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The existing image processing methods based on physical models can have a significant impact on 

defogging performance due to inaccurate estimation of the depth of field information. These methods often 

encounter problems such as low brightness, invisible color distortion, and loss of detail when processing 

images with poor lighting conditions, such as those taken in coal mines. To address these issues, this 

paper proposes a new algorithm based on artificial multi-exposure image fusion. The proposed method 

performs global exposure on images with uneven illumination by combining S-type functions and the 

Contrast Limited Adaptive Histogram Equalization (CLAHE) algorithm in the Hue-Saturation-Value 

(HSV) color space. This reduces the spatial dependence of brightness during processing and avoids color 

distortion problems that may arise in the Red-Green-Blue (RGB) color space. To mitigate the issue of 

detail loss, a gradient-domain guided filter is used to preserve fine structures in images, while an improved 

homomorphic filtering algorithm is introduced during the Laplacian pyramid decomposition process to 

reduce image content loss arising from large dark areas. This paper also conducted subjective, objective, 

and computational time comparisons to evaluate performance, providing reliable results regarding speed, 

quality, and reliability in processing hazy images. 

Povzetek: Predlagana metoda umetne združitve več posnetkov omogoča boljše odstranjevanje meglice v 

slikah z neenakomerno osvetlitvijo. Uporablja se algoritem CLAHE v barvnem prostoru HSV in vodeni 

filter za ohranjanje podrobnosti. Rezultati kažejo visoko kakovost in hitrost obdelave zamegljenih slik. 

 

1 Introduction 
The intricate conditions present in coal mines generate 

numerous external environmental factors such as fog, low 

illumination, and glare that negatively impact the quality 

of instrument-captured images. This decline in image 

quality not only jeopardizes the efficiency and 

advancement of automated underground operations but 

also poses significant safety risks for staff. Unfortunately, 

despite ongoing research efforts, effective image dehazing 

methods for these types of images remain lacking. 
In recent years, numerous methods for image 

dehazing and enhancement have been proposed. Shi et al. 

[1] utilized the normalized gamma correction and contrast 

limited adaptive histogram equalization (CLAHE) to 

process the luminance component and enhanced images 

using color correction based on grey world theory. Zhi et 

al. [2, 3] introduced an adaptable S-type function to adjust 

the luminance component of images with uneven  

 

 

 

illumination, which significantly improved image clarity 

and visual effect. Meanwhile, He et al. [4] proposed the 

dark channel prior (DCP) method for foggy image 

processing but its long processing time and low brightness 

led to color distortion. Qin et al. [5] combined the quadtree 

algorithm with DCP for optimized transmission, resulting 

in significant defogging effects without color distortion. 

Similarly, He et al. [6] employed a guided filter (GIF) to 

obtain fine transmission maps but acknowledged its better 

performance in unique environments like low 

illumination. Meng et al. [7] proposed a boundary 

constraint and context regularization method to optimize 

transmission, achieving defogging for foggy images albeit 

with generally darker results. Zhu et al. [8] constructed a 

nonlinear depth-of-field equation using color attenuation 

prior (CAP) to obtain transmission maps that only apply 

to outdoor images with good lighting conditions. Berman 
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et al. [9, 10] modeled pixels in hazy images as Red, Green, 

Blue (RGB) color space lines passing through air light 

coordinates termed ‘haze lines’, estimating transmission 

based on pixel position along the line it belongs to. Ehsan 

et al. [11] used dual channel transmission combined with 

DCP and gradient-domain guided filter to refine dual 

transmission maps, while Galdran [12] employed the 

artificial multi-exposure image fusion (AMEF) algorithm 

to remove dust and fog, needing no inversion of physical 

imaging models to restore clear images. Finally, Yang et 

al. [13] estimated atmospheric light in non-uniform 

illumination at night based on superpixel, successfully 

realizing night image dehazing. 

Li et al. [14] and Ullah et al. [15] applied 

convolutional neural network (CNN) models, called Light 

Dehaze and the adversarial neural network based on 

Pix2pix Framework Dehaze (BPFD), respectively, to 

dehaze images and generated corresponding networks 

using datasets. However, these methods have complex 

structures, requiring numerous datasets to improve 

accuracy.  

