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Vagueness in the scientific studies presents desfgihg dimension. Intuitionistic fuzzy set thebas
emerged as a tool for its characterization. Theseneed to associate measures which can measure
vagueness and differences in the underlying chareing IFSs. In the present paper we introduce an
information theoretic divergence measure, calletlitionistic fuzzy Jensen-Rényi divergence. It is a
difference measure in the setting of intuitionidtizzy set theory, involving parameters that previd
flexibility and choice. The strength of the new suga lies in its properties and applications. An
approach to multiple-attribute decision making bdsm intuitionistic fuzzy Jensen-Rényi divergersce i
proposed. A numerical example illustrates the aggion of the new measure and the role of various
parameters therein to multipleattribute decisionking problem formulated in terms of intuitionistic
fuzzy sets.

Povzetek: Razvita je nova verzija intuitivne mdblgéke za uporabo v procesu odémja.

is a single value lying between zero and one, wiiege

1 Introduction degree of non-membership is just automatically etpa
- o ] one minus the degree of membership.
In probability theory and statistics, divergenceaswes As a generalization of Zadeh’s fuzzy sets, Atamasso

are commonly used for measuring the differenceg 2] introduced intuitionistic fuzzy sets. Ireihgeneral
between two probability distributions [13 and 22]geting, these involve three non-negative functions
Kullback-Leibler [13] divergence is the well knowgach expressing the degree of membership, the degraerof
?nformat@on theore_tic _divergence. Anothe_r importanFnembership, and hesitancy, their sum being ones&he
information theoretic divergence measure is thesden considerations imbue IFSs with inbuilt structure to

Shannon divergence (JSD) [22] which has attractg® q consider varieties of factors responsible of vagssrin
some attention. It has been shpwn that tlhe .sqtm!teof the phenomena. IFSs have been applied in many
JSD turns out to be a metric [9], satisfying ()NRO practically uncertain/vague situations, such asisitet
negativity (i) (minimal) zero value only for ideoal making [3, 4, 8, 14, 16-18, 20, 25, 27-30 and 38jiial
distributions (iii) symmetric and (iv) satisfyingangular diagnosis [5, 24] and pattern recognition [6, 12, 19
inequality, i.e. it is bounded from below and frafmove 5.4 24] etc. Atanassov [2] and Szmidt and Kacpf2ek

in terms of the norms of the distributions. Howewer suggested some methods for measuring
may be mentioned that JSD itself is not a metrc. |yistance/difference between two intuitionistic fyzets.
satisfies the first three axioms, and not the gWar Thejr measures are generalizations of the well know
inequality. These divergence measures have beéledlppHamming and Euclidean distances. Dengfeng and
in sev_e_ral o_IiscipIines like _signal processing, @att chutian [6] and Dengfeng [7] proposed some other
recognition, finance, economics etc. _ similarity and dissimilarity measures for measuring

Some generalizations of Jensen-Shannon divergenggierences between pairs of intuitionistic fuzztss In
measure have been studied in the last couple ofyEar addition, Yanhong et al. [31] undertook a compaeati
instance, He et al. [10] proposed a one parametriga|ysis of these similarity measures. Recentlyymée
generalization of JSD based on Reényi's entropyfanc  5ng "Sharma [25] proposed a generalized intuitianist
[21], called Jensen-Renyi divergence and usediiage 77y divergence and studied its applications toltimu
registration. o criteria decision making.

Other than probabilistic, there are va_gue/fuzzy In this paper, we extend the idea of Jensen-Rényi
phenomena. These are best characterized in terms (Rjergence to intuitionistic fuzzy sets and propaseew
fuzzy sets’, and their generalizations. The theofy giyergence measure, callddtuitionistic fuzzy Jensen-
fuzzy sets proposed by Zadeh [32] in 1965 addressggnyi divergence(IFJRD) to measure the difference

these situations and has found applications inouari petween two IFSs. After studying its properties, giee
fields. In fuzzy set theory, the membership of Ement
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an example of its applications in multiple-attributaccording to their importance. This is particulanseful

decision making based on intuitionistic fuzzy imf@tion.

in the study of decision problems.

