
 Informatica 29 (2005) 327–333 327

A Performance Evaluation of Distributed Algorithms on Shared
Memory and Message Passing Middleware Platforms
Sanjay P. Ahuja, Roger Eggen and Anjani K. Jha
Department of Computer and Information Sciences
University of North Florida
Jacksonville, FL – 32224.
E-mail: {sahuja, ree, jhaa0001}@unf.edu

Keywords: JavaSpaces, CORBA, shared memory, message passing, middleware.

Received: Januar 19, 2005

The fundamental characteristics of a distributed computing environment are heterogeneity, partial
failure, latency and difficulty of “gluing together” multiple, independent processes into a robust,
scalable application. JavaSpaces, which is a shared memory paradigm, provides high-level
coordination mechanism for Java easing the burden of creating distributed applications. A large class
of distributed problems can be approached using JavaSpaces simple framework. JavaSpaces allows
processes to communicate even if each was wholly ignorant of the others.
Common Object Request Broker Architecture (CORBA), on the other hand, is a standard developed by
the Object Management Group (OMG), which allows communication between objects that are written in
different programming languages. It provides common message passing mechanism for interchanging
data and discovering services. In this project, we compare these two platforms for distributed computing
both quantitatively and qualitatively.
To do so, we analyze the performance of distributed algorithms that divide a task into small sub-tasks
which are distributed over a network of computers to perform computations in parallel. Specifically, we
measure the performance of an insertion sort algorithm of O (n2) complexity on both the JavaSpaces
and CORBA platforms. We measure latency, speed-up, and efficiency and analyze the implications on
overall performance and scalability.

Povzetek: Članek opisuje ovrednotenje porazdeljenih algoritmov na platformah.

1 Introduction
Client/server and multi-tier models operating within a
single business enterprise have given way to an
Internet/Web environment where services are provided
by nodes scattered over a far-flung network. Next
generation of network interaction is emerging that place
unprecedented demands upon existing network
technologies and architectures. For example, participants
in one network will need to directly access and use the
services provided by participants in another network. It is
in this distributed environment - one of mind-numbing
complexity driven by geometric increases in scale, rate of
change, and multiplicity of participant interactions that
technologies such as JavaSpaces and CORBA present
competing options. Software architects, engineers, and
distributed systems designers have multiple competing
options and opportunities, each providing advantages and
disadvantages.

Distributed systems are hard to build. They require
careful thinking about problems that do not occur in
single process computation. The early solutions to the
challenges facing distributed computing involved sockets

which pass messages between client and server. This
kind of communication required the application
programmer to know the Berkeley Socket API.
Applications developed were onerous leading to the next
generation of message passing protocols such as RPC
(Remote Procedure Call), MPI (Message Passing
Interface) and PVM (Parallel Virtual Machine) which hid
the low-level socket communication, but the applications
tended to be tightly coupled as with socket programming.
In other words, the client-side application invoking
procedures on the server-side needed to know exactly
what services the server was prepared to offer the client.
Such distributed systems were less robust and could not
withstand partial failures. The advent of object-oriented
languages such as C++ and Java led to the development
of the distributed object computation platforms such as
DCOM, CORBA and RMI. While these are excellent in
that they provide an object-oriented framework for
developing distributed systems, these are essentially
RPC-oriented, tightly coupled, message passing systems
with the ability to marshal objects when the objects are
used as parameters in the method calls. These protocols

328 Informatica 29 (2005) 327–333 S.P. Ahuja et al.

left the task of object persistence and recovery from
partial failure to the developers and the application
designers [8]. This has led to the development of the
JavaSpaces model by the Java Development community,
which is essentially a loosely coupled virtual shared
memory model for distributed system development.

JavaSpaces technology is a simple, expressive, and
powerful tool that eases the burden of creating
distributed applications. Processes are loosely coupled;
communicating and synchronizing their activities using a
persistent object store called a space, rather than through
direct communication [1]. CORBA on the other hand
allows communication between objects that are written in
different programming languages. CORBA is an open,
vendor-independent architecture and infrastructure for
distributed object technology. CORBA standards define a
common message passing mechanism for interchanging
data and discovering services. It is widely used today as
the basis for many mission-critical software applications.
Objects do not talk directly to each other; they always
use an object request broker (ORB) to find out
information and activating any requested services.
CORBA technology uses an Interface Definition
Language (IDL) to specify the signatures of the messages
and the types of the data objects can send and understand
[2]. These technologies introduce a new paradigm for
developing distributed applications that are loosely
coupled, dynamically and naturally scalable, and fault
tolerant.

