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The demand for human activity recognition (HAR) from videos has witnessed a significant surge in various
real-life applications, including video surveillance, healthcare, elderly care, among others. The explotion
of short-form videos on social media platforms has further intensified the interest in this domain. This
research endeavors to focus on the problem of HAR in general short videos. In contrast to still images,
video clips offer both spatial and temporal information, rendering it challenging to extract complementary
information on appearance from still frames and motion between frames. This research makes a two-fold
contribution. Firstly, we investigate the use of motion-embedded images in a variant of two-stream Con-
volutional Neural Network architecture, in which one stream captures motion using combined batches of
frames, while another stream employs a normal image classification ConvNet to classify static appearance.
Secondly, we create a novel dataset of Southeast Asian Sports short videos that encompasses both videos
with and without effects, which is a modern factor that is lacking in all currently available datasets used
for benchmarking models. The proposed model is trained and evaluated on two benchmarks: UCF-101
and SEAGS-V1. The results reveal that the proposed model yields competitive performance compared to
prior attempts to address the same problem.

Povzetek: Raziskava predstavi model za prepoznavanje človeških aktivnosti iz videov in testira model na
novi bazi video posnetkov jugovzhodne Azije.

1 Introduction
The task of human activity recognition (HAR) pertains to
the labeling of actions or activities observed within video
clips. In recent years, the proliferation of online social plat-
forms has led to an exponential increase in the volume of
media data being uploaded, with short-form videos dom-
inating the internet landscape, beginning with Tiktok and
now extending to Facebook, Instagram, and Youtube. Con-
sequently, the need for HAR has become increasingly cru-
cial across a range of domains, including content monitor-
ing, classification, and recommendation systems, video re-
trieval, human-computer interaction, and robotics.
In contrast to a still image, a video clip affords not only

static spatial information confined within a single frame but
also temporal information that results from integrating spa-
tial information across frames to capture dynamic motions.
There exists a plethora of research investigating the chal-

lenging task of video classification. Currently, the major-
ity of high-accuracy results have been obtained using 3D
convolutional kernels to capture the temporal information
within videos [1][7][3]. Nonetheless, this architecture may
be cost-prohibitive to employ in practical scenarios due to
its high computational requirements. Consequently, certain
approaches prioritize computational efficiency to handle
larger datasets, yet may not be suitable for real-world appli-

cations [26][15][2]. These methods often necessitate pow-
erful processors to train successfully. Conversely, train-
ing Convolutional Neural Networks (ConvNets) to acquire
temporal information in videos offers a straightforward, al-
beit effective alternative. Researchers following this ap-
proach vary in their methods for processing original frames,
such as fusing temporal information early or late in the
network [11], or combining multiple sequential frames to
generate optical flow information [18]. Motivated by the
positive outcomes of these studies and the effectiveness of
ConvNet models in image recognition, we seek to explore
the performance of ConvNet models for video classifica-
tion. Notably, the extraction of temporal information in
short videos remains a less explored domain, likely owing
to its inherent difficulty. This paper introduces a novel ap-
proach for embedding both temporal and spatial features of
consecutive video frames into images, thereby enabling ef-
fective recognition of the static features of a scene, such as
objects, context, and entities, as well as themotion informa-
tion. Specifically, we incorporate this method into a variant
of the two-stream ConvNet model. The first stream lever-
ages the images generated by our approach to detect motion
in videos, while the second stream employs a conventional
image classification network to recognize spatial informa-
tion, utilizing single still video frames as inputs. This latter
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stream aims to identify and preserve any spatial information
that might be lacking in the former.
To evaluate the performance of action recognition mod-

