
Informatica 38 (2014) 11–19 11

Leveraging User Experience through Input Style Transformation to Improve
Access to Music Search Services

Marina Purgina, Andrey Kuznetsov and Evgeny Pyshkin
St. Petersburg State Polytechnical University
Institute of Computing and Control
Polytechnicheskaya ul. 21, St. Petersburg 194021, Russia
E-mail: mapurgina@gmail.com, andrei.n.kuznetsov@gmail.com, pyshkin@icc.spbstu.ru
http://kspt.ftk.spbstu.ru/info/staff/pyshkin/en

Keywords: information retrieval, music search, mobile application, query transformation, input style transformation

Received: November 23, 2013

We analyze problems of music searching and main tasks the developers face in the domain of music
information retrieval. We introduce the architecture of the software and the data model for integrated access
to existing music searching web services. We illustrate our approach by developing a mobile accessed
software prototype which allows users of Android running touch screen devices accessing several music
searchers including Musipedia, Music Ngram Viewer, and FolkTuneFinder. The application supports
various styles of music input query. We pay special attention to input style transformation aimed to fit well
the requirements of the supported search services.

Povzetek: Opisana je metoda iskanja glasbenih posnetkov na androidnih napravah.

1 Introduction

A variety of multimedia resources constitutes considerable
part of the present-day Web information content. Numer-
ous search services usually provide special features to deal
with different types of media such as books, maps, images,
audio and video recordings, software, etc. In addition to
general-purpose searching systems there are solutions us-
ing specialized domain sensitive interfaces. Truly, quality
of a search service depends both on the efficiency of algo-
rithms it relies on, and on user interface facilities. Such in-
terfaces may include special syntax forms, user query visu-
alization facilities, interactive assisting tools, components
for non-textual query input, interactive and “clickable”
concept clouds, and so on [1]. Depending on the search-
ing tasks, specialized user interfaces may support differ-
ent kinds of input like mathematical equations or chemical
changes, geographic maps, XML-based resource descrip-
tions, fragments of software source code, editable graphs,
etc.

In text searching such aspects as morphological, syn-
onymic and grammar variations, malapropisms, and
spelling errors condition particular difficulties of a search-
ing process. In the music searching domain there are spe-
cific complications like tonality changes, omitted or in-
correctly played notes or intervals, time and rhythmic er-
rors. Thus, although there are eventual similarities between

This paper is based on M. Purgina, A. Kuznetsov and E. Pyshkin
An Approach for Developing a Mobile Accessed Music Search Integra-
tion Platform published in the proceedings of the 3rd International Work-
shop on Advances in Semantic Information Retrieval (part of the FedC-
SIS’2013 conference).

text and music information retrieval, they differs signifi-
cantly [2].

Human ability to recognize music is strongly interrelated
to listener’s experience which may be considered itself to
be a product of music intelligent perception [3, 4]. Re-
cently (see [5]) we also analyzed internal models of music
representation (with most attention to function-based rep-
resentation) being the foundation of various algorithms for
melody extraction, main voice recognition, authorship at-
tribution, etc. Music processing algorithms use the pre-
vious user experience implicitly. As examples, we could
cite the Skyline melody extraction algorithm [6] based on
the empirical principle that the melody is often in the up-
per voice, or Melody Lines algorithms based on the idea of
grouping notes with closer pitches [7].

The remaining text of the article is organized as follows.
In section 2 we review music searching systems and ap-
proaches of the day. We also introduce our experience in
the domain of human centric computing and refer to some
recent related works. In section 3 we describe music query
input styles and analyze possible transformations of mu-
sic input forms so as to fit the requirements of search ser-
vices. Section 4 contains the description of the developed
Android application architecture. We show how it works
and make an attempt to analyze the searching output from
the point of a musicologist.

