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While the core quality of SVM comes from its ability to get the global optima, its classification perfor-
mance also depends on computing kernels. However, while this kernel-complexity generates the power of
machine, it is also responsible for the computational load to execute this kernel. Moreover, insisting on a
similarity function to be a positive definite kernel demands some properties to be satisfied that seem unpro-
ductive sometimes raising a question about which similarity measures to be used for classifier. We model
Vapnik’s LPSVM proposing a new similarity function replacing kernel function. Following the strategy of
”Accuracy first, speed second”, we have modelled a similarity function that is mathematically well-defined
depending on analysis as well as geometry and complex enough to train the machine for generating solid
generalization ability. Being consistent with the theory of learning by Balcan and Blum [1], our similarity
function does not need to be a valid kernel function and demands less computational cost for executing
compared to its counterpart like RBF or other kernels while provides sufficient power to the classifier us-
ing its optimal complexity. Benchmarking shows that our similarity function based LPSVM poses test error
0.86 times of the most powerful RBF based QP SVM but demands only 0.40 times of its computational cost.

Povzetek: Za SVM je predlagana je nova funkcija podobnosti, ki zamenja funkcijo jedra, zahteva manj
računanja in dosega visoko natančnost in hitrost.

1 Introduction

A frequent contemporary method in the problems of data
classification in machine learning is to encode prior knowl-
edge about data patterns (objects) through a kernel oper-
ation that takes in two patterns, maps into a higher dimen-
sional feature space and outputs a number representing sim-
ilarity or dissimilarity with the condition that it must form a
positive semi definite (PSD) matrix after applied to all pairs
of patterns. To assess the true structure and input-output
relation of the data for solving many real-world problems
efficiently with Support Vector Machine, appropriate selec-
tion of this kernel is a crucial issue where the PSD property
of kernel similarity matrix ensures for the SVM to be solved
efficiently by a convex quadratic programming. For further
about kernel SVM based classification and sparse learning
one could see these papers [2–10] . However, while the
kernel theory is quite well-designed, there are some other
issues that sometimes make this kernel less interesting to be
used such as i) The formal statement of Mercer’s condition
is tough to verify. ii) While designing a kernel function
for any learning problem, the usual perception is that the
better kernel for working on a dataset would also serve as

the better similarity function with respect to that data. On
contrary, the SVM kernel deals with margin in a possibly
very high-dimensional space that is also implicit and gen-
erally not perceptible in the innate demonstration of data.
This turns out to be not so helpful for a designer to have
the intuition to model or select an appropriate kernel for
the learning task at hand. iii) There could be a question
about the usefulness of an algorithm to be controlled by the
characteristics of an implicit mapping that might not even
be calculated by someone. Additionally, if functionally a
kernel is just a black-box method taking two examples as
input and giving an output number that gives some concept
of how similar they are, it is not so clear if or why the posi-
tive semi-definiteness property is certainly needed— that
is the physical significance of positive semi definiteness
is not obvious although we know that positive semi defi-
niteness is needed for the problem to be convex and have a
unique minima. Moreover, the constraint of positive semi-
definiteness may reject many natural similarity functions
for a given problem and there are also many similarity func-
tion that are naturally not directly PSD but are proved to be
potential, for example, the sigmoid function.

This motivates to work with possibly proper similarity
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function relaxing kernel-constraints for data learning such
as learning with non-PSD similarity or distance function.
Learning with indefinite kernel or non-PSD similarity ma-
trix has attracted huge concentration [11–19]. However,
[20] have divided recent work on training SVM with in-
definite kernels into three main kinds: PSD kernel approx-
imation, non-convex optimization, and learning in Krein
spaces with a conclusion that all methods are not fully ad-
equate as they have either hosted bases of inconsistency in
handling training and test patterns using kernel approxima-
tion which harms generalization guarantees or established
for approximate local minimum solutions by non-convex
optimization, or generated nonsparse solutions. But there
is another approach that has been studied in a sequence of
papers [1], [21], [13], [22] that adopt a certain “goodness”
property, which is formally defined for the similarity func-
tion and provide both generalization guarantees in terms of
how well-suited the similarity function is to the classifica-
tion task at hand as well as the capability to use fast algo-
rithmic techniques. Informally, a similarity function can be
considered as good if patterns of same classes are closer to
each other than patterns of different classes in some sense.
Themodel proposed by [1], [22] developed a general theory
of learning with pairwise similarity function that may not
necessarily be a valid positive semi-definite kernel and suf-
ficient conditions for the function for learningwell that does
not involve reference to implicit spaces, and nor demands
the function to be PSD. Being inspired by this, in this paper
we follow the formulation of SVM by modelling a Manhat-
tan distance based similarity function replacing the kernel
function.
The rest of paper is organized as follows. Section 2 pro-
vides a short related basics about SVM and kernel whereas
Section 3 explains the proposed similarity function with
analysis. In Section 4, the experimental results are shown
with the description of data and model while conclusion
with future work is presented in Section 5.