Currently, many image processing methods are 

designed for outdoor images with good illumination and a 

single environment. However, these methods may not be 

as effective for underground images with low illumination 

and fog. This paper proposes the use of the AMEF method 

for clearing coal mine underground images, which avoids 

the complicated process of obtaining and refining 

atmospheric light. The use of transmittance significantly 

shortens running time and meets the real-time and 

visibility requirements for underground image processing. 

The main objective of this paper is to enhance the 

quality of underground coal mine images while ensuring 

no color distortion or excessive contrast enhancement. In 

summary, the paper's contributions can be distilled into 

three key aspects: 

Firstly, the paper processes the brightness component 

in the HSV color space of the exposure image set using 

CLAHE and a new S-type function to minimize the impact 

of adverse lighting conditions on the image processing. 

This approach compensates for the shortcomings of direct 

operation in RGB color space, such as color distortion and 

excessive contrast enhancement. 

Secondly, a new method for calculating weights is 

proposed, which utilizes the excellent edge preservation 

performance of gradient domain guided filters to preserve 

the fine structure in the image. 

Finally, the paper introduces a modified 

homomorphic filtering algorithm into Laplacian pyramid 

multi-exposure image decomposition to improve the 

quality of blurred images by enhancing detailed content 

through dual-domain transformation. The proposed 

method not only removes fog interference but also 

enhances the contrast of degraded images. 

The rest of the paper is as follows: 

The second section provides an overview of related 

work on atmospheric scattering models and artificial 

multiple-exposure image fusion. The third section 

describes the proposed method and improvements made. 

Section 4 demonstrates the effectiveness of the proposed 

method through experimental processing of actual 

underground coal mine images and comparison with other 

algorithms, with subjective vision and objective 

evaluation as criteria. Finally, Section 5 presents the 

conclusion. 

2 Related works 

2.1 Atmospheric scattering model 

During the process of light scattering, the direction of light 

is subject to deviation due to the scattering effect of solid 

particles and liquid droplets present in the air, resulting in 

a change in the intensity of light. In the subterranean 

environment of coal mines, the influence of dust and fog 

on images is more severe compared to the atmospheric 

environment. Nonetheless, the fundamental principle 

remains the same and can be analyzed by employing the 

atmospheric scattering model, which is the primary 

physical model used to describe fog in images. This model 

is expressed mathematically by Equation (1): 

 I(x)=t(x)J(x)+A(1-t(x)) (1) 

Where I(x) represent the image affected by fog and 

dust, while J(x) is the clear image without fog. The 

transmittance, t(x), is inversely proportional to the depth 

of field, and A is the atmospheric light intensity. Typically, 

prior information is used to infer t(x) and A. By 

transforming Equation (1), an expression for the restored 

image can be obtained. 

 J(x)=
I(x)-A

t
+A (2) 

2.2 Artificial multiple-exposure image 

fusion 

The objective is to establish a spatially varying image 

enhancement technique capable of eliminating the visual 

effects of fog using the Artificial Multiple Exposure 

fusion (AMEF) techniques proposed by Galdran [12]. 

This technique eliminates the need for estimation of 

transmitted and airborne light in Equation (1). To 

accomplish this, the input blur image I(x) with intensity 

values ranging from 0 to 1 is considered. In order to solve 

the image dehazing problem, any solution J(x) must 

contain intensity values lower than I(x). This can be 

achieved by rearranging Equation (1) as follows. 

 t=
A-I(x)

A-J(x)
 (3) 

Since t(x) [0,1], it follows from Equation (3) that A-

I(x)≤A-J(x), and concludes that J(x)≤I(x) ∀x. Therefore, 

AMEF can use a simple and effective multiple exposure 

fusion strategy to fuse the information of a group of multi-

exposure versions of the original image I(x), and obtain a 

clear and fog-free image of I(x). 

Artificial multi-exposure image correction was 

carried out by gamma correction [16]. The Gamma 

transform equation is: 

 J(x)=α⋅Iγ(x) (4) 

Where α and γ are the gamma correction parameters, 
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it is an actual positive number. In certain cases, the 

dehazing outcomes may turn out excessively dark when 

the input hazy image contains insufficient areas with 

desirable contrast, especially in the case of overexposed 

images. Therefore, the CLAHE [17] method is usually  

 

 

Figure 1: The flow chart of AMEF defogging. 

 

applied to append the enhanced contrast version of the 

original image to the initial set of artificially underexposed 

images. 