For evaluating JavaSpaces and CORBA technologies
both quantitatively and non-quantitatively, we have
chosen a distributed, parallel application to provide data
to determine the performance of the two technologies
under various load conditions. We have implemented an
application that sorts a large array of positive integers by
partitioning the sort space into smaller components
(smaller arrays) and dropping each such smaller “job”
into the shared memory space and then each worker
application, which was free, would pick up the job, do
the sorting, drop off the result back into the shared
memory space. Then the main thread would merge the
individually sorted jobs into the proper overall order. On
another dimension, we also increase the number of
workers, or processors, to measure the performance of
the applications developed in JavaSpaces and CORBA
under these varying and increasing load conditions. The
hardware platforms for both implementations are
identical.

The remainder of this paper is organized as follows.
Section 2 discusses JavaSpaces technology and
GigaSpaces platform, while section 3 discusses CORBA
and the ORBacus platform by Iona Technologies.
Section 4 discusses the result of our experiments to
evaluate the performance of GigaSpaces and ORBacus.
In section 5 we discuss our conclusions and future scope
of this research.

2 JavaSpaces

2.1 JavaSpaces and the Shared Memory
Model – A Historical Perspective

The distributed shared memory model is described by
Tam et al in [11]. Hosts in a distributed system visualize
the disjoint memory spaces as a common memory space
through which they can communicate. The Linda
parallel programming environment, described by
Gelernter et al in [13, 14], began as a Yale University
research project. Communication between processors is
handled through a tuple-space where processors post
and read messages. The tuple-space concept is basically
an abstraction of distributed shared memory, with one
important difference: tuple-spaces are associative. Since
everyone shares the tuple space, the "look and feel" a
developer gets is somewhat similar to that of the shared-
memory worldview. On the other hand, the posting and
reading of tuples is similar to the sending and receiving
of messages in a message-passing system. Unlike shared
memory systems and like RPC systems, data must be
copied between the individual processes and the tuple
space. An advantage of this approach is that processing
elements can enter and leave the computation pool at
will, without announcing their arrival or departure.
Processing elements do not send to or receive from
specific nodes. Like hardware shared memory systems,
and unlike message passing systems, shared data is
accessed directly and anonymously by each process, and
processes do not communicate directly with one another.
Tuples are written into the tuple space with an out
operation, are removed with an in, and are read without
being removed with an rd. For an in or rd, the tuple
accessed in tuple space must match the tuple provided
with the command. The number and types of fields must
be identical. A value must match an identical value. A
variable in either must match a value in the other. A
variable will not match a variable. The in or rd will block
until there is a matching tuple in tuple space.
Jini/Javaspaces developed by Sun Microsystems was
modeled after the Linda concept and is essentially a
loosely coupled virtual shared memory model for
distributed system development in Java.
JavaSpaces technology is a simple, expressive, and
powerful tool that eases the burden of creating
distributed applications. Processes are loosely coupled;
communicating and synchronizing their activities using a
persistent object store called a space, rather than through
direct communication [12]. In essence, JavaSpaces is a
Java-optimized version of the original C-based tuple-
spaces. The major advantage of JavaSpaces over Linda is
the Java Virtual Machine (JVM). Linda had many cross-
platform obstacles but JavaSpaces runs in a JVM and
hence is platform independent [10].

A PERFORMANCE EVALUATION OF... Informatica 29 (2005) 327–333 329

2.2 JavaSpaces - A New Distributed
Computing Model

Building distributed applications with conventional
network tools usually entails passing messages between
processes or invoking methods on remote objects. In
JavaSpaces applications, in contrast, processes don't
communicate directly, but instead coordinate their
activities by exchanging objects through a space, or
shared memory [3, 9]. JavaSpaces is a specification
developed by SUN Microsystems that presents a model
of interaction between (mostly) Java applications.
Applications seek to exchange information in an
asynchronous but transactional-secure manner and can
use a space to coordinate the exchange.