The paper is organized as follows: In Section 2esom A generalization of the above concept is Jeasen-

basic definitions related to probability theoryzZ#y set
theory and intuitionistic fuzzy set theory are Hyie
given. In Section 3, the intuitionistic fuzzy Jendeényi
divergence (IFJRD) between two intuitionistic fuzasts

is proposed. Some of its basic properties are aedly

Rényi divergencproposed by He [10], given by

JR/],H (P’ Q) = Ha(Alp +/]2Q)

“AH.(P)-AH @) an(0n) @

there, along with the limiting case. In Sectioname Where H,(P) is Rényi's entropy, andl =(4,,4,) is the
more properties of the proposed measure are stutfied weight vector, withA, A, >0, +A, =1, as before.

Section 5 application of proposedtuitionistic fuzzy

Jensen-Rényi divergenameasure to multiple-attribute Properties of Jensen-Rényi DivergencBriefly we note

decision making are illustrated and our conclusiares
also presented here.

2 Preliminaries

We start with probabilistic background. We dentte
set ofn-complete(n > 2) probability distributions by

r ={P=(p1, D,0eennD,): P 20,2 p =1}- (1)

For a probability distribution

P= (pl, pz,...,pn)D r.,
the well known Shannon'’s entropy [23], is defined a

H (P) = _Z;: P log U (2)

some simple properties:

i. JR’Ava(P,Q) is nonnegative and is equal to zero
whenP =Q.

i. ForaD(O,l), JRM(P,Q) is a convex function
of PandQ.

i. JRA‘G(P,Q), achieves its maximum value when

P andQ are degenerate distributions

The Jensen-Shannon divergence (5) is a limiting cdis
JR_(P,Q)whena - 1.

Various generalized entropies have been introdined Definition 1. Fuzzy Se{32]: A fuzzy setA in a finite

the literature taking the Shannon entropy as basit
have found applications in various disciplines sach
economics, statistics, information
computing etc.

processing and

universe of discours& ={xl,x2,...,xn} is defined as

{<X' /’/:(X»‘XD X},

A= (7)

A generalizations of Shannon’s entropy introducewhere ,uz\(x): X - [O,l] is measure of belongingness or

by Rényi’s [21], Rényi’s entropy of ordét, is given by
Hg(P)=1ilog(Zn] p’), a#la>0. ©)
iy -

ForaD(O,l), it is easy to see that-la(P) is a concave
function of P, and in the limiting case - 1, it tends to
Shannon’s entropy. It can also be easily verifibdt t
Ha(P) is a non-increasing function af O (0,1) and thus
H,(P)2H((P) Da0(0) (4)
In sequel, we will restriczer(O,l), unless otherwise
specified and will use base 2 for the logarithm.
Next, we mentionJensen-Shannon divergendé5].
LetA,,4,20,4, +A, =1 be the weights of two
probability distributiond®,Q 0T, respectively. Then the
Jensen-Shannon divergence, is defined as

JS,(P.Q) =H(AP+1,Q)-AH(P)-ALH[Q). (5)

degree of membership of an elemetif X to A.

Thus, automatically the measure of non-belongingjioés
xOX to A is(l—,u;(x)).

Atanassov [1, 2] introduced following generalizatiof
fuzzy sets, called intuitionistic fuzzy sets.

Definition 2. Intuitionistic Fuzzy Set [1, 2]: An
intuitionistic fuzzy set A in a finite universe of
discourseX :{xl,xz,...,xn} is defined as

Az{(x, ,uA(x),vA(x)>|xD X}, (8)
wherey,: X - [01] and v, X - [0,1] with  the
condition0 < ,uA(x)+|/A(x)s1. For eackxOX, the

numbers pA(x) and VA(X) denote the degree of
membership and degree of non-membershipxofo A

Since H (P) is a concave function, according to Jensen'sespectively.

inequality, Jg(P,Q) is nonnegative and vanishes,:urther’ we caIInA(x):l—,uA(x)—vA(x), the degree of
whenP =Q. One of the major features of the Jensemsggjtancar the intuitionistic index ok X to A .