2 Related basics

As SVM and kernel are the core of a detector, we provide a
short introduction about these here.

2.1 Support vector machine (SVM)

Support Vector Machines (SVMs) are advanced classifiers
using a higher dimensional feature space and powerful tools
for supervised classification. Twomethods for constructing
support vector machines are illustrated here where the first
one is the conventional and standard method based on the
quadratic programming (QP), which we term as QPSVM
whereas the second one is based on the linear programming
(LP) and we call this VLPSVM.

2.2 Quadratic programming SVM
(QPSVM)

QPSVM finds the optimal separating hyperplane using
margin maximization between two classes [23]. For the
instance-label pairs of a training data set is (xi, yi), i =
1, ..., N , where xi ∈ Rd and yi ∈ {1,−1}N , the SVM
classifier offers a decision function for finding class of the
pattern x in the following form: f(x) = sgn

(
w ·ϕ(x)+ b

)
, where weight vector w, bias b ∈ R and K(xi, xj) =
ϕ(xi) · ϕ(xj) is a kernel function and solves the following
primal problem

min
w,b,ζ

fP (w) =
1

2
∥w∥2 + C

N∑
i=1

ζi (1)

s.t. yi
(
w · ϕ(xi) + b

)
≥ 1− ζi; (2)

ζi ≥ 0; i = 1, 2, ..., N (3)

where ζi are a measure of the miss classification errors. The
objective function above is a convex programming prob-
lem, where, C is a characteristic parameter of the classifier
to be defined by the user that adjusts the trade off between
optimal maximization of margin and to minimize the num-
ber of overall error on the training vectors. After few cal-
culation, corresponding dual problem, becomes,

max
α

fD(α) =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjϕ(xi) · ϕ(xj)

(4)

s.t

N∑
i=1

αiyi = 0 (5)

0 ≤ αi ≤ C; i = 1, 2, ..., N (6)

The solution to the QP maximization problem (4)-(6) are
used to obtain the values of the variables αi and primal
variable w is determined by using the αi value from the
expression w =

∑N
i=1 αiyiϕ(xi). In addition, some KKT

conditions are used to determine the bias b.

2.3 Vapnik’s LP SVM (VLPSVM)

Vapnik suggested VLPSVM to build a separating hyper-
plane with support vectors minimization in number (heuris-
tic SVM). An elaborate introduction along with mathemat-
ical background of both QP and LP based SVM could be
found in [4].Vapnik formulated an alternative approach im-
plementing linear programming to find a separating hyper-
plane similar to QPSVM considering the trade off between
minimizing the summation of coefficients associated with
the KCV (kernel computing vector, which plays very simi-
lar role as the Support Vectors (SVs) in QPSVM) and min-
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Figure 1: Pictorial representation of maximummargin con-
cept based SVM [7]. Positive and negative patterns are
represented by the triangles and the squares respectively.
The red straight line is the optimal separating hyperplane
and the black lines indicate the margin of the respective
classes. Patterns that stay outwards from their classes are
called outward-deviated patterns and amount of this devia-
tion is represented by a non-negative variable, ζ. The ob-
jective of the QPSVM is to maximize the margin with min-
imum training error. The red line is also called the decision
boundary of the training output.

imizing the error by finding w and b as below;

min
λ,ξ,bV

N∑
i=1

λi + CV

N∑
i=1

ξi (7)

s.t. yi

( N∑
j=1

λjyjϕ(xj) · ϕ(xi) + bV

)
≥ 1− ξi (8)

λj ≥ 0; j = 1, 2, ..., N (9)
ξi ≥ 0; i = 1, 2, ..., N (10)

where λ1, λ2, ..., λN , ξ1, ξ2, ..., ξN , bV are the optimization
variable. The penalty parameter (CV ) in VLPSVM is de-
fined by the user and CV > 0 is in control of overfitting
and learning the data. On the other hand, the slack vari-
ables (ξi) > 0 are used for the absolute-unity-outward-
deviated patterns [6]. After solving the LP optimization
problem of (7)-(10), the optimum λ values are used to cal-
culate the weight vector wV by using the equation wV =∑N

j=1 λjyjϕ(xj) and the decision function are in the form
of f(x) = sgn

(
wV · ϕ(x) + bV

)
.

2.4 Kernels
As the popularity of Support Vector Machines (SVMs) is
increased in recent years, kernel methods have got major

attention. Kernel functions, which can be expressed as dot
product, are used to bridge from linearity to non-linearity
in many applications. In addition, these methods map the
data in a structured way into a higher dimensional space
so that the data could be separated easily. Besides, ker-
nel functions must have some important properties such
as continuous, symmetric and most preferably, a positive
semi-definite (meaning kernel matrices must have no nega-
tive Eigen values). Kernels satisfyingMercer’s theorem are
positive semi-definite that ensures the optimization prob-
lem is convex and has a unique solution. However, many
so called kernel functions perform very well and are not
positive semi-definite. For example, Sigmoid kernel which
is not positive semi-definite for certain values of the param-
eters but it is used in wide range of applications. Some of
the conventional kernels are Gaussian kernel, Polynomial
Kernel, Bessel kernel among which Gaussian (also known
as RBF) kernel is the most powerful and popular, which is
given asK(x, y) = exp−∥x−y∥2

2σ2 where, ∥x−y∥2 is recog-
nized as the squared Euclidean distance (between the two
feature vectors) and σ is an adjustable parameter, plays an
important role in performance of the kernel.

