
https://doi.org/10.31449/inf.v47i5.4698 Informatica 47 (2023) 137–152 137

PrivyKG: Security and Privacy Preservation of Knowledge Graphs
Using BlockChain Technology

Ala Djeddai1*, Rofaida Khemaissia2

1Chadli Bendjedid El-Tarf University, B.P 73, El Tarf 36000, Algeria
2Laboratory of Mathematics, Informatics and Systems (LAMIS), Echahid Cheikh Larbi Tebessi University, Tebessa

12002, Algeria

Email : a.djeddai@univ-eltarf.dz, khemaissia.rofaida@univ-tebessa.dz

Keywords: knowledge graph, blockchain, hyperledger fabric, knowledge graph integrity, smart contracts, privacy

Received: February 22, 2023

Recently, knowledge graph has proved its benefits in AI applications and especially in knowledge

representation and reasoning. Therefore, with the huge amount of published data, knowledge graph

privacy, trust and integrity take an important role to protect it from illegal access and modification. In

this paper, we propose PrivyKG, a new framework which uses the blockchain technology along with an

access control based on it to preserve the knowledge graph privacy, integrity, and ensure security and

trust. The proposed work has two essential parts to build a decentralized knowledge graph, where the first

one uses off-chain storage for ensuring the blockchain scalability and the second one integrates a

permissioned Hyperledger Fabric powered with GO smart contracts. The proposed framework is

evaluated with a DBpedia dataset that illustrates the efficiency and the feasibility of our proposed against

potential threats.

Povzetek: Predstavljena je metoda decentraliziranih grafov znanja za bločne aplikacije.

1 Introduction
Recently, a massive amount of data is published on

the web with the increasing usage of applications and web

services. Therefore, processing these data has been the

goal study of many researchers, where the main objective

is trying to learn more about users and its behaviors.

Knowledge graph (KG) which connects real world entities

by relations, it plays a central role when the application

needs a representation and reasoning about knowledge in

its processing. Many artificial intelligence applications

profit from KG processing in order to help in

recommendations and predicting new knowledge. Dealing

with security and privacy of KG is a very important task,

in order to help KG applications to run under secure, trust

and data privacy preserving.

With the widespread usage of KG in artificial

intelligence, its security and privacy remain a big

challenge due to its critical content. Especially when

personal data takes an important place such as social

networks and healthcare fields. Several techniques have

proposed to maintain the KG privacy such as

anonymization and differential privacy [24] which have

been used widely to keep personal data privacy. For

instance, the anonymization is based on anonymizing the

entities with new undistinguished identifiers, this

technique has several extensions like k-anonymity [23]

which aims at ensuring that the entities are

indistinguishable from at least k-1 other entities. Besides

the advantages of the anonymization technique, an

attacker may de-anonymize the data content to obtain the

real entities and its sensitive information, an example of

this attack is given by [22]. Differential privacy

approaches perturb the data for hiding the real contents,

thus keeping the privacy of the sensitive information. In

practice, the perturbation can increase the data size and the

computation when extracting the original data, therefore

the differential privacy is not always efficient. The novel

blockchain technology which is a decentralized,

distributed and secure database, has been used to tackle

many issues of security, privacy and trust in KG [1, 2].

Blockchain has been recently integrated to protect and

keep the privacy of the personal data [3, 4, 5] which can

be represented by knowledge graphs. In contrast to

privacy preservation approaches, BC ensures data

integrity and provides an access control over the data,

especially in case of permissioned BC where all clients

must have digital certificates to achieve the authentication.

Several approaches have integrated KG to enhance

BC data querying and its reasoning capabilities such as

[12], [13] and [14] but a few works like [15] have used BC

with KG to keep data sharing privacy and security. In

regards to keep only the KG privacy, [1] has proposed to

merge BC with IPFS to keep only the KG integrity by

saving the data hash on the BC without any access control.

Among the shortcomings that are noticed by recent works

do not give a complete KG privacy protection, and

marginalize the access control on its data, which

complicates the sharing of its content. In contrast, our

focus is only on KG data by proposing PrivyKG that uses

BC with an off-chain storage in order to promote privacy

and integrity protection where the security is improved by

supporting a permissioned BC.

PrivyKG is an extension work of [21] and [26] that

propose an approach to secure the KG completion tasks

mailto:a.djeddai@univ-eltarf.dz
mailto:khemaissia.rofaida@univ-tebessa.dz

138 Informatica 47 (2023) 137–152 A. Djeddai et al.

such as link prediction and triple classification by running

them in decentralization using Blockchain. Compared to

[21] and [26], our work focuses on KG privacy by

providing access policies, reward mechanism, audit and

several KG querying tasks that execute in coordination

with blockchain and under permission from KG owner.

The main contributions of this work are listed below:

✓ Using a permissioned Blockchain for keeping the

integrity of critical data used to build and rebuild the

original KG. Thus, these data are saved in secure and

decentralized manner where the access is achieved

only using permission and a valid certificate.

✓ Improving the PrivyKG scalability by using an off-

chain storage in order to save the critical data on the

blockchain for avoiding the non-necessary and

preventing significant transactions.

✓ Similar to [21] and [26], PrivyKG supports KG

completion tasks such as link prediction and triple

classification where they run in decentralization in a

secure manner. PrivyKG ensures the privacy of the

embedding vectors of the learned model.

✓ Securing and improving the trust of KG management

tasks such as updating and deleting triples. These

latter are performed using decentralization by the

BlockChain peers powered by smart contracts.

✓ PrivyKG proposes to preserve the privacy of several

KG querying tasks by running under BC technology

such as filtering critical attributes from query results,

checking the truth degree of a given sub graph…etc.

✓ Implementing and evaluating PrivyKG using a

DBpedia dataset and Hyperledger Fabric [17]

powered by Go smart contracts and cooperated with

MangoDB for off-chain storage.

This paper is structured as follows: section 2 presents

the background and related works where we give

definitions about KG, blockchain and how to merge these

two recent technologies. Section 3 presents the notion of

decentralized KG and describes how securing and keeping

privacy of KG using blockchain and off-chain storage

where we give details about the proposed design and its

main components, we also describe how building,

rebuilding and updating the decentralized KG along with

main scenarios. Section 4 presents the implementation of

PrivyKG. The evaluation results are depicted in section 5

whereat the discussion part is given by section 6. Section

7 concludes the paper with future directions.

2 Background and related works

2.1 Identity management and access

control

The main objective of the identity management is

creating and verifying the identities of the entities that can

use a service from a particular system. The access control

aims at creating and verifying the access to a particular

resource or service after successful identity verification.