If the dimension of the source image Ek(x) is m×n, the 

Laplacian pyramid mixture can be expressed as follows: 

 

  J(x)= ∑ us(m, n)
N

i=1 [∑ Pk
i (x)Wk

i (x)K

k=1 ]  (5) 

 

Where us(m, n)  is the operator that up-samples any 

given image to Ek dimension. In this paper, operator 

Pk
i =Ek

i   is defined as the result of the Laplacian pyramid 

construction for each image. Wk
i  is obtained through 

construct a Gaussian pyramid for the weight maps Wk of 

the fog free region in each image. 𝑊𝑘 is acquired for every 

underexposed image through the multiplication and 

consolidation of both the contrast and saturation maps. 

Loss of contrast and saturation is one of the primary 

visual effects of fog [18, 19]. In the AMEF method, the 

contrast Hk(x) at each pixel x in a given source image 

Ek(x)={Ek
R,Ek

G,Ek
B} is measured as the absolute value of 

the response to a simple Laplacian filter. The saturation 

Sk(x) at each pixel is estimated from the standard deviation 

of the color channel: 

 
Hk(x)=

∂
2
Ek

∂x2
(x)+

∂
2
Ek

∂y2
(x)  (6) 

 Sk(x)= ∑ (Ek
c(x)-

Ek
R(x)+Ek

G(x)+Ek
B(x)

3
)c∈{R,G,B}

2

  (7) 

 

For a detailed explanation of the dark channel prior, 

readers can refer to [12]. The image dehazing process of 

AMEF is shown in Figure 1. 

2.3 Performance comparisons of haze 

removal methods 

As shown in Table 1, and it provides a comparison 

between the state-of-the-art haze removal methods and the 

proposed method.

 

Table 1: Analogy of the state-of-the-art methods and proposed method. 

Methods Information Findings Cons 

Galdran. [12] 

Proposes a method for image 

dehazing using artificial multi 

exposure fusion. 

High efficiency and 

satisfactory result images. 
There is color distortion in the results. 

Nan et al. [20] 

Uses deep learning methods to 

process low light and dusty coal 

mine images. 

The good visual effect and 

it's efficient for all sorts of 

images. 

1. Requires a large number of on-site 

images. 

2. Low operating efficiency. 

3. Complex algorithm structure. 

Zhang et al. [21] 

Provides a method based on 

atmospheric scattering model 

and DCP to enhance mine 

monitoring images. 

Generates satisfactory and 

neat photos at average 

speed. 

1. The result is too dark. 

2. Contains artifacts. 

Wang et al. [22] 

Transform-based low 

illumination mine images haze 

removal. 

Effective noise reduction 

and edge protection. 

1. Inapplicable for massive turbidity 

gradients. 

2. Has oversaturation/undersaturation 

problems. 

Proposed method 

Adopts a multi-scale fusion 

strategy to remove haze from 

coal mine images, and combines 

image enhancement and filtering 

techniques to enhance contrast 

and image details. 

Applications and advantages 

The proposed method is suitable for coal mine images with low 

visibility and dusty influence and is more capable of balancing haze 

removal and visualization requirements compared to other methods. 

It has higher efficiency and simple operation steps. 
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3 Proposed methods 

3.1 Image preprocessing based on 

improved homomorphic filtering 

algorithm 

The primary source of illumination is artificial in coal 

mines, and the uneven distribution of illumination can 

result in poor overall image visibility. To address this 

issue, the homomorphic filtering [23] algorithm can be 

applied to underground images to reduce the influence of 

illumination on the image. 

 

 

 

 

Figure 2: The flow chart of homomorphic filtering. 

To convert a nonlinear signal into a linear model, a 

common technique is to apply logarithmic transformation 

(Ln) to the input image f(x, y) and then use Fourier 

transform (FFT) to transform the image from the spatial 

domain to the frequency domain. Next, the transfer 

function H(u, v) of the filter is used to attenuate the low-

frequency components and enhance the high-frequency 

components. The resulting image is then converted back 

to the spatial domain using a fast Fourier transform (FFT-

1) after filtering. Finally, the enhanced image g(x, y) is 

obtained through exponential transformation (exp). The 

flowchart for this process is illustrated in Figure 2. 

