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We deal here with job scheduling under the assumption that performing a job requires the production of en-
capsulated renewable and non-renewable resources. For the sake of understanding, we rely here on a case
study related to energy production by a photo-voltaic platform. Handling it means synchronizing resource
production and consumption in order to optimize both production costs and some scheduling criterion, and
induce the setting of a complex bi-level model. Moreover, this applicative context makes appear that job
scheduling and resource production most often depend on distinct players, provided with their own agenda
and access to information. Adopting here the point of view of one specific player, namely the job sched-
uler, leads us to set a model that shortcuts the production level with the help of surrogate estimators. Those
estimators involve flexible pricing mechanisms and machine learning devices. According to this, we first
perform a structural analysis of our model, before designing and testing several algorithms that implement
this surrogate component based approach.

Povzetek: Poročilo obravnava problem načrtovanja nalog z uporabo obnovljivih in neobnovljivih virov en-
ergije, kjer se osredotoča na sinhronizacijo proizvodnje in porabe energije. Predlaga uporabo nadomestnih
ocen za obvladovanje kompleksnih dvo-nivojskih odločitev v sodelovalnih okoljih, pri čemer vključuje tudi
strojno učenje za optimizacijo stroškov.

1 Introduction

The notion of multi-level decisional model (see [16], [18])
most often derives from contexts involving several players,
independent from each other or tied together by some
hierarchical or collaborative link, who share the decision
with respect to some system. Solving such a model aims
either at providing a best scenario if all the players operate
under a common authority (centralized paradigm), or
(collaborative paradigm) at helping them into the search
for a compromise.

Most contributions address multi-level models ac-
cording to the centralized paradigm, while assuming the
existence of a unique decider provided with full infor-
mation. Handling a model set this way is a difficult task
(see [10], [11]). It usually involves complex decision
sub-models of very different types. Standard approaches
rely on decomposition schemes, hierarchical (Benders
decomposition, Stackelberg Equilibrium,…) or horizontal
(Lagrangean relaxation) (see [2], [26]). In both cases a
major difficulty derives from the sensitivity issue, which
means the way one may retrieve information from the
different levels in order to make them interact. In case the
decision problem involves temporal constraints about jobs
to be processed, another difficulty comes from resulting
synchronization constraints (see [9]), which require the
different players to meet in order to exchange resources or
informations.

Yet in practice, it may be utopian, for both technical
and economical reasons, to assume that all players will
agree on a common agenda and on the share of infor-
mation. Game Theory, mainly Cooperative Game (see
[7], [8], [21],[33]), provides us with a useful tool for the
anticipation of the behavior of the players and for the
distribution of the costs among them. But it does not help
a specific player in making its own decision. So, when the
focus is on such a specific player, one must find a way to
bypass the levels related to the other players and replace,
under incomplete information, the criteria and costs related
to those players by surrogate estimators.

Present contribution reflects this concern. If we refer
to the Frascati Manual of the European Commission, it
refers to Section I.2 (Informatics and Information Sciences)
while involving developments related to Combinatorial
Optimization and Operations Research. It refers to funda-
mental research in the sense that collaborative decision and
complex multi-level models are generic issues, and it has
also to see with Applied Research since, in order to make
things easier to understand, we start from an applicative
context. This context is related to researches conducted
about intelligent vehicles inside the IMOBS3 (Innovative
Mobility Services, Systems and Structures) Labex in
Clermont-Ferrand, and to a partnership between LIMOS
Laboratory and the national PGMO (Gaspard Monge for
Optimization) program promoted by power company EDF
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(Electricity De France). It involves the joint management
of energy by a local photovoltaic (PV-Plant) platform
and by a consortium of users (industrial players, services
providers, …) relying on this energy in order to perform
jobs according to their own purposes. The fact is that
market deregulation and emergent technologies currently
induce the rise of local renewable energy producers (facto-
ries, farms, householders, ...) who simultaneously remain
consumers. Those new players make self-consumption
become an issue (see [5], [22], [30], [36], [44]) whose key
operational feature is the need for synchronization between
time-dependent resource production and its consumption
(see [12], [14], [23], [25]).

So we consider here on one side, a production man-
ager who runs a PV-Plant (Photovoltaic Plant), that not
only produces energy and distributes it among end-users
(jobs) but also buys and sells energy on the market. On the
other side, one or several job schedulers are in charge of
performing specific jobs. Both meet in order to perform
recharging transactions: in order to avoid jobs to waste
time while waiting for recharge, the PV-Plant relies on
a set of batteries and implement a swapping policy (see
[4], [40], [41]), so that the job schedulers only need to
switch from a battery to another one. We suppose that this
plug out/in operation is instantaneous. Limited storage
and recharge capacities impose both players to carefully
synchronize the time-dependent energy production and its
consumption. This requirement makes resulting bi-level
decision problem complex, even under the centralized
paradigm. Many searchers recently showed interest into
the decisional problems raised by the management of
renewable energy. They most often focused either on
production scheduling (see [1], [13], [15]) or on the issues
related to consumption (see [3], [17],[19], [27], [31]).
But very few dealt with the interaction between both (see
[5], [6], [23], [34], [36], [40]) and they most often did
it while adopting the point of view of a unique decider
provided with full information. Our goal is to study here
this interaction and the way players collaborate under
incomplete information (see [12], [29], [34], [35]), in order
to derive heuristic algorithms reflecting the point of view
and the knowledge of a specific player. Though part of the
difficulty of our specific application is due to uncertainty,
we suppose, for the sake of simplicity, that our system
behaves in a deterministic way.

Starting from this applicative context, we set a bi-level
PVSync model. This model is a centralized macroscopic
model, which relies on simplifications with respect to the
behaviors of respectively the batteries and the PV-Plant
(linearization of the charge and discharge processes for
the batteries (see [37], [38], [39]), deterministic power
prediction for the PV-Plant (see [44]). Those simplifica-
tions are justified not only by our wish to get a tractable
model, but also by the fact that we intend adopting the
point of view of the job scheduler and designing heuristic

algorithms that reflect this point of view. We notice that
this PVSync model may be viewed as a new variant of
the well-known RCPSP: Resource Project Scheduling
Problem(see [32], [24]). RCPSP is about scheduling jobs
under temporal and resource constraints, and our model
introduces non-renewable resources (energy) encapsulated
into renewable ones (the batteries).

We first study PVSync according to the centralized
paradigm. We cast it into the MILP: Mixed Integer Linear
Programming framework, and analyze the structure of its
main components. Our main purpose being the design of
heuristics reflecting the point of view of the job scheduler,
we introduce a projectionmechanism that projects the con-
straints related to the batteries, that the job scheduler does
not control, into a surrogate Idle Battery constraint that
he may easily handle. Next, we address the collaborative
issue. We start doing it while supposing that the production
manager acts as a mediator, and cast our problem into the
Cooperative Game framework. We keep on while adopting
the point of view of the job scheduler, who implicitly
endorses the role of the master of the game. Our goal
becomes the design of job scheduler oriented heuristic
algorithms SurrPVCost that handle PVSync according
to this restricted point of view, while short-cutting the
part of the process involving the PV-Plant. We use a
surrogate formulation of the costs together with surrogate
constraints that aims at making the hidden production
level remain feasible. The surrogate constraints are the
Idle Battery projected constraints that we just mentioned
above, augmented with additional constraints. As for the
surrogate formulation of the costs, we try two approaches:
the first one is based upon a pricing mechanism; the sec-
ond involves machine learning and convolutional neural
networks (see [28], [43]). Both approaches are well-fitted
to the management of the non-deterministic case.

So the paper is organized as follows. In Section 2,
we introduce the PVSync problem. We set it according
to the centralized MILP (Mixed Integer Linear Program-
ming) framework (Section 2.2), and discuss different
formulations (Section 2.3). In order to help the reader
in identify the scope of the paper we fix the limitations
of this research in Section 2.4.In Section 3, we analyze
the structure of the main components of this model and
the properties of the Idle Battery constraint. We start
discussing in Section 4 the cooperative issue and first cast
in Section 4.1 our problem into the Cooperative Game
framework. Next we introduce in Section 4.2 a generic
collaborative algorithmic scheme for the handling of
PVSync while using surrogate estimators. We describe in
Section 4.3.1 the surrogate constraints that we derive from
the projection scheme of Section 3, and propose in sections
4.3.2 and 4.3.3 2 estimators of the production costs: the
first one relies on a parametric pricing mechanism while
the second one involves a convolutional neural network.
We describe in Section 4.4 the way those estimators may
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be used in order to drive a job scheduler oriented heuristic
algorithm SurrPVCost, and devote Section 5 to numerical
experiments.