els, various publicly available datasets such as UCF-101
[19] and UCF Sport [17] have been introduced, containing
101 action and 10 sport classes, respectively. Some datasets
attempt to cover a broader range of activities by includ-
ing more classes[11][12], while others incorporate user-
uploaded data frommultiple media sources such as Youtube
and Vimeo to simulate daily human activities [8][5]. De-
spite these efforts, most video datasets lack the complex-
ity of videos edited using text, filters, and effects that are
prevalent in short-form videos on social networks like Tik-
tok, Facebook, and Youtube. These limitations can lead to
inaccurate benchmarking of models when applied to this
new form of video content. In this research, we also aim
to collect a novel dataset that includes both non-effected
and effected clips. Inspired by previous datasets [17][11],
we gathered data within the same Sport category and fo-
cused on South-East Asian Game sports. Our dataset,
SEAGS_V1, consists of 8 sports classes and 1,168 videos
sourced from Youtube and Tiktok. The availability1 of this
dataset will enable researchers to evaluate the performance
of their models on a more diverse range of video content.
In this study, we evaluate the performance of our pro-

posed MEI Two-stream network on two widely-used action
recognition datasets, UCF-101 and SEAGS_V1. To inves-
tigate the potential of our approach further, we also exper-
iment with different backbone architectures and integrate
them into an EnsembleNet. Our empirical results demon-
strate that our proposed method holds considerable promise
in enhancing the accuracy of Activity Recognition on short-
form videos.
The content of this paper is organized as follows. In Sec-

tion 2, we briefly review existing work related to action
recognition. Then we present our proposed method in Sec-
tion 3. We discuss our experiments in Section 4. Finally,
the conclusion and future work are discussed in Section 5.

2 Related Work
The early-stage methodologies employed for video classifi-
cation tasks typically involve a three-stage process. Firstly,
visual features of a video segment are extracted densely
[20] or at a sparse set of interest points[14]. Secondly, these
extracted features are combined into a fixed-sized video-
level description. Lastly, a classifier, such as a SVM, is
trained on the resulting ”bag of words” representation to
discriminate between the pertinent visual classes. Subse-
quently, ConvNets have replaced all three stages with a sin-
gle neural network that is end-to-end trainable. However,
there are several approaches to augment the connectivity
of a ConvNet in the time domain, exploiting local spatio-
temporal information[9] [11]. However, these approaches
are challenged by the limitations of ConvNets in capturing
motion information among frames, leading to the loss of
temporal features.

1SEAGS_V1 is currently available online here.

2.1 Two-stream architecture

To mitigate the aforementioned challenge, researchers in-
vestigated a novel two-stream ConvNet architecture [18]
[21] [25]. This architecture involves feeding the input
videos into two distinct streams: the spatial and tempo-
ral streams. Each stream employs a deep ConvNet, with
softmax scores combined by late fusion. Notably, the in-
puts for each stream differ slightly. The spatial stream pro-
cesses individual video frames to recognize actions from
still images. In contrast, the temporal stream works on pre-
computed optical flow features using optical flow estima-
tion techniques, such as [23].

2.2 Spatial-temporal feature fusion method

The two-stream architecture has inspired numerous stud-
ies, with many seeking to improve its performance by fo-
cusing on two key areas: the fusion stage and the temporal
stream. In an effort to optimize the fusion stage, Feichten-
hofer et. al. conducted a comprehensive investigation of
various approaches to fusing the two networks over space
and time [4]. They ultimately discover that fusing a spatial
and temporal network at the convolution layer instead of
the softmax layer results in comparable performance, while
also significantly reducing a substantial number of param-
eters. Another approach involves using a separate architec-
ture to combine image information. Yue et. al. explored
two video-classification methods [22] which are both capa-
ble of aggregating frame-level ConvNet outputs into video-
level predictions: Feature Pooling methods max-pool lo-
cal information through time, while LSTM’s hidden state
evolves with each subsequent frame.

2.3 Variations of temporal stream

Various approaches have been explored in an effort to im-
prove the performance of the temporal stream in the two-
stream architecture. Zhang et. al. investigates the replace-
ment of optical flow with motion vector, which can be ob-
tained directly from compressed videos without additional
calculation [24], resulting in a more than 20x speedup com-
pared to traditional two-stream approaches. However, mo-
tion vectors tend to lack fine structures and contain noisy
and inaccurate motion patterns, leading to a decline in
recognition performance. An alternative approach involves
learning to predict optical flow using a supervisedConvNet.
Ng. et. al. proposes a multitask learning model, Action-
FlowNet, that trains a single stream network directly from
raw pixels to jointly estimate optical flow while recogniz-
ing actions with ConvNet, capturing both appearance and
motion in a single model [16].
In this study, we build upon the ideas of the two-stream

