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Searchable symmetric encryption is one of the most important modern technologies that allow the owner 

to store private data on an unreliable server and search for the data securely while preserving the data’s 

confidentiality and privacy. This field has several schemes, but these schemes suffered from slower data 

retrieval in the case of large database sizes owing to the poor locality. Hence, the server visits several 

memory locations for a single query. Other studies focused on improving the locality, but the result is 

either increased storage capacity or decreased efficiency of data reading. In the present study, we present 

a secure, searchable scheme that overcomes the abovementioned issues and works to improve the locality 

by exploiting the QR code technique and the Advanced Encryption Standard algorithm. Furthermore, our 

work maintains read efficiency, helps reduce the risk of data breaches, and protects sensitive information 

from being accessed by unauthorized individuals. Moreover, the proposed scheme can resist cyber 

security attacks, such as frequency analysis attacks and keyword guessing attacks. Additionally, we used 

real-world data in our experiments and demonstrated that our proposed scheme is secure and practically 

efficient and holds high accuracy. 

Povzetek: Predstavljana je varnostna iskalna shema za izboljšanje šifriranja, ki izboljšuje lokalnost, 

ohranja učinkovitost branja in je odporna na kibernetske napade. 

 

1  Introduction 
Cloud storage outsourcing is a service in which a company 

outsources the storage of its data to a cloud storage 

provider. Cloud storage outsourcing can provide several 

benefits, including cost savings, increased scalability and 

flexibility, and improved data security and availability. 

Cloud storage providers typically have strict security 

measures to protect customer data, including measures 

such as encryption, secure data centers, and access 

controls. However, the data owner (𝐷𝑊) or company is 

still responsible for ensuring that its sensitive data are 

protected and in compliance with relevant regulations or 

industry standards.  

     Searchable symmetric encryption (𝑆𝑆𝐸) is one of the 

most important operations that can be applied on sensitive 

data in the outsourcing cloud [1]. Using searchable 

encryption to store sensitive data in the cloud can help to 

protect the data from unauthorized access while still 

allowing it to be searched and used in a controlled manner. 

However, carefully evaluating the security and 

performance tradeoffs of different searchable encryption 

approaches and ensuring that the chosen approach meets 

the 𝐷𝑊’s needs and security requirements are essential. In 

more detail, 𝑆𝑆𝐸 is done by the 𝐷𝑊 as a first step to 

encrypt the data using a secret key, and then, it is sent to  

 

 

the server. After, the 𝐷𝑊 creates a secure index based on 

its own database. The encrypted data and a secure index  

are sent to the cloud storage server, which could be the 

same untrusted server or another server chosen by the 𝐷𝑊 

as a third party. The 𝐷𝑊 generates a search token used to  

retrieve information based on a secure index file to 

perform a secure search.  

     SSE schemes in the literature review have several 

syntaxes, which are divided into two types. Each type 

relies on the interaction between the server and the 𝐷𝑊 in 

each request query about data. The first type is a single-

round interaction where the server also decrypts the data 

and sends the result to the 𝐷𝑊 (therefore, the server learns 

the output). Additionally, the second type uses more than 

one round of interaction (where the server learns no 

information about the output) [2]. We use the second type 

in our scheme for the security of the exchanged data over 

the communication channel between server and client. 

Therefore, the server cannot decrypt the data and preserve 

the privacy of the client’s data. 𝑆𝑆𝐸 schemes face several 

challenges as follows: 

 

• Key management 

In the 𝑆𝑆𝐸 scheme, the same secret key is used for 

encrypting and decrypting the data. This case implies that 

the key must be safely distributed to all parties who need 

to be able to look for the encrypted data. This can pose a 
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difficulty, particularly in large organizations with many 

users [3]. 

 

• Security  

Although symmetric searchable encryption schemes are 

generally secure, they are vulnerable to key compromise. 

If the secret key is compromised, an attacker could decrypt 

the encrypted data and potentially perform unauthorized 

searches. 

 

 

• Key size 

 To ensure the security of the encrypted data, the secret 

key used in a symmetric searchable encryption scheme 

must be long enough to withstand brute-force attacks. This 

case can increase the size of the key, which can be a 

problem in systems with limited storage or bandwidth. 

 

• Performance 

Symmetric searchable encryption schemes can be slower 

than other encryption schemes because they require the 

use of a single shared key for encryption and decryption. 

This case can be a problem when searching large datasets 

as the search may take a long time to complete. Another 

issue related to the slow searching in large datasets is poor 

locality. Thus, locality is defined as the number of times a 

server accesses multiple memory locations separately  

in response to a single request from the user [1], [2], [4]–

[6].  

     The improvement in locality always leads to a negative 

impact on other characteristics, such as the efficiency of 

reading or a significant increase in storage capacity. 

Hence, finding a scheme that combines the best locality 

and the efficiency of reading and storage is difficult. 

Our contribution 

 In this study, we propose a good locality secure 

searchable encryption based on the QR code technology 

and symmetric encryption method to solve the problem of 

searchable encryption in large datasets. Additionally, we 

use a new inverted index to improve locality that 

contributes to preventing leakage data and preserves the 

privacy data of 𝐷𝑊. Provided with a comprehensive 

description of our scheme and a discussion of its resistance 

against several of the most famous attacks on SSE. We will 

briefly summarize our contributions as follows: 

• Optimization locality by 800 times for small 

databases that contain less than a thousand identifiers 

and by 400 times for large databases. Furthermore, we 

applied our proposed scheme in real-world data, and 

the experimental results denote that our work 

achieves the best results in performance, read 

efficacy, and resisting malicious attacks compared 

with previous works. 