Shannon divergence ithat we can assign different
involved

weights to the probability distributions
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Obviously, when nA(x):O, ie., VA(x):l—,uA(x) for

everyX[] X , then the IFS\ becomes a fuzzy set. Thus,

FSs are the special cases of IFSs.

Definition 3: LetIFS(X)denote the family of all IFSs
defined in the univers¥, and let A,BDIFS(X) be

given by
A= {0
B :{<x,,uB(x),vB(x)>|xD x}.

These being sets,
operations oriFS(X) as follows:

() ADBIff 4,(x)<u,(x)
andvA(x)sz(x) O xOX;

(i) A=Biff ADBandBOA;

(i) A° ={(x v,(x). () [xO X}
) AUB= {<Xmm?xff3(, e »’>'XD"};
wane= (T e

Extending the idea from probabilistic to intuitistic
phenomena, in the next section, we propose a tivery

Infatica37 (2013) 399-409401

H,(A,A+A,B)
-AH,(A)-AH,(B)

where Ha(-) is Rényi’'s entropy for intuitionistic fuzzy

set(-),aD(O,l) A +A,=1, A,4,20, and

At (X)+ Aty (),
AA+AB=| Ay ( )+ Ay, (x),

70+ Am) )

IR, (AB)= @

That is

Atanassov further defined s%tR ( )

(A2 () + A, 1, (X))
logi + (A, (x)+ A,v4 (x)”
+ (4,77, (x)+ 2,77, (x))"

_ 1 o] e ) + 0, ()" (10)
w2 ! |
1 ogl We () + s ()
L Y
wherea O (61) . _

Next, in theorem below we study properties
of JR', (A B) defined in (10).

measure called ‘Intuitionistic Fuzzy Jensen-Reényi Theoreml: For A, B |FS(X) , JREH(A, B)

Divergence’ (IFJRD) on intuitionistic fuzzy sets to
guantify the difference between two intuitionisfizzy
sets and discuss its limiting case.

3 Intuitionistic Fuzzy Jensen-Rényi

Divergence (IFJRD)

Single element universe: First, letAandB be two
intuitionistic fuzzy sets defined on a single eleme
universal seX ={x}.

Precisely speaking, we have:

A=} (x). (%)),
and B =(u, (x)va (x). 7, (x)
where
10+, (x)+ (%) =1,
and He(X)+ v, (x)+77,(x) = 1,
with
044, (x)v,(%).72,(x), 41, (x)v, (). 7, (x) <1.

Regarding ( A 7TA) and(,uB,vB,@) as two
probability distributions, in analogy of (6), wefohe the

satisfies the following properties:
i. JR',(AB)=0, with equality if and only iA=B .
i. 0< IR, (AB)<1.
For thredFSs AB,C inX andAOBOC,
JR,(AB)<JR,(AC),
IR, (B.C)<IR,(AC).

and
Proof: (i) The result directly follows from Jensen’s
inequality.
(i) SinceJR',(AB) is convex forr((03),
Proposition 1 of He et al. [10], therefore, ol (0,1),
JR’.(AB) increases af A- B || increases,
where

Il A=B 1=, (x) = 445 () + v () = v (x)
+|7,(x)- 7, (x) - (11)

Thus, JRja(A B) O aD(O,l), attains its maximum for
following degenerate cases:

refer

A=(10,0),B=(010)or A=(00),B=(10,0)
or A=(0,01),B=(0210).
This gives
<JR,(AB)<1

intuitionistic fuzzy Jensen-Rényi divergence measur

between IFSsA andB, as
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(iiiy For AB,COIFS(X), (%) 2 145 (x ) andv,(x ) < vy (x).
IA-BJ, < [|A-C]|
and |B-C| < ||A-C||, if AOBOC. 4 Properties of intuitionistic fuzzy
Thus, Jensen- Rényi divergence measure
JR',(AB)< IR, (AC) The measure JR,(AB) defined in (10) has the

followi ties:
and JR,(B.C)<JR,(AC) 0 a0(01). ollowing properties
(12) Theorem 2:For ABOIFS(X),