3 Proposed distance based similarity
function (DSF)

As in supervised learning, training examples are used to tell
the classifier about the amount of dis/similarity among ex-
amples from opposite/own class, learning a sound classifier
seems dubious if the given similarity function misses any
innate “goodness” property where, naturally the goodness
of a similarity function is needed be suitable to the classifi-
cation problem at hand. To say more explicitly and specifi-
cally, the discriminators both from QPSVM and VLPSVM
can be rewritten in the following common form by using
a common term “kernel computing vector (KCV)” for SV
or EV or such other kernel operating patterns: f(z) =∑

i∈KCV set λiyiS(xi, z) + b where z is any pattern and
S(xi, z) is the kernel or similarity measure or strength of
some sort of attraction force (between the patterns xi and
z), which is the source of main computational expenses and
our main goal is to find a suitable mathematical expression
(function) for this which is optimally complex(powerful)
while not being much expensive to be executed. Thus, it
is worthwhile to review notions of similarity, dissimilarity,
and distance where we discuss about distance at first as be-
low

3.0.1 Different distances

There are many distance functions out of which Euclidean
distance and Manhattan distance seem to give the best re-
sults in distance based data learning [25]. They are given
below
Euclidean Distance (ED): The Euclidean distance is the
straight-line distance between two points in Euclidean
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(a) (b)

(c)

Figure 2: Decision boundaries with training error rates & data size from (a) QPSVM (RBF kernel), (b) VLPSVM (RBF
kernel), & (c) VLPSVM (DSF) on an artificial dataset named Half kernel [24] before adding noise.

space and an extension to the Pythagorean Theorem. It
is also known as L2 norm or Ruler distance. The Eu-
clidean distance between points x and y is expressed as:

ED(x, y) =
√∑d

i=1 |xi − yi|2. This distance is used in
the so far the most powerful and popular kernel in ma-
chine learning, that is RBF kernel, with which we compare
our similarity function considering classification efficiency
basing on similarity measure.
Manhattan Distance (MD): The Manhattan distance repre-
sents the distance between two points as the sum of the ab-
solute differences in Cartesian coordinates. It is also known
as L1 norm or City block distance. The Manhattan dis-
tance between points x and y is expressed as: MD(x, y) =∑d

i=1 |xi − yi| and we use this distance to model our simi-
larity function.

3.0.2 Main idea

We start by considering the conclusion from [18], that is,
objects that are similar in their representation are also sim-
ilar in reality and belong, thereby, to the same class. The
general idea is to transform a similarity into a dissimilarity
function or vice versa by applying a monotonically decreas-
ing function. This is according to the general intuition that
a distance is small if the similarity is large, and vice versa.
Theorem: Similarity decreases as distance increases.
Proof : Let three points x, y, z are on the same straight
path with distance between x and y, d(x, y) = a > 0,
distance between y and z, d(y, z) = b > 0, and distance
between x and z, d(x, z) = a + b. Then similarity be-
tween x and y, s(x, y) ∝ 1

a ⇒ s(x, y) = K
a , similarity

between y and z, s(y, z) ∝ 1
b ⇒ s(y, z) = K

b and simi-

larity between x and z, s(x, z) ∝ 1
a+b ⇒ s(x, z) = K

a+b

for a constant K. Now as a, b > 0 , we get a2, b2, ab > 0.
Thus a2 + b2 + ab > 0 ⇒ (a + b)2 > ab ⇒ a+b

ab >
1

a+b ⇒ 1
a + 1

b > 1
a+b ⇒ K

a + K
b > K

a+b ⇒ s(x, z) <
s(x, y) + s(y, z). Now, let p be another point on the same
straight path further outside of z and distance between z
and p, d(z, p) = c. then the similarity between x and p,
s(x, p) < s(x, z)+s(z, p) < s(x, y)+s(y, z)+s(z, p) and
s(x, p) = K

a+b+c < s(x, z) = K
a+b < s(x, y) = k

a ,which
proves the statement basing on the induction method.