2 Background and related works
In general, we are able to search music either by metadata
description, or by music content. Searching by metadata

12 Informatica 38 (2014) 11–19 M. Purgina et al.

seems to be very similar to textual searching. Metadata
is not necessarily to be restricted by bibliographical data
like author, title, artist, conductor, editor, date of publica-
tion, etc. They may also include information about per-
formance itself like time signature, tempo, musical instru-
ments, tonality, lyrics and so on. In some situations search-
ing by metadata and searching by content are not so differ-
ent. Let us consider “A Dictionary Of Musical Themes” [8]
which includes short snippets (transposed to C-dur tonal-
ity) of musical themes of a composition. These snippets
can be used to seek unknown composition by its theme. On
one hand, these themes extracted from the original compo-
sition constitute metadata, on the other hand, they enable
searching a composition by its content. In fact, user can
use an ordinary text-based search engine to retrieve compo-
sitions represented in such a dictionary. Nowadays exactly
the same technique are being used in indexing algorithms
and fingerprint algorithms with only few differences: a)
metadata are extracted automatically, and b) being sort of
pure mathematical abstractions (e.g. hashcodes, fingerprint
vectors, etc.) metadata may have no sense for humans.

Since the time when the first dictionaries of musical
themes were created, the world dramatically changed. Peo-
ple developed new multimedia carriers requiring more
complicated search scenarios:

1. Searching music information by existing audio frag-
ment considered as an input.

2. Searching compositions by human remembrance rep-
resented in a form of singed, hummed, tapped or any-
how else defined melody or rhythm fragment.

3. Searching music by lyrics.

4. Searching music by bibliographical data (e.g. title, au-
thor etc.).

5. Searching music by keywords (e.g. “scary Haloween
music”).

Searching by given audio fragments is supported by
many specialized search engines like Audiotag, Tunatic or
Shazam[9]. As a rule, it is implemented on the basis of so
called audio fingerprinting technique. The idea of such an
approach is to convert an audio fragment of fixed length to
a low-dimensional vector by extracting certain spectral fea-
tures from the input signal. Then this vector (being a kind
of audio spectral fingerprint) is compared to fingerprints
stored in some database [10, 11].

In the case of Searching by human remembrance sce-
nario we can distinguish two situations. In the first one the
search engine deals a monophonic user query representing
a main voice, a rhythm, a melodic or rhythmic contour. In
the second case the user query represents polyphonic mu-
sic fragment (e.g. while searching by note score). Errors
in user queries condition the main problems of Searching
by human remembrance. Thus, music fragments compar-
ison algorithms have to be robust in regards to the most

popular user errors like expansion, compression, omission
or repetition [12, 13]. The another complication is that it
is impossible to search directly within the audio resources’
binary contents since we usually have no exact faithful au-
dio fragment2.

Searching by lyrics is not fully automated. An end user
is able to use general purpose text search machine (like
google, yahoo or yandex) for this task, but text based tools
search in existing textual data which is usually published
either by author or by music lovers. In theory it’s pos-
sible to use speech recognition engine for the purpose of
lyrics extraction [14], but in practice the recognition qual-
ity is not good enough for automatic lyrics transcription.
We experimented with Google Voice service and it showed
good results for lyrics recognition if a user is singing in
silent environment with no background music (it success-
fully recognized 17 of 20 songs). But if we try to play a
broadcasted recording of popular artists, the Google Voice
simply ignored the input just like it was nothing sang at all.
Indeed, the Google Voice was designed as a speech recog-
nition service, not lyrics transcription service. The problem
of automatic recognition of lyrics in singing exists, but this
topic is actually out of scope of this research.

The first three cited scenarios are related to the so called
cover song identification task. However the final goal of
such a kind of searching process is not always a song itself
(which may be an object of copyright restrictions). The
user may be satisfied with obtaining music bibliographical
metadata that can be used to look for the song in an online
music store. It is exactly what the fourth scenario Search-
ing music by bibliographical data means.

Finally, Searching by keywords is often implemented
through tags annotations. In this case a search query is
being parsed to find keywords that could be considered to
be tags. Then these tags (i.e. words from a predefined
vocabulary of genres, moods, instruments etc.) are used
for searching through an annotated database. For example,
such technique is used by Last.fm or Pandora online radios.