2 The PVSync problem

This section is devoted to the description of our case study,
related to energy management, which will be the starting
point for coming developments. As told in the introduction,
this case study derives from a partnership between the
LIMOS Laboratory and the national PGMO (Gaspard
Monge for Optimization) promoted by power producer
EDF. It provides us with a medium for the implementation
and the tests of algorithmic proposals related to a more
fundamental issue, namely the management of complex
multi-level decision models in both centralized and collab-
orative contexts. According to this, our main contribution
will be about the way we may endorse the point of view
of a given specific player, set a model reflecting its agenda
and access to information, that consequently reduces the
behavior of the other players to what we call surrogate
constraints and criteria, and accordingly design heuristic
algorithms.

While setting a model for this case study, we shall
notice that it extends one of the most fundamental
scheduling problem, the RCPSP: Resource Constrained
Scheduling Problem.

The Job Scheduler Side: We consider a set of jobs
J = {1, . . . , J} to be performed exactly once within a time
horizon [0, N ] divided into unit length periods. We denote
by i the period [i− 1, i]. Any job j requires tj periods and
is constrained by a time window {Minj , . . . ,Maxj}: j
must start no sooner than period Minj and end at period
no later than Maxj . Some pair of jobs (j1, j2) are tied
together by some precedence relations j1 << j2 whose
meaning is that j1 must be finished when j2 starts. We
do not allow Preemption: Once a job starts, it cannot be
interrupted.

The Resources : Every job j requires some amount
of (electric) energy ej . This energy is stored inside a set
K = {1,…,K} of identical batteries, that are assigned to
the jobs at the time when they start. Every job requires
exactly one battery and a battery cannot be simultaneously
assigned to several jobs. It comes that no more than K
jobs may be running at the same time. A battery must
be periodically recharged in order to run as many jobs
as possible, and recharge takes place when the battery is
idle and does not run any job. The storage capacity of
a battery is denoted by C: The amount of energy stored
inside a battery cannot exceed C. The recharge capacity of
a battery is denoted by CR: The amount of energy which
may be loaded into a battery during 1 period cannot exceed
CR. The initial load of battery k ∈ {1, . . . ,K} is denoted

by HInit
k . For technical reasons, assigning a battery to a

job j takes place at the junction between 2 periods, that
means at some time i, i = 0, . . . , N − 1. Such a swapping
transaction is instantaneous. The battery remains active
during the time when j is running, and cannot be recharged
during this time. We introduce the following notations:

– ê =
∑

j ej ; t̂ =
∑

j tj ; E
Mean = ê

t̂
;

– For any j, eMean
j =

ej
tj
.

Remark 1: We proceed here in a way that is standard
with respect to this kind of problems (see [3], [19], [27])
and that consists in simplifying the physics of both the
batteries and the PV-Plant. We implicitly refer here to the
same kind of Ion/Lithium batteries that may be embedded
into electric vehicles, with storage capacities between 20
KWh and 100 KWh, and recharge capacities between 10
KW and 100 KW. However, we do as if that the charge
and discharge processes of those batteries were linear, that
may be considered as true as long as the current charge of
the battery remains located inside some critical interval
(see [37], [38]). This implicitly means that capacity C is
not the real capacity of the battery, rather the size of the
interval inside which the charge and discharge processes
may considered as quasi-linear. Also, we do not allow here
any choice choice between different recharge capacities
involving distinct economic costs.

The PV-Plant Side: In order to implement a self-
consumption policy we rely on a PV-Plant, that means on
a photovoltaic facility. This PV-Plant assigns the batteries
to the jobs according to some swapping policy and pro-
duces its own energy that it distributes among the currently
idle batteries or that it sells to the market. In case this self-
produced energy is not enough, the PV-Plant can also buy
energy to the market. Energy stored inside the batteries can
be neither transferred to another battery nor sold. We de-

Figure 1: Time dependent production rates and costs for the
micro-plant

note by Ri the expected production of the PV-Plant at pe-
riod i, by Pi the energy unit purchase price at period i, and
by Si the energy unit sale price. Of course we have, for any
i, Pi ≥ Si. An example of cost and production rates is pro-
vided by Figure 1. We set, for any period i:

– PMean = mean value Pi, i = 1, . . . , N ;
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– SMean = mean value Si, i = 1, . . . , N ;

– RMean = mean value Ri, i = 1, . . . , N .

Figure 2 describes the way the PV-Plant and the jobs
interact in the case when the jobs are tours performed
by electric vehicles, that start and end into the PV-Plant
and make the vehicles visit a set of customers. It shows
the swapping policy that makes some active batteries be
embedded into the vehicles, while the other idle batteries
remain available for recharge.

Remark 1-Bis: We bypass the physics of the PV-Plant
(see [39], [44]) and consider its behavior as determinis-
tic, following the way standard software like PVLibMatlab
([44]) proceed.

Figure 2: PV-Plant, batteries and vehicle routing jobs

Then we may set the PVSync problem:

PVSync: {Simultaneously schedule the jobs and the
PV-Plant, in such a way that:

– Every job j is run once without any interrup-
tion (Non-Preemption) within its time window.
Precedence constraints j1 << j2 are satisfied.
(C1)

– Every time a job j is performed, it is provided
with a battery k(j) loaded with at least ej energy.
(C2)

– The global energy load of the batteries at the end
of period N must be at least equal to

∑
k H

Init
k .

(C3)
– Some hybrid costα.SchCost+PV Cost is min-
imized. PV Cost is the self-consumption cost,
equal to the difference between the energy pur-
chase costs and the profits derived from the sales.
Scheduling cost SchCost is the sum of the com-
pletion times of the jobs.}

Remark 2: PVSync and the RCPSP problem: The
PVSync problem may be viewed as new variant of the

well-known RCPSP: Resource Constrained Scheduling
Problem (see [32], [24] for standard RCPSP), that is itself
an extension of the Multi-Processor Scheduling problem.
Jobs depend here on encapsulated resources, which are
renewable batteries and non-renewable energy embedded
into the batteries. The first ones act as containers for
the second ones. Setting this extension in a formal way
would imply introducing a lot of notations, without any
fundamental impact on the methods. So, instead of doing
it, we keep on with the PVSync setting and terminology,
while referring to the batteries as renewable container
resources and to the energy as non renewable content
resource.

Remark 3 : We may set PVSync as a bi-level model by
distinguishing the respective roles of the job scheduler and
the PV-Plant :

Bi-level Reformulation of PVSync: {Schedule the jobs
in such a way :

– (C1) is satisfied.

– An hybrid cost α · SchCost+ PV Cost is min-
imized, PV Cost being the optimal value of the
following PVPlant sub-problem :

PV-Plant sub-problem : {Schedule the sale,
purchase and distributions operations, and
assign the batteries to the jobs in such a way
that (C2) is satisfied and that the difference
between the energy purchase costs and the
profits derived from the sales is minimal.}}

Remark 4: One might clearly make the PV-Plant side
more complex, by broadening the scope of feasible sale,
purchase and distribution operations, by getting closer to
the physics of storage and recharge/discharge processes,
by involving Heterogeneous batteries, with distinct storage
and recharge capacities, and by allowing distinct recharge
capacities, each recharge capacity involving its own
specific costs.

Our Goal and Contribution : As a new bi-level extension
of the RCPSP problem, the PVSync problem is interesting
by itself. Yet, our purpose here is not the design of exact
algorithms for this problem, rather the study of the way
one might efficiently handle it if the PV-Plant processes
become more complex (see Remark 4) or in the case of
a collaborative context, that would impose us to focus on
the job scheduler point of view and cope with restrictions
on the information related to the behavior of the PV-Plant.
This means that our main contribution here is the design of
heuristic algorithms that tends to emulate the decentralized
point of view of a specific player, namely the job sched-
uler, possibly provided with partial information. In order
to achieve it, we first cast PVSync into the MILP frame-
work (Section 2.2), in order to get an unambiguous setting
and to provide ourselves with reference results, and discuss
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some variants (Section 2.3). Next we perform some struc-
tural analysis (Section 3) with focus on the introduction of
a mechanism that projects the constraints related to the bat-
teries (that the job scheduler does not control) into surro-
gate Idle Battery constraints that he may easily handle. The
introduction of this projection mechanism opens the way
(Sections 4 and 5) to the design and test of job scheduler
oriented heuristic algorithms SurrPVCost for the handling
of PVSync, that reflect the incomplete point of view of the
job scheduler. These algorithms rely on the management
of surrogate constraints, (the Idle Battery constraints aug-
mented with some additional constraints), and of surrogate
objective functions, that express the approximation that the
job scheduler may get of the part of the costs that it does
not fully control. Though we stick here to our case study,
this approach is generic andmight be applied to other multi-
level/multi-player decision problems.