architecture [18] and modify the temporal stream. Rather
than relying on optical flow, we introduce a novel approach
that embeds motion into the original frames, generating
motion-embedded images that retain spatial features in the
temporal stream. This is based on the belief that motion and
appearance should not be separated. However, the spatial
stream is still considered, as our current method for gener-
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ating motion-embedded images may contain noisy and in-
accurate motion patterns caused by background movement.

3 Proposed Method
In this section, we introduce our novel approach called mo-
tion embedded image (MEI) and two-stream network. The
input video is fed into two distinct streams, the normal and
motion streams, as illustrated in Figure 1. The processes
in these streams are implemented separately. Prior to be-
ing input into the streams, the input can be pre-processed.
These inputs are then fed into a ConvNet to perform image
classification, and the prediction scores of both streams are
fused to produce the final prediction. In the following sub-
sections, we provide comprehensive details of the motion
embedding technique, motion stream, normal stream, and
fusion stage.

Figure 1: Illustration of our proposed two-stream architec-
ture. Normal stream (top) takes individual frames as in-
puts, while Motion stream (bottom) requires motion em-
bedded images which are a combination of consecutive
video frames. Then, the convolutional neural networks in
both streams learn to classify them. Finally, a fusion algo-
rithm is performed to combine normal-motion information.
Both streams are end-to-end trainable.

3.1 Motion Embedding

As per the requirements of the Motion stream, the input
video frames must undergo a motion embedding stage. Our
proposed motion embedding techniques are illustrated in
Figure 2, which depict the workflow involved in this stage.
The resulting output of this stage is motion-embedded im-
ages that convey the direction and order of motion of a
single image. Furthermore, we believe that the spatial
and temporal information stored simultaneously gives more
features for Convolutional Neural Network to learn, which
is described in detail in a later sub-section.
All frames extracted from the input video are orderly

numbered as T and segmented into batches consisting ofN
consecutive frames. Each batch is fed into the motion em-
bedding stage, which comprises two components: image
processing and combinator. The image processing compo-
nent is responsible for generating new images from origins,
while the combinator aggregates the processed images to
create motion-embedded images. It is noteworthy that the
aggregation of consecutive frames in a video emphasizes
the parts containing static objects and contexts, highlight-

ing the contours of the different stages in the motion that
can be easily distinguished from the static parts. The com-
binator is often dependent on the method used in the image
processing component. In the following sub-section, we
present our studies about two methods for processing im-
ages and their corresponding combinators.

Figure 2: Workflow of our motion embedding technique.
The figure illustrates a batch of N=5 consecutive frames
from an input video before and after processing which uses
the Equal Division method. A combinator, then, merges
all processed frames to generate relevant motion embedded
images.

3.1.1 Equal division

To ensure that all frames contribute equally to MEI, we di-
vide the values of all pixels in each frame byN . This tech-
nique also enables the combinator to keep the pixel values
between 0 and 255. The formula for this technique is pre-
sented below:

processed_img = original_img ∗ 1

N
In the formula, processed_img and original_img are 2D
arrays representing the pixel values of the processed and
original frames, respectively. The operation is performed
element-wise.
The combinator we suggest for this method is simply a

summation of all processed images. Therefore, the final
MEI for a batch concluding at frame T is formulated by the
following equation:

MEIT =

T∑
i=T−N+1

processed_img i (1)