3.0.3 Proposed DSF (distance-similarity function)
expression

We form our similarity function in the following way: For
any two patterns, x, y, first we select a well reputed metric
distance (or equivalently, dissimilarity) function using
L1-distance , D(x, y) and transform this dissimilarity
(distance) into a similarity. So, we define our similarity
function S that generates a numeric value to represent
similarity between x and y such that S(x, y) = 1

D(x,y)
σ +1

,
where σ is a data related parameter and σ > 0. Although
there are a number of ways to convert between a distance
metric and a similarity measure, we select this one as to
have i) Non-linear mapping ii) Less computational cost
iii) scaling to keep value between 0 and 1 for numerical
efficiency.
Hence, our proposed Distance Similarity Function (DSF)
is expressed as- S(x, y) = 1∑d

i=1
|xi−yi|
σ +1

If x coincides

with y or x → y then |xi − yi| → 0 ⇒ S(x, y) → 1,
representing the highest similarity between x and y
whereas if x moves infinitely far away from y, then
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(a) (b)

(c)

Figure 3: Decision boundaries with training error rates & data size from (a) QPSVM (RBF kernel), (b) VLPSVM (RBF
kernel), & (c) VLPSVM (DSF) on an artificial dataset named Half kernel [24] after adding noise.

|xi − yi| → ∞ ⇒ S(x, y) → 0 representing the lowest
similarity between x and y
From the expression of similarity function above we see
that σ → ∞ ⇒ S(x, y) → 1 representing x and y
have the highest similarity and σ → 0 ⇒ S(x, y) → 0
representing x and y have the lowest similarity. So, if σ is
overestimated, the expression will behave almost linearly
and non-linear mapping will start to lose its power while on
contrary if underestimated, the function will lack regular-
ization and the decision boundary will be highly sensitive
to noise in training data. Thus, this adjustable parameter
σ plays a very significant role in the performance of the
similarity function and should be carefully tuned according
to the problem at hand. And for any ϵ > 0 increment
in the distance, the distance will become d + ϵ and our
similarity function S will decrease as 1/(d + ϵ) will go
down and the opposite for the decrement of the distance,
that is 1/(d − ϵ) will rise from the decrement of the
distance by ϵ > 0. This proves that our similarity function
is a monotonic function whose value increases/decreases
with the decrements/increment of distance between two
patterns. A rough graphical representation of our similarity
function (DSF) could be seen in figure below (Fig.4).
Non-linear mapping with mathematical expres-
sion: The motivation for such an embedding comes with
the hope that the nonlinear transformation of input data into
higher dimensionalH allows for using linear techniques in
H . Non-linear classification in lower dimension is linear
in higher dimension. Our similarity function (f ) does so in
the following way:

f(d) = 1
d

constant+1
which could be written as f(d) =

1
z+1 where z = d

constant which could be expanded follow-

Figure 4: Distance-Similarity Function (DSF) using param-
eter, σ = 1.

ing two cases as below:
Case I: For |z| < 1
1

z+1 = 1− z + z2 − z3... and 1
2 < 1

z+1 ≤ 1
Case II: For |z| > 1
1

z+1 = 1
z

1
1+ 1

z

= 1
z

(
1 − z−1 + z−2 − z−3...

)
= z−1 −

z−2 + z−3 − z−4... and 0 ≤ 1
z+1 < 1

2

3.1 Goodness of our similarity function
[1] provided a criterion for a good similarity function to be
used in a discriminator where it is said approximately that a
similarity function is good if the generated mean innerclass
similarity is sufficiently large compared to the mean inter-
class similarity. After calculating the pattern-similarities on
benchmark data using the following way, we have found
out that our proposed function successfully obeys this in
general without any deviation.
Calculating Similarity: Sum of similarities of a pattern
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xj with all patterns xi for i = 1, 2, ..., N , S(xj , all) =∑N
i=1 S(xi, xj). Then average similarity (of all patterns

with other patterns) = meani(meanj(S(xi, xj))). On
Breast Cancer dataset [26] ( or [27]), the average simi-
larity of the training patterns using our proposed (DSF)
function 0.3614 to own class and 0.3235 to opposite class,
which is consistent with the theorem of Balcan-Blum in
[1].Whereas, on this dataset, the average kernel (or, sim-
ilarity) value of the training patterns using Radial Basis
Function (RBF) is 0.6267 to own class and 0.5748 to op-
posite class, which is also consistent with the theorem of
Balcan-Blum in [1]. However, comparing these values
from these two functions we see that DSF gives compara-
tively a bit higher Class Variational Similarity Deviation (=
similarity to own class−similarity to opposite class

similarity to own class ), which is
the higher the better for classification by recognising dis-
crepancy of patterns from different classes) as it is (0.3614
- 0.3235) / 0.3614 = 0.1049 in case of DSF and ( 0.6267
- 0.5748) / 0.6267 = 0.0828 in case of RBF based kernel
function. The similarity values from these two functions
can be seen more detailed from the figure below ( Fig. 5)

Figure 5: Mean Kernel (Similarity) function value compar-
ison between RBF kernel and DSF.

However, values generated by similarity (or kernel)
function operated on patterns heavily depends on pattern-
scattering or data complexity. If a pattern from one class
is very near to the patterns of the other class, its overall
distance to patterns of opposite class is smaller than such
of the patterns of its own class. Consequently, similarity
behaves inversely. Thus we further investigate these simi-
larity values by going into a bit deeper basing on numerical
and functional analysis of pattern.

