
 Informatica 37 (2013) 389–397 389

An Ultra-fast Approach to Align Longer Short Reads onto Human
Genome

Arup Ghosh and Gi-Nam Wang
Unified Digital Manufacturing Lab
Department of Industrial Engineering, Ajou University
San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea
E-mail: {arupghosh, gnwang}@ajou.ac.kr

Satchidananda Dehuri,
Department of Systems Engineering,
Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea
E-mail: satchi@ajou.ac.kr

Keywords: DNA, sequence alignment, second-generation sequencing (SGS), substring matching, BWT

Received: April 13, 2013

With the advent of second-generation sequencing (SGS) technologies, deoxyribonucleic acid (DNA)
sequencing machines have started to produce reads, named as “longer short reads”, which are much
longer than previous generation reads, the so called “short reads”. Unfortunately, most of the existing
read aligners do not scale well for those second-generation longer short reads. Moreover, many of the
existing aligners are limited only to the short reads of previous generation. In this paper, we have
proposed a new approach to solve this essential read alignment problem for current generation longer
short reads. Our ultra-fast approach uses a hash-based indexing and searching scheme to find exact
matching for second-generation longer short reads within reference genome. The experimental study
shows that the proposed ultra-fast approach can accurately find matching of millions of reads against
human genome within few seconds and it is an order of magnitude faster than Burrows-Wheeler
Transform (BWT) based methods such as BowTie and Burrows-Wheeler Aligner (BWA) for a wide
range of read length.

Povzetek: Metoda omogoča izredno pohitritev iskanja daljših vzorcev v človeškem genomu.

1 Introduction
The rapid advances in DNA sequencing technology have
dramatically accelerated the biomedical and
biotechnology research [2, 6, 28]. Thereby opportunities
have been created for data mining researchers to analyze
a gamut of data. With the advent of second-generation
sequencing (SGS) technologies, there is an increasing
pressing need of an approach that can align large
collections of reads (possibly millions) onto the reference
genome rapidly. The main motivation behind this read
alignment is to discover commonalities and connections
between newly sequenced molecules with respect to
existing reference genomes [16].

Currently, DNA sequencing machines are capable of
generating millions of reads in a single run when a DNA
sample is given as an input [9, 16, 27]. The DNA
sequencing machines take the DNA sample as input and
break it into a number of short pieces, which then are
again broken into equal-length fragments called reads
[25]. The ‘read alignment problem’ is to find matching of
those reads onto a reference genome. From the computer
science point of view, a genome can be considered as a
long string of characters/bases (human genome contains
nearly 6 billion characters/bases), and reads can be

regarded as a set of equal-length small strings of
characters/bases. Now, read alignment task is to map
those reads (small string of characters) onto genome
(long string of characters). Simply, we can think of it as a
common substring matching problem [25]. The main
challenge of this read alignment problem is to efficiently
build the reference genome index thus reads (usually
millions) can be mapped rapidly. This read alignment
task has many potential applications in biomedical and
bioinformatics fields, for example: ‘to detect genetic
variations’ [4, 21] which will indeed help to identify
‘disease genome’ [21], ‘to map DNA-protein
interactions’ [18], ‘to profile DNA methylation patterns’
[11, 13], etc.

To deal with this read alignment problem, several
read alignment tools or approaches have been proposed.
However, they are primarily focused on previous
generation short reads which are usually of 25-70 bases
long [26, 27]. Unfortunately, with the advent of SGS
technologies DNA sequencing machines have started to
produce reads (named as longer short reads) which are
much longer than the previous short reads. Read lengths
have just increased to more than 100 bases within a few
years [27]. This trend of increment in read length makes
the existing aligners computationally infeasible. Hence,
there is an increasing need of an approach that can

390 Informatica 37 (2013) 389–397 A. Ghosh et al.

handle this current generation reads efficiently and also
can handle future generation more long reads (by
observing the trend). Here the particular importance of
the longer short read alignment problem can be realized.
It is theoretically and also practically difficult to avoid
the overhead of processing the increased read length.
However, it is needed to bind the growth rate of the
processing cost efficiently. Currently, most of the read
aligners are unable to achieve this scalability which
makes them limited to the short reads. To this end, this
paper proposes an ultra-fast method for aligning longer
short reads onto human genome by combining the best
attributes of hash based indexing and searching. Our
approach is not bounded to a particular range of reads
and can scale well for more long reads.

The remainder of this paper is organized as follows.
Section 2 discusses the related work. Our proposed
approach is described in Section 3. Experimental results
are presented in Section 4. Section 5 contains our
conclusive remarks of the work followed by a list of
relevant and state-of-the-art references.

