
https://doi.org/10.31449/inf.v47i7.4745 Informatica 47 (2023) 121–132 121

Locality Improvement Scheme Based on QR Code Technique Within

Inverted Index

Aya A. Alyousif*, Ali A. Yassin

E-mail: pgs.aya.alyousif@uobasrah.edu.iq, ali.yassin@uobasrah.edu.iq

Department of Computer Science, Education College for Pure Sciences, University of Basrah, Basrah, Iraq
*Corresponding author

Keywords: advanced encryption standard, locality, qr code, searchable encryption

Received: March 16, 2023

Searchable symmetric encryption is one of the most important modern technologies that allow the owner

to store private data on an unreliable server and search for the data securely while preserving the data’s

confidentiality and privacy. This field has several schemes, but these schemes suffered from slower data

retrieval in the case of large database sizes owing to the poor locality. Hence, the server visits several

memory locations for a single query. Other studies focused on improving the locality, but the result is

either increased storage capacity or decreased efficiency of data reading. In the present study, we present

a secure, searchable scheme that overcomes the abovementioned issues and works to improve the locality

by exploiting the QR code technique and the Advanced Encryption Standard algorithm. Furthermore, our

work maintains read efficiency, helps reduce the risk of data breaches, and protects sensitive information

from being accessed by unauthorized individuals. Moreover, the proposed scheme can resist cyber

security attacks, such as frequency analysis attacks and keyword guessing attacks. Additionally, we used

real-world data in our experiments and demonstrated that our proposed scheme is secure and practically

efficient and holds high accuracy.

Povzetek: Predstavljana je varnostna iskalna shema za izboljšanje šifriranja, ki izboljšuje lokalnost,

ohranja učinkovitost branja in je odporna na kibernetske napade.

1 Introduction
Cloud storage outsourcing is a service in which a company

outsources the storage of its data to a cloud storage

provider. Cloud storage outsourcing can provide several

benefits, including cost savings, increased scalability and

flexibility, and improved data security and availability.

Cloud storage providers typically have strict security

measures to protect customer data, including measures

such as encryption, secure data centers, and access

controls. However, the data owner (𝐷𝑊) or company is

still responsible for ensuring that its sensitive data are

protected and in compliance with relevant regulations or

industry standards.

 Searchable symmetric encryption (𝑆𝑆𝐸) is one of the

most important operations that can be applied on sensitive

data in the outsourcing cloud [1]. Using searchable

encryption to store sensitive data in the cloud can help to

protect the data from unauthorized access while still

allowing it to be searched and used in a controlled manner.

However, carefully evaluating the security and

performance tradeoffs of different searchable encryption

approaches and ensuring that the chosen approach meets

the 𝐷𝑊’s needs and security requirements are essential. In

more detail, 𝑆𝑆𝐸 is done by the 𝐷𝑊 as a first step to

encrypt the data using a secret key, and then, it is sent to

the server. After, the 𝐷𝑊 creates a secure index based on

its own database. The encrypted data and a secure index

are sent to the cloud storage server, which could be the

same untrusted server or another server chosen by the 𝐷𝑊

as a third party. The 𝐷𝑊 generates a search token used to

retrieve information based on a secure index file to

perform a secure search.

 SSE schemes in the literature review have several

syntaxes, which are divided into two types. Each type

relies on the interaction between the server and the 𝐷𝑊 in

each request query about data. The first type is a single-

round interaction where the server also decrypts the data

and sends the result to the 𝐷𝑊 (therefore, the server learns

the output). Additionally, the second type uses more than

one round of interaction (where the server learns no

information about the output) [2]. We use the second type

in our scheme for the security of the exchanged data over

the communication channel between server and client.

Therefore, the server cannot decrypt the data and preserve

the privacy of the client’s data. 𝑆𝑆𝐸 schemes face several

challenges as follows:

• Key management

In the 𝑆𝑆𝐸 scheme, the same secret key is used for

encrypting and decrypting the data. This case implies that

the key must be safely distributed to all parties who need

to be able to look for the encrypted data. This can pose a

mailto:pgs.aya.alyousif@uobasrah.edu.iq1
mailto:ali.yassin@uobasrah.edu.iq2

122 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

difficulty, particularly in large organizations with many

users [3].

• Security

Although symmetric searchable encryption schemes are

generally secure, they are vulnerable to key compromise.

If the secret key is compromised, an attacker could decrypt

the encrypted data and potentially perform unauthorized

searches.

• Key size

 To ensure the security of the encrypted data, the secret

key used in a symmetric searchable encryption scheme

must be long enough to withstand brute-force attacks. This

case can increase the size of the key, which can be a

problem in systems with limited storage or bandwidth.

• Performance

Symmetric searchable encryption schemes can be slower

than other encryption schemes because they require the

use of a single shared key for encryption and decryption.

This case can be a problem when searching large datasets

as the search may take a long time to complete. Another

issue related to the slow searching in large datasets is poor

locality. Thus, locality is defined as the number of times a

server accesses multiple memory locations separately

in response to a single request from the user [1], [2], [4]–

[6].

 The improvement in locality always leads to a negative

impact on other characteristics, such as the efficiency of

reading or a significant increase in storage capacity.

Hence, finding a scheme that combines the best locality

and the efficiency of reading and storage is difficult.

Our contribution

 In this study, we propose a good locality secure

searchable encryption based on the QR code technology

and symmetric encryption method to solve the problem of

searchable encryption in large datasets. Additionally, we

use a new inverted index to improve locality that

contributes to preventing leakage data and preserves the

privacy data of 𝐷𝑊. Provided with a comprehensive

description of our scheme and a discussion of its resistance

against several of the most famous attacks on SSE. We will

briefly summarize our contributions as follows:

• Optimization locality by 800 times for small

databases that contain less than a thousand identifiers

and by 400 times for large databases. Furthermore, we

applied our proposed scheme in real-world data, and

the experimental results denote that our work

achieves the best results in performance, read

efficacy, and resisting malicious attacks compared

with previous works.

• Our proposed scheme does not excessively affect

storage and maintains storage without resulting in a

large increase due to locality improvement.

Furthermore, it maintains read efficiency at 𝑂(1).