In Figure 2, a batch of five consecutive frames from an
input video is depicted, which is processed through the mo-
tion embedding stage using the Equal Division method. As
evident from the figure and equations, it is obvious that the
finalMEI likely presents a stack of images. Due to the iden-
tical contributions of all frames to the final image, the mo-
tion transitions are presented in a uniform manner through-
out the sequence.
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3.1.2 Gradient division
The Equal Division method is limited in that it fails to cap-
ture the directionality of the motion, as it presents all action
steps in an identical manner. To overcome this limitation,
we propose theGradient Divisionmethod. Thismethod pri-
oritizes the most recent frame in a batch to serve as the base
frame for activity recognition and appropriately weights the
contribution of each frame in the batch, with later frames
carrying higher weights than earlier ones.
The following describes our proposed formulas for im-

age processing component:

sum_N =

N∑
i=1

i, contrib =
T mod N + 1

sum_N

processed_img = original_img ∗ contrib
In the above formula, processed_img, original_img are
2D arrays of the processed and original frames’ pixel val-
ues, respectively. The equation is performed element-
wisely. The two scalars sum_N , contrib are aimed to cal-
culate the contribution of frame T in a batch of N frames.
The combinator we suggest for this method is similar to

the formula 1 for the Equal Division combinator.

Figure 3: Workflow of our motion embedding technique.
The figure illustrates a batch of N=5 consecutive frames
from an input video before and after processing which uses
the Gradient Division method. A combinator, then, merges
all processed frames to generate relevant motion embedded
images.

Figure 3 shows a batch of 5 consecutive frames from an
input video. It is fed into the motion embedding stage us-
ing the Gradient Division method. As shown in the figures
and formulas above, the later frames in the batch contribute
more to the final output image. This leads to a much better
presentation of the direction of action in final motion em-
bedded images. We believe that based on this motion trail,
Convolutional Neural Network can learn temporal and spa-
tial information simultaneously.
3.2 Motion stream
The motion stream proceeds in a sequential manner, where
batches of N consecutive frames are sequentially fed into

the stream. The motion stream operation involves two pri-
mary stages. Firstly, the input batch is transformed into an
MEI through the motion embedding stage. Subsequently,
the generated images are processed by a ConvNet to pre-
dict the spatial-temporal features from MEI.
3.3 Normal stream
Initially, we endeavored to investigate the feasibility of em-
ploying MEI exclusively for action recognition. However,
our experiments revealed that contemporary motion em-
bedding techniques tend to retain motion trails from ex-
traneous objects and backgrounds, resulting in suboptimal
outcomes. Consequently, we discerned that static appear-
ance remains a valuable source of information, given its ca-
pacity to capture immobile objects without motion trails.
Accordingly, we resolved to supplement our approach by
adding a normal stream to perform classifications grounded
in still images. This stream comprises an image classifica-
tion ConvNet architecture and can be enhanced by leverag-
ing recent breakthroughs in large-scale image recognition
methods [13]. By pre-training this network on a compre-
hensive image classification dataset, such as the ImageNet
challenge dataset, we can further enhance its predictive ca-
pabilities.
The normal stream is designed to process individual

video frames. In each batch, the most recent frame, referred
to as the base frame when using Gradient Division for the
motion stream, is extracted and fed into the Convolutional
Neural Network (CNN) of this stream.
3.4 Fusion stage
The predictions generated by the two streams of image clas-
sification are integrated through a fusion process to produce
the ultimate prediction output. At present, our approach to
this fusion stage is to compute the arithmetic mean of the
predictions, as explicated by formula 2.

pred(x) =
normal_pred(x) +motion_pred(x)

2
(2)

where x indicates the input image and normal_pred,
motion_pred and pred present the prediction of normal,
motion stream, and the final prediction result, respectively.

4 Experiments and Results
4.1 Dataset
4.1.1 UCF-101
The UCF-101 dataset [19] is a prominent benchmark for
evaluating the performance of human action recognition
models. The dataset comprises a diverse collection of 101
action classes, spanning over 13,000 clips and 27 hours
of video data. Notably, the dataset features realistic user-
uploaded videos that capture camera motion and cluttered
backgrounds. To evaluate the performance of our approach,
we adopt the split-test 01 provided by the authors of this
dataset.
4.1.2 SEAGS_V1
We present a novel dataset, SEAGS_V1, that features a di-
verse mix of effect and non-effect videos.
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Our dataset is obtained from a variety of video platforms,
including Youtube, TikTok, and Facebook reels. We lever-
age normal videos as the base data for actions, while short
videos with added image effects, text, and stickers serve
to enrich the dataset for improved recognition of short ef-
fect videos. Figure 6 showcases some examples from our
dataset that include text and stickers. Short videos of less
than 20 seconds are included in their entirety, except for the
intro and outro, while longer videos are manually split into
2-4 segments that are 5-20 seconds in duration.
To facilitate our experiments, SEAGS_V1 is structured