2 Related work
The approaches proposed so far by the several research
groups for read alignment problem can be broadly
classified into four categories.

1) Traditional sequence mapping tools, such as Basic
Local Alignment Search Tool (BLAST) [1] and
BLAST-Like Alignment Tool (BLAT) [19], are
unable to cope efficiently with the massive amount of
reads generated by the current generation DNA
sequencing machines, which make it computationally
infeasible for solving the current generation read
alignment problem [9, 16, 24].

2) BWT [7] based approaches, such as BowTie [20] and
BWA [22], create a BWT based index and use an
iterative prefix matching technique to find an
alignment. A BWT-based index takes small memory
footprint for example, BowTie takes less than 2 GB
[30] and BWA takes less than 6 GB [29] memory to
work with complete human genome. BWT based
approaches have another significant feature i.e., they
can handle a wide range of read lengths. For example,
BowTie can handle up to 1024 bases read length [30].
So, it can easily handle current generation reads and
also able to handle future generation more long reads.
However, its performance degrades rapidly as the
read length increases [25].

3) Hash table based approaches have got more and more
popularity nowadays. Some of them create hash table
based index for reads e.g., Efficient Large-Scale
Alignment of Nucleotide Databases (ELAND) [10],
Mapping and Assembly with Quality (MAQ) [23],
Short Read Mapping Package (SHRiMP) [26] etc.
Other approaches use hash table for the reference
genome indexing e.g., Wisconsin’s High- throughput
Alignment Method (WHAM) [25], Periodic Seed
Mapping (PerM) [9], Short Oligonucleotide
Alignment Program (SOAP) [24], etc. However, only

Q-Pick [16] uses hash table for both read and
reference genome indexing. Hash table based
approaches are in general significantly faster.
However, those hash table based approaches or their
software implementation have some significant
drawbacks. WHAM and Q-Pick create reference
genome index for a specific length of the read, which
cannot be used for the different length reads (means,
if WHAM and Q-Pick create index to align X bases
length reads then that index cannot be used for
alignment of N bases length reads where X ≠ N). This
is a significant issue because we have to create index
for each of the read length. This will cause a
significant overhead with respect to the index
building time and disk space consumption because,
nowadays most of the genome sequence mining
companies have large number of databases of varied
read lengths. The most significant problem with the
above approaches is that, they are primarily focused
on short reads. Thus, these approaches or their
software implementations are limited to a specific
read length which does not cover the read length of
the current generation (for example, currently
Illumina can produce read length up to 250 base long
[31]) and there is no straight forward way to extend it
to handle current generation longer short reads (or
future generation more long reads). For example,
ELAND can handle up to 32 bases [24, 33], MAQ
can handle up to 127 bases [20], Shrimp can handle
up to 70 bases [26], WHAM can handle up to 128
bases [36], PerM can handle up to 64 bases [34],
SOAP can handle up to 60 bases [35] which are
significantly lower length than the current generation
read length.

4) Sorted Index File based approach such as fetchGWI
and tagger [17] index either the reference genome or
the query set and perform an efficient mapping of
those two set of sorted entries (one for reference
genome and another for query set) to find matches.
However, this approach is also limited to 30 bases
read length [17].

Figure 1: System Architecture.

An Ultra-fast Approach to Align Longer Short… Informatica 37 (2013) 389–397 391

Taking into account the limitations presented above,
it can be summarized that, there is a significant lack of
approaches or tools that can handle longer short reads
efficiently. We propose to use BowTie and BWA
approaches to solve this problem. From the trend of
increment in read lengths, it does not seem that it will
become infeasible in near future (because of its wide
range of read length acceptance). So, we take BowTie
and BWA as our base methods to experiment with longer
short reads. As memory became cheap nowadays, we
have no need to keep such unnecessary tight memory
restriction in our approach as maintained by BowTie and
BWA.

3 Proposed approach
This section is divided into two Subsections. In
subsection 3.1, the statement of the problem is defined.
The system architecture and working procedure of the
proposed approach are described in subsection 3.2.

3.1 Problem Statement
A complete genome sequence is a set of all its
chromosomal sequences. A chromosomal sequence is a
series of characters. Each character (nucleic acid) is
represented by the symbols A, G, C, or T (stands for
adenine, guanine, cytosine and thymine respectively) or
an unknown/ambiguous character, named N. The
unknown character, N, represents that there is an
uncertainty about the nucleotide in that position or there
is a repetitive junk region in the genome and thus, all
nucleotides in that region are converted into N’s [25]. In
the genome sequencing task, it has no biological sense to
match reads onto those repetitive junk regions [25]. For
simplicity, we can think N indicates error while matching
[30].