The search scenarios we explained here cover only the
most common tasks. Besides such kinds of usual tasks,
there are many other music information retrieval problems
including searching compositions by their emotional prop-
erties (this task appears in recommendation systems), iden-
tifying exact particular performance instead of cover song
retrieval, locating a position inside a song (used in score
following, for instance), and many others3.

Similar to other kinds of IR systems, a MIR system usu-
ally contains frontend and backend components. In this pa-
per we pay attention mostly to a frontend part communicat-
ing with existing searchers, considering a backend system
as an Application Program Interface (API).

2For the user provided sequence “A4 B4 C4” as an input it may hap-
pened that a melody that the user is actually looking for does not contain
such notes at all.

3The overview of the most popular MIR tasks together with descrip-
tions of the recent algorithms can be found at Music Information Re-
trieval Evaluation eXchange (MIREX) home page (see http://www.
music-ir.org/mirex).

Leveraging User Experience through Input Style Transformation . . . Informatica 38 (2014) 11–19 13

The extensive description of input styles used by mu-
sic search engines may be found in [15]. Presently there
are many searching web services like Midomi, Musipedia,
Ritmoteka, Songtapper, Music Ngram Viewer, and Folk-
TuneFinder where customers use one of several possible
styles to input a music query.

Table 1 represents possible ways to access different mu-
sic web search services and pays attention to the following
facilities:

– Voice Using voice recorded from microphone

– Rhythm Using tapping/clicking with keyboard,
mouse or other input device

– Tags Support for keywords or tags

– Exmpl Using uploaded audio fragment as an example

– Lyr Searching by lyrics

– Notes Music score or pitch notation

– VKB Virtual keyboard generating note sequence with
rhythm

– URD Parsons code

– API External API (SOAP, REST, etc.)

Nowadays many services are accessible via browsers
since they support Web interface features. Another impor-
tant issue is the possibility to access some services from
inside the software applications by using open protocols. It
gives the way to create tools which allow users not to be
limited by only one service at a time.

Particularly, Musipedia service uses SOAP protocol de-
scribed in [16]. FolkTuneFinder and Music Ngram Viewer
(both are also used in our work as target search services) are
based on the REST architectural style and their responses
are wrapped in JSON format. Detailed description of the
API usage rules and examples for Music Ngram Viewer ser-
vice may be found in [17].

With respect to music inputs styles, existing tools sup-
port the following opportunities to define a music fragment:

– To sing or to hum the theme and to transfer the record-
ing to the music search engine.

– To write notes by using one of known music notations
directly (e.g. music score, Helmholtz or American
pitch notation, MIDI notation, etc.).

– To tap the rhythm.

– To play the melody with the use of a virtual keyboard.

– To use MIDI-compatible instrument or it’s software
model.

– To enter Parsons code, or to set the melody contour by
using “U, R, D” instructions 4 as shown in Figure 1.

– To define keywords or enter text query.

– To record a piece of original composition (e.g. record
a composition played on a radio with use of micro-
phone) and to transfer the recording to the music
search engine.

Figure 1: Beethoven’s “Ode to Joe” fragment represented
in Parsons code.

3 Music query input styles
As shown in the above section, we may define the mu-
sic query by using different input styles. For a searching
framework, the important issue is not only featuring differ-
ent input interfaces but transforming one query form to the
another depending on search service availability and it’s
communication schema.

Different input styles are useful since the user music
qualification differs. Melody definition by using a virtual
or real keyboard is one of the most exact ways to represent
the query, since it accumulates most melody components.
However it is not common that users are skilled enough to
use the piano keyboard as well as to write adequate note
score.

Contrariwise, tapping a rhythm seems to be relatively
simple way to define music searching query. The problem
is that the number of possible rhythm patterns is evidently
less than the number of compositions. It means that even if
we succeed to tap the rhythm correctly, we may apparently
have a list of thousands titles in return [5].