Character Description

𝑉 Number of users

𝑈𝑖 User, where 𝑖 ∈ 𝑉

𝑤𝑖 Word

𝑚 Number of words

𝑊 Words in 𝐷𝐵, 𝑊 =
{𝑤𝑖 , . . . , 𝑤𝑚}

𝑖𝑑 Identifier

𝑛 Total of identifiers 𝐷𝐵

𝑛𝑖 Total of identifiers 𝑤𝑖

𝑁 ∑ |𝐷𝐵(𝑤𝑖)|𝑖=1
𝑚 where

𝐷𝐵(𝑤𝑖) = {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 }

𝑃𝑅𝐹 Pseudo-random function

𝐻𝑇 Hash table representing data

structures used to store and

retrieve data and consist of

a pair of algorithms Add

and Get [6]

𝐴𝑑𝑑 Algorithm adds pairs of

(𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒) to 𝐻𝑇

𝐺𝑒𝑡 value=Get(key)

𝑆 String

Ŝ Encrypted string

𝑙𝑎 Label is used to store and

retrieve Ŝ in 𝐻𝑇 ,

𝐴𝑑𝑑(𝑙𝑎, Ŝ), Ŝ = 𝐺𝑒𝑡(𝑙𝑎)

𝐸𝑛𝑐 Function to encryption 𝑆

𝐷𝑒𝑐 Function to decryption Ŝ

𝑘1 Derivative key to create 𝑙𝑎

𝑘2 Derivative key to encrypted

and decrypted

𝑏 Block of word identifiers

𝑄_𝑖𝑚𝑔 QR code image

𝐶𝑟𝑒𝑎𝑡_𝑞 Create QR code function

𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 Convert string to 𝑄_𝑖𝑚𝑔

function

𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 Convert 𝑄_𝑖𝑚𝑔 to string

function

Ť Encryption 𝑇

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 A list used by the CS to store

the values encoded in it to

respond to the user query

𝑟𝑒𝑎𝑑 Read 𝑄_𝑖𝑚𝑔 function

𝑘𝑢 Key used to secure 𝑇 and

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 exchanged

Table 1: List of symbols

A New Approach Based on Intelligent Method to Classify… Informatica 47 (2023) 121–132 123

between major

components 𝐶𝑆 and 𝑈𝑖

𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 Encryption 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

2 General background

2.1 𝑺𝑺𝑬 algorithms

• 𝑘 ← 𝐺𝑒𝑛(1λ): Is a key generation algorithm that is

run by the 𝐷𝑊 token as a security parameter 1λ

(input) and a secret key 𝑘 used for

encrypting/decrypting database 𝐷𝐵.

• 𝑆𝐼 ← 𝐸𝑛𝑐(𝑘, 𝐷𝐵): Is used for building a secure

index file (𝑆𝐼) based on 𝑘 and 𝐷𝐵.

• 𝑇 ← 𝑇𝑟𝑝𝑑𝑟(𝑘, 𝑤𝑖): This algorithm is more

concerned with preventing the disclosure of

information stored on the server as an encrypted list

of keywords (𝑆𝐼). As a result, the server responds to

the users’ request (𝑇) in a safe manner.

• 𝑑 ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼, 𝑇): Is a deterministic algorithm run

by the server to search for the data d through a

trapdoor 𝑇 in the secure index 𝑆𝐼. If d is encrypted,

then we will need a resolve algorithm.

• 𝑅 ← 𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝑘, 𝑑): This algorithm is performed

by the 𝐷𝑊 to recover an identifiers for the keyword.

It takes a secret key 𝑘 and a data point d as inputs and

outputs of the final result 𝑅.

2.2 Locality and read efficiency

We must get acquainted with the concept of read patterns

to understand locality in more detail. The search function

for any 𝑆𝑆𝐸 scheme by the server 𝑑 ← 𝑆𝑒𝑎𝑟𝑐ℎ(𝑆𝐼, 𝑇)

can be analyzed into a series of intervals

 [𝑎1, 𝑏1]... [𝑎𝑣 , 𝑏𝑣], where the server starts from the first

interval [𝑎1, 𝑏1] to the last interval [𝑎𝑣 , 𝑏𝑣] depending on

𝑇 in 𝑆𝐼. Moreover, we can express these intervals as a read

pattern function 𝑅𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇). When only one interval is

obtained, the scheme has the best possible locality [4], [6].

Definition (Locality 𝑳) An 𝑆𝑆𝐸 scheme 𝛱 has locality (𝐿)

with each security parameter (1λ, 𝐷𝐵, and 𝑤𝑖 ∈ N). We

use 𝑅𝑒𝑎𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇) consisting of 𝐿 intervals with

probability 1, when 𝑇 and 𝑆𝐼 are computed as follows:

 𝑘 ← 𝐺𝑒𝑛(1λ), 𝑆𝐼 ← 𝐸𝑛𝑐(𝑘, 𝐷𝐵) and 𝑇 ←
 𝑇𝑟𝑝𝑑𝑟(𝑘, 𝑤𝑖). Furthermore, if 𝐿 = 1, the 𝑆𝑆𝐸 scheme

(𝛱) has perfect locality. However, the perfect locality is

insufficient because we can simply transform any scheme

into a perfect locality by the poor read efficiency, which is

defined as reading only the required data from the server

for each query[4].

Definition (Read Efficiency 𝑬) An 𝑆𝑆𝐸 scheme 𝛱 is 𝐸-

read efficient with each main parameters 1λ, DB, and 𝑤𝑖 ∈
 N. We have 𝑅𝑒𝑎𝑑𝑃𝑎𝑡(𝑆𝐼, 𝑇) that consists of intervals of

total length at most 𝐸 · |𝐵𝑖𝑛𝐸𝑛𝑐(𝐷𝐵(𝑤𝑖))| bits, where

𝐵𝑖𝑛𝐸𝑛𝑐(𝐷𝐵(𝑤𝑖)) represents binary coding of 𝐷𝐵(𝑤𝑖).

The concatenation of all keywords’ identifiers signified as

bit strings [4]. A perfect locality can also be obtained by

violating storage efficiency by creating a perfect locality

scheme but with excessive storage space overhead (the

encrypted 𝐷𝐵 should not be much larger than the original

𝐷𝐵).

2.3 Related works

In 2000, Song et al. defined SSE and provided efficient

constructions [7]. These mechanisms securely store data

on an untrusted server but cannot retrieve client's data.