2.1 An example
Let us suppose that J = {A,B,C,D,E}, with respec-
tive durations tj = 2, 1, 2, 3, 1 and energy requirements
ej = 5, 5, 4, 9, 4. Jobs A and B must be run between peri-
ods 3 and 5, job C between periods 5 and 8, jobD between
periods 2 and 7, and job E between periods 7 and 10.
We are provided with 2 identical batteries k1 and k2, with
initial loads respectively equal to 7 and 6.We have:C = 12,
CR = 3. The time space is divided into 10 periods and time
versus money coefficient α is equal to 2. Production data
come as in table 1:

Table 1: Prices and production coefficients
i 1 2 3 4 5 6 7 8 9 10
Pi 2 3 7 7 3 2 6 7 4 2
Si 1 2 4 4 1 1 3 3 2 1
Ri 4 4 3 5 2 6 4 4 4 5

Then we get (Fig. 3) a feasible PVSync solution:

– Battery k2 consecutively runs jobs A and B between
periods 3 and 5 and comes back to the PV-Plant at the
end of period 5. It reloads until period 7, runs job E
and comes back to the PV-Plant.

– Battery k1 runs job D at period 2 and comes back to
the PV-Plant at the end of period 4. Then it reloads
before running job C at period 8.

Figure 3: A feasible schedule of the jobs

For every period i, energy amounts respectively bought,
sold and distributed to the batteries are given by table 2.

Table 2: Scheduling the production
i 1 2 3 4 5 6 7 8 9 10

Bought 1 0 0 0 1 0 0 0 0 1
Sold 0 1 3 5 0 0 1 4 2 0
To k1 2 * * * 3 3 * * 3 *
To k2 3 3 * * * 3 * * 2 3 *

2.2 A MILP model
The purpose of this section is to cast the PVSync problem
into the MILP framework. This will provide us with a non
ambiguous formal setting of this problem, that we will
refer to all along the paper, as well as with reference results
for numerical experiments. Notice that it would have been
possible to choose another framework, like for instance
the SAT framework (while using the library Google’s
CP-SAT, part of the OR-Tools Library) or the Constraint
Programming framework (while relying on the IBM CPO
software). But the fact is that the MILP framework is a kind
of standard in Operations Research and Combinatorial
Optimization, and is also widely used in the Industry,
specifically in companies involved in Telecommunica-
tions, Transportation and Energy Production.

Since PVSync may be viewed as a RCPSP exten-
sion, we adapt the standard RCPSP MILP: Mixed Integer
Linear Program formulation corresponding to the case
when the time space is explicitly divided into unit-time pe-
riods. In such a case,RCPSP_MILP usually relies on a {0,
1}-valued vector Z = (Zj,i, i = 1, . . . , N, j = 1, . . . , J)
which tells us at which period i a job j starts. In our
case, we must also explicitly identify the batteries so that
they may be assigned to the jobs. We link the jobs, the
periods and the batteries through a {0, 1}-valued vector
X = (Xj,k,i, j = 1, . . . , J, k = 1, . . . ,K, i = 1, . . . , N):
Xj,k,i = 1 means that battery k is assigned to job j,
starting at period i.
On the other side, we represent the production activ-
ity of the PV-Plant by 3 non negative rational vectors
U = (Ui, i = 1, . . . , N), V = (Vi, i = 1, . . . , N),
Q = (Qk,i, k = 1, . . . ,K, i = 1, . . . , N), with respective
meanings:

– Ui means the energy purchase at period i,

– Vi represents the energy sale at period i,

– Qk,i represents the energy distributed to battery k at
period i.

We link the PV-Plant, the jobs and the batteries through a
last variable W = (Wk,i, k = 1, . . . ,K, i = 0, . . . , N) ≥
0 with rational values: Wk,i represents the energy inside
battery k at the end of period i (Wk,0 means the initial load
of battery k). Resulting model comes as follows:

PVSync_MILP Model:{Compute:
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– {0, 1}-valued vector Z = (Zj,i, i =
1, . . . , N, j = 1, . . . , J): Zj,i = 1 means that
job j starts at period i.

– {0, 1}-valued vector Y = (Yj,k, k =
1, . . . ,K, j = 1, . . . , J): Yj,k = 1 means that
battery k is assigned to job j.

– {0, 1}-valued vector T = (Tk,i, k =
1, . . . ,K, i = 1, . . . , N): Tk,i = 1 means that
battery k is active at period i.

– {0, 1}-valued vector X = (Xj,k,i, k =
1, . . . ,K, j = 1, . . . , J, i = 1, . . . , N): Xj,k,i =
1 means that battery k is assigned to job j, start-
ing at period i.

– U = (Ui, i = 1, . . . , N) ≥ 0 with rational val-
ues: Ui means the energy purchase at period i.

– V = (Vi, i = 1, . . . , N) ≥ 0, rational: Vi means
the energy sale at period i.

– Q = (Qk,i, i = 1, . . . , N, k = 1, . . . ,K), ratio-
nal:Qk,i means the energy distributed to battery
k at period i.

– W = (Wk,i, i = 0, . . . , N, k = 1, . . . ,K) ≥ 0,
rational:Wk,i means the load of battery k at the
end of period i.

Under the constraints:

– Minimize
∑

i(Pi.Ui–Si.Vi) + α.(
∑

j,i i.Zj,i).
(E1)

– For any i, j, Zj,i =
∑

k Xj,k,i. (E2)
– For any k, j, Yj,k =

∑
i Xj,k,i. (E3)

– For any battery k, period i1, Tk,i1 =∑
j,i=i1−tj+1,...,i1

Xj,k,i. (E4)

– For any j,
∑

k Yj,k = 1 =
∑

i Zj,i = 1. (E5)
– For any j, any i s.t (i < Minj) or (i > 1 +

Maxj − tj), Zj,i = 0. (E6)
– For any k, i, Qk,i ≤ CR.(1− Tk,i). (E7)
– For any i, k,Wk,i ≤ C. (E8)
– For any k, Wk,0 = HInit

k,0 and Wk,N ≥ HInit
k,0 .

(E9)
– For any i ≥ 1, k, Wk,i = Wk,i−1 +

Qk,i–(
∑

j ej .Xj,k,i). (E10)
– For any i, Ui +Ri = Vi + (

∑
k Qk,i). (E11)

– For any j1, j2 s.t. j1 << j2,
∑

i i.Zj1,i + tj1 ≤∑
i i.Zj2 . (E12)}

Proposition 1: Solving PVSync_MILP solves the PVSync
problem.

Proof: One easily turns any feasible solution of PVSync
into a feasible solution (Z, Y, T,X,U, V,W,Q) of
PVSync_MILP with same cost. Checking that every
constraint (E1),…, (E12) is satisfied derives in a straight-
forward way from the meaning of those constraints: (E2)

means that if job j starts at period i, then there is exactly
one battery assigned to j. (E3) means that if battery k
is assigned to job j, then there exists a unique period i
such that j starts with battery k at period i. (E4) means
that if battery k is active at period i1, then there exists
a unique job j which starts with battery k at i such that
i ≤ i1 ≤ i + ti − 1. (E5) means that to any job j must be
assigned exactly one battery and one starting period. (E6)
means that any job j is run within its time window. (E7,
E8) are capacity constraints: the load inside a battery at the
end of a given period cannot exceed the storage capacity
of the battery, and the amount of energy loaded into a
battery during a given period cannot exceed the recharge
capacity. (E9) expresses the initial and final requirements
for the batteries. (E10, E11) are nothing more than balance
equations, which distribute energy over the time between
purchase, sale, storage and consumption by the jobs. (E12)
means that if two jobs j1, j2 are such that j1 precedes
j2, then the starting period for j2 must be larger than the
ending period of j1. Conversely, the key point is that (E5)
assigns exactly 1 battery k and 1 starting period i to every
job, and that variables Xj,k,i involved in (E2, E3, E4)
allow us to characterize the periods when a battery is active
or idle. This in turn enables us to control through (E7, E11)
the amount of energy loaded into any battery at any period,
as well as the Non-Preemption constraint. The rest of the
proof comes in a straightforward way. End-Proof.