The foggy image f(x, y) can be mathematically 

represented as the product of its illuminance component 

L(x, y) and reflection component R(x, y) [24]. This 

relationship can be expressed as Equation (8): 

 

  F(x, y)=L(x, y)⋅R(x, y) (8) 

 

The fundamental principle of homomorphic filtering 

lies in considering the gray value of an image as the 

product of two components: illuminance L(x, y) and 

reflectance R(x, y). By processing the impact of 

illuminance L(x, y) and reflectance R(x, y) on the gray 

image value, the objective of exposing the details of 

shadow areas can be achieved. The flowchart for this 

process is illustrated in Figure 2. 

In order to address the impact of fog and dust in 

underground coal mine images, this paper employs the 

exponential function as the transfer function for a 

homomorphic filter. This approach can effectively filter 

out the influence of fog and dust on the image. The 

conventional exponential transfer function is represented 

by Equation (9). 

 
 T(u, v)=e

(
-D0

D(u, v)
)
n

 (9) 

The optimized exponential transfer function is: 

 
 T(u, v)=(rH-rL)e

(
-cD0

D(u, v)
2n

)

+rL 
(10) 

 

The distance between the frequency (u, v) and the 

center frequency (u0, v0) is denoted by D(u, v) in the 

transfer function, where D0 represents the cutoff 

frequency, rH represents the high-frequency gain, rL 

represents the low-frequency gain, and c is the sharpening 

coefficient. When 0<rL<1 and rH>1, the filter reduces the 

low-frequency and enhances the high-frequency, thereby 

achieving gray dynamic range compression and contrast 

enhancement simultaneously. The image processing effect 

of different parameters is depicted in Figure 3. 

In Figure3, the value of rL is observed to be a crucial 

factor in determining the low-frequency domain, which 

directly affects image contrast and brightness 

enhancement. To cater to the specific environmental 

characteristics of underground coal mine images, this 

paper sets the filter parameters as follows: rL=0.3, rH=1.5, 

D0=4, and c=3. 

 

Figure 3: Comparison of GIF and GDGIF. 

3.2 Image enhancement based on new S-

type curve enhancement function 

A luminance adjustment is necessary to equalize the 

brightness components of the underground coal mine 

image as it contains both bright and dark areas. The 

adjustment involves enhancing the pixel value of the low-

brightness areas and suppressing the pixel value of the 

high-brightness areas. Therefore, this paper combines an 

S-type curve function [2] with CLAHE algorithm to adjust 

the luminance component. The S-type curve function is 

appropriately revised to adapt to the complex environment 

of low illumination and fog and dust in underground coal 

mine images. The expression of the revised S-type curve 

function is as follows： 

 

  P(x, y)=1/ (1+a√
1-F(x, y)

F(x, y)+τ
) +ε (16) 

  L(x, y)=max(P(x, y),0) (17) 

 

Among them: 
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  ε= − 0.1 |F(x, y) −
1

1+a2
| (18) 

 

Here, F(x, y) represents the input luminance 

component, a is the illuminance adjustment coefficient, τ 

is constant used to prevent the denominator from being 

zero, usually set to 1E-12, and ε is the fog suppression 

coefficient. To obtain a clearer overall image, the value of 

a is set to 0.9. However, due to the interference of fog and 

dust in the mine environment, the original function may 

not achieve the desired effect. Therefore, a suppression 

coefficient ε is added in this paper. 

 

 

Figure 4: S-type curve function. 

 

When the value of a is set to the different parameters, 

Figure 4 shows the results image of this paper, and the 

difference of function graph between the improved S-type 

function and the original S-type function. 

3.3 Fine contrast based on gradient 

domain guided filtering 

To address the halo artifact issue at the edge of the 

underground coal mine images, caused by the 

conventional guided filter, and taking into account the 

specific features of the coal mine environment, the 

gradient domain guided filter (GDGIF)[25] is used instead 

of the Laplace filter. GDGIF provides a better edge-

preserving performance when processing the underground 

exposure image, which allows obtaining the fine contrast 

function. 

In gradient-domain guided filtering, a filtering 

window centered on pixel k, ωk, is assumed. A local linear 

model is established between the guided image Ii and the 

filter output qi, expressed as: 

 

  q
i
=akIi+bk   

∀i ∈ ω𝑘 (19) 

 

To determine the linear coefficients ak and bk that 

minimize the difference between the filter output qi and 

the filter input pi in a filtering window, a minimization 

energy equation is defined as follows in gradient domain 

guided filtering. 

