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With the advent of second-generation sequencings)S€chnologies, deoxyribonucleic acid (DNA)
sequencing machines have started to produce resdsed as “longer short reads”, which are much
longer than previous generation reads, the so dalkhort reads”. Unfortunately, most of the exigfin
read aligners do not scale well for those secondegation longer short reads. Moreover, many of the
existing aligners are limited only to the short dsaof previous generation. In this paper, we have
proposed a new approach to solve this essential ednment problem for current generation longer
short reads. Our ultra-fast approach uses a hasbeldaindexing and searching scheme to find exact
matching for second-generation longer short readthiw reference genome. The experimental study
shows that the proposed ultra-fast approach carueately find matching of millions of reads against
human genome within few seconds and it is an omlemagnitude faster than Burrows-Wheeler
Transform (BWT) based methods such as Bowmi: Burrows-Wheeler Aligner (BWA) for a wide
range of read length.

Povzetek: Metoda omogmizredno pohitritev iskanja daljSih vzorcevloveSkem genomu.

regarded as a set of equal-length small strings of
1 Introduction characters/bases. Now,. read alignment task is tp ma
) , : those reads (small string of characters) onto genom
The rapid advances in DNA sequencing technologyehayiong string of characters). Simply, we can thifikkas a
dramatically ~ accelerated  the  biomedical  andommon substring matching problem [25]. The main
biotechnology research [2, 6, 28]. Thereby oppaiies chajlenge of this read alignment problem is tocifitly
have been created for data mining researchersalgzen 4 the reference genome index thus reads (ysuall
a gamut of data. With the advent of second-gemerati yillions) can be mapped rapidly. This read aligntnen
sequencing (SGS) technologies, there is an ina@asiask has many potential applications in biomedanad
pressing need of an approach that can align largg,informatics fields, for example: ‘to detect géoe
collections of reads (possibly millions) onto tleéerence \4riations’ [4, 21] which will indeed help to idéfyt
genome rapidly. The main motivation behind thisdrea:jisease genome’ [21], ‘to map DNA-protein

alignment is to discover commonalities and conoesti jnteractions’ [18], ‘to profile DNA methylation pians’
between newly sequenced molecules with respect {91 13] etc.
existing reference genomes [16]. _ To deal with this read alignment problem, several
Currently, DNA sequencing machines are capable pfaq alignment tools or approaches have been pedpos
generating m_|II|0ns of reao_ls in a single run wheDNA 5 ever, they are primarily focused on previous
sample is given as an input [9, 16, 27]. The DNAyeneration short reads which are usually of 25-Z€eb
sequencing machines take the DNA sample as inglit afyng [26, 27]. Unfortunately, with the advent of SG
break it into a number of short pieces, which te@@ technologies DNA sequencing machines have staded t
again broken into equal-length fragments calleddsea ,qqyuce reads (named as longer short reads) whieh a
[25]. The ‘read alignment problem’ is to find maitapof  1y,chy Jonger than the previous short reads. Reagtien
those reads onto a reference genome. From the tcempy, e just increased to more than 100 bases witféma

science point of view, a genome can be consideseal ayears [27]. This trend of increment in read lengtikes
long string of characters/bases (human genome iosntaihe existing aligners computationally infeasibleeride,

nearly 6 billion characters/bases), and reads can fere is an increasing need of an approach that can
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handle this current generation reads efficientlg aiso

can handle future generation more long reads (by

observing the trend). Here the particular imporgaoé
the longer short read alignment problem can bezexhl

It is theoretically and also practically difficuld avoid
the overhead of processing the increased readhengt
However, it is needed to bind the growth rate & th
processing cost efficiently. Currently, most of ttead
aligners are unable to achieve this scalability clvhi
makes them limited to the short reads. To this ¢inid,
paper proposes an ultra-fast method for alignimpéo

A. Ghosh et al.

Q-Pick [16] uses hash table for both read and
reference genome indexing. Hash table based
approaches are in general significantly faster.
However, those hash table based approaches or their
software implementation have some significant
drawbacks. WHAM and Q-Pick create reference
genome index for a specific length of the read civhi
cannot be used for the different length reads (isiean
if WHAM and Q-Pick create index to align X bases
length reads then that index cannot be used for
alignment of N bases length reads wherg X). This

short reads onto human genome by combining the best is a significant issue because we have to credexin
attributes of hash based indexing and searching. Ou for each of the read length. This will cause a

approach is not bounded to a particular range afise
and can scale well for more long reads.
The remainder of this paper is organized as follows

Section 2 discusses the related work. Our proposed

approach is described in Section 3. Experimentllte

are presented in Section 4. Section 5 contains our

conclusive remarks of the work followed by a lidt o
relevant and state-of-the-art references.