2.3 A short discussion: variants of the
PVSync problem

In practice, production configurations may be more com-
plex (see Remark 4), and we may be imposed to get closer
to the physics of both the batteries and the PV-Plant. Let
us mention here 3 possible variants, whose handling would
provide us with a stronger motivation for the approaches
that we are going to describe in Section 4:

First Variant: Batteries may be used in order to store
energy and sell it later. According to this hypothesis,
a battery k may receive energy at period i and sell it
at period i’ > i. The PVSync_MILP model must be
updated through the introduction of an additional vector
V S = (V S

k,i, k = 1, . . . ,K, i = 1, . . . , N), meaning the
amount of energy sold at any period i by battery k.

Second Variant: A fixed storage unit may be used either
for later sale or battery feeding. According to this hypoth-
esis, such a Buffer battery BUFF , with storage capacity
CBUFF , initial loadHBUFF , recharge capacityCReBUFF

and discharge capacityCDeBUFF , induces the introduction
of new variables into the model:

QBUFF
i = energy sent from the PV-Plant to the Buffer
battery at period i.

V BUFF
i = energy sold by the Buffer battery at period i.
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QBUFF
k,i = energy sent by the Buffer battery to battery k
at period i.

WBUFF
i = energy inside the Buffer battery at the end of
period i.

Third Variant: Periods units and time values do not
coincide.
Actually, the structure of the time space for the PV-Plant
may not coincide with the structure of the time space for
the jobs. More precisely, a period means a time interval
during which the PV-Plant is stable (no change neither in
the production rates nor in the purchase/sale prices). In
most cases, the duration of a period is given as an integral
number p, while the duration of a job may take any integral
value. In such a case, representing the schedule of the jobs
with a vector Z = (Zj,i, i = 1, . . . , N, j = 1, . . . , J) as
in the previous section does not hold anymore and getting
a PVSync MILP formulation requires the introduction of
flow vectors representing the way the jobs exchange the
resources.

2.4 Limitations of the research
The present paper involves a wide range of concepts and
software tools. To better delineate the scope of the paper and
remove any ambiguity, we will summarize its limitations
here. This will help the reader distinguish between concepts
mentioned as potential future research topics and methods
used as tools, from the issues that are central to the paper.

– The RCPSP is not central: We mention in the in-
troduction and in previous section 2.2 that PVSync
may be viewed as an extension or a variant of the
standard RCPSP problem. This extension is novel in
that it links renewable and non-renewable resources
through an encapsulation relation (the renewable bat-
teries are containers for the non-renewable energy).
In the future, it may be interesting to further study
RCPSPmodels linking renewable and non-renewable
resources and to design new exact algorithms or adapt
existing ones. However, this is not the purpose of this
paper, which is in no way focused on the RCPSP. We
do not cast PVSync into the generic RCPSP frame-
work involving jobs and resources, nor do we focus on
designing exact algorithms for handling it (typically,
contributions about RCPSP presuppose a centralized
context and emphasize the design of fast-running ex-
act algorithms [24]).

– MILP models and solvers are tools, not the focus:
At the beginning of former section 2.2, we provide
a MILP formulation of PVSync. The main purpose
of this MILP model is to establish an unambiguous
formulation of the PVSync problem and to generate
benchmark results that can help evaluate heuristic al-
gorithms designed from the restricted perspective of a

specific player. We use the MILP framework primar-
ily because we are familiar with the CPLEX Library.
Consequently, our focus is not on designing sophis-
ticated MILP settings for PVSync that involve valid
cuts, facets, or specific decomposition schemes to fa-
cilitate the computation of exact solutions. In realistic
contexts, the complexity of the production level (the
PV-Plant) and the incompleteness of the information
available to a target player would render such settings
impractical. Instead, our goal is to design heuristic al-
gorithms that are adapted to such complex contexts.

– The same applies to Machine Learning: Sections 4
and 5 of the paper will involve neural networks used to
provide the job scheduler with an approximation of the
behavior of its production partner. Since the behavior
of this PV-Plant player is related to solving a produc-
tion planning problem, we use convolutional neural
networks (CNNs) to handle instances of this planning
problem with varying sizes while limiting the number
of synaptic coefficients. However, Machine Learning
will not be our primary focus: We shall rely on stan-
dard, ready-to-use open software (Keras TensorFlow)
that we apply to a CNNwith a fairly intuitive structure,
and we train this CNN using versions of the stochastic
gradient algorithm implemented within this software.
The accuracy of the neural network is not the critical
factor here; rather, it is its ability to guide our heuristic
scheduling algorithms toward satisfactory solutions.

– PV physics and technologies are only a hypoth-
esis: Our paper addresses a decision problem from
the perspective of a specific target player who by-
passes some levels of the complex underlying system
by using surrogate estimators. When referring to the
physics behind this system, related to batteries and
charge/discharge processes, we remain at a macro-
scopic level, and our decision models require signifi-
cant simplifications. As explained in both the introduc-
tion and at the beginning of this section, these simpli-
fications involve assuming that the recharge and dis-
charge processes are linear and that the behavior of the
PV-Plant is deterministic, which is generally accurate
as long as the battery load remains within a safe in-
terval. Therefore, we do not concern ourselves with
the full infrastructure of the PV-platform (such as in-
verters and trackers) or what occurs at the microscopic
level. In other words, our contribution is not about
photovoltaic production technology, nor is it about the
physics and electronics involved in the production and
storage of this renewable energy.

3 Structural analysis
We analyze in this section the structure of PVSync and its
complexity, while adopting the standard centralized point
of view (one decider, providedwith all information).We de-
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scribe the projection mechanism (Idle Battery constraints)
that will allow us to bypass the battery level. We first intro-
duce the following notations:

For any subset A of the job set J, we denote by
PVSync(A) the restriction of PVSync to the jobs of
A, and by PV Sync(A) its value.

For any schedule vector Z we denote by Restrict-
PVSync(Z) the problem which derives from PVSync
by fixing Z, and by RestrictPV Sync(Z) its value.

For any schedule vector Z and any period i, we denote by
n(Z, i) the number of jobs which are active at period i
according to Z, and by L(Z, i) =K–n(Z, i) the num-
ber of batteries which are idle at period i, that means
which are available for recharge.

Given a schedule vector Z and a job j, we denote by
Start(Z, j) the starting period of j according to Z.

3.1 The different levels of PVSync and their
complexity

PV-Sync is a multi-level problem. We may distinguish a
scheduling level (variables Z), a battery level (variables
Y ) and a production one (variables U, V,Q). This last one
is nothing but a linear program with rational variables.

The Scheduling Level
Restricting PVSync to its scheduling level means short-
cutting the activity of the PV-plant, and only considering
the jobs, provided with durations, time windows and prece-
dence constraints, together withK identical batteries which
lose their container status and behave as machines in the
standard scheduling sense. In the case of variant 3 of former
section 2 this restriction of PVSync to its scheduling level
would contain the multi-machine scheduling problem, and
so would be NP-Hard (see [20], [42]). Since our time space
is explicitly divided into periods, we must be more careful.
Let us consider the following setting PVSync-Schedwhich
corresponds to this restriction of PVSync:

PVSync-Sched

– Inputs:
– The period set {1, . . . , N}
– The battery set K = {1, . . . ,K}
– The job set J = {1, . . . , J}: A job j requires
tj periods and we suppose that

∑
j tj ≤

K.N . No precedence constraints are im-
posed.

– Ouputs:Wewant to schedule the jobs of J inside
the periods 1, . . . , N , in such a way that no more
thanK jobs are performed during a same period
i.

Then we easily check that any instance of the well-known
strongly NP-Complete Bin Packing problem (see [20],

[42]) can be polynomialy reduced to an instance of
PVSync-Sched so that PVSync-Sched is also strongly
NP-Complete.

The Battery Level.
Let us consider now the Battery level, which means that we
suppose that the jobs of J have been scheduled and that we
deal with variables Yj,k, that distribute the batteries among
the jobs. We focus on the constraints (E3, E4, E5, E9, E10)
of PVSync, without taking care of the activity of the PV-
Plant, (infinite free production ratesRi), and while restrict-
ing ourselves to 2 batteries. More precisely, we consider the
following restriction PVSync-Battery of PVSync:

PVSync-Battery

– Inputs:
– The period set {1, . . . , N}.
– The job set J = {1, . . . , J}: A job j requires
ej energy. Every job j has been scheduled
inside a single period i(j) ∈ {1, . . . , N −
1}. We suppose that J = 2.(N − 1) and
that no more than 2 jobs have been sched-
uled during a same period.