Figure 1: Flow of Objects between JavaSpaces [10]

Figure 1 depicts several applications (the Duke images)
interacting with two spaces [10]. Each application can
write objects (called Entries) to a space, read objects
from a space, and take objects from a space (take means
read+delete). In addition, applications may express
interest in special entries arriving at a space by
registering for notifications. The JavaSpaces API is very
simple and elegant, and it provides software developers
with a simple and effective tool to solve coordination
problems in distributed systems, especially areas like
parallel processing and distributed persistence. The
developer can design the solution as a flow of objects
rather than a traditional request/reply message based
scenario. Combined with the fact that JavaSpaces is a
Jini service, thus inheriting the dynamic nature of Jini,
JavaSpaces is a good model for programming highly
dynamic distributed applications.

The JavaSpaces API consists of four main method types:
· Write() - writes an entry to a space.
· Read() - reads an entry from a space.
· Take() - reads an entry and deletes it from a space.
· Notify()- registers interest in entries arriving at a space.
In addition, the API enables JavaSpaces clients
(applications) to provide optimization hints to the space
implementation (the method snapshot()).

This minimal set of APIs reduces the learning curve of
developers and encourages them to adopt the technology
quickly. JavaSpaces enable full use of transactions,
leveraging the default semantic of Jini Distributed
Transactions model. This enables developers to build

transactional-secure distributed applications using
JavaSpaces as a coordination mechanism. The APIs
themselves provide non-blocking versions, where a
read() or take() operation may take a maximum timeout
to wait before returning to the caller. This is very
important for applications that cannot permit themselves
to block for a long time or in the case that the space itself
is in some kind of a deadlock. JavaSpaces also make
extensive use of Jini leases, as it mandates that entries in
the space be leased and thus, expire at a certain time
unless renewed by a client. This prevents out-of-date
entries, and saves the need for manual cleanup
administration work [1].

2.3 GigaSpaces
GigaSpaces Technologies has built an industrial-strength
JavaSpaces implementation. This implementation is
called “the GigaSpaces platform”, or “GigaSpaces” in
short. We selected GigaSpaces because it is freely
available for evaluation. GigaSpaces is a 100%
conforming and a 100% pure Java implementation of the
JavaSpaces specification. Moreover, GigaSpaces blends
naturally with SUNs' implementation of the Jini API.

The application accesses the space API through a space
proxy, which is embedded in the application JVM. This
proxy is usually obtained by a lookup in a directory
service, like a Jini Lookup service or a JNDI name space.
The space proxy communicates with the server-side part
of the space, which holds most of the logic and data of
the space. The space itself may be an in-memory space or
a persistent space. An in-memory space holds all its data
in virtual memory. This results in fast access. However,
memory spaces are bounded by the amount of virtual
memory in the system, and are vulnerable to server
crashes. A persistent space uses a DBMS backend to
persist its data, while still caching some of the data in
memory. Persistent spaces do not lose data as a result of
server reboots/crashes and can hold a large amount of
data. The server-side part of the space is shared among
all applications that refer to the same logical space. This
is how different applications can share and exchange
information through the space. A GigaSpaces Container
is a service that can contain and manage several spaces in
one JVM. Spaces in the same container share resources
in order to reduce resource consumption. The container is
also responsible of registering spaces to directory
services in the environment. A GigaSpaces Server can
launch several services such as the HTTP Service,
Transaction Service, Lookup Service and GigaSpaces
Container. This is a single point of configuration for
launching several services in a single physical process
[4].