Therefore, these two tasks are seen as authentication and

authorization of entities in the system. As mentioned in the

work of [20], the authentication methods can use different

factors for human and non-human such as knowledge

factor, possession factor, inherence factor and context-

aware factor. The authorization methods can be classified

as: Discretionary Access Control (DAC), Mandatory

Access Control (MAC), Role-Based Access Control

(RBAC), Attribute-Based Access Control (ABAC), and

Capability-Based Access Control (Cap-BAC). Identity

and access management can be classified into five models:

isolated, centralized, federated, user-centric, and self-

sovereign models. In contrast to the four models, the self-

sovereign model is based on the user where she can store

and manage her digital identity. In our work, IAM is based

on knowledge factor in isolated settings because we have

used local authentication and authorization, however the

critical information about IAM is stored in decentralized

ledger in the blockchain. The Capability-Based Access

Control is supported by PrivyKG because it uses token-

based access control that contains all information about

data access and the needed operation. We have chosen a

permissioned BC that uses ECC [19] and ECDA rather

than others like RSA [18] in order to ensure scalability of

the encryption.

2.2 Knowledge graph

Knowledge graph describes real word facts by

connecting entities with relations, for example, Algeria

location north-Africa where Algeria and north-Africa is

respectively a subject and an object entities and location is

a relation. Therefore, every knowledge graph is a set of

triples, each one is a form of subject-predicate-object. We

can define the KG as a couple of (E, R) where E is the set

of entities and R is the set of relations that connects the

elements in E. The KG is appeared with the Google KG in

2021, after that many KG was created and published like:

Freebase [6], DBpedia [7] and WordNet [8].

Figure 1 : Example of knowledge graph about the country of Algeria.

Algeria
Tunisia

Africa AbdelMajid
Tebboune

president
located_in

has_border_with
Arabic

first_language

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 139

In comparison with the ontology, the KG does not

necessarily contain the class and property hierarchy but it

contains mainly the instance level. The KG is constructed

using different methods like data crawling, knowledge

extraction, knowledge fusion and processing. For the

application level, the KG has a widespread usage in

artificial intelligence application like link predication,

entity resolution, recommendations...etc. The KG has

been also used in network security for modeling the

attacker behavior and predicting his steps. The figure 1

illustrates an example of a KG about the country of

Algeria and its relations with other countries.

2.3 BlockChain

The blockchain technology is a distributed database

that records all transactions executed by its distributed

peers. These transactions are saved in interconnected

blocks and they cannot be modified, therefore the

blockchain keep the data integrity, confidentiality and

privacy. This technology was born by the Bitcoin [9] peer-

to-peer cash system and especially by the white paper of

Nakamoto Satoshi. There are three types of blockchain:

permissioned, public and consortium.

By the evolution and the success of the blockchain,

many application domains like: the Internet of Things,

agriculture, Smart Grids, Knowledge management…etc.,

have integrated this technology in order to keep their data

integrity and privacy. New BC domains need a large

amount of data; therefore, two important notions are born

which are the onchain and offchain. The first one contains

critical application data such as access permissions and

data hash for further integrity verification. The second one

stores the big data used by the application to prevent

unscalable BC processing but these data must be used with

the onchain information in order to be useful.

2.4 Knowledge graph privacy and

BlockChain

In recent years knowledge graphs and BlockChain

have been merged to support artificial intelligence

applications in many domains where the data knowledge

and security paly central role. The former can be used to

enhance the querying and reasoning capabilities of the

BlockChain where the latter is used mostly to keep the

knowledge graphs privacy, trust and security by making it

protected and decentralized. The merging of these two

technologies has been supported in recent years due to

their success in many domains like data sharing [10] and

recommendation systems [11].

In this section our focus is not on works that integrate

KG in BlockChain because they are out of the scope of

this paper. We refer the reader to [12], [13] and [15] to get

more information about Blockchain enhanced by KG. We

highlight the works which aim to securing the KG using

the BlockChain technology. The only survey that we

found about privacy in KG is [2] where the authors

investigate privacy problems in KG and propose possible

solutions to protect the KG privacy under isolated setting

to support KG merging, query representation and

completion. These possible solutions use secret sharing in

order to keep the data more private during computation. In

isolated setting the parties have their own KG and cannot

share them with others. Therefore, it is essential to keep

the KG content privacy during computing for example the

embeddings of entities and relations.

The authors of [1] propose a new schema to improve

the KG security using the BlockChain and distributed

storage system. After processing the KG files using the

distributed storage, their hashes are saved on the

BlockChain and therefore, [1] work preserve only the hash

integrity without data access control or the integrity of the

whole KG. The work is evaluated using Hyperledger

Fabric and Ethereum [28] where the former has given

improved results compared to the latter. In [11] a new

approach of deep recommendation system using KG is

proposed. The construction process of KG is different

from the traditional methods by using decentralization

assured by BlockChain and smart contracts. Thus, KG

problems like security, integrity and trust are the main

objective of the work.

Table 1: Summary table of the related works

Approach Blockchain Offchain
Access

control
IPFS

KG

Management

Audit

and

Logs

Authentication Rewards

[1] Fabric 1 No No Yes No No
Fabric

authentication
No

[13] Ethereum No No No No No
Ethereum

authentication
No

[21] Fabric 2.0
Yes

(MangoDB)
No No Limited No

Fabric

authentication
No

[26] Fabric 2.0
Yes

(MangoDB)
No No Limited No

Fabric

authentication
No

PrivyKG Fabric 2.0
Yes

(MangoDB)
Yes No Yes Yes

Fabric

authentication
Yes

140 Informatica 47 (2023) 137–152 A. Djeddai et al.

The work of [10] proposes OpenKG Chain, it is a

network based on blockchain to share knowledge graphs

in secure and trusted manner. The aim of the approach in

[13] is not to preserve the KG privacy but its main goal is

analyzing the cost between storing KGs or JSON into BC.

The authors of [13] found that saving KGs takes more

costs than JSON. Other works like [15] is centered on KG

semantic sharing based on blockchain in order to

decentralize the sharing process and protect the KG

integrity. The authors found that using decentralization

with blockchain improves the scalability and execution

time compared with centralized KG sharing approaches.

In [21] and [26], blockchain has been used to keep the

privacy and ensured the security of KG completion tasks

such as link prediction and triple classification where they

are executed in decentralization by BC peers. In the same

endeavor, authors of [21] and [26] have used an off-chain

and on-chain storage in order to ensure the BC scalability

by storing only sensitive data which will be participated to

rebuild the whole KG. Our work comes to fulfill the

limitations of [12] and [6] such as marginalizing the KG

privacy and access control, supporting only limit types of

KG management, big offchain size…etc.

Table 1 illustrates the capabilities that can be

supported by our work and other related works. In regards

to the aforementioned approaches, they do focus on

preserving only the privacy of KG content without taking

into account several considerations such as access control,

policies and audit mechanisms, as well as KG tasks must

be protected because it is not enough focusing only on KG

content and omitting the tasks that are crucial to put a

complete KG privacy preserving approach.