in the samemanner as UCF-101, with videos organized into
folders corresponding to their respective class labels.The
name of the video is formatted as

v_<class label>_<index>.mp4
We also provide the following files:
classInd.txt file contains index of each class label.
testlist.txt file contains the path to testing videos

accounting for 30% of dataset.
trainlist.txt file contains the path to training videos

accounting for 70% of dataset.
After data collection, SEAGS_V1 is completed with 8

classes. Each class consists of 100 - 160 videos, each video
is between 1 and 20 seconds long. Figures 4, 5 and Table 1
show the statistics of SEAGS_V1 dataset.

Figure 4: Statistical chart of the clip amount of classes

Figure 5: Statistical chart of the total time and average
video duration of classes

4.2 Data Augmentation
Upon close examination of our dataset, SEAGS_V1, we
figure out that many behaviors are labeled with the same

Table 1: An overview of the SEAGS_V1 dataset

Actions 8
Clips 1169
Total Duration 188 m
Mean Clip Length 9.64 s
Min Clip Length 1.0 s
Max Clip Length 20.0 s
Audio No

action class, yet differed only in their direction. To fur-
ther augment the dataset and facilitate learning in these
cases, we implemented a data augmentation technique that
involves flipping the original images. Figure 6 shows some
examples of flipped and original video frames from our
dataset.

Figure 6: Some flipped and original video frames from
dataset SEAGS_V1

4.3 Image classification backbones

For UCF-101, we consider to use EfficientNetB0 as
the backbone. For SEAGS_V1, we conduct experi-
ments using a range of backbones, including Efficient-
NetB0, DenseNet201, InceptionNetV3, ResNet50, and
MobileNetV2. Moreover, we explore the potential bene-
fits of ensembling multiple base ConvNet models into a
stronger classifier, which we refer to as EnsembleNet, by
summing the probability prediction of each model.

ensemble_net(x) =
1

K

K∑
k

base_netk(x)

where x indicates the input image and K represents the
number of base models.

4.4 Motion embedding implementation

We use some specific parameters to create embedded mo-
tion images, namely N = 10 and interval_frames = 5 for
SEAGS_V1 andN = 10 and interval_frames = 10 for UCF-
101.
Here, interval_frames refers to the distance, in terms of

frame count, between two consecutive batches or the dis-
tance from the first frame of batch k to the first frame of
batch k + 1. Each embedded motion image is generated
from a batch of N frames. As depicted in Figure 7, a com-
parison of three types of images - normal image, MEI with
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Gradient Division, and Equal Division - highlights the ef-
fectiveness of Gradient Division in preserving the direction
of motion in activities, whereas Equal Division does not.
Accordingly, we employ Gradient Division as the method
for the motion embedding process in our experiments. Fig-
ure 8 shows some motion-embedded images from both the
SEAGS_V1 and UCF-101 datasets.

Figure 7: Some examples of normal image (left), MEI with
Gradient Division (middle) and with Equal Division (right)
from two datasets

Figure 8: Some motion embedded (left) and its original im-
ages (right) fromSEAGS_V1 (A, B, C, D) andUCF-101 (E,
F, G, H) datasets

4.5 Training
We partition the dataset into training and validation sets at a
ratio of 7:3. We conclude the training process once the val-

idation accuracy exceeded 0.9. Notably, training with nor-
mal images requires only 10 epochs to achieve the desired
validation accuracy, whereas training with MEI takes 50
epochs. Each stream is trained independently, and the prob-
abilities are subsequently fused for prediction purposes.

4.6 Two-stream implementation

We train both the spatial and temporal streams using the
same model architecture, albeit independently. The motion
stream is fed with the MEIs generated using the parameters
specified in the previous section. During testing, the normal
stream processes all the last frames of the batches to make
predictions.