This proves the theorem. () JIrR,(AUB,ANB)=JR,(AB),
Limiting case: Whena -1 and/ =4, :% , then (i) ‘]R)I,a(Am B,AU B)= JF\’A,H(By A)-
measure (10) reduces tbdivergence on intuitionistic Proof: We prove (i) only, (ii) can be proved analogously.

fuzzy sets proposed by Hung and Yang [11] as (i) From definition in (10), we have:

i) JR.(AUB,ANB)
(09 0+ () )] TS
[0 ol D) (ubtan (X)*+ At (X
s v, (x)+v,(x) v, (x)+v,(x) (AW e (%) + A e (%))
( 2 j'°g( 2 j g {Al(l-um(x)—vw(x)) ]
+ ( Un (X) L (X)j Iog( Un (X) L (X) (13) + Az(l_ Hes (Xi )_ Vs (X ))
= 2 2 . _ 1 <
. iog () ) ()00, () =R Iog{(ﬂm(x))”(vms(x))” }
+v,(x)logv,(x) | +] +v,(x)logv, (x) C - e () v (X))
#| L mJogm () [+ 7 (g (1) e {@W(x»wum i }
2 j T s (%) Ve (X)Y
IIgef}rTition 4: JRM?(A B) _on Finite Uniyerse: - (st (% )+ 12, (x ))
reviously, we considered single element univereste s a
The idea can be extended to any finite universe Iéet +(/]V ( )M Va )‘
AandBare two IFSs defined in finite universe of log [/1 (- a2 (% ]
discours@(={x1,xz,...,xn}, then, we define, the +4,(1- ﬂA Al
associated intuitionistic fuzzy Jensen-Rényi diesice _ 1 Z
by n@-a)| & _Al.og{( (6 }
R.(AB)=ZT R, (AX)BK) ) o oy *g . )X)
where  Ax)={(,4,(x). v, (x) 7 (6) )} o e
and  B(x)={(x, 4 (x) va(x) 7 (x) )} - a
In the next section, we study several properties (g, 1) At )
ofJF\;va(AB). While proving these properties, we | +(Av, () A, () .,
consider separation of into two partsX, andX, , such %9 (/‘ L=, (x)-v(x) J
that + A, 4 () -va(x))
={x 1x0X, Alx)0 B(x)}, (15) 2 y Iog{( wF + ) }
={x |x 0%, Alx)0B(x)}. (16) (L= (%)= v (x )y
Further it may be noted that for a{l 0 X, -4 '09{3 1( 21) (x ngVx()i ) }
#,(%) < 4 (x) andv, (x) 2 v, (x), R

as also ford x O X,, =JR (A B)
- Aa "
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This proves the theorem.

Theorem 3:For ABOIFS(X),

() JR.(AAUB)+IR (A ANB)=
(i) JR,(B,AUB)+JIR,(B,ANB)=

Proof: In the following, we prove only (i), (ii) can be

proved analogously.

(i) Using definition in (10), we first have

JR.,(AAUB)

log +(Av

m#“%gﬂ}
-A Iog{('u

log (/1(1 (%) -v

(A, (x)” fo (X))
)+ A0 (%)f

+[A( 1#4,(x)-v,(x)) ]
A, 5 () Vs (X))

(x)-v.(x)f
(X)) + e (0)F }
oo )

(-t (x)-v

(At (%) + Aty (%))
(A, (6)+ A ()

+2,(1- us(x)

(1, () +(v,
“4amm
-A Iog{(

() +§vs )

JR/],U/(A B) 1
JR/],LI (B’ A) :

1

n@—a

Mt (% )+ Aoty (X))
(A () + Ay (x)F
log) [/h(l- #,(%)=vi(x)) ]
+ 4,00 g4 (%) v, (x))
)| & )