Many subsequent studies focused on this field, achieving

SSE's basic principle. However, practical experiments

with large databases revealed poor performance and

degradation with increasing size. The reason is that they

often suffer from a bottleneck problem [8]. The literature

found that the bottleneck in these schemes was not caused

by encryption but by the lower-level memory access

issues in more specifically poor locality. The known

constructions can be broadly categorized into two.

 The first approach is characterized by linear space and

constant read efficiency but poor locality in [8], [9]. An

array of size 𝑁 is allocated, and 𝑁 elements of the database

are uniformly mapped into the array. To recover a list of

documents that contain a given keyword, each document

identifier is stored in the array together with a pointer to

the next document identifier in the list. Additionally, the

first approach requires the server to access random

locations in the array with the number of identifiers that

the word appears in. This case is inefficient because of

poor performance resulting from moving to a large

number of different locations.

 The second approach has optimal read efficiency and

locality but at the cost of substantial space overhead [10],

[12]. The strategy behind this approach is to allocate a

sufficiently large array and uniformly map the list of word

identifiers into a contiguous interval in the array by the

length of word identifiers, without any overlaps among

different lists. To efficiently retrieve a list for a given

keyword, the server needs to access only a single random

location and read all consecutive identifier entries, thereby

resulting in optimal read efficiency and locality. However,

the locations of the lists in the array reveal information

about the structure of the underlying database. Therefore,

padding must be applied to conceal information about the

lengths of the lists, leading to a polynomial space

overhead. Hence, creating a scheme with the best locality,

storage, and read efficiency is a challenge, as David Cash

and Tessaro in 2014 [4] proved that it is impossible for this

to happen. They also set a lower bound on the tradeoff

among these three criteria. In addition to their

improvement on the locality by creating a scheme with a

logarithmic locality (𝑙𝑜𝑔 𝑁), the storage space is not good

enough 𝑂(𝑁 𝑙𝑜𝑔 𝑁).

 In 2016, Gilad Asharov et al. [2], in their third scheme,

updated the locality of David cash and Tessaro scheme to

become 𝑂(1) with the same storage space.

 In 2017, Demertzis and Papamanthou [5] created two

schemes, the first with optimal locality and space 𝑂(𝑁 𝑆𝑙).

𝑆𝑙 is the number of levels used to store data, but there was

124 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

an effect on read efficiency by a small percentage, and the

storage space is still large. As the second scheme worked

in the same storage space as the first scheme, it achieves

to a tunable locality, which is chosen as a parameter by

𝐷𝑊 during the setup phase.

 In 2021, Asharov et al. [6] significantly strengthened

the lower bound of Cash and Tessaro by creating two

general frameworks, the first pad-and-split framework and

the second statistical-independence framework.

 From 2021 to 2023, various research studies in SSE

across different domains have emerged, highlighting

numerous benefits. However, all of them still lack good

locality, as evidenced by references [14]–[19].
Table 2 displays previous works in terms of three

critical features: locality, reading efficiency, and storage

space. It is worth noting that none of the works satisfy all

three characteristics simultaneously. Certain searches

exhibit poor locality, such as [8], [9], [13], where a search

word containing 2,000 identifiers 𝑛𝑖 = 2000, would

require the cloud server to traverse through 2,000 distinct

positions to fulfill the user's request.

As a result, the searchable symmetric encryption's overall

performance is hampered. In certain prior research, the

locality has been favorable, as in [2], [4]and [10].

In cases where the locality is 𝑂(1), the cloud server can

fulfill the user's request by moving to just one location. If

𝑁 = 1200 and the locality is 𝑂(𝑙𝑜𝑔 𝑁), it would be 10,

implying that the cloud server would need to traverse 10

distinct positions to fulfill the user's request. Despite the

favorable locality in some prior research [2], [4] and [10],

they encountered issues with large storage space. For

instance, if 𝑁 = 1200 and the storage space is

𝑂(𝑁 𝑙𝑜𝑔 𝑁), the storage space will expand tenfold

compared to its original size, such as in [2] [4].

Additionally, in other cases, the word that belongs to

the most extensive set of identifiers can impact the storage

space where, the storage space O((Max|DB(wi)|)𝑛) . If

this word corresponds to all the identifiers in the database,

that is, 𝑛 = 𝑛𝑖 the size of the encrypted index can become

extremely large, as in [10].

3 Discussion
In this section, we will present our work's position in

relation to locality, and storage space. By leveraging QR

code technology, we have successfully improved the

locality to 𝑂(𝑛𝑞) by grouping a set of identifiers together

in a single 𝑄_𝑖𝑚𝑔. This has led to a significant reduction

in the number of cloud server readings required. This has

the added benefit of reducing the number of times the user

needs to perform decryption operations, resulting in a

more efficient and streamlined experience.

Regarding storage space, since = ∑ |𝐷𝐵(𝑤𝑖)|𝑖=1
𝑚 ,

according to the previous example, the value of 𝑁 =
 1700, and this is its value in general. As for our work, 𝑁

depends mainly ∑ 𝑛𝑞 for all words, and in previous

example ∑ 𝑛𝑞 = 5. Each one of these five 𝑄_𝑖𝑚𝑔 will be

stored with a size that is similar to the storage size required

to store 400 identifiers, this implies that N's value will be

around 2000, which is in proximity to the desired value.

 Related works Space Locality Read efficiency

Curtmola et al. [13] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1)

Kamara et al. [9] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1)

David cash et al. [8] 𝑂(𝑁) 𝑂(𝑛𝑖) 𝑂(1)

Chase and Kamara [10] O((Max|DB(wi)|)𝑛) 𝑂(1) 𝑂(1)

P. van Liesdonk et al.[11] 𝑂(𝑚𝑛) 𝑂(𝑛𝑖) 𝑂(1)

Kamara and Papamanthou [12] 𝑂(𝑚𝑛) 𝑂(𝑛𝑖 𝑙𝑜𝑔 𝑛) 𝑂(𝑛 𝑙𝑜𝑔 𝑛)

David cash et al. [4] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(𝑙𝑜𝑔 𝑁) 𝑂(1)

Asharov et al. (Scheme 3) [2] 𝑂(𝑁 𝑙𝑜𝑔 𝑁) 𝑂(1) 𝑂(1)

Demertzis and Papamanthou [5] 𝑂 (𝑁 𝑆𝑙) 𝑂(𝐿𝑑)

Where 𝐿𝑑 is a tunable

locality
𝑂(

𝑁
1
𝑠

𝐿
)

Asharov et al. (Pad-and-split

scheme) [6]

𝑂(𝑁 𝑙𝑜𝑔 𝑁
/ 𝑙𝑜𝑔 𝐿)

𝑂(𝐿𝑑)

Where 𝐿𝑑 depends on the

scheme in which it is

implemented within its

framework

𝑂(1)

Our work 𝑁
= ∑ (∑ 𝑆𝑗=1

𝑛𝑞
)𝑖=1

𝑚

𝑂(𝑛𝑞) 𝑂(1)

Table 2: Comparison with previous schemes based on space, locality, and read efficiency

A New Approach Based on Intelligent Method to Classify… Informatica 47 (2023) 121–132 125

3.1 Primitive tools

▪ QR codes

A QR code is a two-dimensional code containing

information in all directions, which is a digital image that

can be easily scanned. Once scanned, it will quickly direct

to the information embedded in the code, and the person

who looks at the QR code is unable to identify it because

its content is only machine-readable [20].