 

• Our proposed scheme does not excessively affect 

storage and maintains storage without resulting in a 

large increase due to locality improvement. 

Furthermore, it maintains read efficiency at 𝑂(1). 

 

Character Description 

𝑉 Number of users 

𝑈𝑖 User, where 𝑖 ∈ 𝑉 

𝑤𝑖  Word 

𝑚 Number of words 

𝑊 Words in 𝐷𝐵, 𝑊 =
{𝑤𝑖 , . . . , 𝑤𝑚} 

𝑖𝑑 Identifier 

𝑛 Total of identifiers 𝐷𝐵 

𝑛𝑖 Total of identifiers 𝑤𝑖  

𝑁 ∑ |𝐷𝐵(𝑤𝑖)|𝑖=1
𝑚  where 

𝐷𝐵(𝑤𝑖) =  {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 } 

𝑃𝑅𝐹 Pseudo-random function 

𝐻𝑇  Hash table representing data 

structures used to store and 

retrieve data and consist of 

a pair of algorithms Add 

and Get [6] 

𝐴𝑑𝑑 Algorithm adds pairs of 

(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒)  to 𝐻𝑇  

𝐺𝑒𝑡 value=Get(key) 

𝑆 String 

Ŝ Encrypted string 

𝑙𝑎 Label is used to store and 

retrieve Ŝ in 𝐻𝑇 , 

𝐴𝑑𝑑(𝑙𝑎, Ŝ), Ŝ = 𝐺𝑒𝑡(𝑙𝑎) 

𝐸𝑛𝑐 Function to encryption 𝑆 

𝐷𝑒𝑐 Function to decryption Ŝ 

𝑘1 Derivative key to create   𝑙𝑎 

𝑘2 Derivative key to encrypted 

and decrypted 

𝑏 Block of word identifiers 

𝑄_𝑖𝑚𝑔 QR code  image 

𝐶𝑟𝑒𝑎𝑡_𝑞 Create QR code function 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 Convert string to  𝑄_𝑖𝑚𝑔 

function 

𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 Convert 𝑄_𝑖𝑚𝑔 to string 

function 

Ť Encryption 𝑇 

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  A list used by the CS to store 

the values encoded in it to 

respond to the user query 

𝑟𝑒𝑎𝑑 Read 𝑄_𝑖𝑚𝑔 function 

𝑘𝑢 Key used to secure 𝑇 and 

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  exchanged 

Table 1:  List of symbols 
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between major 

components 𝐶𝑆 and 𝑈𝑖 

𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  Encryption 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 

 

2 General background 

2.1 𝑺𝑺𝑬 algorithms 

• 𝑘 ←  𝐺𝑒𝑛(1λ): Is a key generation algorithm that is 

run by the 𝐷𝑊 token as a security parameter 1λ 

(input) and a secret key 𝑘 used for 

encrypting/decrypting database 𝐷𝐵. 

• 𝑆𝐼 ←  𝐸𝑛𝑐(𝑘, 𝐷𝐵): Is used for building a secure 

index file (𝑆𝐼) based on 𝑘 and 𝐷𝐵. 

• 𝑇 ←  𝑇𝑟𝑝𝑑𝑟(𝑘, 𝑤𝑖): This algorithm is more 

concerned with preventing the disclosure of 

information stored on the server as an encrypted list 

of keywords (𝑆𝐼). As a result, the server responds to 

the users’ request (𝑇) in a safe manner. 

• 𝑑 ←  𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼, 𝑇): Is a deterministic algorithm run 

by the server to search for the data d through a 

trapdoor 𝑇 in the secure index 𝑆𝐼. If d is encrypted, 

then we will need a resolve algorithm. 

•  𝑅 ←  𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝑘, 𝑑): This algorithm is performed 

by the 𝐷𝑊 to recover an identifiers for the keyword. 

It takes a secret key 𝑘 and a data point d as inputs and 

outputs of the final result 𝑅. 

2.2 Locality and read efficiency  

We must get acquainted with the concept of read patterns 

to understand locality in more detail. The search function 

for any 𝑆𝑆𝐸 scheme by the server 𝑑 ←  𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼, 𝑇) 

can be analyzed into a series of intervals 

 [𝑎1,  𝑏1]... [𝑎𝑣 ,  𝑏𝑣], where the server starts from the first 

interval [𝑎1, 𝑏1] to the last interval [𝑎𝑣 , 𝑏𝑣] depending on 

𝑇 in 𝑆𝐼. Moreover, we can express these intervals as a read 

pattern function 𝑅𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇). When only one interval is 

obtained, the scheme has the best possible locality [4], [6]. 

 

Definition (Locality 𝑳) An 𝑆𝑆𝐸 scheme 𝛱 has locality (𝐿) 

with each security parameter (1λ, 𝐷𝐵, and 𝑤𝑖 ∈  N). We 

use 𝑅𝑒𝑎𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇) consisting of 𝐿 intervals with 

probability 1, when 𝑇 and 𝑆𝐼 are computed as follows: 

 𝑘 ←  𝐺𝑒𝑛(1λ), 𝑆𝐼 ←  𝐸𝑛𝑐(𝑘, 𝐷𝐵)  and 𝑇 ←
 𝑇𝑟𝑝𝑑𝑟(𝑘, 𝑤𝑖). Furthermore, if 𝐿 =  1, the 𝑆𝑆𝐸 scheme 

(𝛱) has perfect locality. However, the perfect locality is 

insufficient because we can simply transform any scheme 

into a perfect locality by the poor read efficiency, which is 

defined as reading only the required data from the server 

for each query[4]. 