 

 E(ak,bk)= ∑ ((akIi+bk-pi
)
2
+

ε

ΓG(k)

(ak-γk
)

2
) 

i∈ωk

 (20) 

 

Among them: 

 

  ΓG(k)=
1

N
∑

χ
k
+λ

χ
i
+λ

 

N

i=1

 (21) 

  γ
k
=1-

1

1+eη(𝜒𝑘-𝜇χ,∞)
 (22) 

 

In gradient-domain guided filtering, a minimization 

energy equation is defined to determine the linear 

coefficients ak and bk that minimize the difference between 

the filter output qi and the filter input pi in a filtering 

window. This equation includes several parameters, such 

as ε as the regularization parameter, as the edge sensing 

weight coefficient, which is defined by the local variance 

in the filtering window, λ as a constant, and the size as 

(0.001×L)2, where L represents the dynamic range of the 

input image. Additionally, χk is defined σG,1(k)σG,ξ1(k)
, 

where ξ1 is the window size of the filter, is the edge 

sensing constraint term, and 𝜇𝜒,∞ is the mean value of χi. 

The value of η is calculated as 4/(μ
𝜒,∞

-min(χ
i
)). When the 

pixel k is at the edge, γk is close to 1, and when the pixel k 

is in a flat region, γk is close to 0. The solution of the 

coefficient can be determined using a linear regression 

equation. 

   ak=

1
|ω|

∑ IiPi-μk
P̅k+ (

ε
ΓG(k)

) γ
ki,k∈ωk

σk
2+

ε
ΓG(k)

 (23) 

  bk=p
k
-akμk

 (24) 

   

Where μk and σk
2 is mean and variance of I in the ωk, 

  

 

Figure 5: Comparison of GIF and GDGIF. 

|ω| is window pixels in the ωk, Pk= ∑ Pii∈ωk
/|ω|  is the 

average of P in the ωk. Figure 5 shows the different 

processing effects of the gradient domain guide filter and 

the guide filter when the input image and the guide image 

are the same and the filtering parameters are: r=16, 

ε=0.04. 

In this paper, the contrast function H(x) is composed 

of Ik

γ
(x)  initial contrast function of ϕ(x) . For gradient 

domain guided filtering: 

Original image

a=0.1 a=0.5 a=0.9

GIFOriginal image GDGIF
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  H(x)=ϕ
k
(x)⊕G(K, r) (25) 

  

Where ⊕G(k, r) refers to using gradient domain 

guidance filtering on Ek
i (x) , K refers to the guidance 

image, and r refers to the filtering size. In this paper, the 

gray image of the original exposure image is used as K, 

and the filter size is: 

   r= |
1

6
max(h, w)-1| (26) 

Where, ⌈ ⌉ represents the rounding operation, h and 

w represent the height and width of the corresponding 

image. The larger the size of the filter, the more detailed 

information is contained in the contrast component, and 

the operation complexity and time of the filter have no 

relationship with the filter size. 

Filtered image Φ(x) is: 

  Φ(x)=Imax
Ω (x)-Imin

Ω (x) (27) 

Where 𝛺  is the size of the given region, 

IΩmax(x)= max {I(x)|x∈Ω}, IΩ min (x) =min{I(x)|x∈Ω}. 

3.4 The specific implementation process of 

proposed algorithm 

The algorithm flow chart is shown in Figure 6. 

 

 

Figure 6: The flow chart of the proposed algorithm. 

 

Firstly, this paper introduces the contrast-enhanced 

image into the artificial expo-sure image set. Unlike the 

original method, which applies the CLAHE algorithm 

directly to the original image, this paper converts the input 

image into HSV color space and uses a combination of 

CLAHE and a new S-type curve function to correct the 

value component in HSV color space and then converts  

the corrected image to RGB color space. 

Next, a group of available exposure images is 

obtained from the multiple exposure image set, and the 

corresponding weight is calculated before artificially 

fusing and defogging. In this paper, the gradient domain 

guided filter is used to obtain the expo-sure image 

contrast, which is combined with the saturation obtained 

from the standard deviation of each color channel to obtain 

the weight. 

Finally, an improved homomorphic filter is 

introduced into the Laplacian pyramid that decomposes 

the available images and is fused step by step with the 

weight map obtained by using the Gaussian pyramid 

decomposition to obtain the final output clear coal mine 

image. 

4 Experimental results 
This section presents an evaluation of the proposed 

method using both subjective visual perception and 

objective evaluation indicators. All the test images were 

obtained from Flickr and [26, 27]. 

All experiments were conducted on a laptop with a 

2.30GHz CPU and 8GB RAM using MATLAB R2017A. 