 The QR code includes good storage capacity, fast

readability, error correction, and support for more

languages. It can hold 7,089 numeric characters and 4,296

alphanumeric characters [21].

▪ Advanced Encryption Standard (𝑨𝑬𝑺)

The 𝐴𝐸𝑆 algorithm is a widely used and recognized

symmetric block cipher used for encrypting and

decrypting sensitive data. It is implemented in hardware

and software and is considered highly secure, making it

difficult for hackers to access the original data. There is

currently no known method for breaking 𝐴𝐸𝑆 encryption.

𝐴𝐸𝑆 offers the flexibility to use different key sizes,

including 128, 192, and 256 bits, with a fixed block size

of 128 bits.

 AES is a block cipher algorithm that uses substitution

and permutation network techniques to encrypt and

decrypt data. It operates on a fixed plaintext block size of

128 bits (16 bytes) represented as a 4×4 matrix. The

number of rounds in AES depends on the key size, with

10 rounds for 128-bit keys, 12 rounds for 192-bit keys, and

14 rounds for 256-bit keys [22].

4 Proposed scheme
In this section, we pay more attention to our proposed

scheme, which consists of five phases as follows: key

generation, setup, token generator, secure search, and

resolve. There are three major components, 𝐷𝑊, cloud

server (𝐶𝑆), and user (𝑈𝑖) to manage the environment of

our work. Hence, 𝑖 ∈ 𝑉, 𝑉 represents the number of users.

The following construction explains the proposed scheme.

4.1 Our scheme construction with more

detail

▪ Key generation phase

In this phase, 𝐷𝑊 creates a secret key 𝑘 by PRF which it

can be explained as follows:

Pseudo-Random Functions (𝑃𝑅𝐹): A PRF function is

𝐹: {0,1}∗ 𝑥 {0,1}∗ → {0,1}∗. Thus, it receives two inputs

a key and input. Therefore, 𝐹 cannot be distinguished from

a truly random function only with negligible probability in

1𝜆, denoted as 𝑛𝑒𝑔𝑙(1𝜆) [23]. It is to be used in setup and

CONSTRUCTION 1. (QR code based scheme)

 Let 𝐷𝐵 = {𝐷𝐵(𝑤1), . . , 𝐷𝐵(𝑤𝑚)}, 𝑊 =

Words in 𝐷𝐵, 𝑊 = {𝑤𝑖 , . . . , 𝑤𝑚}

 For 𝑤𝑖 ∈ 𝑊 let 𝐷𝐵(𝑤𝑖) = {𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 }.

Key generation phase 𝒌 & 𝒌𝒖 ← 𝑮𝒆𝒏(𝟏𝝀):

1. Input Security parameter 1𝜆

2. Output 𝑘 and 𝑘𝑢, where 𝑘 & 𝑘𝑢 𝜖 𝑍

3. Compute both keys based on 𝑃𝑅𝐹

Setup and Secure phase 𝑺𝑰 ← 𝑬𝒏𝒄(𝒌, 𝑫𝑩):

1. Input 𝑘 and 𝐷𝐵

2. Output 𝑆𝐼 = 𝐻𝑇

3. 𝑏𝑠 = 𝐹𝑏𝑠(𝑛)

4. Initialize empty 𝐻𝑇

5. For every 𝑤𝑖 𝜖 𝑊

 𝑛𝑞 = 𝑛𝑖/𝑏𝑠

 Compute 𝑘1 = 𝑃𝑅𝐹𝑘(1 ‖ 𝑤𝑖) and

 𝑘2 = 𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖)

 Initialize counter 𝑖 = 0

 For every 𝑏 𝜖 𝑛𝑞

 𝑄_𝑖𝑚𝑔 = 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏)

 𝑆 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔)

 Delete 𝑄_𝑖𝑚𝑔

 Ŝ = 𝐸𝑛𝑐𝑘2
(𝑆) by AES256

 Compute 𝑙𝑎 = 𝑃𝑅𝐹𝑘1
 (𝑖)

 Add (𝑙𝑎, Ŝ) to 𝐻𝑇

 𝑖 = 𝑖 + 1

6. Upload 𝐻𝑇 to 𝐶𝑆

Token generator phase Ť ← 𝑻𝒓𝒑𝒅𝒓(𝒌𝒖, 𝒌, 𝒘𝒊):

1. Input 𝑘𝑢, 𝑘 and 𝑤𝑖

2. Output Ť

3. Compute 𝑇 = 𝑃𝑅𝐹𝑘(1 ‖ 𝑤𝑖) = 𝑘1

4. Ť = 𝐸𝑛𝑐𝑘𝑢
(𝑇)

5. Send Ť to 𝐶𝑆

Secure Search phase 𝑬_𝑶𝒖𝒕𝒑𝒖𝒕𝒍𝒊𝒔𝒕 ←

𝑺𝒆𝒂𝒓𝒄𝒉(𝒌𝒖, Ť , 𝑺𝑰):

1. Input 𝑘𝑢 , Ť and 𝑆𝐼

2. Output 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

3. Initialize counter 𝑖 = 0 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

4. 𝑇 = 𝐷𝑒𝑐𝑘𝑢
(Ť) = 𝑘1

5. While true

 Compute 𝑙𝑎 = 𝑃𝑅𝐹𝑘1
 (𝑖)

 Ŝ = 𝐺𝑒𝑡 (𝑙𝑎)

 Add(Ŝ) to 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

 𝑖 = 𝑖 + 1

End While

6. 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐸𝑛𝑐𝑘𝑢
(𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡)

7. Send to 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 𝑈𝑖

126 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

secure phase 𝑆𝐼 ← 𝐸𝑛𝑐(𝑘, 𝐷𝐵) and send it to all trusted

users.