 

Definition  (Read Efficiency 𝑬) An 𝑆𝑆𝐸 scheme 𝛱 is 𝐸-

read efficient with each main parameters 1λ, DB, and 𝑤𝑖 ∈
 N. We have 𝑅𝑒𝑎𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇) that consists of intervals of 

total length at most 𝐸 · |𝐵𝑖𝑛𝐸𝑛𝑐(𝐷𝐵(𝑤𝑖))| bits, where 

𝐵𝑖𝑛𝐸𝑛𝑐(𝐷𝐵(𝑤𝑖)) represents binary coding of 𝐷𝐵(𝑤𝑖). 

The concatenation of all keywords’ identifiers signified as 

bit strings [4]. A perfect locality can also be obtained by 

violating storage efficiency by creating a perfect locality 

scheme but  with  excessive storage space overhead (the 

encrypted 𝐷𝐵 should not be much larger than the original 

𝐷𝐵).  

2.3 Related works 

In 2000, Song et al. defined SSE and provided efficient 

constructions [7]. These mechanisms securely store data 

on an untrusted server but cannot retrieve client's data. 

Many subsequent studies focused on this field, achieving 

SSE's basic principle. However, practical experiments 

with large databases revealed poor performance and 

degradation with increasing size. The reason is that they 

often suffer from a bottleneck problem [8]. The literature 

found that the bottleneck in these schemes was not caused 

by encryption but by the lower-level memory access 

issues in more specifically poor locality. The known 

constructions can be broadly categorized into two.  

     The first approach is characterized by  linear space and 

constant read efficiency but poor locality in [8], [9]. An 

array of size 𝑁 is allocated, and 𝑁 elements of the database 

are uniformly mapped into the array. To recover a list of 

documents that contain a given keyword, each document 

identifier is stored in the array together with a pointer to 

the next document identifier in the list. Additionally, the 

first approach requires the server to access random 

locations in the array with the number of identifiers that 

the word appears in. This case is inefficient because of 

poor performance resulting from moving to a large 

number of different locations.  

     The second approach has optimal read efficiency and 

locality but at the cost of substantial space overhead [10], 

[12]. The strategy behind this approach is to allocate a 

sufficiently large array and uniformly map the list of word 

identifiers into a contiguous interval in the array by the 

length of word identifiers, without any overlaps among 

different lists. To efficiently retrieve a list for a given 

keyword, the server needs to access only a single random 

location and read all consecutive identifier entries, thereby 

resulting in optimal read efficiency and locality. However, 

the locations of the lists in the array reveal information 

about the structure of the underlying database. Therefore, 

padding must be applied to conceal information about the 

lengths of the lists, leading to a polynomial space 

overhead. Hence, creating a scheme with the best locality, 

storage, and read efficiency is a challenge, as David Cash 

and  Tessaro in 2014 [4] proved that it is impossible for this 

to happen. They also set a lower bound on the tradeoff 

among these three criteria. In addition to their 

improvement on the locality by creating a scheme with a 

logarithmic locality (𝑙𝑜𝑔 𝑁), the storage space is not good 

enough 𝑂(𝑁 𝑙𝑜𝑔 𝑁).  

     In 2016, Gilad Asharov et al. [2], in their third scheme, 

updated the locality of David cash and Tessaro scheme to 

become 𝑂(1) with the same storage space.  

     In 2017, Demertzis and Papamanthou [5] created two 

schemes, the first with optimal locality and space 𝑂(𝑁 𝑆𝑙). 

𝑆𝑙 is the number of levels used to store data, but there was 
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an effect on read efficiency by a small percentage, and the 

storage space is still large. As the second scheme worked 

in the same storage space as the first scheme, it achieves 

to a tunable locality, which is chosen as a parameter by 

𝐷𝑊 during the setup phase. 

     In 2021, Asharov et al. [6] significantly strengthened 

the lower bound of Cash and Tessaro by creating two 

general frameworks, the first pad-and-split framework and 

the second statistical-independence framework. 

     From 2021 to 2023, various research studies in SSE 

across different domains have emerged, highlighting 

numerous benefits. However, all of them still lack good 

locality, as evidenced by references [14]–[19]. 
Table 2 displays previous works in terms of three 

critical features: locality, reading efficiency, and storage 

space. It is worth noting that none of the works satisfy all 

three characteristics simultaneously. Certain searches 

exhibit poor locality, such as [8], [9], [13], where a search 

word containing 2,000 identifiers 𝑛𝑖 = 2000, would 

require the cloud server to traverse through 2,000 distinct 

positions to fulfill the user's request. 

As a result, the searchable symmetric encryption's overall 

performance is hampered. In certain prior research, the 

locality has been favorable, as in [2], [4]and [10]. 

In cases where the locality is 𝑂(1), the cloud server can 

fulfill the user's request by moving to just one location. If 

𝑁 =  1200 and the locality is 𝑂(𝑙𝑜𝑔 𝑁), it would be 10, 

implying that the cloud server would need to traverse 10 

distinct positions to fulfill the user's request. Despite the 

favorable locality in some prior research [2], [4] and [10], 

they encountered issues with large storage space. For 

instance, if 𝑁 =  1200 and the storage space is 

𝑂(𝑁 𝑙𝑜𝑔 𝑁), the storage space will expand tenfold 

compared to its original size, such as in [2] [4]. 