– Two identical batteries k1, k2, initially
loaded with a same energy amountH0.

– Outputs: We want to assign the batteries to the
jobs in a way that is consistent with the energy
requirements.

Theorem 1: PVSync-Battery is NP-Complete.

Proof: We may consider the case when the initial load
H0 is equal to ê

2 with ê =
∑

j ej . Then we see that for
any period i, there must exist exactly 2 jobs j(i) and j(i)
which are scheduled at period i. We may suppose ej(i) ≥
ej(i). It comes that k1 and k2 must be active during pe-
riods 1, . . . , N − 1 and can only recharge at period N .
During those periods 1, . . . , N − 1, k1 and k2 must glob-
ally provide the same energy ê

2 . Thus, solving our problem
means partitioning the period set 1, . . . , N − 1 into 2 sub-
sets N1 and N2 in such a way that

∑
i∈N1

(ej(i)– ej(i)) =∑
i∈N2

(ej(i)– ej(i)). We get a reduction to the 2-Partition
problem (see [20], [42]) and we conclude. End-Proof.

3.2 Merging the batteries: a projection
mechanism

PVSync is a complex problem, with 2 encapsulated
decision levels, respectively related to job scheduling
and battery assignment, which both involve their own
NP-Complete satisfiability sub-problems. The discussion
about the variants of PVSync and Remark 4 showed that
the production level may itself become more complex,
even when remaining inside the P-Time class. So, even if
we work according to the centralized paradigm, dealing
with large size or real time constrained instances of
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PVSync should push us to find a way to partially bypass
some levels and among them the battery level. This trend
will of course be reinforced as soon as we address the
collaborative issue.

According to this purpose, we shortcut the battery
level by merging the K batteries into a unique virtual
one. Relaxing this way PVSync will later help us in a
significant way, when it will come to the design of job
scheduler oriented algorithms that schedule the jobs while
partially bypassing the production issue. More precisely,
we start from a PVSync instance and perform the following
construction:

– We replace theK batteries, by a single macro-battery
with storage capacity Ĉ = K.C. For any period i, Q̂i

will mean the energy amount loaded into this macro-
battery during period i.

– We forbid more than K jobs to be running during a
same period and we impose the Idle Battery constraint
(E13):
For any period i,
Q̂i ≤ CR.(K–n(Z, i)). (E13)
This constraint bounds the energy loaded into the jobs
without explicitly involving the batteries. It implies
that no more thanK jobs are simultaneously running.

Remark 5: The macro-battery is completely virtual and
can be viewed as a projection of batteries onto the job
scheduler. It provides us with a way to shortcut the battery
level.

This construction leads us to set a relaxation of PVSync,
denoted by PVSync-Merge. In order to analyze the com-
plexity of the Idle Battery constraint (E13), let us restrict
PVSync to 4 periods, unit-period jobs, no temporal con-
straints, and a PV-Plant activity reduced to energy purchase.
More precisely, let us set the following problem PVSync-
Idle:

PVSync-Idle

– Inputs:

– The period set {1, 2, 3, 4}.
– The unit-period job set J = {1, . . . , J}: A
job j requires ej energy.

– Battery parametersK,C,CR.

– Ouputs: We deal with a macro-battery initially
loaded with an energy amount H0 =

(
∑

j ej)

2 ,
and provided with a storage capacity Ĉ = H0

and a recharge capacity coefficient CR = H0

J .
Thismacro-battery can buy energy according in-
finite purchase costs in periods 1 and 3 and null
purchase costs in periods 2, 4. Then we want to
schedule under a null cost the jobs of J inside the
periods {1, 2, 3, 4}, in such a way that:

– The Idle Battery constraint is satisfied: For
any period i,
Q̂i ≤ CR.(K–n(Z, i)). (E13)

– For any period i, the load Ŵi of the macro-
battery at the end of i does not exceed Ĉ =
H0.

Then we check that solving PVSync-Idle means partition-
ing the job set J into 2 subsets J1, J2 such that

∑
j∈J1

ej =∑
j∈J1

ej . We derive from the NP-Completeness of the
2-Partition (see [20], [42]) problem the NP-Completeness
of the PVSync-Merge problem.
Of course, both the strong NP-Completeness of PVSync-
Sched and the NP-Completeness of PVSync-Idle imply
that PVSync-Sched is strongly NP-Hard.

Extending a Schedule Vector Z into a Feasible Solution
of PVSync-Merge
Since the leader object in PVSync-Merge is the schedule
vector Z = (Zj,i, j = 1, . . . , J, i = 1, . . . , N), we are now
going to characterize the conditions which make possible
to extend Z into a full feasible solution of PVSync-Merge,
in a way which does not involve the variables U, V, Q̂,W .
This characterization will help us in dealing with schedule
vector Z while bypassing the lower levels of PVSync. In
order to provide it, we need some additional notations:

– For any periods i, i1, we set:

• Conso(i, i1, Z) =∑
j s.t. i≤Start(Z,j)≤i1

ej .
Conso(i, i1, Z) means the energy consumption
by the jobs which start no sooner than i and no
later than i1.

• ProdMax(i, i1, Z) =∑
i2 s.t. i≤i2≤i1

(K − n(Z, i1)).C
R.

ProdMax(i, i1, Z) means the maximal energy
that the macro-battery may load during periods
i, . . . , i1.

Then we may state:

Theorem 2. Schedule vector Z may be extended into a fea-
sible solution of the PVSync-Merge problem if and only if:

– For any period i: H0 + ProdMax(1, i, Z) ≥
Conso(1, i+ 1, Z). (E14)

– For any periods i, i1, s.t. i ≤ i1: (E15)
Ĉ + ProdMax(i, i1, Z) ≥ Conso(i, i1 + 1, Z).

Proof: Above conditions (E14, E15) are clearly neces-
sary: The first one tells us that at any period i, the macro-
battery should have received enough energy in order to
ensure that any job j starting no later than period i + 1
might be achieved. The second one tells us that, if we con-
sider a sequence of periods i, . . . , i1, then the macro-battery
should receive enough energy during those periods in order
to achieve all jobs starting no sooner than i and no later than
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i1 + 1. The key point is about sufficiency. We proceed by
induction on i, and suppose the converse. We suppose that
i1 is such that we could schedule the production in such a
way that all jobs starting no later than i1 could be achieved,
and that at the end of period i1, we cannot provide the jobs
j starting in i1 + 1 with the energy that they require. We
may impose our production strategy to be such that at any
period i, we load the macro-battery with as much energy
as possible, taking into account the Idle Battery constraint
(E13) and the storage capacity Ĉ. Then we see, by moving
backward from i1 to 1, that either we reach some period i
such that (E15) is violated or we reach period i = 1 in such
a way that (E14) is violated. We conclude. End-Proof

4 The cooperative issue

There are several way to address this collaborative issue.
One may adopt the point of view of a specific player, and
emulate the interaction that this player is likely to develop
with its partners. Another approach consists in keeping on
with the centralized paradigm, and supposing that someme-
diator player fairly distributes costs and profits among the
other players. This second point of view corresponds to the
Cooperative Game theoretical framework. Though our pur-
pose here is to focus on the first approach, we are first go-
ing to briefly describe the way PVSyncmay be cast into the
Cooperative Game framework.

4.1 A cooperative PVSync game

Let us recall that a cooperative game (Ω, V al) (see [33],
[21]) is defined as a set of players Ω and a function V al
which, to any subset A of Ω, called coalition makes cor-
respond its cost value V al(A). Then the problem becomes
to fairly distribute the cost V al(Ω) among the players, in
such a way that no coalition is tempted to leave the game.
Several approaches may be tried. The most popular one is
related to the core notion: a price vector π = (πω, ω ∈ Ω)
is in the core of the game (Ω, V al) iff:

–
∑

ω πω = V al(Ω)

– For any coalition A,
∑

ω πω ≤ V al(A)

This core may be empty, which imposes trying weaker
ways to distribute the cost V al(Ω) among the players,
for instance according to the Shapley values. Conversely,
it may contain too many elements, which leads to more
restrictive notions such as the Nucleolus (see [7],[33]).

In the present case we suppose, for the sake of simplicity,
that every job j is identified with exactly one player, and
that the players are independent. This implies that no prece-
dence relation<< is imposed to the jobs, since such a con-
straint would induce a dependence between related players.
Then we define a cooperative game G-PVSync by setting:

– V al(A) = PV Sync(J)–PV Sync(J − A). V al(A)
represents the marginal cost induced by the jobs of A
with respect to PV Sync(J).