If a user didn’t record a fragment while the composi-
tion was playing, then the only choice is to sing a melody
by voice. Recording a voice (so called query-by-humming
or query-by-singing) requires both user’s singing skills and
support for such a facility from the search system. It is
important to note that query-by-example and query-by-
humming are quite different tasks of MIR5).

4Each pair of consecutive notes is coded as U (“sound goes Up”) if the
second note is higher than the first note, R (“Repeat”) if the consecutive
pitches are equal, and D (“Down”) otherwise. Some systems use S (“the
Same”) instead of R to designate pitch repetition. Rhythm is completely
ignored.

5http://www.music-ir.org/mirex/wiki/2013:
Main_Page

14 Informatica 38 (2014) 11–19 M. Purgina et al.

Table 1: Accessing Music Searching Web Services

Name
Access

Voice Notes VKB URD Rhythm Tags API Exmpl Lyr
Audiotaga – – – – – – – + –
Tunaticb – – – – – – – + –
Shazamc – – – – – + – + –
Midomid + – – – – – – – –

Musipediae + + + + + + SOAP – –
Ritmotekaf – – – – + – – – –
Songtapperg – – – – + – – – –

Music Ngram Viewerh – – + – – + REST – –
FolkTuneFinderi – – + + + + REST – –

Google, Yandex, Yahoo! – + – – – + + – +

ahttp://www.audiotag.info
bhttp://www.wildbits.com/tunatic/
chttp://www.shazam.com
dhttp://www.midomi.com
ehttp://www.musipedia.org

fhttp://www.ritmoteka.ru
ghttp://www.bored.com/songtapper
hhttp://www.peachnote.com
ihttp://www.folktunefinder.com

Mobile devices with touch screens affect strongly usage
aspects of music searching interfaces. Such devices make
possible simulating many kinds of music instruments, al-
though the virtual piano-style keyboard remains the most
popular interface.

3.1 Transformation of input styles

We represent relationships between selected music query
input styles in form of an oriented graph. In Figure 2 blue
nodes correspond to query representation, red nodes corre-
spond to input methods. Notes are used to represent both
a query and an input method, and denoted by using grey
color. Every transition arc denoted by latin letters (a to r)
shows the possible transformation from one input style to
another, namely: a) synthesis & automatic notes transcrip-
tion; b,c,g) equivalent symbolic transformation; d) pitch
estimation; e) pitch sequence with fixed rhythm pattern;
f) rhythm with fixed pitch pattern; h) keep only pitch val-
ues; i) keep only time intervals; j) calculate pitch intervals6;
k) calculate inter offset intervals7; l) compare pitches; m)
compare time intervals; n) pitch sequence with fixed pitch
interval pattern; o) rhythm with fixed IOI pattern; p) com-
pare pitch intervals; q) compare IOI; r) onset time estima-
tion.

Since the virtual keyboard based query implicitly in-
cludes such note attributes as it’s start time, duration and

6Strictly, this is one way transformation (back transformation produces
many transpositions, but as we said before, a comparison algorithm should
be robust against transpositions)

7Strictly, this is one way transformation (back transformation produces
many different tempos, but as we said before, a comparison algorithm
should be robust against tempo fluctuation)

pitch value, there is no much difficulty to transform the
keyboard input into the rhythm or pitch notation. The same
information (notes) could be extracted from the voice in-
put. Query-by-humming searching machines usually don’t
need such kind of transformations and use hummed or
singed input “as is”. However it’s still possible to transform
singed input into symbolic form in order to create queries
for search machines that don’t support query-by-humming
method. Most recent comparative study of pitch extraction
algorithms can be found in [18], and most recent results
for multiple fundamental frequency estimation task can be
found on MIREX page8.

Regardless of how we get the notes, we can easily trans-
form them into a rhythm or a pitch notation. This trans-
formation is not lossless. When we transform notes into
rhythm we lose information about pitch values, and when
we transforming to pitch sequence we lose information
about rhythm. Next we can reduce absolute values of
pitches and time intervals, and we get sequence of pitch-
intervals or sequence of Inter Offset Intervals (IOI). Then
we can reduce interval values and get melodic or rhythmic
contour. Again this is one-way transformation because we
lose an information about the value of an interval and leave
only sign of the value encoded with letters ’U’, ’R’ and ’D’.