 

Additionally, in other cases, the word that belongs to 

the most extensive set of identifiers can impact the storage 

space where, the storage space O(( Max|DB(wi)|)𝑛) . If 

this word corresponds to all the identifiers in the database,   

that is, 𝑛 = 𝑛𝑖  the size of the encrypted index can become 

extremely large, as in [10]. 

 

3 Discussion 
In this section, we will present our work's position in 

relation to locality, and storage space. By leveraging QR 

code technology, we have successfully improved the 

locality to 𝑂(𝑛𝑞) by grouping a set of identifiers together 

in a single 𝑄_𝑖𝑚𝑔. This has led to a significant reduction 

in the number of cloud server readings required. This has 

the added benefit of reducing the number of times the user 

needs to perform decryption operations, resulting in a 

more efficient and streamlined experience. 

Regarding storage space, since  = ∑ |𝐷𝐵(𝑤𝑖)|𝑖=1
𝑚  , 

according to the previous example, the value of 𝑁 =
 1700, and this is its value in general. As for our work, 𝑁 

depends mainly  ∑ 𝑛𝑞 for all words, and in previous 

example ∑ 𝑛𝑞 = 5. Each one of these five 𝑄_𝑖𝑚𝑔  will be 

stored with a size that is similar to the storage size required 

to store 400 identifiers, this implies that N's value will be 

around 2000, which is in proximity to the desired value. 

 

 Related works Space Locality Read efficiency 

Curtmola et al. [13] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1) 

Kamara et al. [9] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1) 

David cash et al. [8] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1) 

Chase and Kamara [10] O(( Max|DB(wi)|)𝑛) 𝑂(1) 𝑂(1) 

P. van Liesdonk et al.[11] 𝑂(𝑚𝑛) 𝑂(𝑛𝑖) 𝑂(1) 

Kamara and Papamanthou [12] 𝑂(𝑚𝑛) 𝑂(𝑛𝑖 𝑙𝑜𝑔 𝑛) 𝑂(𝑛 𝑙𝑜𝑔 𝑛) 

David cash et al. [4] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(𝑙𝑜𝑔 𝑁) 𝑂(1) 

Asharov et al. (Scheme 3) [2] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(1) 𝑂(1) 

Demertzis and Papamanthou [5] 𝑂 (𝑁 𝑆𝑙) 𝑂(𝐿𝑑) 

Where 𝐿𝑑 is a tunable 

locality 
𝑂(

𝑁
1
𝑠

𝐿
) 

Asharov et al. (Pad-and-split 

scheme) [6] 

𝑂(𝑁 𝑙𝑜𝑔 𝑁
/ 𝑙𝑜𝑔 𝐿) 

𝑂(𝐿𝑑) 

Where 𝐿𝑑  depends on the 

scheme in which it is 

implemented within its 

framework 

𝑂(1) 

Our work 𝑁
= ∑ (∑ 𝑆𝑗=1

𝑛𝑞
)𝑖=1

𝑚  

𝑂(𝑛𝑞) 𝑂(1) 

Table 2: Comparison with previous schemes based on space, locality, and read efficiency 
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3.1 Primitive tools 

▪ QR codes  

A QR code is a two-dimensional code containing 

information in all directions, which is a digital image that 

can be easily scanned. Once scanned, it will quickly direct 

to the information embedded in the code, and the person 

who looks at the QR code is unable to identify it because 

its content is only machine-readable [20].  

     The QR code includes good storage capacity, fast 

readability, error correction, and support for more 

languages. It can hold 7,089 numeric characters and 4,296 

alphanumeric characters [21]. 

 

▪ Advanced Encryption Standard (𝑨𝑬𝑺)  

The 𝐴𝐸𝑆 algorithm is a widely used and recognized 

symmetric block cipher used for encrypting and 

decrypting sensitive data. It is implemented in hardware 

and software and is considered highly secure, making it 

difficult for hackers to access the original data. There is 

currently no known method for breaking 𝐴𝐸𝑆 encryption. 

𝐴𝐸𝑆 offers the flexibility to use different key sizes, 

including 128, 192, and 256 bits, with a fixed block size 

of 128 bits.  

     AES is a block cipher algorithm that uses substitution 

and permutation network techniques to encrypt and 

decrypt data. It operates on a fixed plaintext block size of 

128 bits (16 bytes) represented as a 4×4 matrix. The 

number of rounds in AES depends on the key size, with 

10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and 

14 rounds for 256-bit keys [22]. 

4 Proposed scheme 
In this section, we pay more attention to our proposed 

scheme, which consists of five phases as follows: key 

generation, setup, token generator, secure search, and 

resolve. There are three major components, 𝐷𝑊, cloud 

server (𝐶𝑆), and user (𝑈𝑖) to manage the environment of 

our work. Hence, 𝑖 ∈ 𝑉, 𝑉 represents the number of users. 

The following construction explains the proposed scheme. 

 

4.1  Our scheme construction with more 

detail 

 

▪ Key generation phase  

In this phase, 𝐷𝑊 creates a secret key 𝑘 by PRF which it 

can be explained as follows: 

Pseudo-Random Functions (𝑃𝑅𝐹): A PRF function is 

𝐹: {0,1}∗ 𝑥 {0,1}∗  → {0,1}∗. Thus, it receives two inputs 

a key and input. Therefore, 𝐹 cannot be distinguished from 

a truly random function only with negligible probability in 

1𝜆, denoted as 𝑛𝑒𝑔𝑙(1𝜆) [23]. It is to be used in setup and 

CONSTRUCTION 1. (QR code based scheme) 

 Let 𝐷𝐵 =  {𝐷𝐵(𝑤1), . . , 𝐷𝐵(𝑤𝑚)},  𝑊 =

Words in 𝐷𝐵, 𝑊 = {𝑤𝑖 , . . . , 𝑤𝑚} 

 For 𝑤𝑖  ∈  𝑊 let 𝐷𝐵(𝑤𝑖) =  {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 }. 