4.7 Results

Our experimental results on the UCF-101 dataset demon-
strate that our proposed method achieved significantly
higher accuracy than the initial models developed by
Soomro et. al. [19], Karpathy et. al. [11], and a two-stream
model [6]. However, when compared to the original two-
stream model [18] and the state-of-the-art approach devel-
oped byWang et. al. [10], our method exhibits a noticeable
performance gap, as shown in Table 2.

Table 2: Experiment result on UCF-101 dataset (split test
01) (ours with backbone EfficientNetB0)

Model Accuracy (%)
Soomro et al [19] 43.9
Karpathy et al [11] 65.4
Han et al [6] 68.0
Simonyan et al [18] 88.0
Kalfaoglu et al [10] 98.69
Ours (with normal image) 68.54
Ours (with MEI) 67.04
Ours (Two-stream) 70.08

Table 3: Experiment result on SEAGS_V1 dataset with nor-
mal image

Backbone Accuracy (%)
EfficientNetB0 84.9
DenseNet201 89.2
MobileNetV2 87.2
ResNet50 64.1
InceptionV3 86.9
Ensemble (5 base models) 92.9
(Done on 1/10 of the total frames of each video)

Overall, the experimental results presented in Tables 2,
3, and 4 suggest that the accuracy of models trained with
MEIs is marginally lower than that of models trained with
normal images. In particular, the incorrect predictions of
MEI-based models are primarily observed in videos with
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Table 4: Experiment result on SEAGS_V1 dataset withmo-
tion embedded image

Backbone Accuracy (%)
EfficientNetB0 88.3
DenseNet201 87.5
MobileNetV2 81.5
ResNet50 52.7
InceptionV3 85.8
Ensemble (5 base models) 92.9

Table 5: Experiment result on SEAGS_V1 dataset with pro-
posed two-stream model

Backbone Accuracy (%)
EfficientNetB0 90.02
DenseNet201 89.46
MobileNetV2 88.89
ResNet50 60.11
InceptionV3 88.32

moving contexts, where the MEIs generated from these
videos make it difficult for the models to distinguish be-
tween actions and context, resulting in suboptimal perfor-
mance. Figure 8 (B, F) provides examples of poorly gener-
atedMEIs from such videos. In contrast, normal images are
found to preserve clear visual information among objects,
even in the presence of moving contexts.
Conversely, MEIs exhibit a distinct advantage in videos

with static or minimally moving contexts, where they can
effectively highlight the motion of activities that may not
be apparent in normal images. Figure 8 provides exam-
ples of such scenarios (A, C, D, H). Hence, the fusion of
these two types of images in a two-stream architecture sig-
nificantly improves the accuracy of the final result on both
datasets, as evidenced by the results presented in Tables 2
and 5. Notably, in cases where the motion of activities is
relatively consistent, MEIs and normal images exhibit simi-
lar characteristics, and the models can effectively learn spa-
tial information. Figure 8 (E, G) provides examples of such
cases.

5 Conclusion
In this paper, we propose an approach of applying mo-
tion embedded Image (MEI) in a human activity recogni-
tion two-stream ConvNet model for short-form videos. We
also propose an unprecedented dataset called SEAGS_V1,
which consists of both non-effected and effected short
videos of 8 local Southeast Asian Sports.
Currently, our experiments on UCF-101 and SEAGS_V1

datasets show that combining the motion stream with the
normal spatial stream gives significantly better results than
using each stream as an independent model. Moreover,
ConvNet models using the ensembled backbone have no-
tably higher accuracy than those using only one back-

bone. The derived results show a promising potential of
the model to advance prediction efficiency in the human
activity recognition problem.
Extra training data is beneficial for our model to learn

spatial and temporal information, so we are planning to
train it on large video datasets such as Sports-1M. Our next
direction is to modify the architecture so it can focus more
on the activity instead of the whole image and the extracted
information will not be diluted. The most important im-
provement plan is to make the motion stream retain more
spatial information so the model only consists of one mo-
tion stream and becomes more lightweight.
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