm, since xm < 1. We have the
following immediate theorem.

Theorem 2 The strategy DHb+lgn
4 receives O(b + logn)

bits of advice and has asymptotic competitive ratio∣∣DHb+lgn
4 (σ)

∣∣ ≥ 2

3

∣∣OPT(σ)
∣∣− 173

60

for serving any sequence σ of size n, where b is the number
of bits required to represent any rational value in σ.

By approximating the advice valuem usingO(log logn)
of themost significant bits (using amodified self-delimiting
encoding), a slight variation of the analysis above shows
that a variant of DHb+lgn

4 that receives O(b + log logn)
bits of advice still has asymptotic competitive ratio 2/3 −
O(1/ logn), thus the exact value ofm has very little impact
on the competitive ratio.

3.1 Tightness

One could venture to think that strategy DHb+lgn
k , for k >

4, would give improved competitive ratio, or even that ex-
tending the strategy with more sets of critical bins could
improve it further. However, this is not possible, since
an adversary can simply provide an instance where all bin
groups except G2 in an optimal solution are empty. Thus,
the instance consists of only 2-items and small items. In-
deed, such instances form the basis for the lower bound
proof for DNF [1, 2]. Any critical bin-based strategy must
solve this instance and chooses some value form, the num-
ber of critical bins to open. Even if the adversary provides
all the small items first and the 2-items last, the strategy
will cover m +

⌊
(|G2| − m)/2

⌋
bins as long as the strat-

egy can guarantee that all m critical bins are covered with
one 2-item and some small items. Since the index set is
I2(m) = {1, . . . ,m}, for all m, the maximum occurs for
m = ⌊|G2|/3⌋. The strategy covers at most

m+

⌊
|G2| −m

2

⌋
=

⌊
|G2|
3

⌋
+

⌊
|G2| − ⌊|G2|/3⌋

2

⌋
≤ |G2|

3
+

|G2|
3

+
1

3
≤ 2

3

∣∣OPT(σ)
∣∣+ 1

3

bins, proving that our analysis in Lemma 2 is asymptoti-
cally tight.
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