Key generation phase 𝒌 &  𝒌𝒖 ←  𝑮𝒆𝒏(𝟏𝝀): 

1. Input Security parameter 1𝜆 

2. Output 𝑘  and  𝑘𝑢, where 𝑘 &  𝑘𝑢 𝜖 𝑍 

3. Compute both keys based on 𝑃𝑅𝐹 

Setup and Secure phase 𝑺𝑰 ←  𝑬𝒏𝒄(𝒌, 𝑫𝑩): 

1. Input 𝑘 and 𝐷𝐵 

2. Output 𝑆𝐼 = 𝐻𝑇 

3. 𝑏𝑠 =  𝐹𝑏𝑠(𝑛) 

4. Initialize empty  𝐻𝑇  

5. For every 𝑤𝑖  𝜖 𝑊 

 𝑛𝑞 = 𝑛𝑖/𝑏𝑠 

 Compute 𝑘1 =  𝑃𝑅𝐹𝑘(1 ‖  𝑤𝑖) and 

 𝑘2 =  𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖) 

 Initialize counter 𝑖 = 0 

 For every 𝑏 𝜖 𝑛𝑞 

 𝑄_𝑖𝑚𝑔 = 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏) 

 𝑆 =  𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔) 

 Delete 𝑄_𝑖𝑚𝑔 

 Ŝ = 𝐸𝑛𝑐𝑘2
(𝑆) by AES256 

 Compute 𝑙𝑎 =  𝑃𝑅𝐹𝑘1
 (𝑖) 

 Add (𝑙𝑎, Ŝ) to 𝐻𝑇 

 𝑖 = 𝑖 + 1 

6. Upload 𝐻𝑇  to 𝐶𝑆 

Token generator phase Ť ←  𝑻𝒓𝒑𝒅𝒓(𝒌𝒖, 𝒌, 𝒘𝒊): 

1. Input 𝑘𝑢, 𝑘 and 𝑤𝑖  

2. Output Ť 

3. Compute 𝑇 =  𝑃𝑅𝐹𝑘(1 ‖  𝑤𝑖) = 𝑘1 

4. Ť = 𝐸𝑛𝑐𝑘𝑢
( 𝑇)  

5. Send Ť to 𝐶𝑆 

Secure Search phase 𝑬_𝑶𝒖𝒕𝒑𝒖𝒕𝒍𝒊𝒔𝒕  ←

𝑺𝒆𝒂𝒓𝒄𝒉(𝒌𝒖, Ť , 𝑺𝑰):  

1. Input 𝑘𝑢 , Ť  and 𝑆𝐼 

2. Output 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 

3. Initialize counter 𝑖 = 0 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 

4. 𝑇 = 𝐷𝑒𝑐𝑘𝑢
( Ť) = 𝑘1 

5. While true 

 Compute 𝑙𝑎 =  𝑃𝑅𝐹𝑘1
 (𝑖) 

 Ŝ = 𝐺𝑒𝑡 (𝑙𝑎) 

 Add(Ŝ) to 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  

 𝑖 = 𝑖 + 1 

End While 

6. 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐸𝑛𝑐𝑘𝑢
(𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) 

7. Send to 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 𝑈𝑖  
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secure phase 𝑆𝐼 ←  𝐸𝑛𝑐(𝑘, 𝐷𝐵) and send it to all trusted 

users. 

 𝑈𝑖 should use secret key 𝑘 in the next phases, such as 

token generator phase Ť ←  𝑇𝑟𝑝𝑑𝑟(𝑘𝑢 , 𝑘, 𝑤𝑖) and resolve 

phase  𝑅 ←  𝑅𝑒𝑠𝑜𝑙𝑣𝑒( 𝑘𝑢 , 𝑘, 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡). In addition, 

a second key was created in the same way, called  𝑘𝑢, and 

it is used to secure 𝑇 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  exchanged between 

major components 𝐶𝑆 and 𝑈𝑖. 

 

▪ Setup and secure phase  

The 𝐷𝑊 configures secure index 𝑆𝐼 ,  which will be 

uploaded to 𝐶𝑆 after completing this phase,  where it uses 

𝑘 and 𝐷𝐵 as main inputs and computes SI as output. The 

following steps explain the mechanism working of the 

current phase: 

• Configure empty hash table (𝐻𝑇) that will be 

depended on to save secure parameters and then used 

as a secure index file (𝑆𝐼) for retrieving and 

processing the users’ requests. 