3 CORBA

3.1 Background
The early solutions to the challenges facing distributed
computing involved message passing using sockets that

330 Informatica 29 (2005) 327–333 S.P. Ahuja et al.

pass messages between client and server. This kind of
communication required the application programmer to
know the Berkeley Socket API. Applications developed
were onerous leading to the next generation of message
passing protocols such as RPC which hid the low-level
socket communication, but the applications tended to be
tightly coupled as with socket programming. In other
words, the client-side application invoking procedures on
the server-side needed to know exactly what services the
server was prepared to offer the client. Such distributed
systems were less robust and could not withstand partial
failures. The literature contains a good description of
remote procedure calls. Birrel and Nelson in [15]
describe the implementation of RPC and Tay et al in [16]
provide a good survey of remote procedure calls. The
advent of object-oriented languages such as C++ and
Java led to the development of the distributed object
computation platforms such as DCOM [17], CORBA
[18], and RMI [19]. While these were excellent in that
they provided an object-oriented framework for
developing distributed systems, they were essentially
RPC-oriented, tightly coupled, message passing systems
with the ability to marshal objects when the objects are
used as parameters in the method calls.

3.2 The CORBA standard
The Common Object Request Broker Architecture
(CORBA) is a standard for transparent communication
between applications objects [5]. The CORBA
specification is developed by Object Management Group
(OMG), which is a non-profit industry consortium. It
allows a distributed, heterogeneous collection of objects
to inter-operate. Part of CORBA standard is the
Interface Definition Language (IDL), which is an
implementation-independent language for describing the
interface of remote objects. CORBA offers greater
portability in that it isn't tied to one language, and as
such, can integrate with legacy systems, as well as future
languages that include support for CORBA.

CORBA applications are composed of objects, individual
units of running software that combine functionality and
data. There could be many instances of an object of a
single type or only one instance. For each object type, we
define an interface in OMG IDL. The interface is the
syntax part of the contract that the server object offers to
the clients that invoke it. Any client that wants to invoke
an operation on the object must use this IDL interface to
specify the operation it wants to perform and to marshal
the arguments that it sends. When the invocation reaches
the target object, the same interface definition is used
there to unmarshal the arguments so that the object can
perform the requested operation with them. The interface
definition is then used to marshal the results for their trip
back and to unmarshal them when they reach their
destination. The IDL interface definition is independent
of programming language, but maps to all of the popular
programming languages via OMG standards. The
separation of interface from implementation, enabled by
OMG IDL, is the essence of CORBA - how it enables

interoperability, with all of the transparencies we have
mentioned. In contrast, the implementation of an object -
its running code, and its data - is hidden from the rest of
the system (that is, encapsulated) behind a boundary that
the client may not cross. Clients access objects only
through their advertised interface, invoking only those
operations that the object exposes through its IDL
interface, with only those parameters (input and output)
that are included in the invocation. Figure 2 shows how
everything fits together, at least within a single process:
Compile the IDL into client stubs and object skeletons.

 IDL IDL
 Stub Skeleton

 Figure 2: A request passing from client
 to object implementation

Next, write the object and a client for it. Stubs and
skeletons serve as proxies for clients and servers,
respectively. Because IDL defines interfaces so strictly,
the stub on the client side has no trouble meshing
perfectly with the skeleton on the server side, even if the
two are compiled into different programming languages,
or even running on different ORBs from different
vendors. In order to invoke the remote object instance,
the client first obtains its object reference using Trader
service or naming service. The client knows the type of
object it is invoking and the client stub and object
skeleton are generated from the same IDL. Although the
ORB can tell from the object reference that the target
object is remote, the client cannot.

3.3 ORBacus
ORBacus is a mature CORBA product that has been
deployed around the world in mission critical systems.
ORBacus is 'CORBA 2.5 compliant' and is designed for
rapid development, deployment and support in the
language of our choice C++ or Java; its small footprint
allows it to be easily embedded into memory-constrained
applications [6]. We chose ORBacus for evaluation, as it
is freely available for evaluation and is an industry grade
CORBA product.

4 Results

4.1 Overview
We implemented a distributed, parallel insertion sort
application because such an algorithm significantly
exercises the CPU computationally. The insertion sort

1.1.1 Cl
Object
Implementation

 Object Request Broker

A PERFORMANCE EVALUATION OF... Informatica 29 (2005) 327–333 331

algorithm has a complexity of O(n2). This application
sorts a very large array of positive integers by
partitioning the sort space into smaller components
(smaller arrays) and dropping each such smaller "job"
into the shared memory space and then each worker
application, which was free, picked up the job, do the
sorting, drop off the result back into the shared memory
space, and then the main thread puts back the
individually sorted jobs into the proper overall order.
The performance was measured by increasing the
number of processors or servers as well as increasing the

problem size by increasing the size of the array that
needed sorting. Implementing the same application using
JavaSpaces and CORBA allowed comparison of
performance, ease of development and maintenance, and
portability across platforms between two technologies.