Clear that walking through the graph from left to right
we reduce the user query, and therefore it seems we
couldn’t expect better searching results. However such
transformations may have sense for at least two reasons:

– We attempt to emphasize the meaning of special

8http://www.music-ir.org/mirex/wiki/2013:
Multiple_Fundamental_Frequency_Estimation_\%26_
Tracking_Results

Leveraging User Experience through Input Style Transformation . . . Informatica 38 (2014) 11–19 15

Figure 2: Graph of music query transformations.

melody attributes.

– We would like to try to connect a search service which
probably uses quite different music database (e.g. spe-
cialized on some music genre9) although it supports
only restricted input methods (e.g. rhythm or pitch
notation).

Regarding to the user interface issues, the ability to
move from one input style to another renders possible to
switch easily between different searching systems within
the framework of one mobile or web application without
re-entering the query.

3.2 Models to represent queries
Usually user queries are relatively short (and it is true not
only for the case of music [19]), so we use sequence of
Note objects to represent the searching query.

The attributes of a Note object are the following:

– Note name according to the American pitch notation

– Its Octave number

– Its Onset time

– Its End time

This representation is equivalent to a subset of MIDI
subset of MusicXML format. It means that we can get
query in MusicXML format directly from our representa-
tion in order to upload it to statistics server. XML based
standard is always a good choice for future compatibility.
An ability to upload user queries to a server is extremely

9We turn our attention to the example of such a case in the following
section of this paper.

important feature for the domain of MIR research, because
this is the cheapest way to receive information for further
investigations 10. For instance, collected information can
be used for modeling user errors.

This representation is equivalent to notes representation
so we can easily transform it into the desired form like a
sequence of pitches or a rhythm pattern.

4 Introducing mobile application for
accessing music search services

Nowadays, people are happy to use their mobile devices
to access different search services at any time from any
place. They use different types of such devices which may
have different input mechanisms like phone keys, qwerty-
keyboards, touch screens, voice recognition, and so on.
The variety of devices running on Android operating sys-
tem is rapidly increasing during last years, so we decided to
use Android platform for our music searching application.

For our implementation we selected some music
searchers which may be accessed programmatically, par-
ticularly: Musipedia, Music Ngram Viewer, and Folk-
TuneFinder. For three searching systems we implemented
four user query input styles:

– Note score editor supporting one voice definition

– Parsons code

– Rhythm tapping

10This approach is very similar to a Game With A Purpose (GWAP) that
is widely used to collect annotations for data. As an example we can cite
“Major Miner – music labeling game” for audio data or “Google Image
Labeler” for pictures.

16 Informatica 38 (2014) 11–19 M. Purgina et al.

– Piano style virtual keyboard with additional represen-
tation of American pitch notation

4.1 Application architecture
General application construction ideas are common for var-
ious operating platforms. Despite the fact that eventually
we developed an application for Android operating system,
here we describe common application architecture in plat-
form independent way, but keeping in mind that target de-
vice is a mobile device. The Android application can serve
as a model for implementing flexible human centric inter-
face which is oriented to present-day style of using hard-
ware and software facilities of various mobile devices.

Figure 4 represents main components of our music
searching application.

There are following UI and non UI components shown
in Figure 4:

– UI views (boxes with blue background)

– Query transformer

– Search system adapters (one adapter for each search
system, boxes with red background)

– Serializers (either JSON or XML)

– Connectors (only one connector supported so far:
HTTP)

This is a sort of scalable architecture. We can easily add
new query input methods, new search machines or new
communication protocols (like FTP or even SMTP if re-
quired). The theory of operations is the following. The
main view InputStyleSelection provides the interface for in-
put style choice. According to the selected input style the
respective view (MelodyContour, MusicScore, VirtualPi-
ano, or RhythmTapper) opens and provides the correspond-
ing input interface. Depending on the input style the user
query could be either a sequence of Note objects (Music
Score and Virtual Piano produce this output), Rhythm (pro-
duced by RhythmTapper) or Melody contour. Then the ap-
plication iterates through a collection of available adapters
for search engines. Depending on the adapter capabilities
the input query may be transformed to the acceptable repre-
sentation. Then the adapter performs a request to a search
service. The request is serialized with a serializer (JSON
or XML) and performed through one of available connec-
tors. The response is parsed by the appropriate adapter
and added to a list of search results to be displayed by the
SearchResults view.