 𝑈𝑖 should use secret key 𝑘 in the next phases, such as

token generator phase Ť ← 𝑇𝑟𝑝𝑑𝑟(𝑘𝑢 , 𝑘, 𝑤𝑖) and resolve

phase 𝑅 ← 𝑅𝑒𝑠𝑜𝑙𝑣𝑒(𝑘𝑢 , 𝑘, 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡). In addition,

a second key was created in the same way, called 𝑘𝑢, and

it is used to secure 𝑇 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 exchanged between

major components 𝐶𝑆 and 𝑈𝑖.

▪ Setup and secure phase

The 𝐷𝑊 configures secure index 𝑆𝐼 , which will be

uploaded to 𝐶𝑆 after completing this phase, where it uses

𝑘 and 𝐷𝐵 as main inputs and computes SI as output. The

following steps explain the mechanism working of the

current phase:

• Configure empty hash table (𝐻𝑇) that will be

depended on to save secure parameters and then used

as a secure index file (𝑆𝐼) for retrieving and

processing the users’ requests.

• Determine the size of the block 𝑏𝑠 = Fbs (n) where

𝑛 represents the number of identifiers of the database

(𝐷𝐵) and 𝑏𝑠 is the number of identifiers that can be

stored together as a single block allowed to

create 𝑄_𝑖𝑚𝑔. From experimental results of our

work, we discover a significant relationship between

the number of identifiers of database 𝑛 and the size of

𝑄_𝑖𝑚𝑔. We found that the 𝑄_𝑖𝑚𝑔 has the flexibility

to save maximum numbers of identifiers, whereas the

value of 𝑛 is low based on the number of 𝑛’s ranking)

• For every keyword taken from 𝑊 where 𝑤𝑖 𝜖 𝑊, we

carried out several successive steps as follows:

− Compute the numbers of 𝑄_𝑖𝑚𝑔 𝑛𝑞 that 𝑤𝑖 will

be needed by 𝑛𝑖/𝑏𝑠, it is necessary to know the

number of 𝑄_𝑖𝑚𝑔 for each word based on the

number of identifiers 𝑛𝑖 of words after dividing it

by 𝑏𝑠.

− Derivation of two keys from 𝑤𝑖 . The first one 𝑘1

is computed using 𝑃𝑅𝐹, which takes 1 and 𝑤𝑖 as

its inputs as follows: 𝑘1 = 𝑃𝑅𝐹𝑘(1 ‖ 𝑤𝑖). The

label 𝑙𝑎 has been created by 𝑘1. The second key

 𝑘2 creates in the same way 𝑘2 = 𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖) .

− Initialize counter 𝑖 = 0.

− For every block 𝑏 𝜖 𝑛𝑞 do the following:

− Convert this 𝑏 to QR code image 𝑄_𝑖𝑚𝑔

using the 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏) function, which

receives 𝑏 as input and converts 𝑏 to

𝑄_𝑖𝑚𝑔.

− Convert the 𝑄_𝑖𝑚𝑔 to a string 𝑆 by

using 𝑆 = 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔)

function.

− Delete 𝑄_𝑖𝑚𝑔

− Encrypt 𝑆 using Ŝ = 𝐸𝑛𝑐𝑘2
(𝑆), Ŝ

represents an encrypted string.

− Derives 𝑙𝑎 from 𝑤𝑖 by 𝑙𝑎 =

 𝑃𝑅𝐹𝑘1
 (𝑖), which receives 𝑘1 and 𝑖 as

input to get a different 𝑙𝑎 each time.

− Add the 𝑙𝑎 and Ŝ pair (𝑙𝑎, Ŝ) to the

𝐻𝑇 as a (key, value).

− Increase the value of 𝑖.

▪ Trapdoor phase

The current phase is implemented by 𝑈𝑖 to search for a

specific word 𝑤𝑖 , the 𝑇𝑟𝑝𝑑𝑟 receives 𝑤𝑖 , 𝑘𝑢 and 𝑘 as

input parameters and gives Ť as an output, which will

compute 𝑇 and then secure it using 𝑘𝑢, Ť = 𝐸𝑛𝑐𝑘𝑢
(𝑇) to

send it to 𝐶𝑆 more securely.

Resolve phase 𝑹 ←
 𝑹𝒆𝒔𝒐𝒍𝒗𝒆(𝒌𝒖, 𝒌, 𝑬_𝑶𝒖𝒕𝒑𝒖𝒕𝒍𝒊𝒔𝒕):

1. 1.Input 𝑘 , 𝑘𝑢 and 𝐸 _𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

2. 2.Output 𝑅 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑟𝑠

3. 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐷𝑒𝑐𝑘𝑢
(𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡)

4. Restore 𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖) = 𝑘2

5. For every Ŝ 𝜖 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

 𝑆 = 𝐷𝑒𝑐𝑘2
(Ŝ)

 𝑄_𝑖𝑚𝑔 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 (𝑆)

 𝑅 = 𝑟𝑒𝑎𝑑(𝑄_𝑖𝑚𝑔)

 Delete 𝑄_𝑖𝑚𝑔

 END CONSTRUCTION

Figure 1: Key generation phase and setup and

secure phase.

A New Approach Based on Intelligent Method to Classify… Informatica 47 (2023) 121–132 127

▪ Secure search phase

𝐶𝑆 responds to a user’s query and returns an encrypted list

of secure values (𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) in 𝑆𝐼. CS performs the

following steps:

− 𝑇 = 𝐷𝑒𝑐𝑘𝑢
(Ť) = 𝑘1

− Initialize counter 𝑖 = 0 and empty 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = [].

While True

 Let 𝑙𝑎 = 𝑃𝑅𝐹𝑘1
 (𝑖)

 Retrieve 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡[𝑖] = Ŝ = 𝐺𝑒𝑡(𝑙𝑎)

 𝑖 = 𝑖 + 1

 End

− 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐸𝑛𝑐𝑘𝑢
(𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡)

− CS resubmits 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 to 𝑈𝑖.