2 Related work

The approaches proposed so far by the severalrchsea

groups for read alignment problem can be broadly

classified into four categories.

1) Traditional sequence mapping tools, such as Basic

Local Alignment Search Tool (BLAST) [1] and
BLAST-Like Alignment Tool (BLAT) [19], are
unable to cope efficiently with the massive amaaft

reads generated by the current generation DNA
sequencing machines, which make it computationally

infeasible for solving the current generation read
alignment problem [9, 16, 24].

iterative prefix matching technique to find an

alignment. A BWT-based index takes small memory

footprint for example, BowTie takes less than 2 GB
[30] and BWA takes less than 6 GB [29] memory to
work with complete human genome. BWT base’
approaches have another significant feature hey t
can handle a wide range of read lengths. For examp
BowTie can handle up to 1024 bases read length [3(
So, it can easily handle current generation reads a
also able to handle future generation more longgea
However, its performance degrades rapidly as tF
read length increases [25].

3) Hash table based approaches have got more and m
popularity nowadays. Some of them create hash tat
based index for reads e.g., Efficient Large-Scal
Alignment of Nucleotide Databases (ELAND) [10],
Mapping and Assembly with Quality (MAQ) [23],
Short Read Mapping Package (SHRIMP) [26] etc
Other approaches use hash table for the referer
genome indexing e.g., Wisconsin’s High- throughpu
Alignment Method (WHAM) [25], Periodic Seed
Mapping (PerM) [9], Short Oligonucleotide
Alignment Program (SOAP) [24], etc. However, only

4)
2) BWT [7] based approaches, such as BowTie [20] and
BWA [22], create a BWT based index and use an

significant overhead with respect to the index
building time and disk space consumption because,
nowadays most of the genome sequence mining
companies have large number of databases of varied
read lengths. The most significant problem with the
above approaches is that, they are primarily fatuse
on short reads. Thus, these approaches or their
software implementations are limited to a specific
read length which does not cover the read length of
the current generation (for example, currently
Illumina can produce read length up to 250 basg lon
[31]) and there is no straight forward way to extén

to handle current generation longer short reads (or
future generation more long reads). For example,
ELAND can handle up to 32 bases [24, 33], MAQ
can handle up to 127 bases [20], Shrimp can handle
up to 70 bases [26], WHAM can handle up to 128
bases [36], PerM can handle up to 64 bases [34],
SOAP can handle up to 60 bases [35] which are
significantly lower length than the current genenat
read length.

Sorted Index File based approach such as fetchGWI
and tagger [17] index either the reference genome o
the query set and perform an efficient mapping of
those two set of sorted entries (one for reference
genome and another for query set) to find matches.
However, this approach is also limited to 30 bases
read length [17].
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Figure 1: System Architecture.
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Taking into account the limitations presented abovéndex of the reference genome thus a fast and stivau
it can be summarized that, there is a significanklof mapping of a large collection of equal length queds
approaches or tools that can handle longer shadsre is possible while maintaining the accuracy in afigmt.
efficiently. We propose to use BowTie and BWAQuery read database usually contains millions afise
approaches to solve this problem. From the trend ahd while mapping, read aligner has to report the
increment in read lengths, it does not seem thatilit matching position/s in the chromosomal sequencanif
become infeasible in near future (because of itdewi matching occurs).
range of read length acceptance). So, we take BowTi
and BWA as our base methods to experiment withdong3,2  System Ar chitectur e of Proposed
short reads. As memory became cheap nowadays, we Approach

have no need to keep such unnecessary tight memory ) o

restriction in our approach as maintained by Bowdiid ~SYySteém architecture of our proposed approach sngin