Our work aims at proposing PrivyKG which takes

into account the shortcoming of the previous works where

the privacy protocol must cover all KG data from content

to tasks for example querying and completion. In addition,

we incentivize sharing KG content by using a reward

mechanism that gives PrivyKG coins to KG owners who

grants access to data requesters. PrivyKG supported

permissioned blockchain rather than public ones, for

several reasons such as high throughout, access control,

trust among peers, scalability, and low energy

consumption...etc. It also supports offchain KG data (data

stored outside blockchain) for preventing unscalable

blockchain processing.

3 Proposed approach of securing and

preserving privacy of KG
In this section, we are to give details about how

securing and keeping the privacy of KG using BC. Firstly,

we are to introduce the notion of decentralized KG and

how building it using on-chain and off-chain storage in

order to keep its privacy. Secondly, we are to present

PrivyKG architecture which uses access control, logs and

reward mechanisms based on BC smart contract.

3.1 Decentralized knowledge graph

PrivyKG goal is keeping the security and privacy of

KG using the blockchain. PrivyKG proposes to

decentralize the KG which is illustrated in the figure 2.

The process uses two main components of which offchain

and onchain. The former contains off-chain KG data

whereas the latter contains BC sensitive data about access

control and critical data used to rebuild the original KG.

3.1.1 Off-chain knowledge graph privacy and

storage

All offchain KG triples are stored according to their

subjects, and therefore each off-chain entity is associated

with its triples where it acts as subjects. Table 2 presents

the data structure of the off-chain contents that contains

two attributes: ObjectID and TripleSet.

Table 2. The offchain data about every KG entity.

Information Description

ObjectID
The identifier that has been associated to

the entity by the off-chain management.

Triples

It contains triples’s relations and objects

where the entity is the subject.

A set of couples where each one is a

form of (RelationID, ObjectID) where:

- RelationID: The relation identifier that

has used in the OffChain KG.

- ObjectID: The identifier of the object

that has used in the OffChain KG.

Figure 2: BlockChain based knowledge decentralization.

O
n

C
h

ai

n

O
ff

C
h

ai
n

KG

KG Owner KG Requester

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 141

3.1.2 On-chain data about knowledge graph

In our design, the BlockChain has not been used to

store the knowledge graph but its main goal is associating

the entities with their positions in the off-chain storage.

Our design proposes to use two data structures, one for the

entities and the second is for the relations. Another

important goal is avoiding the illegal changes and keeping

the data integrity using the saved hashes. Each instance of

these data structures contains important information about

entities and relations such as the ciphertext of its name,

Offchain ID and hash of its offchain triples. Only the

entity structure contains the hashes of its triples in order to

verify the off-chain storage integrity. Tables 3 and 4 show

respectively the data structure for entities and relations.

Table 3: The blockchain transaction content about KG

entities

Information Description

EntityEnc The ciphertext of the entity’s name.

EntityID
The entity identifier that is used in the

OffChain KG after decentralization.

EntityHash The hash of the entity’s name

Hash
The hash of the triples that is associated

the entity.

Table 4: The blockchain transaction content about KG

relations

Information Description

RelationEnc The ciphertext of the relation’s name.

RelationID
The relation identifier that is used in

the OffChain knowledge.

RelationHash The hash of the relation’s name.

3.1.3 Decentralized knowledge graph

management

In this section, we show how the onchain and the off-

chain storage are built from the original KG in order to

keep both privacy and integrity. Besides we provide how

updating, deleting and creating triples in the new

decentralized KG. The KG management is very important

because the continuous evolution of the knowledge data,

it is also necessary in case of KG completion in order to

add new true and predicted triples.

Decentralized KG. Firstly, the original KG entities and

relations are associated with numerical identities to ensure

the anonymization and decrease the offchain storage

space. Secondly, the entities and relations names are

encrypted to get ciphertexts. The data about every entity

such as the ciphertext, identity in the offchain and the hash

of its triples are stored on BC. The off-chain contains the

new anonymized KG where every entity is stored using it

off-chain identity and its triples according to table 2.

Decentralized KG Modifications. Three main operations

can affect the state of the KG: creating new triples,

updating or deletion of existing ones. Our design supports

KG modifications by querying the offchain and the

onchain without rebuilding or modifying the whole KG

and making it decentralized again. It is necessary that after

modification, the onchain hash associated with the subject

entity must be recalculated to take into account the new

changes.

Some supported KG are described by the following:

Triple Creation. A new triple can contain existing or new

entities and relations. For the first case, the triple is

inserted directly in its offchain after identifying the object

ID of the subject from the BC. For the second case, we

follow the strategy described during the creation of

decentralized KG to create new relations and entities, after

that, the same steps of the first case are forwarded.

Triple Update. In this situation, three cases can be

occurred: subject or object or relation update. Before

updating, we verify if we have new entities or relation and

follow the same strategy of creating new triple

components. For the first case, the new triple is moved

from its triple set to the set of its new subject. For the

second case, we modify its object directly with the object

ID of the new object retrieved from the BC. In the third

case, the triple is updated by the new relation ID.

Triple Deletion. In this case, the triple is removed directly

from its off-chain set after identifying the object ID of its

subject using BC.

The figure 3 shows an example about building and

rebuilding the KG shown by the figure 1 using on-chain

and off-chain data. The onchain data about “Algeria” must

also contain its hash and the hash of all triples where it acts

as a subject (4 triples). The offchain KG is stored

according to table 2.

3.2 PrivyKG architecture and its main

functionalities

PrivyKG components and their actors are illustrated

by figure 4 where two main parts are presented: onchain

and offchain. The first one contains all smart contracts

proposed by PrivyKG in order to allow users interact with

BC network. The second one covers offchain KG

management and querying where the full privacy

protection is guaranteed only by interacting with on-chain

components.

In the next, we give detailed descriptions about

PrivyKG components and their users along with their

interactions, BC transaction types, access controls on

using smart contracts, audit and reward mechanism…etc.

142 Informatica 47 (2023) 137–152 A. Djeddai et al.

Figure 3: Example of knowledge graph decentralization and rebuilding.

Figure 4: The main components of PrivyKG architecture along with theirs interactions.

Algeria
Tunisia

Africa

AbdelMajid

Tebboune

president

located_in

has_border_with

Arabic

first_language

1 2

3

5

3
2

1

4

4
OnChain

OffChain

Original KG

Enc(Algeria), 1

Enc(Tunisia), 2

Enc(Arabic), 4
Enc(Africa), 3

Enc(AbdelMajid Tebboune), 5

Enc(has_border_with), 1

Enc(located_in), 2

Enc(first_language), 4
Enc(president), 3

Decentralized KG

R
eb

u
il

d
 K

G

KG Completion

ID Management

Access Control

Data Access Log

KG Querying

KG Owner Requester

B
lo

c
k

C
h

a
in

 S
m

a
r
t

C
o

n
tr

a
c
ts

O
ff

C
h

a
in

 S
to

r
a
g

e

a
n

d
 Q

u
er

y
in

g

Rewards

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 143

3.2.1 Users roles and responsibilities

The KG Owner: the current data owner. It can be a

person, enterprise, clinic, laboratory, etc. Recent data

regulations like GDPR1 insist that the data owners must

have the full control over its data. Thus, they have imposed

an access control and policies in order to restrict the access

and the manipulation of their data. They put two types of

policies: default and non-default where the first indicates

that the target operation is granted without return back to

KG owner, whereas the latter means that permission must

be requested directly from the KG owner.