With respect to search services’ application interfaces
mentioned in section 2, the web information exchange pro-
tocol adapters have been implemented.

The SOAP protocol is not recommended for mobile de-
vices since it uses verbose XML format and may be consid-
erably slower in comparison with other middleware tech-
nologies. Unfortunately it is the only way to communi-
cate with the Musipedia system. In our case, the mentioned

SOAP disadvantages shouldn’t case concern since the ex-
change occurs relatively rarely, only when the respective
button is pressed by a user, and there is small amount of in-
formation being transferred. We use org.ksoap2 Java pack-
age [20] containing classes required for handling SOAP en-
velopes and literal XML content. To implement interaction
with other search services (based on the REST architec-
ture and wrapping their responses in JSON format which is
typically more compact in comparison with XML) we use
Google Gson Java library [21]. It allows converting Java
objects into their JSON representation as well as backward
converting JSON strings to equivalent Java objects.

4.2 Usage example
The application starts with a welcome screen for the pre-
ferred input style selection (Figure 4).

Figure 4: Main activity: input style selection.

Then a user selects an input style. For example if a user
selects the virtual keyboard interface, the virtual piano is
displayed on the screen. The melody is stored in form of
a note sequence with respect to the following related data:
a pitch represented in the American pitch notation (note
name and octave number), onset time, end time.

Other properties may be computed depending on the re-
quirements of a music searcher. Let us illustrate this by the
input represented in form of a simplified timing chart (with
respect to the note names rather than sound frequencies).
The chart in Figure 5 represents some first notes of the well
known Russian folk song “Birch Tree”.

For the reason that Musipedia searcher requires a se-
quence of triplets containing an onset time, a MIDI pitch
and its duration, the user input shown in Figure 5 is con-
verted to the following query data:

Leveraging User Experience through Input Style Transformation . . . Informatica 38 (2014) 11–19 17

Figure 3: Mobile music searching application architecture.

Figure 5: Test melody: note score representation and tim-
ing chart.

0.0, 76, 0.54; 0.66, 76, 0.47; 1.21, 76, 1.43; 1.72, 76,
0.50; 2.41, 74, 0.98; 3.57, 72, 0.27; 3.89, 72, 0.52; 4.62,
71, 0.81; 5.57, 69, 0.75;

After this the respective information is included to the
SOAP request which is subsequently sent to the Musipedia
server. As a result, the searching system returns the list
of retrieved compositions as shown in Figure 6(a) 11. We
see the confirmation of the known fact that this melody was

11We selected Tchaikovsky’s work, but as you can see, the similar
theme may also be recognized in some other known compositions.

used by Piotr Tchaikovsky in the 4th movement of his Sym-
phony No.4 in F-moll (compare with the fragment of the
symphony note score shown in Figure 7).

Figure 6: Results retrieved by Musipedia and Folk-
TuneFinder searchers.

Using other searching engines may enhance searching
results by taking into account other music genres. Let us
take the FolkTuneFinder service which requires a sequence
of MIDI pitches. Hence the user input is transformed into
the sequence of MIDI pitches as follows:

18 Informatica 38 (2014) 11–19 M. Purgina et al.

Figure 7: Birch Tree song cited by Tchaikovsky in his 4th
symphony.

76, 76, 76, 76, 74, 72, 72, 71, 69
For the case of the melody contour defined with us-

ing Parsons code, the user input is the following “RRRD-
DRDD”. We implemented the interface component which
allows constructing the URD-query by pushing buttons Up,
Down and Repeat with synchronous demonstration of the
respective graphical contour which is being generated auto-
matically12. As you see in Figure 6(b) the resulting output
also contains the “Birch Tree” among other compositions.
Note that since the melody contour is a less exact input
method (comparing to direct melody definition), it is nor-
mal that we don’t have the desired melody in the very first
lines.