BWA. Figure 1. It has two main components: i) reference
genome database processor and ii) query database
processor. We will discuss them separately to |ptesar

3 Proposed approaCh approach in greater detail.

This section is divided into two Subsections. In
subsection 3.1, the statement of the problem imeldf 321 Reference Genome Database Processor

The system architecture and working procedure 6f theference genome database processor takes theetempl
proposed approach are described in subsection 3.2. genome sequence database as an input and creates an
index for that genome into the file system (Figle

3.1 Problem Statement Complete genome sequence contains full set of
A complete genome sequence is a set of all ighromosomal sequences. Note that though we are
chromosomal sequences. A chromosomal sequence iftgrested in mapping the query reads on both the
series of characters. Each character (nucleic aisid) forward and reverse strands of each chromosome, we
represented by the symbols A, G, C, or T (stands fawill build index only for forward strand of each
adenine, guanine, cytosine and thymine respecjivaly chromosome. We will compensate this while proceggsin
an unknown/ambiguous character, named N. THbe query database (detail in subsection 3.2.2) hale
unknown character, N, represents that there is &elected this technique to reduce the index sirause
uncertainty about the nucleotide in that positiortteere  with this technique, we have to process only thié dfa
is a repetitive junk region in the genome and ttalls, the original genome sequence which will indeed glev
nucleotides in that region are converted into \S][ In  us with speed gain while query read is searching.
the genome sequencing task, it has no biologicalesto Main idea behind our approach is to store in inaléx
match reads onto those repetitive junk regions.[E6f possible substrings of length L of every chromodoma
simplicity, we can think N indicates error while trlaing  sequence (only forward strand) with its position
[30]. information. We set the length L value to 32. Nibiat as

The read alignment task is to efficiently build arwe are going to index each possible substring rash

Chromosome 1 forward strand: NN.. ACT. NN
Chromosome 2 forward strand: NN..CCG. NN

Chromosome N forward strand: NN..GAT. NN

Concatenated Sequence: NN.ACT. NNNN..CCG..N........NN..GAT. NN

Figure 2: Concatenated Chromosomal Sequence.

P ~]
$$$$$$000001110110..000101$$$5$$011011010001..1111008$ S Eors s Bl ing Winddow

Extraxted Sequence (length

| 2l
$$$$$$000001110110..000701$$$$$$011011010001..111100$$ 84 whes A5:53 5 posars

(e ol
$$$5$5000001110110..000101$$$$$$011011010001..111100$$

K
$$$$$5000001110110..0001015$%%$5011011010001 ..‘ﬁ1 100%%

Figure 3: Sliding Window Extraction Protocol.
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table, there are®3possible values (recall that, sequence subsequences which do not belong to the original
can contain four bases i.e. A, C, G, or T), whicitl w chromosomal sequences. This can happen while
dramatically mitigate the possibility of hash csiltin. extracting subsequences from the position of
Reference genome database processor starts working concatenation of chromosomal sequence n and
by concatenating (or merging) the forward stranfls o chromosomal sequence (n + 1) [here,n=1, 2... up to

each chromosome (Figure 2). This is done by merggr (maximum chromosome number — 1)] (depicted in
of reference genome database processor (Figuidotg. Figure 4). This can be easily avoided by keepingpiind
that with this concatenation we will lose infornaati the length of chromosomal sequences.

about “in which chromosome (or in which position of  All extracted subsequences, which are basically 64
that chromosome) the subsequence of the concatenalét integer numbers, are hashed and their hashevalu
sequence originally belongs to?” This informatioifi he  provides the hash table bucket number. We havd use
required when we find a match on a specific pasita Thomas Wang's hash function [14] to uniformly
the concatenated sequence. Note that chromosouistribute values over the hash table. Thomas Wang’
number (or position value in that chromosome) can thash function has been widely used by many appsasach
easily calculated by noting down the length of eacfor various purposes [8, 12, 15]. This is well sditfor
chromosome. Motivation behind concatenation is tour purpose because it is fast to compute and bas v
reduce the index space because with this technigae, high avalanche effect [3, 14]. Hash table valuesthe
have no need to store the chromosome number asewe position values of the corresponding subsequences
going to calculate it during query read procesghgse (represented by 32 hbit integer numbers) in the
(detail in subsection 3.2.2). concatenated chromosomal sequence. All those key-