Then we may state:

Theorem 3: If all sale prices Si are null, then the core of
G-PVSync is not empty.

Proof: Let us recall that Bondareva/Shapley Theorem
(see [8]) provides us with a characterization of the non-
emptiness of the core of a cooperative game (Ω, V al). This
characterization comes as follows:

– A non negative vector µ = (µA, A ⊆ Ω) is said to be
balanced, if, for any player ω,

∑
A s.t. ω∈A µA = 1.

– Then the cooperative game (Ω, V al) has a non-
empty core if and only if for any balanced vector µ,
V al(Ω) ≤

∑
A µAV al(A). (E16)

So let us consider some balanced vector µ together with
some optimal solution Sol = (X,Y, Z, T, U, V,W,Q) of
PVSync. Let us set µ =

∑
A µA. (E16) requires:

PV Sync({1, . . . , J}) ≤
∑

A µA(PV Sync({1, . . . , J})
−PV Sync({1, . . . , J} −A)).
This equality is equivalent to: (E17)∑

A PV Sync({1, . . . , J} −A) ≤
(µ− 1).PV Sync({1, . . . , J}).
So we only need to check that it is possible to decompose
(µ − 1).Sol into a non negative linear combination∑

A µA.Sol({1, . . . , J} − A), where every vector
Sol({1, . . . , J} − A) is a feasible solution of the re-
striction of PVSync to the jobs of ({1, . . . , J} − A).
If we can do it, then we conclude since every value
PV Sync({1, . . . , J} − A) is going to be no larger
than the cost of Sol({1, . . . , J} − A). Getting such a
decomposition can be done by tracking inside Sol, for
every job j, the energy consumed by j and the energy
produced in order to match this consumption. As a
matter of fact, we might also represent the way energy
circulates according to (U, V,W,Q) as a flow vector
in a network derived from the periods and the batteries
involved in PVSync (time expanded network) and de-
compose it along the jobs of J into a multi-commodity
flow vector (see [2], [9]). This process makes appear, for
every battery k, the useless energy CRes(k) remaining
inside k throughout the whole time space. It yields a
decomposition of Sol as Sol =

∑
j SolJobj , where

every partial solution SolJobj meets reduced capacities
C − CRes(k), k = 1, . . . ,K . Then Sol({1, . . . , J} − A)
comes as

∑
j∈{1,...,J}−A SolJobtj . End-Proof

Remark 6: If we allow non-null sale price, then we
may check that above reasoning does not hold anymore.
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4.2 The job scheduler/PV-Plant interaction:
surrogate estimators

We now address the collaborative issue while adopting the
point of view of the job scheduler and trying to emulate
the interaction that this player is likely to develop with
its partner. This point of view corresponds to the most
natural bi-level setting of PVSync. According to it, we
rely on a surrogate estimator SurrPV Cost, which with
any schedule vector Z consistent with (E5, E12), and
any value of some flexible parameter vector γ, asso-
ciates an estimation SurrPV Cost(Z, γ) of the value
RestrictPV Sync(Z). The role of the parameter γ is
to introduce flexibility in order to mitigate the fact that
SurrPV Cost(Z, γ) provides us with no more than an
approximation of RestrictPV Sync(Z). The effective
value of γ will be tuned all along the interaction process,
in such a way that this process converges to a consensual
solution. So, at every step during this process, we shall
compute Z while restricting ourselves to contraints (E5,
E12) together with some additional (surrogate) constraints
Cons(γ, Z). Those surrogate constraints will aim at
both avoiding Restrict-PVSync(Z) to be unfeasible
and at providing a container for the interaction between
the job scheduler and its partner. We shall perform this
computation of Z in such a way that it minimizes the cost
α.(

∑
j,i i.Zj,i) + SurrPV Cost(Z, γ). Taken as a whole,

this interaction will proceed as follows (see Fig. 4):

Collaborative algorithmic scheme

Initialize γ and constraints Cons(γ, Z) about sched-
ule vector Z and γ;

Set the initial proposal of the job scheduler:
Compute Z which minimizes α.(

∑
j,i i.Zj,i) +

SurrPV Cost(Z, γ) while meeting (E5, E12) and
Cons(γ, Z);

While Not Stop do

1. Set the counter-proposal from the PV-Plant:
Solve Restrict-PVSync(Z) and retrieve new
constraints to insert into Cons(γ, Z);

2. Update Stop; If Not Stop then

Update γ;
Set the new proposal of the job scheduler:
Compute Z minimizing α.

∑
j,i i.Zj,i +

SurrPV Cost(Z, γ) while meeting (E5,
E12) and updated Cons(γ, Z);

Retrieve the best schedule vector Z obtained this way.

Of course, this heuristic management of PVSync may also
be applied under the standard centralized paradigm ap-
proach in the case of large size instance or real time require-
ments.

Figure 4: A collaborative scheme

4.3 Surrogate estimators and constraints
We distinguish the surrogate estimator
SurrPV Cost(Z, γ) from the additional constraints
Cons(γ, Z).

Remark 7: Notice, in the case of the surrogate esti-
mator SurrPV Cost(Z, γ), that it does not really aim
at providing an approximation in the standard sense of
RestrictPV Sync(Z), rather at efficiently driving above
collaborative algorithmic scheme towards good solutions.

4.3.1 Surrogate constraints

Previous Section 3 leads us to insert (E14) and (E15)
into Cons(γ, Z). Still, though these constraints ensure
the feasibility of the PVSync-Merge problem of Section
3, they may not be sufficient in the case of the full
PVSync problem. Typically, if 2 jobs j1 and j2 such that
ej1 = ej2 = 10, are scheduled to start at period 1, ifK = 2
and ifHInit

k1
= 5,HInit

k2
= 15, then we cannot successfully

assign the batteries to the jobs, while we may extend this
schedule into a feasible solution of PVSync-Merge.

In order to reinforce (E14, E15), we proceed in a
heuristic way, while relying on the flexible vector γ:

– We first set, for any energy amount E : m(E) =
⌈ E
CR ⌉. This number m(E) means the number of con-

secutive periods necessary in order to load a battery
with E energy. Let also recall that L(Z, i1) denotes
the number of idle batteries induced by Z at period i.

– Then we impose the following parametric heuristic
constraints, which depend on flexible parameters γ0
and γ1:

– For any period i, let j1, . . . , jS be the jobs sched-
uled to start at period i+1 according to schedule
vectorZ. Then, for any i1 ≤ i, we impose: (E18)
L(Z, i1) ≥
γ0.|{s s.t.m(es ≥ (i–i1 + 1)}|.

– For any period i, let us denote by j1, . . . , jS the
jobs starting at i + 1, ordered according to de-
creasing m(ejs) values, and by S1 ≤ S the
largest s value such that m(ejS1

) ≥ i. Then we
impose that there exist k1, . . . , kS1

inK such that
for any s ≤ S1:
HInitks + i.CR ≥ γ1.ejs . (E19)
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Constraints (E18, E19) aims at making in such a way that at
any period i, there should exist batteries which have been
idle for enough time in order to feed jobs starting in i+ 1.

4.3.2 A price based surrogate estimator

We proceed here in an empirical way, while following the
idea that the production cost induced by a schedule vector
Z is determined by the distribution of values L(Z, i), i ∈
{1, . . . , N}. This suggests us to express the surrogate cost
SurrPV Cost(Z, γ) as a sum

∑
i Πi,L(Z,i), where Πi,L is

an estimation of the cost induced by L batteries in recharge
(idle) at period i. According to this idea, we first make ap-
pear a standard production price ΠStand

i,L which, with any
idle battery number L and any period i, associates a kind
of a reference price of the recharge of L batteries at period
i. We do it by noticing that if all batteries receive a same
charge EMean at every period when they are idle, then the
production cost Cost should be equal to

∑
i Π

Stand
i,L(Z,i). So

we derive standard production prices ΠStand
i,L as follows:

ΠStand
i,L = Pi.(L.E

Mean–Ri) if L.EMean ≥ Ri and
ΠStand

i,L = Si.(L.E
Mean–Ri) else.

In order to flexibilize those prices, we follow intuition
which tells us:

– If L(Z, i).EMean ≥ Ri, then Πi,L should increase
with Pi;

– If L(Z, i).EMean ≤ Ri, then Πi,L should decrease
(negative cost) as Si increases.

This leads us to introduce 2 components γ2 and γ3 of flex-
ible parameter γ and to set:

– Πi,L = ΠStand
i,L .(1 + γ2.(Pi–PMean)) if

L(Z, i).EMean ≥ Ri,

– Πi,L = ΠStand
i,L .(1 + γ3.(Si–SMean)) else.