Requester: It acts as data stakeholders by requesting data

access in order to use the requested KG in its processing.

Therefore, every request is saved on the blockchain for

future verification to detect illegal data manipulations.

Thus, the requester must accept the rules of data

processing before access the data. Every requester must

register and enrolled by the blockchain in order to manage

its authorization and access control. The data about the

requester registration is under its responsibility and

therefore every illegal access by another entity with its

critical information is not the responsibility of the

blockchain network.

3.2.2 On-chain components

Access Control: It verifies if the data requester has the

right to query the KG with PrivyKG specific queries. The

process is achieved by requesting the blockchain to get the

access policies of the requested data. If the needed

operation is in the default policy, then the access is

granted, else the request is forwarded directly to the KG

owner. In other situations, the requester can request data

access after a permission that has been already given to

him. Therefore, the AC verifies if the requester had an

existed acceptation from the KG owner

Table 5: The blockchain transaction content about access

control

Information Description

KG owner

identifier

The owner identity that is generated

by the IDM.

KG identifier
A unique identity of the knowledge

graph subject to access.

Requester

identifier

The requester unique identity that is

generated by the IDM

Query content
The content of the query to be

executed for the requester.

Permission
The permission that is given to the

requester for the requested query.

1 https://gdpr-info.eu/

Table 5 gives an example of a transaction content

which is supported by the AC smart contract in order to

store a new permission.

Table 6: The blockchain transaction content about access

logs

Information Description

Requester

identifier

The requester unique identity that is

generated by the IDM

Query

content

The content of the query to be executed

for the requester.

Permission

The permission that is given to the

requester for executing the query.

Date and

Time

The date and time of the executed

query.

Audit: its main objective is performing an advanced

verification which detects inconsistencies in the history of

authorization and access control components. It merges

data from all ledgers and performs advanced checking. For

example, if the AC component grants access permission

without checking the authorized permission of the KG

owner, then this illegal access can be detected using an

audit verification. The process of auditing is started only

in demand of the KG owner. Table 6 shows an example of

a transaction content which is used by the audit smart

contract in order to store a new log data about specific

operation.

Identity management: it has two main tasks: the first is

creating identities and registering the new owners and KG

requesters (along with its attributes), the second is

verifying if a given identity is valid or not using the

blockchain. The IDM component returns a registration

certificate to every accepted demand for registration

where these latters contain critical information about

enrolling PrivyKG users with different roles. All identity

information is stored in the BC in order to protect it from

fraud identities.

KG Completion: Its main task is assisting the KG owner

in completing the data with missing ones. It suggests new

KG triples that are predicted using KG completion tasks

like link prediction or triple classification. It starts its task

in demand from the KG owner and if this latter accepts the

new triples ,then the KG is updated with these latter. The

KG owner can provide to KG completion the plaintext or

the ciphertext of the original KG. Tables 7 and 8 give an

example of two transactions which is supported by the KG

completion smart contract in order to store a new entity or

relation embedding which will be used to compute the

truth degree of a given triple.

144 Informatica 47 (2023) 137–152 A. Djeddai et al.

Table 7: The blockchain transaction content about entity

embeddings

Information Description

EntityId The ciphertext of the entity name.

VectorEmb

The vector embedding which was

generated by a KG embedding method.

Table 8: The blockchain transaction content about

relation embeddings

Information Description

RelationID The cipher text of the relation’s name.

VectorEmb

The vector embedding which was

generated by a KG embedding method.

Rewards: PrivyKG integrates a reward mechanism in

order to incentivize KG owners to share their content with

requesters. The KG requester rewards KG owners by

giving coins which they have been purchased by

requesters from the BC network. The collected coins can

be used by KG owners to gain further PrivyKG services

such as storage space, new functionalities, etc.

An example of a reward transaction content is given

by the table 9 where every transaction is associated with

information related to the number of coins, who gives

them, and their destinations.

Table 9: The blockchain transaction content about

rewards

Information Description

Requester

identifier

The requester unique identity that is

generated by the IDM

KG owner

identity

The owner’s identity that is

rewarded by the requester.

KG owner

coins

The number of coins that are given

by the requester to KG owner.

3.2.3 Off-chain components

KG querying: It has several specific functionalities for

different KG owner and requester needs. It starts its work

after receiving a request access from a KG requester which

already has a valid access permission from the AC. It has

a blockchain access and offchain access in order to target

the correct entities and relations by associating their

identifiers with the real ones in the offchain. In the next,

we give detailed descriptions about some tasks provided

by the KG Querying component.

✓ Query result filtering: If the result of a given

query contains critical data about the KG owner,

then these data are eliminated from the result in

order to protect the privacy of the KG owner. The

KG querying decides if a given data is critical or

not using KG owner descriptions about critical

attributes from the onchain.
✓ Data about specific entity or relation: The

requester can request data that uses a specific

entity or relation. Therefore, after getting the

onchain data about the entity or relation, the KG

querying component queries the decentralized

KG for retrieving all triples that use the given

entity or relation.
✓ Data about relations that connect specific

entities: The requester can send query that

contains only specific entities in order to get the

relations that connect them.
✓ Checking the truth value about a specific sub

graph: The requester can send a query which

contains only specific subgraph (set of triples);

thus, it considered as checking its truth i.e.,

testing if the KG contains the provide subgraph

or not.
✓ Using the KG completion to predict data: the

requester can demand from the system to provide

the degree of truth of a set of triples. In this

situation, the KG completion is requested for

doing the predictions and send the result to the

querying component.

3.3 Main scenarios in PrivyKG and their

smart contracts

In this section, we put forward the three main

scenarios that can be controlled by PrivyKG smart

contracts.

The first one which is turns about how the permission

is requested directly from the BC using two smart

contracts: Access Control and Identity Management.

These latter interacted with each other in order to achieve

the request permission process. After successful identity

verification, the AC verifies if the permission is listed in

the access policy of the data requested and returned a

positive response by updating the BC data with new

granted permission.

The second one consists on how requesting the

permission in case the BC cannot give it directly because

the KG owner must be contacted. Moreover, the request

permission is not specified in the default access policy and

KG owner is the only one who gives it to the requester.

The process uses the same smart contracts as the first

interaction.