In order to evaluating the effectiveness of the proposed 

method, several state-of-the-art technologies were used 

for comparison. Figure 7 to Figure 9 depict the 

experimental results. Specifically, Figure 7 illustrates the 

contrast enhancement and equalization of brightness 

components in the HSV color space, compared with the 

enhanced image by the original CLAHE algorithm. 

Meanwhile, Figure 8 and Figure 9 display the processing 

results of the proposed method and other methods such as 

Shin et al. [28], Li et al. [29], Zhu et al. [30], Galdran [12], 

and Ehsan et al. [11]. To ensure a fair comparison, the data 

of the state-of-the-art methods were obtained from the 

public codes of their respective authors. 

4.1 Subjective evaluation 

In Figure 7, the rectangular boxes highlight the hydraulic 

support and coal layer areas that exhibit color distortion 

and contrast over-enhancement issues. It is observed that 

direct application of CLAHE to the original image may 

lead to such problems in certain regions of the image. On 

the other hand, the proposed method employs a con-

version of the original image to the HSV color space for 

adjustment, which can effectively prevent such problems. 

Figure 8 displays the results of various algorithms 

applied to coal mine images. The results of Shin et al. [28] 
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Figure 7: Comparison of image enhancement results between proposed method and CLAHE. 

 

Figure 8: Comparison of different haze removal algorithms on coal mine images a-d using state-of-the-art methods 

and the proposed method. Between image a and b is the regions marked in yellow frames are enlarged. (a) input 

image; (b) Galdran. [12]; (c) Shin et al. [28]; (d) Li et al. [29]; (e) Ehsan et al. [11]; (f) Zhu et al. [30]; (g) proposed 

method.

and Ehsan et al. [11] show that the overall brightness of 

the images is lower compared to other algorithms, and the 

details of the images are poorly preserved. Galdran [12] 

and Zhu et al. [30] exhibit different issues such as color 

distortion and excessive contrast enhancement. For 

instance, in the yellow box marked area of images a and 

b, Galdran [12] suffers from color distortion at the 

hydraulic support and grayscale mutation area, while Zhu 

et al. [30] cause serious color and contrast imbalance in 

the entire image c. In contrast, Li et al. [29] and the 

proposed method demonstrate better visual effects, such 

as better brightness levels and clearer human visual 

perception details.  

As shown in Figure 9, this paper not only compares 

the processing effects of different algorithms for close-

range hazy mine images but also processes some 

nighttime images with similar lighting environments as 

the coal mine. For the images with large dark areas and 

fog in the distant view, such as images a and b, Li et al. 

[29] and Ehsan et al. ’s [11] processing results reveal that 

the overall brightness of the image is low. Although the 

fog can be removed, the visual effect of the processed 

image is deteriorating. For images g, h, i, Zhu et al. [30] 

will cause serious color distortion and excessive contrast 

enhancement when processing images whose overall tone 

tends to be consistent due to light and fog. Shin et al. ’s 

[25] dehazed images are still hazy. Galdran [12] and the 

proposed method exhibit more satisfactory results than 

other algorithms. 

4.2 Objective evaluation 

This paper has utilized six commonly used evaluation 

metrics for assessing the quality of haze removal in 

images, namely Peak Signal-to-Noise Ratio (PSNR) [31], 

Structural Similarity (SSIM) [32], Mean Light Intensity 

(MLI), Contrast Index (CI), Entropy (E) and Average 

Gradient (AG). These metrics were chosen to provide a 

com-prehensive evaluation of the performance of different 

haze removal algorithms. 

Figure 10 presents the objective average evaluation 

results of the various algorithms based on the 

aforementioned metrics. In addition, Figure 11 illustrates 

the comparison of the running times and the number of 
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processed pixels for each of the six methods used in this paper. 

 

Figure 9: Comparison of different haze removal algorithms on nighttime images e-i using state-of-the-art methods and 

the proposed method. (a) input image; (b) Galdran. [12]; (c) Shin et al. [28]; (d) Li et al. [29]; (e) Ehsan et al. [11]; (f) 

Zhu et al. [30]; (g) proposed method.