4.3.3 A machine learning based surrogate estimator

Instead of relying on energy price coefficients Πi,L we
use a neural network CNN_PV Sync in order to provide
us with the quality of a scheduled vector Z. Network
CNN_PV Sync involves 467 synaptic coefficients and is
trained with 9000 PVSync(Z) instances, among them 8110
training instances and 890 validation instances, solved
with the MILP model of Section 2. This small ratio of
1/20 between the number of synaptic coefficients and the
number of training instances eases the training process
(stochastic gradient optimization process), making the
error gap evolve in a monotonic way along the epochs
and stabilize itself in a natural way in the neighborhood of
some optimal error gap. The stochastic gradient algorithm
behaves as if it were dealing with a standard optimization
problem, with a small number of variables and an objective
function defined by an average violation of a larger set
of constraints. A consequence is that we do not need to

observe the evolution of the error gap along the epochs
in order to identify the epoch that induces the best error gap.

CNN_PV Sync is designed as a convolutional neu-
ral network (CNN). CNNs have been mostly used for
2D-pattern recognition, since images are very large size
inputs and since the convolutional masks are well-fitted to
the recognition of local patterns. In the present case, our
goal here is to learn the optimal value of a combinatorial
optimization problem (the optimal cost related to the
production sub-problem induced by fixing the decision of
the job scheduler), in order to drive a heuristic scheduling
process. An important feature of a CNN is that, at the
contrary of most neural networks, it can deal with flexible
inputs of different sizes. It is our case here, since the size of
our target combinatorial optimization problem may vary.
That is why we choose to work with a CNN. Notice that
the error gap induced by the the CNN is not at stake here,
rather its ability to drive the heuristic algorithm toward
good solutions.

A convolutional network usually works in 3 steps. In
the first step a same standard perceptron CM , called
convolutional mask, is applied to fixed size segments
of the input vector IN = (INm,m ∈ {1, . . . ,M}),
where M is the variable size of the input data vec-
tor. This perceptron CM yields an output vector
OUT = (OUTm,m ∈ {1, . . . ,M}), with the same
size as IN . In the next step, a pooling mechanism is
applied to OUT , in order to compact it into the fixed size
input vector IN of another perceptron NPool. In the last
step,NPool turns IN into the final outputOUT ofCNN .
In the present case the final output of CN_PV Sync is
a number θ between 0 and 1. This number refers to the
formulation of the optimal value RestrictPV Sync(Z)
as a barycentric combination LowPV Sync(Z) +
θ.(UpPV Sync(Z) − LowPV Sync(Z)), where
UpPV Sync(Z) and LowPV Sync(Z) are respectively an
upper bound and a lower bound of RestrictPV Sync(Z).
In case RestrictPV Sync(Z) does not exist, that
means in case PVSync(Z) is not feasible, we do as if
RestrictPV Sync(Z) were equal to UpPV Sync(Z)
(then θ should be equal to 1). Figure 5 shows the architec-
ture of CNN_PV Sync whose main components come as
follows:

– Input layer: We homogenize any input
(Z,P, S,R,HInit, C, CR,K) of Restrict-
PVSync(Z) as a 7(N + 1) vector IN , with
IN [i] = (P i, Si, Ri, µi, Li, C, CR), given by:

• P i =
Pi

PMean ;Si =
Si

PMean .
• µi =

∑
j active at period i = eMean

j ; µ0 = 0;
µi =

µi

RMean . This last quantity µi identifies the
normalized amount of energy consumed at any
period.

• Ri =
Ri

RMean ; R0 =
∑

k HInit
k

RMean .
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Figure 5: The neural network CNN_PV Sync

• Li =
L(Z,i)

K ; C = C
RMean ; CR = CR

RMean .

– Convolutional Mask: CM works on any vector
IN∗

i = (IN [i], . . . , IN [i+4]), which means an input
with 35 input arcs. It contains 3 inner layers, respec-
tively of sizes 8, 4 and 2, and ends into an output layer,
that yields 1 input value OUTi. This network is com-
plete in the sense that all 322 inner synaptic arcs are
allowed, together with standard biased sigmoid acti-
vation functions x → 1

1+exp(−kx) , with parameter k.
Thus the number of synaptic coefficients related to this
convolutional mask is 320 + 35 = 355.

– The pooling Mechanism: It works by merging con-
secutive values OUTi into a single one, in such a way
that we get an intermediate vector IN , with 13 entries,
all with values between 0 and 1.

– The Final Perceptron NPool: Once the pooling
mechanism has been applied, we handle resulting 13
dimensional vector IN with a perceptron NPool,
with input layer of size 13, intermediate layers of size
6 and 3, and a final layer of size 1. This network is
complete in the sense that all 99 inner synaptic arcs
are allowed, together with standard biased sigmoid
activation functions x → 1

1+exp(−kx) , parameter
k being provided with the same value as in the
convolutional mask. Thus, the number of synaptic
coefficients associated with this final perceptron is 13
+ 99 = 112.

Taken as a whole, CNN_PV Sync involves 467
synaptic coefficients.

– Outputs of CNN_PV Sync: As previously told, the
concatenation of CM and NPool yields a value
OUT = θ between 0 and 1, which refers to the
barycentric setting:
RestrictPV Sync(Z) = LowPV Sync(Z) +
θ.(UpPV Sync(Z)− LowPV Sync(Z)),
where UpPV Sync(Z) and LowPV Sync(Z) are re-
spectively an upper bound and a lower bound of
RestrictPV Sync(Z), computed as follows:

• LowPV Sync(Z) = −
∑

i Si.Ri.
• UpPV Sync(Z) = (SupiPi).(

∑
j ej) −

(
∑

i Si.Ri).

In case Restrict-PVSync(Z) is unfeasible, we
do as if RestrictPV Sync(Z) were equal to
UpPV Sync(Z), that means is if θ were supposed to
be equal to 1.

The way we train the network CNN_PV Sync in order to
make it learn its synaptic coefficients will be described in
the next section 5, devoted to numerical experiments.

4.4 Job scheduler oriented heuristics for the
search for schedule vector Z

Dealing with a blackbox objective function such that
CNN_PV Sync can only be done through a heuristic
scheme. So we design a simple job scheduler oriented
heuristic SurrPVCost that works in 2 steps and that we may
adapt to both the price based version and the machine learn-
ing version of the SurrPV Cost estimator.

SurrPVCost Job Scheduler Oriented Algorithm

Initialization : Pick up the jobs j according to increas-
ing Minj values (updated through constraint propa-
gation) and assign them starting periods which main-
tain constraints (E5, E12, E14, E15, E17, E18, E19),
meet time windows and the precedence constraints,
and minimize α.(

∑
j,i i.Zj,i)+SurrPV Cost(Z, γ);

While Not Stop do : Remove some job j from the cur-
rent schedule and reinsert it (while possibly delay-
ing other jobs) in such a way that α.(

∑
j,i i.Zj,i) +

SurrPV Cost(Z, γ) decreases.

5 Numerical experiments
Purpose: We want to evaluate the behavior of the job
scheduler oriented heuristic SurrPVCost, implemented
along the two surrogate estimators described in sections
4.3.2 and 4.3.3, and its ability to yield under small com-
putational costs a good approximation of the optimal
value of PV-Sync. According to this purpose, the MILP
formulation of PV-Sync is used only in order to provide
us with benchmark results.
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Technical Context: We use a processor IntelCore i5-
6700@3.20 GHz, with 16 Gb RAM, together with a
C++ compiler, Linux as O.S. libraries CPLEX20.1 (for
ILP models) and TensorFlow/Keras (for machine learning).

Instances: As for the PV-Plant side, we generate 2
integers M and N , N being a multiple of M , with
N = 10, . . . , 40,M = 2, . . . , 5. Then we split the period
set into M macro-periods, corresponding to different
mean production rates and prices. Related coefficients
Ri, Pi, Si are generated accordingly. Introducing those
macro-periods provides us with realistic prices and pro-
duction levels that may be related to human activity and to
the weather.
As for the scheduling part, we try to both ensure feasibility
and put stress on the instances. So we generate J , together
with mean duration and mean energy coefficients tMean

and EMean. We set C = 2.Supj ej andK = λ.J.( t
Mean

N ),
where λ is some control parameter. For any k = 1, . . . ,K ,
we generate HInit

k between C
3 and C. In order to make

the PV production match the demand, we update the Ri

by doing in such a way that
∑

i Ri = τ.J.C, τ being a
control parameter with value between 0.5 and 2. Finally
we generate the key parameter CR in such a way that
batteries globally receive at least β.J.C energy units
during the whole process, β being a control parameter
with value between 1.5 and 4. So the main parameters of
an instance are: N = Period Number, J = Job Number,
M = Macro-period Number, K = Battery Number, tMean

= Mean Job Length, α = Time versus Money Value, β =
Recharge Stress Value, τ = Production Stress.