The last one presents how the requester gets the data

after he got the permission. Firstly, the KG querying

component interacted with two smart contracts (AC and

IDM) in order to verify the requester identity and the given

access permission. After that, it interacted with offchain

server to get the data via using its information that has

been given from the AC, besides it transfers the data to the

requester. In the end, the audit smart contract is invoked

in order to save the information about the operation.

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 145

PrivyKG supports other scenarios as follows:

✓ A given requester can update its number of coins

which will be used in the future to reward the KG

owner.

✓ A given KG owner can update its KG data ,thus

updating the offchain and onchain entities and

relations using respectively the KG querying and

their smart contracts.

✓ After grant permission from KG owner, a

requester can query the KG ,for example to check

the degree of truth of a given subgraph ,where

this task can incorporate the KG completion

smart contracts.

Figure 5: PrivyKG implementation architecture.

Figure 6: The hyperledger fabric network used in PrivyKG.

RST API

Server
Client Application

Fabric SDK

Java Driver

Org1-CA

Org1-Peer

KG Completion (Channel)

Rewards (Channel)

Entities (Channel)

Relations (Channel)

Org2-CA

Org2-Peer

ChainCodes(Ent)
ChainCodes(Rel) ChainCodes(AC) ChainCodes(AC)

AC Rel

Ent RW

CouchDB Ledger

ChainCodes(Ent)
ChainCodes(Rel) ChainCodes(AC) ChainCodes(AC)

Orderer

Ordering service

Client

Access Logs (Channel)

Access Control(Channel)

KGC Log

AC Rel

Ent RW

CouchDB Ledger

KGC Log

146 Informatica 47 (2023) 137–152 A. Djeddai et al.

4 Implementation
PrivyKG is implemented under Eclipse using various

Java APIs such as JGraphT, and JSON, Fabric SDK. The

implementation architecture is illustrated in figure 5 where

the main components are as follows:

The Hyperledger Fabric Blockchain: [17] is used with

the configuration of two organizations and one peer node

for each one. The fabric network uses CouchDB as world

state database and one ordering service. It was built with

one certificate authority for each organization. Six

channels are created for access control, access logs,

knowledge completion, rewards, entities and relations

named respectively “Access Control”, “Access Log”,

“Knowledge Completion”, “Reward”, “Entities” and

“Relations”. Six Fabric smart contracts are deployed using

Go language (one for each channel). The Hyperledger

Fabric network used by the proposed method is given by

the figure 6 where every channel is associated with its

ledger and its smart contract.

MangoDB: is used as off-chain storage where every data

is stored as JSON objects. Queries are specified using the

NoSQL to interrogate the database in order to get or

modify the triples.

Client Application: a user that needs data from the

decentralized KG.

All these latter are interacted with the main program using

their specific Java API.

4.1 Fabric chaincodes and distributed

ledgers in PrivyKG

Every peer in HLF has its local database (ledger) with

contains all transactions executed by the network via HLF

chaincodes. Thus, every peer can have several installed

chaincodes for one HLF channel. The distributed ledgers

in HLF are updated using smart contracts in demand by

the blockchain external users. PrivyKG proposes to use 6

distributed ledgers where each one is associated with one

smart contract and several peers. These ledgers store

critical data about PrivyKG functionalities such as

knowledge graph completion, rewards, access control,

access logs, on-chain KG (entities and relations). In the

next, we give some details about access control, reward

and KG entities and relations chaincodes.

4.1.1 Access control chaincode

The AC chaincode defines functions that executed by

HLF peers for managing the KG access control and

defining the permission required to execute KG

operations. This chaincode is installed on a channel

identified by the same name “Access control” and it is

associated with a local ledger that saves information about

the access control on KG data. The AC chaincode uses the

Golang structure which is illustrated by the listing 1. AC

chaincode functions like creating new permission must

use a JSON key value passed in the invocation call by the

HLF users. All information included in listing 1 are

already explained by the table 5. Table 10 presents some

functions provided by AC chaincode.

type AccessControl struct {

 OwnerID string `json:"OwnerId"`

 PolicyKG [] PolicyTypeKG

`json:"PolicyKG"`}

type PolicyTypeKG struct {

 KgID string `json:"KgID"`

 DataPermissions []

DataPermissionType

`json:"DataPermissions"`}

type DataPermissionType struct {

 QueryType string

`json:"QueryType"`

 DefaultPolicy [] string

`json:"DefaultPolicy"`

 Permissions [] PermissionsType

`json:"Permissions"`}

type PermissionsType struct {

 Target string `json:"Target"`

 Op [] string `json:"Op"`}

Listing 1: The Golang structure used by the access

control chaincode

Table 10: Some smart contract functions that are

implemented by the access control chaincode.

Function Description

addPermission Create new permission for a given

requester for accessing a given KG

data.

chkPermission Check if a given requester has already

registered with a given permission.

updPermission Update a given permission by

removing or extending or restricting

it.

4.1.2 Rewards chaincode

The RW chaincode uses the Golang structure which

is illustrated by the listing 2 where All information are

already explained by the table 9. Table 11 presents some

functions supported by RW chaincode.

type Rewards struct {

 RequesterID string

`json:"RequesterID"`

 Coins int `json:"Coins"`

 TransferCoins [] TransferType

`json:"TransferCoins"`}

type TransferType struct {

 OwnerID string `json:"OwnerId"`

 Coins int `json:"Coins"`}

Listing 2 : The Golang Structure used by the Reward

Chaincode

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 147

Table 11: Some smart contract functions that are

implemented by the Reward chaincode.

Function Description

rewardUser A given requester rewards a KG

owner with coins.

putCoins A given requester updates its coins

with new ones.

4.1.3 Knowledge graph chaincodes

Two chaincodes are created for managing the critical

data used to identify the KG entities and relations and

theirs related triples in the off-chain. The first one is for

the entities while the second one is for the relations. The

content of every ledger is already discussed in the tables 3

and 4. The entities and relations chaincode uses the

Golang structures that are illustrated by the listings 3 and

4 respectively. Tables 12 and 13 shows some functions

implemented respectively by entities and relations

chaincodes.

Table 12: Some smart contract functions that are

implemented by the Entity chaincode

Function Description

createEntity Create new critical data about a new

entity for a given KG.

readEntityData Get the information stored in Entity

ledger about a given KG entity.

updateEntity Update the blockchain data about a

given entity such as the hash and the

offchain ID.