Infatica37 (2013) 399-409403

Y

Next, again from definition in (10), we have

JR.(AANB)

At (%) + Aty (%)
+(Av (x)+/lv J(x)f

log +[/1 (-,

+/]2(1_,um3()§)_VAUB()§ ))

|- ol

-
s (%

- A,lo g{(

(1= f000 (%) -V (%)

(At (%) + A2, (%))

(x)-v.(x)) J

ALY }
(x)-v.(x)y
)+ (%)f }
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At (%) + 2,14 (% )Y
+ (A, (x)+ A (X)) (Ao (%) + At (%))
log {/‘(1 #(x)=v,(x)) j log{ + (A s (x )+ A (X )f
+ 2,1 44, (%)=, (x) { M-, (%) -V, (x))]
. W@ Al ()
) gl )] T B P NP
nbidonley e g{ = 6) -0 »}
[l )
(s bt
Adding (17) and (18), we get the result. by (X)J,/‘z'u (K ))
Theorem 4:For A, B,C O IFS(X), +(As (% )+ Ave (x)f
(i) JR,(AUB,C)<JR,(AC)+JIR,(B,C); log +[/11(1-u5(x)-v5(x)) ]
(i) 9R,(ANB,C)< IR, (AC)+IR,(B,C); # A ) -ve )
1
Proof: We prove (i) only, (ii) can be proved analogously.:m “ZX: . Iog{('u (%) + v (x)F }
(i) Let us consider the expression + _”BQ(X)_VB ("3)“
JR,(AC)+JIR,(B,C)-JIR,(AUB,.C) (19) -A |og{£“(°1(_"21) (;g"_clf’*()i» }

At (%) + Aot (X))
0w (6)+ A ()F o
o (M s)ute) | auld )
+ 4, (L= 4 (%) -ve () log] (40 p,(x)-v,(x))
- (11 )j L .6 [Mz(l-u(x)-vc(x))]
n(-a)&| X))+ 1
S oWy "a) & of D 0 |
I (AL R A YA } + (1= %) -v. (3
o o il
(L e (%) =ve (x)y
Mt (%) + 2,1 (X))
+ (A () + A (%)) 20
log {Al(l—us(x)—vg(x)) J” This proves the theorem.
(L= e (%) - ve () o 5:For AB.COIFS(X)
1 a eorem o: For y )
A .og{mx»” )y } R.(AUBC)IR,(ANBC)
C - () -ve (k) =JR,(AC)+JR,(B,C)
_) Iog{(ﬂc () +e () } Proof: Using definition in (10), we first have:
(- ()= ()Y
JR,(AUB,C)
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(At (%) + At (%))
(Ao (%) + A (%)Y

+ A, (- . (x ) = ve (x)

(Lo (%) + (Ve
Al g{ (L= 1 (%) -v

) IOg{((( bl }

(A (% )+ A (%))
+ (A, () + A (x)
log +(/h(1-ﬂA(>§) va(

+/]2(1_/'1C(Xi)_v

) )
e g{ o))
o

) log{( e

1 (%)=

log {Al(l—u% (%) =V, (% ))J”

ity

. (20)

Next, again using definition in (10), we have

R, (ANE,C)

(Ao (X)+ At (% )f

+(Av,, (x )+ Ay (x)f
log +[/11(1—um5(x1)-vm(x Y
+ 2,01 14 (%) -ve (%)

miatica37 (2013) 399-409405

(21)

Adding (20) and (21), we get the result.
Theorem 6: For ABOIFS(X),
() JR,(AB)=IR,(A°B°)
(b) IR, (AB)=3R,(A°B);
(© JR,(AB)+IR,(A°B)
= IR, (A°,B°)+ IR, (AB°).

whereA® andB® represents  the  complement  of
intuitionistic fuzzy set# andB respectively.

Proof: (a) The proof simply followsrom the relation of
membership and non-membership functions of an
element in a set and its complement.