According to this, we generate 10 groups of instances, ev-
ery instance group G_Id containing 30 instances consis-
tent with the characteristics N , J , M , tMean, K, α, β, τ
described in the following table 3.

Table 3: Instance group characteristics
G_Id N J M tMean K α β τ
1 40 21 3 4 4 1 2 0,5
2 40 23 4 5 4 0,5 3 1
3 40 20 5 6 5 0,2 4 2
4 40 24 3 4 5 1 2 0,5
5 40 32 4 6 4 0,5 3 1
6 40 34 5 8 4 0,2 4 2
7 60 43 4 5 3 1 3 1
8 60 47 6 10 3 0,5 4 2
9 60 53 4 5 5 1 3 1
10 60 61 6 10 5 0,5 4 2

5.1 Training the neural network
CNN_PVSync.

For every group instance G_Id described above and for
every instance Id in G_Id , we randomly generate 30

schedule vectors Z, which meet the constraints (E5, E12,
E14, E15, E17, E18, E19).We do it by turning the initializa-
tion procedure of the SurrPVCost Algorithm into a partial
enumeration procedure, in such a way it can randomly
generate several vectors Z meeting constraints (E5, E12,
E14, E15, E17, E18, E19). Notice that those vectors may
not be extended into a feasible solution of PVSync and
that in such a case we consider that RestrictPV Sync(Z)
is equal to UpPV Sync(Z), requiring related value θ to be
equal to 1. Then we split resulting set of 9000 instances
between a training set of 8110 instances and a validation
set of 890 instances. The high ratio of 20 between the
number of instances and the number of synaptic coef-
ficients significantly eases the training process, making
the error gap evolve in a monotonic way until stabilizing
itself in a natural way around some approximation of
the optimal error gap. We perform the training process
while testing 12 sets Hy of hyperparameters, described
in the following Table 4. Those hyperparameters are the
parameter k of the sigmoid activation function, the batch
size Ba, the number of epochs Ep, the loss formula Los
(among MS = Mean Square Error, MA = Mean Absolute
Error, MSL = Mean Square Logarithmic Error), the
optimizer Op (among Ad = Adam, Nad = Nadam, Amx
= Adamax, RMS = RMSprop). This table also makes
appear, for every hyperparameter set Hy, the gaps (in %)
between RestrictPV Sync(Z) and CNN_PV Sync(Z),
computed by referring to the value θ. Gap_T means here
the value (in %) of this gap related to the training instance,
and Gap_V means the same value (in %) related to the
validation instances.

Table 4: hyperparameter sets
Hy k Ba Ep Los Op Gap_T Gap_V
1 1 2 30 MS Ad 9.6 12.9
2 0.5 4 30 MS Ad 11.2 14.8
3 2 1 30 MS Ad 9.4 12.1
4 3 2 30 MS Amx 10.5 14.0
5 1.5 4 30 MS Nad 8.6 11.3
6 2.5 8 30 MS RMS 9.1 12.5
7 1.5 4 50 MA Ad 8.7 11.8
8 1.5 4 50 MA Ad 8.1 11.0
9 1.5 4 50 MSL Ad 8.4 11.2
10 1.5 2 50 MSL Nad 8.7 11.9
11 1.5 4 50 MA Amx 10.9 14.7
12 1.5 8 50 MS RMS 8.3 11.1

Comments: The best gap between RestrictPV Sync(Z)
and CNN_PV Sync(Z) corresponds to Hy = 8, with
value a little bit larger than 8% for the training instances
and 11 % for the validation instances. Recall that this
error gap is not really at stake, rather the ability of
CNN_PV Sync(Z) to drive the heuristic job scheduler
oriented SurrPVCost algorithm towards satisfactory solu-
tions.
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5.2 Evaluating the heuristic management
(job scheduler oriented algorithm
SurrPVCost of Section 4.4) of the
PVSync problem through surrogate
components

For any instance groupG_Id described in Table 3, we gen-
erate exactly one instance Id and, for every such instance:

• We apply the CPLEX12 library (Table 5) to the
PVSync_MILP model. Then we get (in less than 1
CPU h), a lower bound LB, an upper bound UB and
CPU time T_MILP .

• We apply (Table 6) the job scheduler oriented algo-
rithm SurrPVCost of Section 4.4 while relying on the
pricing mechanism described in Section 4.3.2 and set-
ting Πi,L = ΠStand

i,L for any i, L. We denote by PR1
resulting PVSync value. We do the same (Table 6)
with 8 combinations of γ values and denote by PR8
resulting value.We provide the CPU times T_PR8 (in
seconds) required by the scheduling heuristic SurrPV-
Cost described in Section 4.4.

• We apply (Table 7) the job scheduler oriented algo-
rithm SurrPVCost of Section 4.4 while relying on the
machine learning estimator described in Section 4.3.3
and denote byML related value. We provide the CPU
times T_ML required by the SurrPVCost job sched-
uler oriented algorithm described in Section 4.4.

Those results may be summarized into the following tables:

Table 5: Behavior of the PVSync_MILP model
Id LB UB T_MILP
1 - 239.64 - 235.91 3600
2 - 85.56 - 82.47 3600
3 - 1439.38 - 1311.60 3600
4 488.45 619.15 3600
5 212.90 248.33 3600
6 177.46 198.35 3600
7 1738.56 1760.33 3600
8 Fail Fail Fail
9 571.31 3742.10 3600
10 - 52.92 155.27 3600

Comments: As expected, the global ILP model is in trou-
ble, even on small instances. We notice that we may get
negative cost values, because of the sales. This makes dif-
ficult reasoning in terms of percentages. Still, for small J ,
UB looks close to optimality.
In case the job scheduler oriented heuristic SurrPVCost re-
lies on the parametric pricing mechanism described in Sec-
tion 4.3.2, it seems to be rather efficient. Though it only
relies on a heuristic SurrPVCost algorithm for the com-
putation of schedule vector Z, it yields better results than
the MILP model in the 3 instances with largest sizes. Its

Table 6: Behavior of the pricing scheme
Id UB PR1 PR8 T_PR8
1 - 235.91 - 216.68 - 216.68 48.22
2 - 82.47 - 75.84 - 78.52 71.83
3 - 1311.60 - 1165.59 - 1208.45 76.82
4 619.15 659.07 659.07 62.64
5 248.33 406.56 327.05 131.83
6 198.35 221.16 200.04 83.49
7 1760.33 1971.18 1904.09 579.50
8 Fail - 397.6 - 397.6 1000,6
9 3742.10 1267.59 1267.59 1008.17
10 155.27 167.52 139.68 478.62

Table 7: Behavior of machine learning
Id UB ML T_ML (s)
1 - 235.91 - 193.38 10.85
2 - 82.47 - 50.08 21.28
3 - 1311.60 - 890.00 28.60
4 619.15 766.79 15.50
5 248.33 398.20 45.60
6 198.35 254.06 25.08
7 1760.33 1861.24 72.25
8 Fail - 359.07 105.10
9 3742.10 1548.25 180.05
10 155.27 199.00 80.05

sensitivity to parameter γ does not look very significant:
In 4 cases, the best result is obtained with standard prices
Πi,L = ΠStand

i,L for any i, L. In case we apply SurrPVCost
algorithm while relying on the machine learning oriented
estimator described in Section 4.3.3, we see that the gap
between UB and ML is more important. Yet, this second
approach offers more genericity features than the first one.

6 Conclusion
We dealt here with a complex scheduling problem,
involving encapsulated resources and synchronization
mechanisms. Since handling it as a whole is difficult and
may not fit collaborative contexts, we shortcut the resource
production sub-problem and replaced it by a parametric
surrogate estimator. We tried 2 approaches: the first one
relied on artificial prices; the second one on a neural
network. Numerical experiments made appear, at least in
our case, a better efficiency of the first approach. Still,
because of the genericity of machine learning, a priori
better fitted for the management of the uncertainty inherent
to our problem, it would be worthwhile to try to go deeper
with it. Those two points will be the backbone of a future
research.
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