Table 13: Some smart contract functions that are

implemented by the relation chaincode

Function Description

createRelation Create new critical data about a

new relation for a given KG.

readRelationData Get the information stored in

relation ledger about a given KG

relation.

updateRelation Update the blockchain data about a

given relation such as the relation

ID.

type Entity struct {

 EntityEnc string

`json:"entity_enc"`

 ObjectID string

`json:"object_id"`

 EntityHash string

`json:"entity_hash"`

 Hash string `json:"hash"`}

Listing 3: The Golang Structure used by the Entity

Chaincode

type relation struct {

 RelationEnc string

`json:"relation_enc"`

 RelationID string

`json:"relation_id"`

 RelationHash string

`json:"relation_hash"`}

Listing 4: The Golang Structure used by the Relation

Chaincode

5 Evaluation

5.1 Knowledge graph dataset

DBpedia [25] ontology is a large-scale dataset

extracted from Wikipedia, it has widespread usage in

many artificial intelligence domains such as KG

completion and reasoning. It plays a centric role in the link

data project where it acts as a mediator ontology that

connects several datasets. PrivyKG is evaluated using a

DBpedia dataset named DBpedia 50k [27] that contains

30436 entities, 365 relations and 50000 triples. In the first

experiment, 20k triples are selected. For the next one

another 20k is added and so on until reach the whole

dataset. In every experiment, a MangoDB collection is

created from the selected dataset in order to build the

offchain data which is associated with an onchain data.

The table 14 gives some properties about the DBpedia

50k samples such as the number of triples, relation and

entities.

5.2 Experiment configuration

To validate the functionality and test the performance

of PrivyKG, a number of experiments have been

performed on a machine with an Intel Core i7 processor

running with a 1.8 GHz clock speed, 16 GB memory, 128

GB SSD and 1 TB for storage. The components of the

fabric network are deployed as Docker 2.3 images

(Organizations, certificate authorities, peers, CouchDB.

etc.). The offchain data is represented as a database that

uses MangoDB 4.4.1 as a database management system.

In regards to the implementation architecture, PrivyKG

server is implemented as JAVA REST web application

that uses the Tomcat 9 as a resource server. Every KG

owner or requester is depicted as JAVA standalone

applications that communicate with the mediator (server)

using REST API. They have also interactions with Fabric

network using Fabric SDK. The offchain implementation

148 Informatica 47 (2023) 137–152 A. Djeddai et al.

is interacted only with the KG querying component and

the KG owners to manage their own KG by using NoSQL

queries. Our implementation uses several Java API in

different processes such as JENA, MangoDB driver, IPFS

API, Fabric SDK…etc.

5.3 Experiment results

Privy KG experiments are focused on decentralized

KG building, querying, KG checking and rebuilding, thus

results about KG completion tasks, audit and reward

mechanisms are not given in this paper.

5.3.1 PrivyKG on-chain and off-chain creation

Table 15 presents onchain and offchain sizes after KG

decentralization where the entities' ledger sizes are related

to the number of KG entities while the same is for the

relations. The size of the former is big than the latter

because the number of entities is bigger than the number

of relations. PrivyKG also save additional information in

the entities’ ledger (such as triples hash) compared to

relations ledger. There is a significant reduction of

offchain sizes compared to previous works [21, 26] due to

enhancements applied during offchain creation like

removing object identifiers and replace them with

numerical numbers.

Figure 7 shows execution times during KG

decentralization which contains offchain construction,

relation’s ledger creation and encrypting entities and

relations. There are few differences between the amount

of time needed to complete the previous tasks. In some

cases, the execution time for the current dataset is less than

the previous one even the size of the latter is big than the

former. This is because in Java environment, executing the

application many times can reduce the execution time due

to the optimization applied by JVM.

Table 14: KG datasets used to evaluate PrivyKG.

Datasets DBP10K DBP20K DBP30K DBP40K DBP50K

Size (triples) 10000 20000 30000 40000 50000

Relations 309 332 345 362 365

Entities 8686 16202 23086 29179 30436

Table 15: Sizes of KG datasets (in KB) after onchain and offchain creation

Datasets DBP10K DBP20K DBP30K DBP40K DBP50K

Entities 6860,8 18432 26112 28364,8 36556,8

Relations 212,7 397,8 614,4 819,2 921,6

MangoDB 69,63 454,66 651,26 839,68 921,6

Figure 7: PrivyKG evaluations about encryption, offchain and onchain relations creation.

1306

1888
1586

2235

1461

3067

3092

2917

2892 2909

3386

4207

3235

3700 3611

0

500

1000

1500

2000

2500

3000

3500

4000

4500

DBP10K DBP20K DBP30K DBP40K DBP50K

Ex
ec

u
ti

o
n

 T
im

e
(M

S)

DatasetsCreate off-chain

Create on-chain relations

KG loading and encrypting entities and relations

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 149

Compared to previous evaluations, figure 8 presents

increasing execution times related to creating onchain

entities, removing decentralized KG and rebuilding

original KG. All these tasks are related extremely to the

number of entities. The execution time of the first two

tasks is less than the third one, this is because creating or

removing tasks use BC transaction that needs writing on

the entity’s ledger while rebuilding need only reading

from it. In our experiment, we have used a Hyperledger

Fabric network that limits the size of transaction to 4 MB

using GRPC protocol. Therefore, it must increase this

default value to decrease the execution times of these

tasks.

5.3.2 PrivyKG querying and KG management

In this experiment, PrivyKG is tested using four types

of queries where every query contains 50 triples, one for

the requester and three for KG owner. The first one checks

the truth of a given subgraph and it is submitted by the

requester after getting the access permission from the KG

owner. The next two queries are about updating and

inserting new KG triples where they are submitted by KG

owner. The last query is sent by KG owner to verify if

there are illegal changes in KG by using the onchain hash

of triples. Figure 9 illustrates the execution times of every

query. From the evaluation results, we can see that there

are few changes between the times for the requester query

where the KG size has little influence on the execution.

The same is for the insert and update queries. As explained

before, the JVM can influence the execution times like

between the last dataset and the previous one. The query

of verification takes more execution times compared to

previous queries because it requires reading all offchain

data and get all hash of triples from the BC, whereas the

other queries can verify or add or remove a limited number

of entities and relations.

Figure 8: PrivyKG evaluations about On-chain entities creation, rebuilding and removing the decentralized KG.

Figure 9: PrivyKG evaluations about updating and querying the decentralized KG.

DBP10K DBP20K DBP30K DBP40K DBP50K

Rebuild KG 27694 31584 44399 57486 66535

Remove KG 33250 51365 74781 118351 121226

Create on-chain entities 29093 62399 71297 94838 101562

0

20000

40000

60000

80000

100000

120000

140000

Ex
ec

u
ti

o
n

 T
im

e
(M

S)

DBP10K DBP20K DBP30K DBP40K DBP50K

Truth of subgraph
(Requester)

2189 2259 2408 3285 2948

Insert Triples (KGOwner) 3887 3999 4841 5328 5119

Remove Triples (KGOwner) 4176 3914 4511 4951 5113

Verify KG (KGOwner) 7481 8374 12384 14571 18916

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Ex
ec

u
ti

o
n

 T
im

e
(M

S)

150 Informatica 47 (2023) 137–152 A. Djeddai et al.

Figure 10: PrivyKG evaluations about updating and querying DBP50K with increasing number of triples in every

query.