Binary converter takes the concatenated sequencalue pairs are inserted into the hash table, whose
from merger (Figure 1) and converts each A/C/G/Btructures are depicted in Figure 5. Our hash table
character into two bit binary representation. A,&, T

will be binary represented by 00, 01, 10, 11 retpely. l P [ 2 l p l o l 1 [ 3 l 1 [ 0 l p ]
Note that, as we are going to index each possi
substring of L = 32, this representation will allas to Additional Array: stores the number of values associated with a key
pack each of them into one computer word in thebib4
computer architecture. Actually, we have set thealue o NuLL Hash Tﬂb;e Kelyiorozgay .
to 32 thus our method can take advantage of curt , positions): values obtaine
day’s 64 bit computer architecture. Also note tha,are : 1 R _ R e
not going to index the subsequences in which N mcc s 2| 3 o
(because N indicates ‘error in matching’). So, ibdturs sl wow E:fr::s::a};aglﬁb::z::’:c:‘:?nb” o
in the concatenated sequence, we will simply replac 4 7 concatenated chromosomal sequence
by any two special characters (say with ‘$$’). Byird) ¥
SO, we can identify if N has occurred in the_se@aeﬁor '? 5| Pointer |- ““
example, if the concatenated sequence is ‘NGACTI u 8 5
Binary Converter will encode it as ‘$$10000111$$'. o I
Index builder takes the binary converter outputted §

sequence and creates an index which can be used | 8 9

query database processor (Figure 1). Index buitderes s Tabils

a sliding window of length 64 over the input sequen
and extracts the subsequence within it, and theremo
two positions (Figure 3). Recall that, by doing is@s structure is basically a long array, initially &l with
originally extracting all possible subsequenceen§th  NULL values and when we have to insert a key-value
L = 32 from the concatenated chromosomal sequencepair, we just insert that value in the correspogdinray
Sliding window will extract the subsequences oflyd  position (array position is found by hashing they)ke
$$ ($$ refers to N which means error in matching) Note that if corresponding array position is filleden it
appears in that window (Figure 3). Here, we havieep  will be replaced by a pointer to an array and tdevalue
in mind that sliding window should not extract any  (or values) and the new value will be inserted ithtat

Figure 5: Hash Table Structure.

Chromosome 1 forwardstrand: NA.. ACT.. TG <————% Befers extracted

FI. =32
Chromosome 2 forwardstrand: AC..CCG..CC SEpEmaeRLl

Chromosomel Chromosome2

Figure 4: Error in Subsequence Extraction.
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array. We have used this type of hash table streigtu example, suppose the hash value of a key is i whzae
place of traditional hash table structure (whiclugsially be any value ranging from 1 to (hnumber of hash btk
two dimensional linked lists or an array of linkésts) to 1). Now, from Figure 6, we can easily find that,
reduce the hash table space requirement. This é&dnd (mapping array [i] - mapping array [i-1]) providéise
hash table structure efficiently reduces the regqment of number of value/s associated with that key (fomapie,
pointers with the cost of an additional array whitbres if i = 1, then the key has two values associatetth vtj
the number of values associated with the correspgnd also see Figure 5). To find that value/s, we havgust
key (easily represented by 8 bit integer numbezcali  run a loop, collecting value/s from position arsdgrting
that we have used subsequence of length L = 32 firem position number mapping array [i-1] (for exdmp
mitigate the possibility of collision). By doingith we if i = 1, we have to collect two values from pasitiarray
can dramatically reduce the hash table space esgaint starting from position number 0). The mapping psscie
(realized through experiments also) because tledia presented in Figures 5 and 6.