The example we selected for the illustration shows well
one important aspect of music searching process, although
in a slightly simplified manner. When we discover the
composition corresponding to the given request, we may
expect obtaining even more information than simply a de-
sired piece of music. Fast every Russian knows the “Birch
Tree” song since the early childhood years. But only those
who listen to the classical music discover this theme in one
motive of Tchaikovsky’s symphony. In contrast to this,
western music lovers may listen this motive first just in the
Tchaikovsky’s work, and after a while recognize it as a ci-
tation of the Russian folk song. Isn’t it a kind of process
similar to a music perception in terms of musicology?

5 Conclusion and future work
In the domain of human-centric computing much attention
is paid to the facilitating user interface features in relation
with a kind of data being processed. As a special type of
information retrieval systems, music retrieval systems de-
mand special ways to interact with users. They include not
only traditional text or media based queries but specific
forms of user input facilities such as note score represen-
tations, virtual or MIDI-compatible instruments, as well as
composing queries based on melody humming or rhythm

12We consider to investigate possibility to support a melody contour
drawing interface in future implementations.

tapping which may contain errors of human interpretation.
Such approaches may help to overcome limitations of fin-
gerprinting techniques which require exact or nearly exact
audio fragments to proceed with searching in the databases
of stored music compositions. In our work we investigated
styles of user inputs used in various music search services
and applications. We applied transformation rules of query
conversion from one input style to another to a software
tool communicating with programmatically accessible mu-
sic search services from mobile devices running on the An-
droid operating system.

In the current implementation we supported only those
music queries which are representable in symbolic form
(e.g. note score, pitch notation, note sequences, or con-
tour symbolic description). User interface facilities may
be improved if we consider other ways to interact with the
user having a touch screen device. It may include, for ex-
ample, melody contour or rhythm drawing facilities. Even
for the search services that we used currently, there are in-
put styles which are still not incorporated into the existing
software prototype. We investigate possibilities to support
interfaces for melody singing or humming. Actually we
faced the problem to pass the audio query to the search-
ing engines via existing data transfer protocols that we are
allowed to use.

Another way to extend the inter-
face is to provide additional filters like
http://www.folktunefinder.com/search/melody/ does.
As described in [22], we can provide additional filters or
search criteria to experienced users. If a user can provide
an information about time signature, tonality, instruments,
or define other metadata, there is no objective to prevent
the user from doing that. Probably two problems that
might appear here is a) our UI will be overcomplicated
and b) target search machine may not support such kind of
searching. Anyway there is an area for research, how to
provide this capability without strong coupling with any of
target music search machines.

Ways to extend the interface may also include a support
for connected MIDI-compatible devices and text-based
searching facilities aimed to explore music metadata infor-
mation. The another interesting improvement which could
fit well especially mobile equipment interfaces is to sup-
port music tagging as described for example in [23]. Hence
the key idea is to connect different kinds of search services
with rich user input facilities so as to follow better the us-
age style of modern mobile devices.

References

[1] E. Pyshkin and A. Kuznetsov, “Approaches for web
search user interfaces,” Journal of Convergence,
vol. 1, no. 1, 2010.

[2] Z. Mazur and K. Wiklak, “Music information re-
trieval on the internet,” in Advances in Multime-

Leveraging User Experience through Input Style Transformation . . . Informatica 38 (2014) 11–19 19

dia and Network Information System Technologies.
Springer, 2010, pp. 229–243.

[3] B. Snyder, Music and Memory: An Introduction.
Cambridge, Mass. [u.a.]: MIT Press, 2000.

[4] D. Deutch, “Music perception,” Frontiers in Bio-
science, 2007.