(b) Let us consider the expression
IR, (AB°)-IR,(A°,B) (22)
IRCVAC T ACY) |
(A (x )+ Aty (%))
log J{A (- (x)-v (x)) J

+/]2(1—,U (X)
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A (x )+ A, (%)) ] indicates the degree with which the alternafiveoes
+ (A (% )+ A, (%)) not satisfies the attribu@, and 7 indicates the
log +(A1(1—VA(xi)—yA(>g ) J" indeterminacy degree of alternatifeto the attributes,,
+A2(1_ILIB (’9 )_VB (’ﬂ )) such that:
1 H; D[O,l], Vi D[O’I]’ H, +I/”- S T, =1,
n-0) o6 + (e () 7 =1-g -v, i=12..nandj=12..,m.
S v () - (%)) To harmonize the data, first step is to look at the
a a attributes. These, in general, can be of diffetgpées. If
(ke () + (v () . N
A, log -1 (% )-v, (%)) all the attributesG ={G,,G, ....,G,} are of the same type,
alalRG s then the attribute values do not need harmonization
L 4 However if these involve different scales and/oityn
=0. there is need to convert them all to the same suadéor
_ _ unit. Just to make this point clear, let us consiaeo
(c) Itimmediately follows(a) and(b). types of attributes, namely, (i) cost type and (g

benefit type. Considering their natures, a berafiibute
(the bigger the values better is it) and costlaitg (the
smaller the values the better) are of rather oppdgpe.
In such cases, we need to first transform the baitkei
values of cost type into the attribute values ofdji
type. So, we transform the intuitionistic fuzzy ban
matrix D =(dij )mm into the normalized intuitionistic

This completes proof the theorem.

In the next section, we suggest an applicatiorhef t
measure proposed to multiple-attribute decision ingak
problem and give an illustrative example.

5 Applications of intuitionistic fuzzy
Jensen-Rényi divergence to
multiple-attribute decision making

Vagueness is a fact of life and needs attentiomatters  r, = (/4j WV T )={
of management. It can have several forms, for ed@amp
imperfectly defined facts, indirect data, or impsec
knowledge. For mathematical study, vague phenomena i=12..,n j=12..m
have got to be first suitably represented. IFSsfawnad
to be suitable tools for this purpose. In this isegtwe
present a method based on our proposeditionistic (dij)C :(Vij #;17711)-
fuzzy Jensen-Rényi divergendefined over IFSs, to
solve multiple-aifribute decision ”.‘"".""?9 probl'erm;. defined in (10), we now stipulate following stepssblve
may be remarked that for a determlr!lgtlc or proliis our multiple-attribute intuitionistic fuzzy decisio
phenomenon where patterns shetability of the form, ; )
L . making problem:
parameters have perhaps limited rule, but in vague
phenomena, parameters provide a class of measundes 8tep 1: Based on the matrR:(rij )m, specify the
choice for making appropriate selection by testin
further. Intuitionistic fuzzy Jensen-Rényi divergen
defined has parameters of two categories- the gwega A ={<G Y7 ,7T”.>|Gi DG},
parameters)'s, and an extraneous parameter each . . :
. . j=212..mandi=122..,n
serving a different purpose. In the example below,
bring out their role in multiple-attribute decisiomaking. ~ Step 2:Find the ideal solutioA’, given by:
Multiple-attribute decision making problems are RV, ARGTERVEN, Y
defined on a set of alternatives, from which theisien A= {Wﬂ o o) bV ) } (24)
maker has to select the best alternative accotdisgme “"<'“n:"/nw 7Tnm>
attributes. Suppose that there exists an altemativ  where, for each = 1,2....,n,

fuzzy decision matrbIR:(rij )m by the method given by
Xu and Hu [30], where
d;,

(d,), for costattributeG,

for benefitattributeG,
23)

where (dij)C is the complement ofd,, such that

With attributes harmonized, using the measure

%ptionsA (j = 12,...,m) by the characteristic sets:

setA:{Al,Az,...,An} which consists of malternatives, max g ,minv,
the decision maker will choose the best alternaftioen (uwom)=| B _ _ (25)
the set A accordng to a set of n 1‘mj5‘X/Uij —minv,