pointer in current day's system architecture is Imuc

longer than the 8 bit integer and many subsequemegs 3.2.2 Query Database Processor

appear only one time in the concatenated chromdsonai\uery database processor takes a query read databas

sequence. (possibly contains millions of equal length reaalsyl the
saved index (index saved into file system by refeee
0 2 3 3 4 7 8 8 9 genome database processor (Figure 1)) as inputs and
outputs ‘query read matching information’ into file
system for each such matched reads. The ‘query read
matching information’ contains information aboutegy
2 | 8| 3| 1[4 6] 7] 5|89 read alignment region (at what position in which
chromosome the matching occurs), number of other
alignments etc.
Our query database processor starts working by bulk
However, though we have reduced the spadeading the index (index refers to mapping arrayl an
requirement with that hash table structure (asgmtesl position array as in Figure 6). This bulk loadinghich
in Figure 5), there are some issues with that dawdll save significant amount of time) is possiblelo
structure also. In such data structure, index lugaill because we have converted our index into two seiglien
be quite time consuming as we are not able to lmal Structures. After loading the index into memory,r ou
that data structure after saving it into the fiystem. For query database processor takes each query readtfeom
a significant number of hash table keys (as marguery database and searches into the index forhingtc
subsequences can appear more than once), everwiimein the following manner.
have to access the values (a key can have many Query database processor will process each query
corresponding values) associated with it through &ad following the same procedure as done in sectio
pointer access. This will make it relatively slow i 3.2.1, except, it will not process the query readshich
comparison with the data structure where we caesscc N (or error in matching) occurs. Query read encgdin
the values directly. Thus, we convert our hashetab(dividing the read into subsequence of L = 32 and
structure (Figure 5) into two sequential structtseewn converting them into binary) is performed by thee@u
in Figure 6. This will make bulk loading possiblada Encoder and Query Aligner is responsible for matghi
with that data structure we can directly accessvttiee/s task (Figure 1). Please remember that we have @wlex
through its corresponding key. In Figure 6, we havall possible subsequence of length L = 32 of theogec
depicted the conversion of the hash table structbosvn  Sequence. Hence, Query Encoder will first dividehea
in Figure 5 to the sequential structures. The cmsie query read into the subsequence of length L = 82. F
algorithm is simple. The position array (as in Fg6) example, if the query read is of 100 bases, Query
contains all the hash table values (or position mens - Encoder will divide it into four subsequence ofdémL
as in Figure 5) inserted into it, one by one acigydo = 32. The first subsequence will be from base 32othe
hash bucket number, started from n = 0 to (numiber 6econd subsequence will be from base 33 to 64htte
hash bucket -1). To calculate the mapping arrayevat subsequence will be from base 65 to 96, and thehfou
position i, we have to just add Additional Arraylwaof subsequence will be from base 69 to 100. Note that,
position i and mapping array value at positionli (see last subsequence will be taken from the end ofrétael
Figure 5 and 6). Please note that, for i = 0, ithisot true and overlapping in subsequence may happen. Query
(as array position can't be negative). So, we have Aligner searches the index for each such subsequenc
check every time whether i = 0 or not. We just reeo (after binary converted by Query Encoder) of thergu
this checking requirement by making hash function tread by hashing and mapping them into the hasle tabl
produce hash values greater than 0 and setffnigdiex (following the same procedure as stated in se@iart).
of mapping array to 0 (see Figure 5 and 6). Thishelp  Returned matching position/s is stored into arréyany
us to avoid checking (thus speed gain) while perfog of the subsequence of that read is failed to aligen we
query read mapping. Now, from mapping array, we ca@fn easily conclude that the read is failed tonalibhe
easily map keys to its corresponding value/s. FgKorst case time complexity to find it @(2n) wheren =

Mapping Array: array used to map key to its corresponding value/s

Position Array : array containing position values of hash table
Figure 6: Converted Sequential Structure Hash Table
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number of subsequence of that read. However, revsrs for each query read in the query read databaseryQue
not true because, if searching of all query reapimemts Database Processor will not only search for tharyju

is successful, it only means that all the querydreaead but also search for the reverse complement fedr
segments appear in the concatenated chromosomabmple, suppose, a query read is ‘ACCTGGA'. Query
sequence and not necessarily mean that the whate réatabase Processor will first reverse it i.e., ‘AGIECA’
appeared in the concatenated chromosomal sequence. and then will take complement of it i.e., ' TCCAGGT’

To check if the read is aligned or not, Query Aign and then search into the index for matching foltayvihe
has to perform some additional task i.e., it hasheck same procedure as stated above.
whether the returned positions are the consecutive From the above, it is easy to see that our approach
segment positions or not. Take example of 100 baskas no upper limit restriction on the read lengie |
read length. Suppose, all the four subsequencatdedo many other approaches. In the next section, we will
align and returned position value/s are stored hia t provide empirical evaluation of our approach fowide
arrays named Al = {200, 415}, A2 = {232, 327, 1215} length of reads.