4.2 Hardware
The hardware for this project consists of a cluster of
homogeneous workstations all running RedHat Linux
v7.2. The machine are all Intel based PCs consisting of
single 500 MHz processors connected by 100 megabit
fast Ethernet.

4.3 Software
The software for the project consists of Java™ 2
Runtime environment, Standard Edition version 1.3.1.
We used Java language for coding for the entire
application to keep variables in performance evaluation
to a minimum. We used GigaSpaces3.0 an
implementation of JavaSpaces, and ORBACUS 4.1.2, an
implementation of CORBA.

4.4 Testing
We ran a series of executions for both the architectures
by changing parameters for each run. We used 8K, 16K,
32K and 64K integers, which were randomly generated
and used 1, 2, 4 and 8 workers/servers. The data was
distributed so as each server has access to same amount
of data. The servers do all the work while the client only
distributes and collects data. All the executions were run
under similar conditions for both the technologies. We
ran our measurements when the load on network and
servers was at a minimum. Table 1 summarizes the data
obtained from the experiments for JavaSpaces.

Figure 3 is a graph of the response time with increasing
sort work and number of workers for JavaSpaces
implementation. Figure 4 is a graph of the response time
with increasing sort work and number of workers for the
CORBA implementation. Table 2 summarizes this data
in table format.
Speed-up is defined as ratio of time taken to sort the
same work using one worker to time taken by using more
than one worker.

Figures 5 and 6 are graphs of the speed-up for
JavaSpaces and CORBA respectively. Comparing figures
5 and 6, we derive that we have improved speed-up when
processing large amount of sort data. We also observe
that we have better speed-up in JavaSpaces.

The mean response time graph is shown in Figure 7
where each pair of the mean response time is compared
at the 0.05 level, i.e., differences are due to chance only
5% of the time. From Figure 7 we observe that for each
data size, CORBA takes significantly longer than
JavaSpaces. The difference is the same for all data sizes.

JavaSpaces Response

0

50000

100000

150000

8K 16K 32K 64K
Sort Data Size

R
es

po
ns

e
tim

e

P = 1
P = 2
P = 4
P = 8

Figure 3: JavaSpaces response with varying processors
and varying data size

CORBA Response

0

50000

100000

150000

8K 16K 32K 64K

Sort Data Size

R
es

po
ns

e
Ti

m
e

P=1
P=2
P=4
P=8

Figure 4: CORBA response with varying processors and
varying data size

 JavaSpaces
 No. of workers

 Input P=1 P=2 P=4 P=8
 Size

8K 4636 3726 3451 3573
16K 10744 6701 4898 4465
32K 34223 17529 10459 7488
64K 128508 47488 20003 12056

Table 1: JavaSpaces Response time

 CORBA (No. of workers)
 Input P=1 P=2 P=4 P=8
 Size

8K 7947 6438 5941 6399
16K 14747 8839 7395 7263
32K 39599 18816 11097 9282
64K 139199 66365 35280 20119

Table 2: CORBA Response time

332 Informatica 29 (2005) 327–333 S.P. Ahuja et al.

We also observed that when we employed two workers
CORBA is significantly higher in response time than
JavaSpaces for all but input data size of 32K, where there
is no significant difference. The difference is higher in
data size 64K. We have similar observations as above
when we have four workers. CORBA is significantly
higher in response time than JavaSpaces in all data sizes
except 32K, where there is no difference. The difference
is higher in data size of 64K. For eight workers CORBA
is significantly higher in response time for all data sizes.
The difference is higher in data sets of 64K.

5 Conclusions

GigaSpaces, the JavaSpaces implementation, consistently
outperformed ORBacus, the CORBA implementation, in
terms of response time on both the parameters - size of
the problem and number of processors deployed to work
as workers/servers. Hence we conclude from the
observed data that distributed parallel algorithms of
master-worker pattern may be able to perform more
efficiently when developed using the JavaSpaces
platform. CORBA is language neutral and thousands of
sites rely on CORBA for enterprise, Internet-based, and
other computing. Both CORBA and JavaSpaces
architectures provide tremendous benefits in terms of
fault-tolerance and scalability. In terms of ease of use
and implementation of the two technologies,
implementation of JavaSpaces was easier than CORBA.