[5] A. Kuznetsov and E. Pyshkin, “Function-based and
circuit-based symbolic music representation, or back
to Beethoven,” in Proceedings of the 2012 Joint Inter-
national Conference on Human-Centered Computer
Environments. ACM, 2012, pp. 171–177.

[6] A. L. Uitdenbogerd and J. Zobel, “Manipulation of
music for melody matching,” in Proceedings of the
sixth ACM international conference on Multimedia,
Bristol, United Kngdm, September 1998.

[7] C. Isikhan and G. Ozcan, “A survey of melody ex-
traction techniques for music information retrieval,”
in Proceedings of 4th Conference on Interdisciplinary
Musicology (SIM’08), Thessaloniki, Greece, July
2008.

[8] H. Barlow and S. Morgenstern, A dictionary
of musical themes. Crown Publishers, 1948.
[Online]. Available: http://books.google.ru/books?
id=jZ5HAAAAMAAJ

[9] A. Wang, “The shazam music recognition service,”
Communications of the ACM, vol. 49, no. 8, pp. 44–
48, 2006.

[10] W. Hatch, “A quick review of audio fingerprinting,”
McGill University, Tech. Rep., March 2003. [Online].
Available: http://www.music.mcgill.ca/~wes/docs/
finger2.pdf

[11] P. Cano, T. Kalker, E. Batlle, and J. Haitsma, “A
review of algorithms for audio fingerprinting,” The
Journal of VLSI Signal Processing, vol. 41, no. 3, pp.
271–284, 2005.

[12] R. J. McNab, L. A. Smith, I. H. Witten, C. L. Hender-
son, and S. J. Cunningham, “Towards the digital mu-
sic library: Tune retrieval from acoustic input,” 1996.

[13] S. Downie and M. Nelson, “Evaluation of a
simple and effective music information retrieval
method,” in Proceedings of the 23rd Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval, ser.
SIGIR ’00. New York, NY, USA: ACM, 2000,
pp. 73–80. [Online]. Available: http://doi.acm.org/
10.1145/345508.345551

[14] A. Mesaros and T. Virtanen, “Automatic recognition
of lyrics in singing,” EURASIP J. Audio Speech Music
Process., vol. 2010, pp. 4:1–4:7, Jan. 2010. [Online].
Available: http://dx.doi.org/10.1155/2010/546047

[15] A. Nanopoulos, D. Rafailidis, M. M. Ruxanda, and
Y. Manolopoulos, “Music search engines: Specifi-
cations and challenges,” Information Processing &
Management, vol. 45, no. 3, pp. 392–396, 2009.

[16] “Musipedia SOAP interface.” [Online]. Available:
http://www.musipedia.org/soap_interface.html

[17] “Music ngram viewer API.” [Online]. Available:
http://www.peachnote.com/api.html

[18] O. Babacan, T. Drugman, N. d’Alessandro, N. Hen-
rich, and T. Dutoit, “A comparative study of pitch
extraction algorithms on a large variety of singing
sounds,” in Acoustics, Speech and Signal Processing
(ICASSP), 2013 IEEE International Conference on,
2013, pp. 7815–7819.

[19] V. Klyuev and Y. Haralambous, “A query expansion
technique using the ewc semantic relatedness mea-
sure,” Informatica: An International Journal of Com-
puting and Informatics, vol. 35, no. 4, pp. 401–406,
2011.

[20] “Package org.ksoap2.” [Online]. Avail-
able: http://ksoap2.sourceforge.net/doc/api/org/
ksoap2/package-summary.html

[21] I. Singh, J. Leitch, and J. Wilson, “Gson user
guide.” [Online]. Available: https://sites.google.com/
site/gson/gson-user-guide

[22] A. Kuznetsov and E. Pyshkin, “Searching for music:
from melodies in mind to the resources on the web,”
in Proceedings of the 13th international conference
on humans and computers. University of Aizu Press,
2010, pp. 152–158.

[23] K. Bischoff, C. S. Firan, and R. Paiu, “Deriving music
theme annotations from user tags,” in Proceedings of
the WWW 2009, 2009.

20 Informatica 38 (2014) 11–19 M. Purgina et al.