A3 = {264, 416, 917, 971} and A4 = {268}

consecutively (values inside the curly brackets the 4 Experimental S[Udy results. and

returned position value/s). Now, to check whethes t ! . ’ ’

read is aligned or not (or in which position/s), ey discussion

Aligner has to search for (A1[i] + 32) in A[2], (Al+ We ran our experiments on a desktop computer with 3
64) in A[3], (A1[i] + 68) in A[4] means for everyalue GHz Intel Xeon dual-cores CPU and 32 GB of DDR3
of i i.e., from O to (size of A1l — 1). By doing seg are main memory, running 64 bit Ubuntu (kernel 3.5.8) a
only checking whether the segments are consecutigperating system. All our algorithms were impleneent
segments in the concatenated chromosomal sequencénoC++, and compiled using g++ 4.7.2. We had foddw
not. If searching in all the arrays is successhén only the similar comparison strategy as performed if.[2f

we can conclude that the read is aligned at posAi{i]  have taken repeat-masked NCBI build 36 human genome
in the concatenated chromosomal sequence (for abaye our reference genome and all the approachegedbli
example, the query read matches only in positiod).20 to report all the valid matches (as done in [28ur
Here, we should mention that all arrays that stiwe
returned matching positions are the sorted arragy(¢o
see). Thus, Query Encoder will perform an efficie
linear search in the sorted array to find a maitcstead
of other searching procedures (for example bine
searching). This will help us to gain speed ovérent
searching procedures because the length of thyg e
typically very small due to very high indexed suiost
length i.e., 32 [5, 32]. With this linear search gan find
all the matches by only one pass through the ar
(means with worst case time complexiyn) wheren =
very small array length). Another point to notettiveith
the above procedure we can only identify in whic
position of the concatenated chromosomal sequédree
match occurs. Now, Query Aligner finds the origin:
matching position (means chromosome number and
position value in that chromosome) by using tt Figure 7: Comparison of Index Building Time.
following procedure. First it finds the previou:

chromosome ending position in the concatenal 300
chromosomal sequence (so, chromosome number
found) and then deducts that position value from t
matched position value (except that matched posiso
not within the first chromosome ending position)fitad
real position in that chromosome. The previol
chromosome ending position is found by performing .
efficient binary search on a sorted array whichtams
the ending position of each chromosome in concétene
chromosomal sequence (reported by Reference Geni
Database Processor).

As mentioned above, only the forward strand of ea
chromosome is processed by the Reference Genc
Database F_’rocesspr (subs_ection _3.2.1). This will BowTie BWA Our Approach
addressed in details in this section. Two stranfls ) _ o
chromosome are of complementary nature i.e., Aysw: Figure 8: Comparison of Query Read Database Algnin
pairs with T, and C always pairs with G (vice vérs8o, Time for Read Length of 100 bases.
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approach followed the same default output format déngth which Illumina can produce [31]). We selécte
BowTie and all the approaches ran on single thread.  four sets of query read database for experimentiitig

We have performed experiments with various lengtbach of the read lengths. Our experimental resihitsv
reads i.e. with 100, 150, 200, 250 bases readHgimgtte comparison of our approach with BowTie [20, 30] and
that 250 bases read length is the currently maximead BWA [22, 29] by averaging results over those foetss
of query read database. Each of our read databases

400 contains 10 million of query reads. We have sethtash
350 table bucket number to 1.5 billion throughout our
n experiments. We have also created four synthetaryqu
S 3004 read databases, one for each 100, 150, 200, 2% bas
@ read lengths (each contains 10 million query reaitls
¥ 2504 :
£ randomly inserted errors) to measure accuracy of ou
2 -p0- approach.
= Comparison of index building time of our approach
£ 1504 with BowTie and BWA is given in Figure 7. Our
E experimental result show that our approach is
g 1004 significantly faster than BowTie (3X faster) and BW
& 504 (3.8X faster) as presented in Figure 7. Please nate
have to build our index just only one time for angme
0 and we can use it repeatedly for searching vailiength