3.1.1 Numerical and functional analysis of pattern

We can determine Patterns’ position from decision func-
tion value and the slack variable. Considering the geomet-
ric position of the patterns in the pattern space, we can di-
vide them into two main parts as inlier and outlier . A
pattern is said to be “inlier” if it belongs to the region of
its own class boundary and similarly, an “outlier” pattern
of a training set is the one that stays outside of its own
class boundary. Hence a training pattern, xj with class la-
bel yj and decision function value f(xj) , will be an in-
lier if yj = sgn(f(xj)) =⇒ 1 = yjsgn(f(xj)) =⇒

yjf(xj) > 0 and outlier if yj = −sgn(f(xj)) =⇒ −1 =
yjsgn(f(xj)) =⇒ yjf(xj) < 0. Now, re-formatting the
error constraints of SVM in (2) and in (8) into a single form
using the slack variable ξ we get yjf(xj) ≥ 1 − ξj which
gives ξj ≥ 1 − yjf(xj) leading to 0 ≤ ξj ≤ 1 in case of
inlier patterns and ξj > 1 for outlier patterns. We discuss
further about them below.
In case of inlier patterns: As these patterns stay inside
of the class-decision boundaries of their own classes, gen-
erally their overall distances to the patterns of their own
classes are smaller compared to the distances to the pat-
terns of their opposite classes and the similarity values
will behave inversely that is their overall similarities to the
patterns of their own classes are higher compared to the
similarities to the patterns of their opposite classes. For
each inlier, we calculate the ratio of the sum of its sim-
ilarity to the patterns of its own class to the sum of its
similarity to the patterns of its opposite class(that is, own-
class/opposite class) in the way given below and we expect
it to be larger than 1. For any inlier pattern xi with class
label yi, sum of similarities to patterns of its own class is,
SumSimOwni =

∑
m S(xi, xm)|(sgn(f(xi)) = yi =

ym) and sum of similarities to patterns of its opposite
class is, SumSimOpsi =

∑
n S(xi, xn)|(sgn(f(xi)) =

yi = −yn). Then their similarity ratio,RatSumSimmn
i =

SumSimOwni

SumSimOpsi
=

∑
m S(xi,xm)|(sgn(f(xi))=yi=ym)∑
n S(xi,xn)|(sgn(f(xi))=yi=−yn)

The in-
lier related similarity ratio values from these two functions
can be seen more detailed from the following figures (Fig.
6 and 7)
In case of outlier patterns:

In case of a complex or very noisy dataset, a well general-
ized SVM is expected to introduce more outliers.
As these patterns stay outside of their own classes, they
behave nearly in the oppoiste way compared to inlier pat-
terns in case of pattern distance or similarity. So, for these
patterns, generally their overall distances to the patterns of
their own classes are larger compared to the distances to the
patterns of their opposite classes consequently, the similar-
ity values behave inversely that is their overall similarities
to the patterns of their own classes are smaller compared to
the similarities to the patterns of their opposite classes. For
each outlier, we calculate the ratio of the sum of its simi-
larity to the patterns of its opposite class to the sum of its
similarity to the patterns of its own class(that is, opposite
class/own class) in the way given below and we expect it to
be larger than 1. For any outlier pattern xo with class label
yo, sum of similarities to patterns of its opposite class is,
SumSimOpso =

∑
n S(xo, xn)|(sgn(f(xo)) =

−yo = yn) and sum of similarities to pat-
terns of its own class is, SumSimOwno =∑

m S(xo, xm)|(sgn(f(xo)) = −yo = −ym). Then
their similarity ratio,RatSumSimnm

o = SumSimOpso
SumSimOwno

=∑
n S(xo,xn)|(sgn(f(xo))=−yo=yn))∑

m S(xo,xm)|(sgn(f(xo))=−yo=−ym) The outlier related
similarity ratio values from these two functions can be seen
more detailed from the following figures (Fig. 8 and 9)
Why Manhattan distance based kernel and
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Figure 6: Figure showing similarity ratio of inlier patterns
(with their corresponding pattern function (absolute) val-
ues; higher function value means the pattern stays deeper
in its own class) to the patterns of its own class with respect
to the similarities of the patterns of opposite class (that is,
own class/opposite class) on Breast Cancer dataset using
our similarity function (DSF). As inlier patterns stay in-
side the decision boundary of their own classes, for them,
generally, similarities to the patterns of their own classes
are higher compared to the similarities to the patterns of
their opposite classes; hence ratio of the sum of similarities
to own class with respect to opposite class should be higher
for a good similarity function. This is also the case for our
similarity function. However, for very few patterns, which
are placed in very special and isolated places of their own
class, this may be different depending on their geometric
positions. Amazingly, it can also be seen in the figure that
these similarity ratio values are higher for the patterns stay-
ing deeper inside of their classes; quite as expected.