attributesG = {Gl,G2 G } Further let D= (dij )Wm be
. ul . .
the intuitionistic ~~ fuzzy  decision matrix, Step 3: Calculate JR»ua(Ai’A) using the following

whered, =(,L{J Y, 7TJ) is an attribute value provided by expression for it:

n

the decision maker, such thgtindicates the degree with

which the alternativé\ satisfies the attribu®, v,
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(/]IﬂA (X)H]IZIUA( ))a | and thenD =(d”. )&5 is transformed intcR:(rij )&5, we
get the following table:
log +(J ( )+ A, (x ))a Table Il: Normalized intuitionistic fuzzy decision

( ( )+/], ( ))a matrix R
RN o, G5+ ()Y (26)
h-a) % {+ (n () }

gy

A A A A A

(0.5,0.4, (0.4,0.3, (0.5,0.2, (0.4,0.2, (0.6,0.4,
0.1) 0.3) 0.3) 0.4) 0.0)
(0.7,0.2, (0.8,0.2, (0.9,0.1, (0.8,0.0, (0.5,0.2,
0.1) 0.0) 0.0) 0.2) 0.3)
(0.3,0.4, (0.2,05, (0.1,0.6, (0.3,0.7, (0.1,0.8,
0.3) 0.3) 0.3) 0.0) 0.1)
(0.6,0.2, (0.6,0.3, (0.8,0.1, (0.9,0.1, (0.4,0.2,
0.2) 0.1) 0.1) 0.0) 0.4)
(0.4,0.5, (0.6,0.4, (0.3,0.5, (0.5,0.3, (0.9,0.0,
0.1) 0.0) 0.2) 0.2) 0.1)
(0.3,0.1, (0.7,0.1, (0.6,0.2, (0.6,0.1, (0.4,0.3,
© 0.6) 0.2) 0.2) 0.3) 0.3)

®

O 0 O

I\

o O

where A, A 0[01], and A +A =1 0 j = 1.2,...m.

Step 4: Rank the alternatived , j=12...m, in
accordance with the valueﬁ?ﬂ,va(Aﬁ ,A]), j=12..m,
and select the best one alternative, denotedAbywith
smallestJRM(A ,AD). Then A is the best choice.

The step-wise procedure now goes as follows.

Step 1:Based ok = (r”. )&5, we have characteristic sets
of the alternativesA (j = 12,...,5) by

05,0404, 07,020)1( 03,0403),
06,0208, 04,050)1( 0.30.106)
04,0308, 08,020p( 02,05023)
06,030, 06,0400( 0.7,0102)
05,0208, 09,01,0p( 01,0603
(

i
}
)}
08,010, 030502( 06,0202)
1
i

In order to demonstrate the application of the abov
proposed method to a real multiple attribute deaisi
making, we consider below a numerical example.

>
1
—
—_

>
I

Example: Consider a customer who wants to buy a car.
Let five types of cars (alternatived), (j = 1,2,34,5) be

available. The customer takes into account siibaities
to decide which car to buy: (§: fuel economy, (2, :

aerodynamic degree, (33,: price, (4)G,: comfort, (5)
G, : design and (6)G, : safety. We note tha®, is a cost {

P
I

04,0204, 08,0002( 030.7,00),
09,0104, 05,0302( 06,0103)

>
I

NN NN S S~

: _ . o 06,0400, 05,0208( 0.1,080.1),
attribute while other five are benefit attributéext let A=
us assume that the characteristics of the 040204 09000)1 040303
alternativesA (j = 12,34,5)are represented by the Step 2:Using (24) and (25), we obtai’:

intuitionistic fuzzy decision matrixD = (dij )&5 shown in A= {( 06,0204, 09,000} 0-310-4:0-3)}
the following table: (090100, 09,000} 07,0102)

. ]
Table I: Intuitionistic fuzzy decision matrixD Step3: We useformula (26) to measur‘lﬂ,va(Aﬁ 'A)’