BowTie BwWaA  Our Approach reads (easy to see from section 3) unlike manyrothe
Figure 9: Comparison of Query Read Database  approaches. Experimental results for comparisonunf

Aligning Time for Read Length of 150 bases approach with BowTie and BWA for various length
reads i.e. of 100, 150, 200, 250 bases read lemgth

500 given in Figures 8-11 respectively. From those

450 - experimental results it can be easily seen that, ou
approach is significantly faster for query readjmthent

4004 than BowTie (3.7X, 3.9X, 3.7X, 4X faster for 100,
350+ 200, 250 bases read length respectively) and BWA
300 (4.6X, 5.2X, 5.1X, 5.6X faster for 100, 150, 2002
250 bases read length respectively). By significargigucing

the index building and query read searching timerov
200 BowTie and BWA, our approach is able to fulfill its
primary motivation. To measure how much accurate ou

Processing Time in Seconds

150 approach is, we ran it on four synthetic databasesfor
1004 each 100, 150, 200, 250 bases read length, whevasit
504 previously known a number of query reads that glevi

q an alignment. Our approach is able to align exatttéy
BowTie BWA Our Approach same number of query reads within these databases.

addition, during the previous experiments with BaevT
for various length read databases (i.e. four sdts o
databases for each of 100, 150, 200, 250 bases read

Figure 10: Comparison of Query Read Database
Aligning Time for Read Length of 200 bases

700 length, as stated early of this section), we haved that
for all the databases of all the read length, quor@ach
5004 is able to align exactly the same number of quends
§ as aligned by BowTie (which is one of the most aatau
2 5004 read aligner as can be found from the experimental
- results of [16]). Actually, the accuracy of our apgch
E 4004 can be outlined as follows:
E o We have indexed subsequence of length L = 32
=, 300+ and used Thomas Wang’s hash function (which
= uniformly distributes the key values) to mitigate
© 200 the possibility of collision.
nE_ 0o We have used large number of hash table
1004 buckets i.e. 1.5 billion during our experiments
g which will also dramatically mitigate the

BWA Our Approach possibility of collision. During index building
time, we have found that our approach has
extracted around 1.25 billion subsequences of

BowTie
Figure 11: Comparison of Query Read Database
Aligning Time for Read Length of 250 bases
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From the above discussion, we can conclude that,
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length L = 32 from NCBI human genome (build[3]
36) which is quite lower value than 1.5 billion.

O Our approach is primarily targeted for current

generation reads (or future generation more long
reads) which is > 100 bases. So, query rea?i
will be divided into >= 4 fragments and our ]
approach will provide false positive match only
if all the fragments gives collision (easy to see)
which is quite unlikely to occur.

2]

our approach is significantly faster than other hods
presented and discussed above for comparison iheil
aspects without compromising the accuracy. MoreoveE
from Figures 8 and 11, we can see that our approa(ﬂ
becomes 1.91X slower (for BowTie, it is 2.09X awd f
BWA, it is 2.32X) by increasing the read lengthnfro

100 bases to 250 bases (note that the read lesgth i

increased 2.5X). This performance degradationisatet

completely accurate because of the difference eryqu

reads in the databases (thus will give differentpssing
execution). However, we can use this to get a rodgh
about the growth rate of the performance degradgts

[7]

the database contains same number of reads anddwav[e8]
perform same kind of task). As we have argued

previously, it is practically impossible to avoidhet

processing cost of the increased read length. Hexyev
we can summarise that our approach is able to bind[g]

efficiently. By observing this bounded growth raié

performance degradation over BowTie and BWA, we

can draw a conclusion that our approach will sead
for more long reads of future generation as well.

5 Conclusion

(10]

With the advent of second-generation sequencir[é;l]
technology, there is an increasing need of a fast a

accurate read alignment method that can deal withdr
short reads. In this paper, we address that need.
experimental section shows that, for the longertstead

0]

of the current generation, our approach is an oaofer [12]
magnitude faster than BowTie and BWA in all aspects

and this is done by keeping the accuracy intactatft
also be seen from the results that our approach
handle current generation’s longer short read ieffity
and also scale well for future generation’s monegkr

can
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