LPSVM: Comparing to the L2 norm (also known as
Euclidean norm, which gives the ordinary distance using
Pythagorean theorem from the origin to the point) used in
QPSVM, L1 norm leads to a much sparser solution [28]
in case of VLPSVM. This is useful to minimize the
kernel computation by minimizing the number of kernel
computing vector (KCV), the bases patterns that build
the discriminator function of a machine by executing
kernel operations (Support Vectors or Expansion Vectors
or Basis Vectors or Machine Vectors, however it is named
by individual author for various machines). Moreover,
some other issues regarding distance have inspired to
select this distance as i) Problem with Euclidean dis-
tance as a family of the Minkowski metric is that the
largest-scaled feature would dominate the others [29]
ii)Euclidean distance is noise sensitive [30] iii) Manhattan
distance function, requires less Computation [31] iv) high
dimensionality is sensitive to the value of k using the Lk

based distance learning, which means that the Manhattan
distance metric (L1 norm) is consistently more preferable
than the Euclidean distance metric (L2 norm) for high
dimensional data mining applications [32] v)In case of
Manhattan Distance, distance between two exterior points
a and z through another interior point y can be written as
d(x, z) = d(x, y) + d(y, z). So, the distances are linearly
related, which matches more with our distance-inverted

Figure 7: Figure showing similarity ratio of inlier patterns
(with their corresponding pattern function (absolute) val-
ues) to the patterns of its own class with respect to the
similarities of the patterns of opposite class (that is, own
class/opposite class) on Breast Cancer dataset using RBF
kernel. Interestingly, it behaves nearly in the very same
way as our similarity function. Note that, RBF and DSF
based SVMs are two different machines, so they have two
different discriminators. Thus, they may produce differ-
ent function values for the same patterns. By this, these
two machines may lead to different outlier, inlier numbers
from the same data set and patterns that are detected as
inliers/outliers by RBF SVM may not be detected as in-
liers/outliers byDSF SVM. This is why number of variables
in the horizontal axis of the two plots are different.

similarity measure. vi) By taking just the summation
of the absolute values Manhattan Distance considers
only the real topological distance but by taking squared
values Euclidean distance sometimes may lead to miss
interpretation, for example, when 0 < a < 1, a2 < a

4 Experiments & results

4.1 Machine’s performance indicating terms
Test error rate is the most important term to evaluate a ma-
chine’s performance in a conventional way. To get the com-
plete evaluation and information regarding performance of
a machine, classification time is also considered to be an
important factor along with the test error rate. Therefore,
a novel term called “Machine Accuracy Time (MAT)” is
introduced to consider the computation time coupled with
test accuracy. A machine with higher test accuracy could
take much longer time to classify the test data which is not
always useful in practical purposes. In contrast, a machine
with faster classification allowing slightly higher or simi-
lar error rate could be acceptable and more practical con-
sidering the computational time as well as many real time
applications.
Machine accuracy time (MAT): In classification prob-

lem, specially, in sparse learning, the prime objective is to
build a machine efficiently having high accuracy and com-
patible computational cost. The number of computing ker-
nel should be kept minimum to reduce this classification
cost in such machine. Along with the minimum classifica-
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Table 1: No. of KCVs (Kernel Computing Vectors), & Test Error Rate on Benchmark Data for Different Machines

Dataset No.
of
train
pat-
tern

No.
of
test
pat-
tern

Data
Di-
men-
sion

QPSVM
mean
SVs(SD)
RBF
kernel

QPSVM
mean
TeER
(SD)
RBF
kernel

VLPSVM
mean
SVs(SD)
RBF
kernel

VLPSVM
mean
TeER
(SD)
RBF
kernel

VLPSVM
mean
SVs(SD)
DSF

VLPSVM
mean
TeER
(SD)
DSF

TeER
DSF (LP )

RBF (QP )

TeER
DSF (LP )

RBF (LP )

BREAST
CANCER

200 77 9 200 (0) 28.53
(4.32)

18.89
(2.44)

26.05
(4.50)

27.1
(5.01)

25.47
(4.65)

0.89 0.98

FLARE
SOLAR

666 400 9 609.98
(27.57)

32.41
(1.80)

247.87
(182.50)

32.56
(1.72)

157.38
(34.92)

32.23
(1.83)

0.99 0.99

HEART 170 100 13 68.23
(6.01)

16.6
(3.05)

21.94
(2.61)

17.44
(3.49)

33.84
(3.87)

16.96
(3.61)

1.02 0.97

IMAGE 1300 1010 18 237.4
(24.32)

4.19
(0.61)

75.05
(5.54)

4.07
(0.57)

170.3
(6.65)

2.19
(0.58)

0.52 0.54

SPLICE 1000 2175 60 943.65
(7.86)

12.34
(0.73)

292.15
(15.68)

12.39
(0.96)

308.45
(11.52)

7.59
(0.73)

0.62 0.61

THYROID 140 75 5 43.51
(3.10)

5.2
(2.08)

8.97
(1.59)