The last experiment is performed on the whole dataset

DBP50K by using three types of queries (checking

subgraph truth, insert and remove triples) with a variable

number of triples. In each time, 50 triples are added to the

previous query in order to construct the current one. The

execution times are given by the figure 10 where the

needed time to execute a query is related to the number of

triples. In some cases, there is a decreasing execution time

because for example during inserting or removing new

triples, the current query can contain less new entities

compared to previous one and this affects the onchain

writing time.

5.4 Discussion

The most evaluation results are related extremely to

the number of entities because the PrivyKG strategy to

build a decentralized KG consists in creation a distributed

ledger entry for every entity. Therefore, most execution

times have been influenced by transactions that write new

entities. If Hyperledger Fabric network is configured for

allowing big size transactions then the execution times

would be decreased.

PrivyKG strategy to create an offchain data has given

its advantage to reduce the onchain data size. In this

situation, offchain storage system will manage data about

triples where onchain ensure the privacy and integrity of

the stored entities.

6 Discussion
In this section, firstly we provide the security analysis

related to PrivyKG and secondly, we make a comparison

between PrivyKG and related works in the literature.

6.1 Security Analysis

This subsection demonstrates the efficiency of our

method to deal with the security and the privacy of

building and querying KGs in decentralized environment,

we put forward the threats that could possibly face the

proposed method and how we can treat with them.

We highlight some assumptions that may threaten

PrivyKG and how they could be resolved.

✓ Threat 1: We assume that an external adversary tries

to make KG modifications.

Resolution: In order to achieve this goal, the attacker

must have the secret key and public key which has

been used respectively to encrypt and decrypt the

entity and relation names, the hashing strategy, the

certificate to access the blockchain and the smart

contact code, the user-name and password to access

the off-chain storage. It is very difficult to obtain all

these data together. Any changing in the KG can be

detected using hash checking of triple sets.

✓ Threat 2: We assume that an external adversary has

made off-chain changes by adding triples or update

their components.

Resolution: Any changing in the offchain data can

be detected by checking the onchain hash of triples.

✓ Threat 3: We assume that a registered KG requester

tries to invoke chaincodes related KG owner.

Resolution: PrivyKG puts access controls on

chaincode invocation using client identities and

roles. For example, during the registration of a KG

requester, the BC uses the role “requester” to identify

the client type. In this situation, every requester can

only invoke chaincodes related to the requester role.

The same method is used when register KG owners.

✓ Threat 4: In the situation when there are several

KGs with different owners, a KG owner tries to

query another KG without permission.

Resolution: PrivyKG chaincodes are implemented

to only allow the real KG owner to get information

or modify its KG. Therefore, every KG owner must

specify one of its KGs to achieve chaincode

invocation without any fail.

✓ Threat 5: In BC network, every node has a copy of

all executed transactions and therefore it can access

to onchain data about entities and relations, it tries to

get information in order to rebuild the original KG.

Resolution: All entities and relations names are

stored on the BC using only their ciphertexts. Thus,

0

5000

10000

15000

20000

25000

30000

35000

40000

Ex
ec

u
ti

o
n

 T
im

e
(M

S)

Number of Triples in Query

Truth of subgraph (Requester) Insert Triples (KGOwner)

Remove Triples (KGOwner)

PrivyKG: Security and Privacy Preservation of KGs Using BC… Informatica 47 (2023) 137–152 151

it is impossible to get real names without the KG

owner secret key. In this situation, BC nodes cannot

benefit from saved transactions.

Hyperledger Fabric as a permissioned BC takes an

important role to resolve most threats due to its features

that provides access controls, authentication and

authorizations of PrivyKG clients. By using Fabric

chaincode, PrivyKG implements various access controls

and policies to allow only legitimated clients to use system

functionalities according to their roles.

6.2 Comparison

As it is mentioned before in the related works, that

there are few works that have strong relation with

PrivyKG where they focus only on protect the KG content

and keep its privacy. Compared to PrivyKG, the related

works have several drawbacks and they lack important

features to provide ensure the KG privacy and security.

Some lacks are illustrated by the following:

✓ All related works do not use an access control and

policies over the KG data.

✓ The majority of works do not support offchain

data outside the blockchain in order to prevent

unscalable situations.

✓ Future audit and log verifications are omitted by

all related works and therefore they cannot ensure

the verification of illegal KG data access.

✓ All works do not support the KG management

such as updating or adding new knowledge

without getting the whole KG data.

All the aforementioned drawbacks are taken into

account by PrivyKG in order to put full KG privacy

protection and allowing KG owners to manage and share

their data in secure and trusted manner.

Compared to PrivyKG, the work of [1] do not support

several important features to ensure full KG privacy

protection such as access control and audit mechanisms, it

uses the BC only to store the hash of KG data for ensuring

future KG verification. Our direction to use an offchain

complies with the results found by [13] where the

researchers found that storing the whole KG into BC

affects its scalability and increase its processing costs.

PrivyKG extends the works of [21] and [26] by

enhancing the privacy protection using access control and

allow new types of queries to be performed on

decentralized KG. PrivyKG also add a reward mechanism

in order to encourage KG owner to give permission to

requesters. It also reduces the offchain storage size

compared to [21] and [26].

7 Conclusion
In this paper, we proposed PrivyKG, which is a new

approach for securing and keeping the privacy of

knowledge graphs. PrivyKG uses onchain and offchain

storage to ensure BC scalability by incorporating

respectively Hyperledger Fabric and MangoDB. PrivyKG

supports several types of queries and access controls on

KG data and it allowed audit and reward mechanisms. The

implementation and evaluation of PrivyKG demonstrate

its feasibility to achieve the goal of preserving the privacy

and ensuring the security of KG querying.

PrivyKG can be seen as a general framework, as well

as it can be used to enhance the security and privacy

during the KG processing in artificial intelligence

application.

Future works may include extending PrivyKG by the

following:

✓ Instead of using MongoDB, PrivyKG can store its

off-chain data in IPFS (Inter Planetary File System)

to ensuring the scalability of the storage.

✓ Extending PrivyKG to support new types of queries

because if SPARQL queries are used then it is

necessary to rebuild the original KG. Therefore,

PrivyKG must support SPARQL queries on

decentralized KG without getting the whole KG.

✓ Extending PrivyKG to deal with distributed

knowledge graphs where the data is published and

stored in multiple sources. In this situation, PrivyKG

must keep the privacy and ensure the data integrity

of all KGs and allow for example secure KG

alignments.

References
[1] Wang Y., Yin X., Zhu H., Hei X.: A Blockchain

Based Distributed Storage System for Knowledge

Graph Security. In: Sun X., Wang J., Bertino E. (eds)

Artificial Intelligence and Security. 2020. LNCS, vol

12240. Springer, Cham.

[2] Chen, C., Cui, J., Liu, G., Wu, J., Wang, L. (2020).