• Determine the size of the block 𝑏𝑠 = Fbs (n) where 

𝑛 represents the number of identifiers of the database 

(𝐷𝐵) and 𝑏𝑠 is the number of identifiers that can be 

stored together as a single block allowed to 

create 𝑄_𝑖𝑚𝑔. From experimental results of our 

work, we discover a significant relationship between 

the number of identifiers of database 𝑛 and the size of 

𝑄_𝑖𝑚𝑔. We found that the 𝑄_𝑖𝑚𝑔 has the flexibility 

to save maximum numbers of identifiers, whereas the 

value of 𝑛 is low based on the number of 𝑛’s ranking) 

• For every keyword taken from 𝑊 where 𝑤𝑖  𝜖 𝑊, we 

carried out several successive steps as follows: 

 

− Compute the numbers of 𝑄_𝑖𝑚𝑔 𝑛𝑞 that 𝑤𝑖  will 

be needed by 𝑛𝑖/𝑏𝑠, it is necessary to know the 

number of 𝑄_𝑖𝑚𝑔 for each word based on the 

number of identifiers 𝑛𝑖  of words after dividing it 

by 𝑏𝑠. 

− Derivation of two keys from 𝑤𝑖 . The first one 𝑘1 

is computed using 𝑃𝑅𝐹, which takes 1 and 𝑤𝑖  as 

its inputs as follows: 𝑘1 =  𝑃𝑅𝐹𝑘(1 ‖  𝑤𝑖). The 

label 𝑙𝑎 has been created by 𝑘1. The second key  

 𝑘2 creates in the same way 𝑘2 =  𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖) . 

− Initialize counter 𝑖 = 0. 

− For every block 𝑏 𝜖 𝑛𝑞 do the following: 

− Convert this 𝑏 to QR code image 𝑄_𝑖𝑚𝑔 

using the 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏) function, which 

receives 𝑏 as input and converts 𝑏 to 

𝑄_𝑖𝑚𝑔. 

− Convert the 𝑄_𝑖𝑚𝑔 to a string 𝑆 by 

using 𝑆 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔) 

function. 

− Delete 𝑄_𝑖𝑚𝑔 

− Encrypt  𝑆  using Ŝ = 𝐸𝑛𝑐𝑘2
(𝑆), Ŝ 

represents an encrypted string. 

− Derives 𝑙𝑎 from  𝑤𝑖 by 𝑙𝑎 =

 𝑃𝑅𝐹𝑘1
 (𝑖), which receives 𝑘1 and 𝑖 as 

input to get a different 𝑙𝑎 each time. 

− Add the 𝑙𝑎 and Ŝ pair (𝑙𝑎, Ŝ) to the 

𝐻𝑇  as a (key, value). 

− Increase the value of 𝑖. 

 

 

▪ Trapdoor phase  

The current phase is implemented by 𝑈𝑖  to search for a 

specific word 𝑤𝑖 , the 𝑇𝑟𝑝𝑑𝑟 receives 𝑤𝑖  , 𝑘𝑢 and 𝑘 as 

input parameters and gives Ť as an output, which will 

compute 𝑇 and then secure it using 𝑘𝑢, Ť = 𝐸𝑛𝑐𝑘𝑢
(𝑇) to 

send it to 𝐶𝑆 more securely. 

 

 

 

 

Resolve phase 𝑹 ←
 𝑹𝒆𝒔𝒐𝒍𝒗𝒆( 𝒌𝒖, 𝒌, 𝑬_𝑶𝒖𝒕𝒑𝒖𝒕𝒍𝒊𝒔𝒕): 

1. 1.Input 𝑘 ,  𝑘𝑢 and 𝐸 _𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  

2. 2.Output 𝑅 =  𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠 

3. 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐷𝑒𝑐𝑘𝑢
(𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) 

4. Restore  𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖) = 𝑘2 

5. For every Ŝ 𝜖 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  

 𝑆 = 𝐷𝑒𝑐𝑘2
(Ŝ) 

 𝑄_𝑖𝑚𝑔 =  𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 (𝑆) 

 𝑅 = 𝑟𝑒𝑎𝑑(𝑄_𝑖𝑚𝑔) 

 Delete 𝑄_𝑖𝑚𝑔 

 END CONSTRUCTION  

 

Figure 1: Key generation phase and setup and 

secure phase. 
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▪ Secure search phase 

𝐶𝑆 responds to a user’s query and returns an encrypted list 

of secure values (𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) in 𝑆𝐼. CS performs the 

following steps: 

− 𝑇 = 𝐷𝑒𝑐𝑘𝑢
( Ť) = 𝑘1 

− Initialize counter 𝑖 = 0 and empty 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = [].  

While True 

         Let 𝑙𝑎 =  𝑃𝑅𝐹𝑘1
 (𝑖) 

          Retrieve 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡[𝑖] = Ŝ = 𝐺𝑒𝑡(𝑙𝑎) 

         𝑖 = 𝑖 + 1 

      End 

−  𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐸𝑛𝑐𝑘𝑢
(𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) 

− CS resubmits 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 to 𝑈𝑖. 

 

▪ Resolve phase   

 𝑈𝑖   receives 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 from CS and performs the following: 

− 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐷𝑒𝑐𝑘𝑢
(𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) 

− 𝑘2 =  𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖)  

− For every Ŝ 𝜖  𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  

− 𝑆 = 𝐷𝑒𝑐𝑘2
(Ŝ) 

− Convert 𝑆 to 𝑄_𝑖𝑚𝑔 using the 

𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 (𝑆) function. 

− Read the 𝑄_𝑖𝑚𝑔 with the read function and 

get the identifiers stored in 𝑄_𝑖𝑚𝑔. 

5 Security analysis 

5.1 Server information leakage  

Leakage functions Ł, the amount of information the server 

can learn about the stored data. It can be divided into three 

types, the first two are  Ł𝑚𝑎𝑥 and Ł𝑚𝑖𝑛 associated by 

single-round interaction SSE, and third one is Ł𝑠𝑖𝑧𝑒, which 

is in more than one round of 𝑆𝑆𝐸 interaction. Then, all 

types take 𝐷𝐵 and 𝑊 as input parameters [4], [6]. 