5.09
(2.11)

77.09
(3.66)

3.55
(2.04)

0.68 0.70

TWO-
NORM

400 7000 20 299.18
(7.00)

2.42
(0.14)

32
(5.03)

3.71
(0.55)

123.05
(6.51)

3.1
(0.24)

1.28 0.84

Average 343.14
(10.84)

14.53
(1.82)

99.55
(30.77)

14.47
(1.99)

128.17
(10.31)

13.01
(1.95)

0.86 0.80

In Table 1, the number KCVs(Kernel Computing Vector) of different state-of-the-art machines along the proposed DSF
based machine with the test error rates due to these machines on different datasets of benchmark data [27]. It is worth to
note that while these machines work for sparsification of SVM based classifier using any specific kernel, our this method
works for finding a good replacement of a kernel function.

tion time, the test error is also kept at a minimum rate to get
the optimum performance from the machine. To calculate
such type of property, MAT (Machine Accuracy Time) is
defined, where, MAT = TestAccuracyRate

MeanClassificationTime . There-
fore, to get a machine with the maximum test accuracy
along with having the minimum classification time, will
have the maximum MAT which is the most desirable case.
Conversely, a machine with the highest classification time
and the lowest accuracy rate will have the minimum MAT,
which is never desired. In our case, conventional SVM is
implemented to compare the effect on performance using
RBF kernel (in QPSVM & VLPSVM ) and the proposed
Distance Similarity Function (in LPSVM).

4.2 Experimental setup & results
In machine learning, model selection refers to the prob-
lem of choosing a good kernel function while the class of
model is a parametric problem with each value corresponds
to some model. In our case, similarity function is fixed.
Hence, choosing both σ and C parameters are the model
selection problem and in our experimental work, the results
are collected by implementing our distance-similarity based
function (DSF) using Vapnik’s Linear Programming SVM
(VLPSVM) and compared with the RBF kernel on both
QPSVM and VLPSVM. All the experiments were done on

seven benchmark data sets [26] ( or [27]) i.e. Breast Can-
cer, Flare Solar, Heart, Image, Splice, Thyroid, Twonorm.
In both the DSF and RBF kernel, the penalty parametersC,
CV and kernel parameters σ and σV were obtained by cross
validation using the range C,CV ∈ {2−2, 20, 22, ..., 212}
and σ, σV ∈ {2−2, 20, 22, ..., 26}.
In Table 1, the comparison was between RBF kernel

(using both QPSVM and LPSVM) and the DSF (using
LPSVM) regarding the test error rate and the number of
KCVs. In terms of the RBF kernel, the average test error
rate of all the data sets was accounted for 14.53 with SD
(Standard Deviation) of 1.82 using QPSVM and 14.47 (SD
1.99) using LPSVM. Conversely, the average value of the
test error rate was noted as 13.01 (SD 1.95) for the DSF.
Hence, after counting the error rate ratio (i.e. DSF-error
rate/X-machine error rate) it is found that DSF one is 86%
of QPSVM (i.e. 14% reduced) and 80% of LPSVM (i.e.
20% reduced) on average (column 11, 12 of table 1).
Table 2 illustrates the classification times and their ratios

implementing DSF to the RBF-based SVM using both QP
and LP (i.e. DSF-classification time/X-machine classifica-
tion time). With regards to the RBF kernel using QP, DSF
performs better in terms of classification time for all the
data sets except THYROID and overall, the novel function
performs 60% faster. On the other hand, DSF computes
faster for 4 out of 7 data sets than RBF kernel in VLPSVM
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Table 2: Classification Time For Different Machines

Dataset QP(RBF) LP(RBF) LP(DSF) LP (DSF )
QP (RBF )

LP (DSF )
LP (RBF )

BREAST CAN-
CER

0.024177 0.003560 0.003323 0.137446 0.933351

FLARE SO-
LAR

0.358267 0.150766 0.066410 0.185366 0.440487

HEART 0.011770 0.005137 0.004635 0.393824 0.902411
IMAGE 0.384581 0.130776 0.179741 0.467368 1.374411
SPLICE 3.254468 1.068450 0.740747 0.227609 0.693291
THYROID 0.006084 0.002074 0.006718 1.104236 3.238635
TWONORM 3.251135 0.443706 0.959134 0.295015 2.161642
Average 1.041497 0.257781 0.280101 0.401552 1.392032
Table 2 presents the classification time by different machines along the proposed DSF based one.