A A A A, A, choosing the various values of parameter. First we
0.1) 0.3) 0.3) 0.4) 0.0) and a = 0.7 respectively, we get the following table:
G, (067,8.2, (obsbc;.z, (obgbc;.l, (obs,zc;.o, (ob5éc;.2,
. B B . . . u} —_
o (0403 (0582 (0601 ©r03 ©6aL Table lll: Values of JR, (A, A”) for @ = 030507
03 03 03 00 0 a=03 a=05 a=07
G (06,02, (0603, (0.80.1, (0.90.1, (04,02, -
4 0.2) 0.1) 0.1) 0.0) 0.4) JR, G(A, A ) 0.1453 0.1409 0.1345
G (04,05, (0604, (0.305 (0503, (0.9,0.0, ' .
s 0.1) 0.0) 0.2) 0.2) 0.1) JR/,,VG(AZ,A) 0.1908 0.1584 0.1299
G. (0301, (07,01, (0.60.2, (0.60.1, (0.4,0.3, B
6 0.6) 0.2) 0.2) 0.3) 0.3) JR/,,va(Ag,A) 0.1617 0.1400 0.1214
u)
First, we transform the attribute values of cogtety ‘R‘v”(A‘“A) 0.0946 0.0905 0.0849
(G,)into the attribute values of benefit ty{g&) by IR, (AA) 01483 0.1467 0.1424

using Eqg. (23):
« [( 030408, 020508(010603) Based on the calculated values JRM(AX ,A]) in table
(G3) :{( 0_3’0_7'0@( 0.10.8,0.1) } Ill, we get the following orderings of ranks of the

alternativesA, (j = 12,34,5):

Fora =03, A-A-A>A>-A.

G, =

3
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Fora =05,
Fora =07,

A-A-A-A-A.
A-A-A-A-A.

R. Verma et al.

Resulting inA as the most preferable option. Thus for a
given value of parameter, averaging parameterg's

Since JRM(AMA]) is smallest among the values of“"

{i=12..58 fora=03,0=05

R, (A.A)

Thus here we find that variation in values @f brings
about change in ranking,
unchanged.

effect the choice.
The numerical example shows that change in order

of the rankings results by change in paramete& a

anda =07, so A is the most preferable alternative.&Stablishing the significance of these parametersuilti-
attribute sensitive decision making problems.

but leaves the best choi%e Conclusions

Change in Consideration:ln the above consideration, The paper provides a measure and application in

same values ofl’ were taken. But in a realistic situationmultiple-attribute decision

these can also be different for different altenedi The

experience or pressures) on the decision maker.

Let us next consider intuitionistic fuzzy Jensemiré

divergence measuréﬁg,ya(Ai ,AD), taking different
values ofd :

We taket =05 4 =05;4 =04 4 =06;4 =08
A=02;4=051=05;, X£=03 AX=07 and

a =05.
Calculating]R/I,ya(Aj ,Aj), we get the following table:

Table IV: Values ofJRM(A,AD) for a =05

JR,, (A, Aj) 0.0965
JR,, (Az, Aj) 0.1644
JR,, (Ag, Aj) 0.0856
JR,, (AA, Aj) 0.1178
JR,, (AS, AD) 0.1479

The resulting order of rankings then is
A-A-A-A-A.

ThusA, is the most preferable alternative.

If we take

A =051 =05;#=07,4=03;4=03 ¥=07;

A'=041=06, XF=08 XF=02 and a=05,

caIcuIatingJR],va(Aﬁ ,A]), we get the following table:

Table V: Values of JR, | (A,A]) for a =05

JR,, (A, A]) 0.1409
JR,, (AZ, AD) 0.1296
JR,, (Ag, AD) 0.1493
JR,, (AA, AD) 0.1268
JR,, (A,,, A]) 0.0965

The resulting order of rankings then is

A-A-A-A-A.

making problem under

intuitionistic fuzzy environment. This study caradeto

value of &' may then depend on an un-explicit (like pas§ymmetr|c measure and resulting other insight into

studying IFSs.
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