 Ł𝑚𝑎𝑥  (𝐷𝐵, 𝑊): output 

(𝑁, {𝐷𝐵(𝑤𝑖)}𝑤𝑖 ∈𝑊 , 𝑚, 𝑛, 𝑛𝑖  , Max(𝐷𝐵(𝑤𝑖))𝑤𝑖 ∈𝑊). It 

reflects the maximum cases of leakage. 

Ł𝑚𝑖𝑛  (𝐷𝐵, 𝑊): output (𝑁, {𝐷𝐵(𝑤𝑖)}𝑤𝑖 ∈𝑊). It is 

considered a somewhat acceptable leak. The server must 

know 𝑁 in all cases. In a single-round interaction, the 

server will be able to view the query results because it can 

decrypt the result. 

Ł𝑠𝑖𝑧𝑒  (𝐷𝐵, 𝑊): output (𝑁, {|𝐷𝐵(𝑤𝑖)|}𝑤𝑖 ∈𝑊) in more than 

one round of interaction where the server cannot decrypt 

data.  Thus, when the response to the user’s request is 

encrypted, the server can learn only the output size, which 

is one of the best cases of leakage. In addition, detecting 

the size does not mean that the server has the ability to 

reveal the main information about our proposed scheme. 

Therefore, our work is resisting all types of leakage. 

In our work, we go into deep details for security 

analysis. We noticed from practical experiments of our 

scheme that the shape of the 𝑄_𝑖𝑚𝑔 is simple and less 

complicated if the number of word identifiers in the input 

𝑏 of the function is small 𝑄_𝑖𝑚𝑔 = 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏). This 

case in turn will affect the next step, that is, the process of 

converting this 𝑄_𝑖𝑚𝑔 into a string 𝑆 =
 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔), which leads to a simple and less 

complex 𝑆. Its size differs from the size of another 𝑆 

coming from a block full of identifiers. This difference in 

size is considered a security vulnerability. However, we 

made sure to address it by making all strings have very 

close sizes. By increasing the complexity of the 𝑄_𝑖𝑚𝑔 if 

the number of block identifiers is small, this 𝑄_𝑖𝑚𝑔 will 

lead to a larger string size. Thus, the sum of 𝑆 does not 

reflect the real size of the database because they are all 

close in size, even if they are the result of preparing 

different identifiers. In addition, our work is more than one 

round of interaction. Furthermore, the server responds to 

the user’s request without decrypting the data. From this 

standpoint, we can say that our construction has only Ł𝑠𝑖𝑧𝑒 

leakage. 

5.2 Resisting attacks  

In this part, we discussed the resistance of our scheme, the 

most famous types of attacks on 𝑆𝑆𝐸.  

 

▪ Frequency analysis attack  

A frequency analysis attack is one of the known ciphertext 

attacks. It is built on studying the frequency of letters or 

collections of letters in a ciphertext [24]. Hence, it takes 

advantage of the frequency of encrypted data uploaded to 

𝑆𝐼, which is either term frequency 𝑇𝐹 or term frequency-

inverse 𝑇𝐹_𝐼𝐷𝐹. 𝑇𝐹 is defined as the number of times 

𝑤𝑖  looks in a document 𝑖𝑑, and TF-IDF is the 

multiplication of term frequency 𝑇𝐹 and 𝐼𝐷𝐹 values. 𝐼𝐷𝐹 

is defined as a value of 𝑤𝑖  that could be obtained by 

Fig. 2: Trapdoor, secure search and resolve 

phases. 
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dividing 𝑛  by the document frequency number of 

documents in which such a word appeared. If the 𝐶𝑆 can 

access this important information, then it can carry out this 

attack and know the keyword that is being searched for. 

      Based on the above, we can say that our work is safe 

against the current attack because the values stored in 𝐶𝑆 

are encrypted and do not reflect the identifiers originally, 

but rather an obscure text that helps the 𝑈𝑖 to access 

identifiers later.  

 

▪ 𝑰𝑲𝑲 attack  

IKK attack uses the disclosed partly information to find 

out what plaintext words the 𝑈𝑖 searched trapdoors [25]. 

Hence, this attack relies mainly on the leaking of the 

access pattern information, which is defined as the result 

of the search for 𝑇 in 𝑆𝐼 by 𝐶𝑆.  

     For example, suppose our 𝐷𝐵 is about computer 

science, and the user requests three queries as trapdoors: 

𝑇1, 𝑇2 , and 𝑇3, which represent the words “network,” 

“computer,” and “information,” respectively. After 

completing the communication between 𝑈𝑖 and 𝐶𝑆, the 𝐶𝑆 

will look at the obtained results, which is the set of 

identifiers corresponding to the trapdoors. The 𝐶𝑆 can 

then compute the probability of appearance of any two of 

these keywords in any document by observing the number 

of the same documents reverted for those corresponding 

trapdoors. By continuing the search and leaking the access 

pattern, thereby obtaining more probabilities, the server 

will be able to access the keywords that correspond to the 

trapdoors [24]. After a modest clarification of this attack, 

we can say that our scheme resists the  IKK attack because 

the search result by the CS is encrypted, and the access 

pattern does not leak any important information. That is, 

the CS will not be able to access the identifiers 

{𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 } corresponding to the trapdoors [25]. 