Table 3: Machine Accuracy Time (MAT) for Different Machines

Dataset QP(RBF) LP(RBF) LP(DSF) LP (DSF )
QP (RBF )

LP (DSF )
LP (RBF )

BREAST
CANCER

2955.9565 20769.6 22428.5488 7.5876 1.0799

FLARE SO-
LAR

188.6721 447.3165 1020.4734 5.4087 2.2813

HEART 7085.8258 16072.97 17914.6633 2.5282 1.1146
IMAGE 249.1334 733.5476 544.1563 2.1842 0.7418
SPLICE 26.9366 81.9944 124.7514 4.6313 1.5215
THYROID 15582.71 45754.27 14357.8516 0.9214 0.3138
TWONORM 30.0133 217.0204 101.0276 3.3661 0.4655
Average 3731.3211 12010.9598 8070.2103 3.8039 1.0741
Table 3 presents the MAT values of different machines along the proposed DSF based one.

and overall it takes around 39% more time for classifica-
tion.
To get a clear picture about the performance of the ma-

chine, MAT (Machine Accuracy Time) have been calcu-
lated considering the test accuracy rate and classification
time of the test set. Table 3 contains the mean classifica-
tion time on test data sets and corresponding MAT values
for both RBF kernel based SVM and DSF based LPSVM.
The DSF based machine performs better in terms of MAT
for 6 out of 7 data sets except for Thyroid compared to RBF
kernel in QP. Overall, DSF performs 280% better than RBF
kernel using QP. In comparison with the RBF kernel in LP,
the DSF shows slightly better performance (higher MAT
value) for most of the data sets (4 out of 7) and in average
the performance is improved over 7%.

5 Conclusion and future work
In this paper, we presented a novel similarity function re-
placing kernel function for classification with SVM. We
have investigated about its ”goodness” using some numer-
ical analysis and compared it with the most powerful and
popular kernel function, RBF. It is found that while both

of these satisfy the theory of learning with similarity func-
tions by Balcan-Blum [1], our one gives a bit higher ”class
variational similarity deviation”, which is more useful for
better classification. We have also analyzed the behavior
of these (kernel and similarity) functions using some Pat-
tern Analysis considering the geometric position of pat-
terns, their functional values by the discriminators, and
kernel or similarity values in pairs.It is realised that the
two functions (RBF, and our similarity function, DSF) be-
have quite expectedly and consistently as well as in similar
fashion.Further, the effectiveness of the proposed function
was also tested on benchmark Machine Learning datasets,
which showed a countable improved performance com-
pared to RBF kernel with respect to both accuracy and com-
putational cost. However, while our method beats others
most of the time and consistently, it also slightly fails such
in few cases proving the no free lunch theorem that is, no
method performs better 100% times.
Moreover, [20] discussed about SVM with indefinite ker-
nels where it is showed that similarity function used forL1-
norm or LP SVM does not need to be positive semi/definite
and we use LP SVMwhich remains convex even if the sim-
ilarity matrix is indefinite. Although in some cases com-
pared to the sparse machines, our similarity based SVM in-
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Figure 8: Figure showing similarity ratio of outlier patterns
(with their corresponding pattern function (absolute) val-
ues; higher function value means the pattern stays deeper
in its opposite class) to the patterns of its opposite class
with respect to the similarities of the patterns of own class
(that is, opposite class/own class) on Breast Cancer dataset
using our similarity function(DSF). As outlier patterns
stay outside the decision boundary of their own classes, for
them, generally, similarities to the patterns of their oppo-
site classes are higher compared to the similarities to the
patterns of their own classes; hence, ratio of the sum of sim-
ilarities to opposite class with respect to own class should
be higher for a good similarity function. This is also the
case for our similarity function. However, for very few
patterns that are placed in very special and isolated place
of their opposite class, this may be different depending on
their geometric positions. Amazingly, it can also be seen
in the figure that these similarity ratio values are higher for
the patterns staying deeper outside of their classes; quite as
expected.

volvesmore number of kernel computing vectors to classify
each pattern, each computation with our similarity func-
tion demands less execution cost compared to these or other
conventional kernel functions. So far, we have noticed the
following issues relating our work, which we want to study
with deep investigation and evaluation in future i) Although
we have checked our similarity function using Manhattan
distance measure, there are many other distance measures
that could be modelled to construct similarity function to
develop SVMor other machine to test and evaluate for opti-
mal performance. ii) Datasets with much higher dimension
and sample size are also important to be used to execute
experiments in order to find significant conclusions about
performance iii) Similarity measures are not used only with
the SVM, but also with other machine learning algorithms,
which are needed to be evaluated under different distance
measures iv) Go into deeper theoretical analysis to find re-
lation between our similarity function and PSD kernel.
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Figure 9: Figure showing similarity ratio of outlier pat-
terns (with their corresponding pattern function (absolute)
values) to the patterns of its opposite class with respect to
the similarities of the patterns of own class (that is, oppo-
site class/own class) on Breast Cancer dataset using RBF
kernel. Interestingly, it behaves nearly in the very same
way as our similarity function. Note that, RBF and DSF
based SVMs are two different machines, so they have two
different discriminators. Thus, they may produce differ-
ent function values for the same patterns. By this, these
two machines may lead to different outlier, inlier numbers
from the same data set and patterns that are detected as
inliers/outliers by RBF SVM may not be detected as in-
liers/outliers byDSF SVM. This is why number of variables
in the horizontal axis of the two plots are different.
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