▪ Resolve phase

 𝑈𝑖 receives 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 from CS and performs the following:

− 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡 = 𝐷𝑒𝑐𝑘𝑢
(𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡)

− 𝑘2 = 𝑃𝑅𝐹𝑘(2 ‖ 𝑤𝑖)

− For every Ŝ 𝜖 𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

− 𝑆 = 𝐷𝑒𝑐𝑘2
(Ŝ)

− Convert 𝑆 to 𝑄_𝑖𝑚𝑔 using the

𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑠_𝑞 (𝑆) function.

− Read the 𝑄_𝑖𝑚𝑔 with the read function and

get the identifiers stored in 𝑄_𝑖𝑚𝑔.

5 Security analysis

5.1 Server information leakage

Leakage functions Ł, the amount of information the server

can learn about the stored data. It can be divided into three

types, the first two are Ł𝑚𝑎𝑥 and Ł𝑚𝑖𝑛 associated by

single-round interaction SSE, and third one is Ł𝑠𝑖𝑧𝑒, which

is in more than one round of 𝑆𝑆𝐸 interaction. Then, all

types take 𝐷𝐵 and 𝑊 as input parameters [4], [6].

 Ł𝑚𝑎𝑥 (𝐷𝐵, 𝑊): output

(𝑁, {𝐷𝐵(𝑤𝑖)}𝑤𝑖 ∈𝑊 , 𝑚, 𝑛, 𝑛𝑖 , Max(𝐷𝐵(𝑤𝑖))𝑤𝑖 ∈𝑊). It

reflects the maximum cases of leakage.

Ł𝑚𝑖𝑛 (𝐷𝐵, 𝑊): output (𝑁, {𝐷𝐵(𝑤𝑖)}𝑤𝑖 ∈𝑊). It is

considered a somewhat acceptable leak. The server must

know 𝑁 in all cases. In a single-round interaction, the

server will be able to view the query results because it can

decrypt the result.

Ł𝑠𝑖𝑧𝑒 (𝐷𝐵, 𝑊): output (𝑁, {|𝐷𝐵(𝑤𝑖)|}𝑤𝑖 ∈𝑊) in more than

one round of interaction where the server cannot decrypt

data. Thus, when the response to the user’s request is

encrypted, the server can learn only the output size, which

is one of the best cases of leakage. In addition, detecting

the size does not mean that the server has the ability to

reveal the main information about our proposed scheme.

Therefore, our work is resisting all types of leakage.

In our work, we go into deep details for security

analysis. We noticed from practical experiments of our

scheme that the shape of the 𝑄_𝑖𝑚𝑔 is simple and less

complicated if the number of word identifiers in the input

𝑏 of the function is small 𝑄_𝑖𝑚𝑔 = 𝐶𝑟𝑒𝑎𝑡𝑒_𝑞(𝑏). This

case in turn will affect the next step, that is, the process of

converting this 𝑄_𝑖𝑚𝑔 into a string 𝑆 =
 𝐶𝑜𝑛𝑣𝑒𝑟𝑡_𝑞_𝑠 (𝑄_𝑖𝑚𝑔), which leads to a simple and less

complex 𝑆. Its size differs from the size of another 𝑆

coming from a block full of identifiers. This difference in

size is considered a security vulnerability. However, we

made sure to address it by making all strings have very

close sizes. By increasing the complexity of the 𝑄_𝑖𝑚𝑔 if

the number of block identifiers is small, this 𝑄_𝑖𝑚𝑔 will

lead to a larger string size. Thus, the sum of 𝑆 does not

reflect the real size of the database because they are all

close in size, even if they are the result of preparing

different identifiers. In addition, our work is more than one

round of interaction. Furthermore, the server responds to

the user’s request without decrypting the data. From this

standpoint, we can say that our construction has only Ł𝑠𝑖𝑧𝑒

leakage.

5.2 Resisting attacks

In this part, we discussed the resistance of our scheme, the

most famous types of attacks on 𝑆𝑆𝐸.

▪ Frequency analysis attack

A frequency analysis attack is one of the known ciphertext

attacks. It is built on studying the frequency of letters or

collections of letters in a ciphertext [24]. Hence, it takes

advantage of the frequency of encrypted data uploaded to

𝑆𝐼, which is either term frequency 𝑇𝐹 or term frequency-

inverse 𝑇𝐹_𝐼𝐷𝐹. 𝑇𝐹 is defined as the number of times

𝑤𝑖 looks in a document 𝑖𝑑, and TF-IDF is the

multiplication of term frequency 𝑇𝐹 and 𝐼𝐷𝐹 values. 𝐼𝐷𝐹

is defined as a value of 𝑤𝑖 that could be obtained by

Fig. 2: Trapdoor, secure search and resolve

phases.

128 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

dividing 𝑛 by the document frequency number of

documents in which such a word appeared. If the 𝐶𝑆 can

access this important information, then it can carry out this

attack and know the keyword that is being searched for.

 Based on the above, we can say that our work is safe

against the current attack because the values stored in 𝐶𝑆

are encrypted and do not reflect the identifiers originally,

but rather an obscure text that helps the 𝑈𝑖 to access

identifiers later.

▪ 𝑰𝑲𝑲 attack

IKK attack uses the disclosed partly information to find

out what plaintext words the 𝑈𝑖 searched trapdoors [25].

Hence, this attack relies mainly on the leaking of the

access pattern information, which is defined as the result

of the search for 𝑇 in 𝑆𝐼 by 𝐶𝑆.

 For example, suppose our 𝐷𝐵 is about computer

science, and the user requests three queries as trapdoors:

𝑇1, 𝑇2 , and 𝑇3, which represent the words “network,”

“computer,” and “information,” respectively. After

completing the communication between 𝑈𝑖 and 𝐶𝑆, the 𝐶𝑆

will look at the obtained results, which is the set of

identifiers corresponding to the trapdoors. The 𝐶𝑆 can

then compute the probability of appearance of any two of

these keywords in any document by observing the number

of the same documents reverted for those corresponding

trapdoors. By continuing the search and leaking the access

pattern, thereby obtaining more probabilities, the server

will be able to access the keywords that correspond to the

trapdoors [24]. After a modest clarification of this attack,

we can say that our scheme resists the IKK attack because

the search result by the CS is encrypted, and the access

pattern does not leak any important information. That is,

the CS will not be able to access the identifiers

{𝑖𝑑1, . . , 𝑖𝑑𝑛𝑖
 } corresponding to the trapdoors [25].