 

▪ Keyword guessing attack (𝐊𝐆𝐀)  

KGA attack is an attack on the encrypted index stored in 

the server, where the attacker tries to guess the keyword 

that is being searched to use it in the search later and find 

its identifiers [26]. This attack is resisted by various 

precautionary measures, such as encrypting the words  

themselves and keeping the key secret and secure. Both 

have been worked out in our scheme. Hence, we can say 

that our work resists KGA attacks. 

 

▪ Man-in-the-middle attack 𝑴𝑰𝑻𝑴  

This type of attack occurs when the communication 

channel between the 𝑈𝑖 and the 𝐶𝑆 is not secured, as the 

attacker will occupy the identity of one of the parties 

(𝑈𝑖 , 𝐶𝑆) [27]. We took the resistance to this attack into 

account in our work, where the communication channel 

was secured by encrypting the exchanged data (𝑇 and 

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) between the 𝐶𝑆 and 𝑈𝑖 based on 𝑘𝑢 key, in 

addition to mutual authentication between the two parties 

with the same key as the following construction: 

6 Experimental results   
In this section, we evaluated the performance of our 

proposed scheme using a real-data collection of Wikipedia 

articles. We selected a total of 250 articles, along with 

their eight corresponding historical versions, resulting in a 

collection of 2000 files. Our collection contained a total of 

117000 keywords. As the total number of identifiers 𝑛 for 

𝐷𝐵 is 2000, the absorption of the QR code will be 

approximately 400 identifiers. In addition, the 

probabilities of nq values for each word will be from 1 to 

5, which means that the maximum locality will be only 5. 

The experiments were conducted on a PC with a 2.6 GH 

Intel Core i5 CPU and 8 GB of RAM running on 64-bit 

Windows 10. The code was implemented in python 

because of its many known features, and it supports the 

creation of QR codes technologies. 

 

▪ Retrieval time  

We conducted an experiment to find out the time taken to 

retrieve identifiers for three words that differ in the 

number of their identifiers 𝑛𝑖 and the number of QR code 

𝑛𝑞. Moreover, the first word 𝑤1 contains 340 identifiers 

𝑛𝑞 = 1, and the second word 𝑤2 contains 1172 identifiers 

1172/400 = 2.93. That is, 3 𝑛𝑞, and the third 𝑤3 appears 

in all files 2000/400 = 5 𝑛𝑞. Evidently, the retrieval time 

grows linearly with the increase in 𝑛𝑞 values. We notice 

that the retrieval time is the time of each of the secure 

search and resolve phases. 

 

CONSTRUCTION 2. 

In Trapdoor Phase: 

Choose a random identifier 𝑢𝐼𝐷 by 𝑈𝑖 

ℎ𝑢𝐼𝐷 = 𝐻𝐾𝑢
 (𝑢𝐼𝐷) by MD5 

Send (ℎ𝑢𝐼𝐷 ||  𝑢𝐼𝐷|| Ť) to 𝐶𝑆 

In Secure Search Phase: 

Choose a random identifier 𝑐𝑠𝐼𝐷 by 𝐶𝑆 

If ℎ𝑢𝐼𝐷=𝑣𝑟𝑓𝑦𝐾𝑢
 (𝑢𝐼𝐷) → 𝑈𝑖 authentication 

Before send 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡  

ℎ𝑐𝑠𝐼𝐷 = 𝐻𝐾𝑢
 (𝑐𝑠𝐼𝐷) by MD5 

send (ℎ𝑐𝑠𝐼𝐷 ||  𝑐𝑠𝐼𝐷 || 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) to 𝑈𝑖 

In Resolve Phase: 

If ℎ𝑐𝑠𝐼𝐷=𝑣𝑟𝑓𝑦𝐾𝑢
 (𝑐𝑠𝐼𝐷) → 𝐶𝑆 authentication 

Where 𝐻 is hash function, 𝑣𝑟𝑓𝑦 is verification 

function, ℎ𝑢𝐼𝐷 represent user hash value and ℎ𝑐𝑠𝐼𝐷 

represent cloud server hash value 
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▪ Comparison with previous schemes  

To ensure the efficiency of our scheme, we implemented 

some of the previous schemes as a first step. These 

schemes are Cash et al. [28], Cash and Tessaro [4], 

Asharov et al. (Scheme 3) [2], and Demertzis and 

Papamanthou [5]. As a second step, we perform the same 

experiment on our scheme and these four schemes on the 

same database based on the AES256 encryption 

algorithm, which are the same words to know the time 

required to secure the search of the word identifiers. We 

chose two words: the first word 𝑤1 with the largest 

number of identifiers and that appears in all database 

identifiers, that is, appears in 2000 files, and the second 

𝑤2 appears in 1000 files. For the comparison to be fair and 

as we used more than one round of interaction in our work 

to increase security, the search time was very short 

because 𝐶𝑆 does not decrypt and process the data. Hence, 

we calculated the retrieval time for our work  to find out 

the total processing time to obtain the identifiers. 

 

 

 

 

 

 

 

Figure 3: The retrieval time for three words. 

Figure 4: Comparison with previous schemes. 
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7 Conclusions 
In this study, we discuss the problem of slow retrieval of 

encrypted data owing to poor locality and present a new 

scheme that helps solve this problem by adding the QR 

code technique to the inverted index. This case mainly 

improves the locality. Finally, our scheme has less leakage 

and high security and is resistant to most common SSE 

attacks. Additionally, we used real-world data in our 

experiments and demonstrated that our proposed scheme 

is secure and practically efficient and holds high accuracy. 
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