According to the results presented in Figure 10, Table 

2 summarizes the performance of six evaluation metrics of 

all experimental images. Galdran [12] and the proposed 

method achieved the highest scores in the SSIM index, 

both exceeding 0.8, which indicates that they can 

effectively retain the content information of the original 

image during the dehazing process. Ehsan et al. [11] 

scored lower than other algorithms in the E, MLI, AG and 

CI indices, suggesting that it may be challenging to meet 

the dehazing and visualization requirements when 

processing such images. Shin et al. [28] showed good 

performance in the E and AG indices, indicating that it can 

effectively retain the structural information of the original 

image. Li et al. [29] ranked relatively high in the E index, 

but its CI and MLI scores were lower, indicating that it has 

good dehazing performance, but the image quality after 

dehazing may be poor. Zhu et al. [30] had the lowest 

scores in both PSNR and SSIM indices, indicating that the 

processed image is severely distorted and may not meet 

visual requirements. The proposed method achieved the 

top ranking in MLI, CI, PSNR, SSIM and E indices, and 

its results in the AG index was only slightly lower than the 

top performer, demonstrating that the proposed method 

can achieve good human visualization performance. 

As shown in Figure 11, the processing time of Shin et 

al. [28] and Ehsan et al. [11] algorithms is significantly 

higher than that of other algorithms. In particular, there is 

an order-of-magnitude difference between Ehsan et al. 

[11] algorithm and the other algorithms. The proposed 

method is second only to Zhu et al. [30] in terms of 

processing efficiency, and its processing time changes 

only slightly with increasing image size, indicating its 

suitability for real-time processing of images. 
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Figure 10: Quantitative analysis results (average) of test image.

 

Table 2: Average six metrics values of test hazy images of 

different algorithms (the maximum value is marked in bold). 

 

 

 

Metho

d 
Quantitative metrics 

E MLI CI AG PSNR SSIM 

[24] 7.32 0.35 0.36 0.087 20.21 0.75 

[25] 6.92 0.26 0.23 0.032 20.12 0.71 

[26] 7.12 0.36 0.33 0.065 17.43 0.52 

[12] 7.36 0.39 0.37 0.073 22.62 0.83 

[11] 6.25 0.22 0.18 0.034 17.84 0.65 

Ours 7.49 0.44 0.41 0.083 24.56 0.87 

 
Figure 11: Comparison of processing time of different 

algorithms on haze images with differing numbers of pixels. 

4.3 Discussion 

This article proposed a haze removal method for coal mine 

images, which uses a multi exposure fusion method to 

process the image. Different from previous dehazing 

methods that rely on physical models and may result in 

incorrect estimation of transmittance and atmospheric 

light, the proposed method avoids potential problems with 

over-darkness and artifacts in the image that may arise 

from the presence of white objects or light sources. 

Similarly, the proposed method employed a combination 

of gradient domain guided filtering and improved 

Homomorphic filtering, which effectively preserves 

image details and protects edge information during the 

dehazing process. In terms of efficiency, pyramid 

decomposition is introduced to process hazy images, 

unlike those methods that perform complex iterative 

optimization of model parameters, which ensures the 

image integrity during the processing. At the same time, 

most current haze removal methods for coal mine images 

struggle to balance the requirements of both haze removal 

and image visualization in the challenging low-light and 

dusty environments commonly encountered in coal mine. 

In this study, the proposed method addressed this issue 

through the use of an S-type curve function and CLAHE 

in the HSV color space to enhance image visualization 

while simultaneously removing haze. 

5 Conclusion 
In this paper, AMEF was first introduced, which does not 

directly rely on depth-related physical models but rather 

restores hazy images by fusing the good contrast region of 

multiple exposure images. However, when an input image 

is degraded by multiple physical models, such as 

nighttime haze or water attenuation, AMEF and most 

advanced algorithms cannot solve the color temperature or 

low illuminance problems. An improved method for 

processing fog and dust degradation images in complex 

underground environments based on AMEF was proposed 
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in this paper. Firstly, a new adjustment function was 

introduced into the HSV color space to enhance the 

exposed image for correcting the color distortion. 

Secondly, new weight maps were built through gradient 

domain guided filter to retain the image details as much as 

possible. Lastly, in aspect of contrast enhancement, the 

improved homomorphic filtering algorithm was 

introduced into the Laplace pyramid. According to the 

experimental results, the proposed method was shown to 

be superior to other advanced methods in terms of efficient 

and effective image dehazing. 

There are still some remaining issues worth 

investigating in future work, including a more in-depth 

analysis of model parameters and how to apply the 

proposed method to real-time processing of video images. 
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