▪ Keyword guessing attack (𝐊𝐆𝐀)

KGA attack is an attack on the encrypted index stored in

the server, where the attacker tries to guess the keyword

that is being searched to use it in the search later and find

its identifiers [26]. This attack is resisted by various

precautionary measures, such as encrypting the words

themselves and keeping the key secret and secure. Both

have been worked out in our scheme. Hence, we can say

that our work resists KGA attacks.

▪ Man-in-the-middle attack 𝑴𝑰𝑻𝑴

This type of attack occurs when the communication

channel between the 𝑈𝑖 and the 𝐶𝑆 is not secured, as the

attacker will occupy the identity of one of the parties

(𝑈𝑖 , 𝐶𝑆) [27]. We took the resistance to this attack into

account in our work, where the communication channel

was secured by encrypting the exchanged data (𝑇 and

𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) between the 𝐶𝑆 and 𝑈𝑖 based on 𝑘𝑢 key, in

addition to mutual authentication between the two parties

with the same key as the following construction:

6 Experimental results
In this section, we evaluated the performance of our

proposed scheme using a real-data collection of Wikipedia

articles. We selected a total of 250 articles, along with

their eight corresponding historical versions, resulting in a

collection of 2000 files. Our collection contained a total of

117000 keywords. As the total number of identifiers 𝑛 for

𝐷𝐵 is 2000, the absorption of the QR code will be

approximately 400 identifiers. In addition, the

probabilities of nq values for each word will be from 1 to

5, which means that the maximum locality will be only 5.

The experiments were conducted on a PC with a 2.6 GH

Intel Core i5 CPU and 8 GB of RAM running on 64-bit

Windows 10. The code was implemented in python

because of its many known features, and it supports the

creation of QR codes technologies.

▪ Retrieval time

We conducted an experiment to find out the time taken to

retrieve identifiers for three words that differ in the

number of their identifiers 𝑛𝑖 and the number of QR code

𝑛𝑞. Moreover, the first word 𝑤1 contains 340 identifiers

𝑛𝑞 = 1, and the second word 𝑤2 contains 1172 identifiers

1172/400 = 2.93. That is, 3 𝑛𝑞, and the third 𝑤3 appears

in all files 2000/400 = 5 𝑛𝑞. Evidently, the retrieval time

grows linearly with the increase in 𝑛𝑞 values. We notice

that the retrieval time is the time of each of the secure

search and resolve phases.

CONSTRUCTION 2.

In Trapdoor Phase:

Choose a random identifier 𝑢𝐼𝐷 by 𝑈𝑖

ℎ𝑢𝐼𝐷 = 𝐻𝐾𝑢
 (𝑢𝐼𝐷) by MD5

Send (ℎ𝑢𝐼𝐷 || 𝑢𝐼𝐷|| Ť) to 𝐶𝑆

In Secure Search Phase:

Choose a random identifier 𝑐𝑠𝐼𝐷 by 𝐶𝑆

If ℎ𝑢𝐼𝐷=𝑣𝑟𝑓𝑦𝐾𝑢
 (𝑢𝐼𝐷) → 𝑈𝑖 authentication

Before send 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡

ℎ𝑐𝑠𝐼𝐷 = 𝐻𝐾𝑢
 (𝑐𝑠𝐼𝐷) by MD5

send (ℎ𝑐𝑠𝐼𝐷 || 𝑐𝑠𝐼𝐷 || 𝐸_𝑂𝑢𝑡𝑝𝑢𝑡𝑙𝑖𝑠𝑡) to 𝑈𝑖

In Resolve Phase:

If ℎ𝑐𝑠𝐼𝐷=𝑣𝑟𝑓𝑦𝐾𝑢
 (𝑐𝑠𝐼𝐷) → 𝐶𝑆 authentication

Where 𝐻 is hash function, 𝑣𝑟𝑓𝑦 is verification

function, ℎ𝑢𝐼𝐷 represent user hash value and ℎ𝑐𝑠𝐼𝐷

represent cloud server hash value

A New Approach Based on Intelligent Method to Classify… Informatica 47 (2023) 121–132 129

▪ Comparison with previous schemes

To ensure the efficiency of our scheme, we implemented

some of the previous schemes as a first step. These

schemes are Cash et al. [28], Cash and Tessaro [4],

Asharov et al. (Scheme 3) [2], and Demertzis and

Papamanthou [5]. As a second step, we perform the same

experiment on our scheme and these four schemes on the

same database based on the AES256 encryption

algorithm, which are the same words to know the time

required to secure the search of the word identifiers. We

chose two words: the first word 𝑤1 with the largest

number of identifiers and that appears in all database

identifiers, that is, appears in 2000 files, and the second

𝑤2 appears in 1000 files. For the comparison to be fair and

as we used more than one round of interaction in our work

to increase security, the search time was very short

because 𝐶𝑆 does not decrypt and process the data. Hence,

we calculated the retrieval time for our work to find out

the total processing time to obtain the identifiers.

Figure 3: The retrieval time for three words.

Figure 4: Comparison with previous schemes.

130 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

7 Conclusions
In this study, we discuss the problem of slow retrieval of

encrypted data owing to poor locality and present a new

scheme that helps solve this problem by adding the QR

code technique to the inverted index. This case mainly

improves the locality. Finally, our scheme has less leakage

and high security and is resistant to most common SSE

attacks. Additionally, we used real-world data in our

experiments and demonstrated that our proposed scheme

is secure and practically efficient and holds high accuracy.

References

[1] G. Sen Poh, J.-J. Chin, W.-C. Yau, K.-K. R. Choo,

and M. S. Mohamad, “Searchable symmetric

encryption: designs and challenges,” ACM

Comput. Surv., vol. 50, no. 3, pp. 1–37, 2017, doi:

{10.1145/3064005}.

[2] G. Asharov, M. Naor, G. Segev, and I. Shahaf,

“Searchable symmetric encryption: optimal

locality in linear space via two-dimensional

balanced allocations,” in Proceedings of the forty-

eighth annual ACM symposium on Theory of

Computing, 2016, pp. 1101–1114. doi:

{10.1145/2897518.2897562}.

[3] E. Damiani, S. D. C. Di Vimercati, S. Foresti, S.

Jajodia, S. Paraboschi, and P. Samarati, “Key

management for multi-user encrypted databases,”

in Proceedings of the 2005 ACM workshop on

Storage security and survivability, 2005, pp. 74–

83. doi: {10.1145/1103780.1103792}.