GigaSpaces platform already provides most of the
implementation details and from an application
programmer’s perspective; there are only five commands
to learn. We did face some challenges in implementing
JavaSpaces due to its increased security considerations
that is in-built within the JavaSpaces and its underlying
Jini technologies and GigaSpaces platform. JavaSpaces
does have the limitation that it can be only implemented
on the Java platform supporting Jini architecture. In
comparison, implementation of CORBA platform is
harder due to much-detailed standards that developers
must adhere.

References
[1] Freeman, E., Hupfer, S., Ken Arnold, “JavaSpaces

Principles, Patterns, and Practice”, Addison
Wesley, 1999, pp. 4-16.

[2] http://www.capescience.com/resources/
[3] http://www.artima.com/jini/
[4] http://www.gigaspaces.com/download/GigaSpaces

WhitePaper.pdf
[5] http://www.omg.org/technology/documents/formal/
[6] http://www.orbacus.com/support/new_site/pdf/Orba

cusWP.pdf
[7] Triola, Mario F., “Essentials of Statistics”, Addison

Wesley, 1999, pp. 4-16.
[8] JavaSpaces Service Specification http://

www.sun.com/software/jini/specs/js1_1.pdf
[9] Teo, Y.M., Ng, Y. K, Onggo, B.S.S., “Conservative

Simulation Using Distributed-Shared Memory”,
Proceedings of the 16th Workshop of Parallel and
Distributed Simulation. May 2002.

[10] http://java.sun.com/developer/Books/JavaSpaces/int
roduction.html

[11] Tam, M., Smith, J., Farber, D., “A Taxonomy-
based Comparison of Several Distributed Shared

JavaSpaces Speed-Up

0
2
4
6
8

10
12

8K 16K 32K 64K
Sort Data Size

Sp
ee

d-
U

p P=1
P=2
P=4
P=8

Figure 5: JavaSpaces speed-up

CORBA Speed-Up

0
1
2
3
4
5
6
7
8

8K 16K 32K 64K
Sort Data Size

Sp
ee

d-
up

P=1
P=2
P=4
P=8

Figure 6: CORBA speed-up

WORKERS: 1.00 P=1

Input Data Size

64K32K16K8K

M
ea

n
R

es
po

ns
e

Ti
m

e

160000

140000

120000

100000

80000

60000

40000

20000

0

CODE

CORBA

JavaSpac

Figure 7: Mean response time for P=1 for
JavaSpaces and CORBA

A PERFORMANCE EVALUATION OF... Informatica 29 (2005) 327–333 333

Memory Systems”, ACM Operat. Syst. Review 24,
July 1990, pp. 40-67.

[12] Eugster, P. T., Felber, P.A., Guerrauoi, R.,
Kermarrec, A., “The Many Faces of Publish-
Subscribe”, ACM Computing Surveys, vol. 35, no.
2, June 2003, pp. 114-131.

[13] Gelernter, David, "Generative Communication in
Linda," ACM TOPLAS, 7:1, January 1985.

[14] Carriero, Nicholas, and David Gelernter, "Linda in
Context," CACM, 32:4, April 1989.

[15] Birrell, A. D., and Nelson, B. J., “Implementing
Remote Procedure Calls”, Proceedings of the ACM
Symposium on Operating System Principles, ACM
Press, New York, NY, 1983.

[16] Tay, B. H., Ananda, A. L., “A Survey of Remote
Procedure Calls”, ACM Operat. Syst. Review 24,
July 1990, pp. 68-79.

[17] Sessions, R., “COM and DCOM: Microsoft’s
Vision for Distributed Objects”, John Wiley and
Sons, New York, NY, 1997.

[18] OMG, “The Common Object Request Broker: Core
Specification”, The Object Management Group,
Needham, MA, 2002.

[19] Sun Microsystems, “Java Remote Method
Invocation Specification”, Sun Microsystems, Santa
Clara, CA, 2000.