Survey and Open Problems in Privacy Preserving

Knowledge Graph: Merging, Query, Representation,

Completion and Applications. ArXiv,

abs/2011.10180.

[3] Zyskind, G., Nathan, O., Pentland, A. (2015).

Decentralizing Privacy: Using Blockchain to Protect

Personal Data. 2015 IEEE Security and Privacy

Workshops, 180-184.

[4] Truong, N., Sun, K., Lee, G., & Guo, Y. (2020).

GDPR-Compliant Personal Data Management: A

Blockchain-Based Solution. IEEE Transactions on

Information Forensics and Security, 15, 1746-1761.

[5] Khemaissia, R., Derdour, M., Djeddai, A., & Ferrag,

M. (2021). SDGchain: When Service Dependency

Graph Meets Blockchain to Enhance Privacy.

Proceedings of the 2021 ACM Workshop on Security

and Privacy Analytics.

[6] Bollacker, K., Evans, C., Paritosh, P.K., Sturge, T., &

Taylor, J. (2008). Freebase: a collaboratively created

graph database for structuring human knowledge.

SIGMOD Conference.

[7] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A.,

Kontokostas, D., Mendes, P.N., Hellmann, S.,

Morsey, M., Kleef, P.V., Auer, S., & Bizer, C. (2015).

DBpedia - A large-scale, multilingual knowledge

base extracted from Wikipedia. Semantic Web, 6,

167-195.

[8] Miller, G. (1995). WordNet: a lexical database for

English. Commun. ACM, 38, 39-41.

152 Informatica 47 (2023) 137–152 A. Djeddai et al.

[9] Nakamoto, S. (2009). Bitcoin: A Peer-to-Peer

Electronic Cash System.

[10] Chen, H., Hu, N., Qi, G., Wang, H., Bi, Z., Li, J., &

Yang, F. (2021). OpenKG Chain: A Blockchain

Infrastructure for Open Knowledge Graphs. Data

Intelligence, 1–18.

[11] Wang, S., Huang, C., Li, J., Yuan, Y., Wang, F.

(2019). "Decentralized Construction of Knowledge

Graphs for Deep Recommender Systems Based on

Blockchain-Powered Smart Contracts". In: IEEE

Access, vol. 7, pp. 136951-136961.

[12] Abu-Naim, B., & Klas, W. (2019). Knowledge

Graph-Enhanced Blockchains by Integrating a

Graph-Data Service-Layer. 2019 Sixth International

Conference on Internet of Things: Systems,

Management and Security, 420-427.

[13] Cimmino, A., García-Castro, R., & Cano-Benito, J.

(2020). Benchmarking the efficiency of RDF-based

access for blockchain environments. SEKE.

[14] Tuán, A., Hingu, D., Hauswirth, M., & Le-Phuoc, D.

(2019). Incorporating Blockchain into RDF Store at

the Lightweight Edge Devices. SEMANTiCS.

[15] Zhang B., Li X., Ren H., Gu J. (2020) Semantic

Knowledge Sharing Mechanism Based on

Blockchain. In: Liu Y., Wang L., Zhao L., Yu Z. (eds)

Advances in Natural Computation, Fuzzy Systems

and Knowledge Discovery. ICNC-FSKD 2019.

AISC, vol 1075. Springer, Cham.

[16] Boschin, A. (2020). TorchKGE: Knowledge Graph

Embedding in Python and PyTorch. ArXiv,

abs/2009.02963.

[17] Androulaki, E., Barger, A., Bortnikov, V., Cachin, C.,

Christidis, K., Caro, A.D., Enyeart, D., Ferris, C.,

Laventman, G., Manevich, Y., Muralidharan, S.,

Murthy, C., Nguyen, B., Sethi, M., Singh, G., Smith,

K.A., Sorniotti, A., Stathakopoulou, C., Vukolic, M.,

Cocco, S.W., & Yellick, J. (2018). Hyperledger

fabric: a distributed operating system for

permissioned blockchains. Proceedings of the

Thirteenth EuroSys Conference.

[18] R. L. Rivest, A. Shamir, and L. Adleman. 1978. A

method for obtaining digital signatures and public-

key cryptosystems. Commun. ACM 21, 2 (Feb.

1978), 120–126.

https://doi.org/10.1145/359340.359342

[19] Araki, K., Satoh, T., Miura, S. (1998). Overview of

elliptic curve cryptography. In: Imai, H., Zheng, Y.

(eds) Public Key Cryptography. Lecture Notes in

Computer Science, vol 1431. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/BFb0054012.

[20] CREMONEZI, BRUNO, Borges, Alex, Miranda

Nacif, José and Nogueira, Michele. (2020). Survey on

Identity and Access Management for Internet of

Things. https://doi.org/10.21203/rs.3.rs-66793/v1.

[21] A. Djeddai and R. Khemaissia, "Keeping the Privacy

and the Security of the Knowledge Graph Completion

Using Blockchain Technology," 2022 4th

International Conference on Pattern Analysis and

Intelligent Systems, 2022, pp. 1-6,

https://doi.org/10.1109/PAIS56586.2022.9946869.

[22] A. Narayanan and V. Shmatikov, "Robust De-

anonymization of Large Sparse Datasets," 2008 IEEE

Symposium on Security and Privacy (sp 2008), 2008,

pp. 111-125, http://doi: 10.1109/SP.2008.33.

[23] Latanya Sweeney. k-anonymity: A model for

protecting privacy. International Journal of

Uncertainty, Fuzziness and Knowledge-Based

Systems, 10(05):557–570, 2002.

[24] Cynthia Dwork. Differential privacy. In Automata,

languages and programming, pages 1–12. Springer,

2006.

[25] Lehmann, J., Isele, R., Jakob, M., Jentzsch, A.,

Kontokostas, D., Mendes, P.N., Hellmann, S.,

Morsey, M., Kleef, P.V., Auer, S., & Bizer, C. (2015).

DBpedia - A large-scale, multilingual knowledge

base extracted from Wikipedia. Semantic Web, 6,

167-195.

[26] Djeddai, A. (2022). KGChain: A Blockchain-Based

Approach to Secure the Knowledge Graph

Completion. In: Chbeir, R., Manolopoulos, Y.,

Prasath, R. (eds) Mining Intelligence and Knowledge

Exploration. MIKE 2021. LNCS, vol 13119.

Springer, Cham. https://doi.org/10.1007/978-3-031-

21517-9_22.

[27] Shi, B., & Weninger, T. (2018, April). Open-world

knowledge graph completion. In Proceedings of the

AAAI conference on artificial intelligence (Vol. 32,

No. 1).

[28] G.Wood et al. Ethereum: A secure decentralised

generalized transaction ledger. Ethereum project

yellow paper, 2014.

https://doi.org/10.1109/PAIS56586.2022.99468