[4] D. Cash and S. Tessaro, “The locality of

searchable symmetric encryption,” in Annual

international conference on the theory and

applications of cryptographic techniques, 2014,

pp. 351–368.

[5] I. Demertzis and C. Papamanthou, “Fast

searchable encryption with tunable locality,” in

Proceedings of the 2017 ACM International

Conference on Management of Data, 2017, pp.

1053–1067. doi: {10.1145/3035918.3064057}.

[6] G. Asharov, G. Segev, and I. Shahaf, “Tight

tradeoffs in searchable symmetric encryption,” J.

Cryptol., vol. 34, no. 2, pp. 1–37, 2021, doi:

https://doi.org/10.1007/s00145-020-09370-z.

[7] D. X. Song, D. Wagner, and A. Perrig, “Practical

techniques for searches on encrypted data,” in

Proceeding 2000 IEEE symposium on security

and privacy. S&P 2000, 2000, pp. 44–55. doi:

10.1109/SECPRI.2000.848445.

[8] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C.

Roşu, and M. Steiner, “Highly-scalable

searchable symmetric encryption with support for

boolean queries,” in Annual cryptology

conference, 2013, pp. 353–373.

[9] S. Kamara, C. Papamanthou, and T. Roeder,

“Dynamic searchable symmetric encryption,” in

Proceedings of the 2012 ACM conference on

Computer and communications security, 2012,

pp. 965–976. doi: {10.1145/2382196.2382298}.

[10] M. Chase and S. Kamara, “Structured encryption

and controlled disclosure,” in International

conference on the theory and application of

cryptology and information security, 2010, pp.

577–594. doi: https://doi.org/10.1007/978-3-642-

17373-8_33.

[11] P. Van Liesdonk, S. Sedghi, J. Doumen, P. Hartel,

and W. Jonker, “Computationally efficient

searchable symmetric encryption,” in Workshop

on Secure Data Management, 2010, pp. 87–100.

doi: https://doi.org/10.1007/978-3-642-15546-

8_7.

[12] S. Kamara and C. Papamanthou, “Parallel and

dynamic searchable symmetric encryption,” in

International conference on financial

cryptography and data security, 2013, pp. 258–

274.

[13] R. Curtmola, J. Garay, S. Kamara, and R.

Ostrovsky, “Searchable symmetric encryption:

improved definitions and efficient constructions,”

in Proceedings of the 13th ACM conference on

Computer and communications security, 2006,

pp. 79–88. doi: {10.1145/1180405.1180417}.

[14] H. M. Mohammed and A. I. Abdulsada, “Secure

Multi-keyword Similarity Search Over Encrypted

Data With Security Improvement.,” Iraqi J.

Electr. Electron. Eng., vol. 17, no. 2, 2021.

[15] H. M. Mohammed and A. I. Abdulsada, “Multi-

keyword search over encrypted data with security

proof,” J. Basrah Res., vol. 47, no. 1, 2021.

[16] C. Guo, W. Li, X. Tang, K.-K. R. Choo, and Y.

Liu, “Forward Private Verifiable Dynamic

Searchable Symmetric Encryption with Efficient

Conjunctive Query,” IEEE Trans. Dependable

Secur. Comput., 2023, doi:

10.1109/TDSC.2023.3262060.

[17] Z. A. Abduljabbar, A. Ibrahim, M. A. Al Sibahee,

S. Lu, and S. M. Umran, “Lightweight Privacy-

Preserving Similar Documents Retrieval over

Encrypted Data,” in 2021 IEEE 45th Annual

Computers, Software, and Applications

Conference (COMPSAC), 2021, pp. 1397–1398.

doi: 10.1109/COMPSAC51774.2021.00202.

[18] M. A. Al Sibahee, A. I. Abdulsada, Z. A.

Abduljabbar, J. Ma, V. O. Nyangaresi, and S. M.

A New Approach Based on Intelligent Method to Classify… Informatica 47 (2023) 121–132 131

Umran, “Lightweight, Secure, Similar-Document

Retrieval over Encrypted Data,” Appl. Sci., vol.

11, no. 24, p. 12040, 2021, doi:

https://doi.org/10.3390/app112412040.

[19] M. A. Hussain et al., “Provably throttling SQLI

using an enciphering query and secure matching,”

Egypt. Informatics J., vol. 23, no. 4, pp. 145–162,

2022, doi:

https://doi.org/10.1016/j.eij.2022.10.001.

[20] S. Singh, “QR code analysis,” Int. J. Adv. Res.

Comput. Sci. Softw. Eng., vol. 6, no. 5, 2016.

[21] A. S. Narayanan, “QR codes and security

solutions,” Int. J. Comput. Sci. Telecommun., vol.

3, no. 7, pp. 69–72, 2012.

[22] A. M. Abdullah, “Advanced encryption standard

(AES) algorithm to encrypt and decrypt data,”

Cryptogr. Netw. Secur., vol. 16, pp. 1–11, 2017.

[23] J. Katz and Y. Lindell, Introduction to modern

cryptography. CRC press, 2020.

[24] D. V. N. Siva Kumar and P. Santhi Thilagam,

“Searchable encryption approaches: attacks and

challenges,” Knowl. Inf. Syst., vol. 61, no. 3, pp.

1179–1207, 2019.

[25] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart,

“Leakage-abuse attacks against searchable

encryption,” in Proceedings of the 22nd ACM

SIGSAC conference on computer and

communications security, 2015, pp. 668–679. doi:

{10.1145/2810103.2813700}.

[26] Y. Miao, Q. Tong, R. H. Deng, K.-K. R. Choo, X.

Liu, and H. Li, “Verifiable searchable encryption

framework against insider keyword-guessing

attack in cloud storage,” IEEE Trans. Cloud

Comput., vol. 10, no. 2, pp. 835–848, 2020, doi:

10.1109/TCC.2020.2989296.

[27] S. Gangan, “A review of man-in-the-middle

attacks,” arXiv Prepr. arXiv1504.02115, 2015,

doi: https://doi.org/10.48550/arXiv.1504.02115.

[28] D. Cash et al., “Dynamic searchable encryption in

very-large databases: Data structures and

implementation,” Cryptol. ePrint Arch., 2014,

doi: 10.14722/ndss.2014.23264.

132 Informatica 47 (2023) 121–132 A.A. Alyusif et al.