The read alignment task is to efficiently build an

index of the reference genome thus a fast and exhaustive
mapping of a large collection of equal length query reads
is possible while maintaining the accuracy in alignment.
Query read database usually contains millions of reads
and while mapping, read aligner has to report the
matching position/s in the chromosomal sequence (if any
matching occurs).

3.2 System Architecture of Proposed
Approach

System architecture of our proposed approach is given in
Figure 1. It has two main components: i) reference
genome database processor and ii) query database
processor. We will discuss them separately to present our
approach in greater detail.

3.2.1 Reference Genome Database Processor
Reference genome database processor takes the complete
genome sequence database as an input and creates an
index for that genome into the file system (Figure 1).
Complete genome sequence contains full set of
chromosomal sequences. Note that though we are
interested in mapping the query reads on both the
forward and reverse strands of each chromosome, we
will build index only for forward strand of each
chromosome. We will compensate this while processing
the query database (detail in subsection 3.2.2). We have
selected this technique to reduce the index size because
with this technique, we have to process only the half of
the original genome sequence which will indeed provide
us with speed gain while query read is searching.

Main idea behind our approach is to store in index all
possible substrings of length L of every chromosomal
sequence (only forward strand) with its position
information. We set the length L value to 32. Note that as
we are going to index each possible substring in a hash

Figure 2: Concatenated Chromosomal Sequence.

Figure 3: Sliding Window Extraction Protocol.

392 Informatica 37 (2013) 389–397 A. Ghosh et al.

table, there are 432 possible values (recall that, sequence
can contain four bases i.e. A, C, G, or T), which will
dramatically mitigate the possibility of hash collision.

Reference genome database processor starts working
by concatenating (or merging) the forward strands of
each chromosome (Figure 2). This is done by merger part
of reference genome database processor (Figure 1). Note
that with this concatenation we will lose information
about “in which chromosome (or in which position of
that chromosome) the subsequence of the concatenated
sequence originally belongs to?” This information will be
required when we find a match on a specific position on
the concatenated sequence. Note that chromosome
number (or position value in that chromosome) can be
easily calculated by noting down the length of each
chromosome. Motivation behind concatenation is to
reduce the index space because with this technique, we
have no need to store the chromosome number as we are
going to calculate it during query read processing phase
(detail in subsection 3.2.2).

Binary converter takes the concatenated sequence
from merger (Figure 1) and converts each A/C/G/T
character into two bit binary representation. A, C, G, T
will be binary represented by 00, 01, 10, 11 respectively.
Note that, as we are going to index each possible
substring of L = 32, this representation will allow us to
pack each of them into one computer word in the 64 bit
computer architecture. Actually, we have set the L value
to 32 thus our method can take advantage of current
day’s 64 bit computer architecture. Also note that, we are
not going to index the subsequences in which N occurs
(because N indicates ‘error in matching’). So, if N occurs
in the concatenated sequence, we will simply replace it
by any two special characters (say with ‘$$’). By doing
so, we can identify if N has occurred in the sequence. For
example, if the concatenated sequence is ‘NGACTN’,
Binary Converter will encode it as ‘$$10000111$$’.

Index builder takes the binary converter outputted
sequence and creates an index which can be used by

query database processor (Figure 1). Index builder moves
a sliding window of length 64 over the input sequence
and extracts the subsequence within it, and then moves
two positions (Figure 3). Recall that, by doing so, it is

originally extracting all possible subsequences of length
L = 32 from the concatenated chromosomal sequence.

Sliding window will extract the subsequences only if no
$$ ($$ refers to N which means error in matching)

appears in that window (Figure 3). Here, we have to keep
in mind that sliding window should not extract any

subsequences which do not belong to the original
chromosomal sequences. This can happen while

extracting subsequences from the position of
concatenation of chromosomal sequence n and

chromosomal sequence (n + 1) [here, n = 1, 2… up to
(maximum chromosome number – 1)] (depicted in

Figure 4). This can be easily avoided by keeping in mind
the length of chromosomal sequences.

All extracted subsequences, which are basically 64
bit integer numbers, are hashed and their hash value
provides the hash table bucket number. We have used
Thomas Wang’s hash function [14] to uniformly
distribute values over the hash table. Thomas Wang’s
hash function has been widely used by many approaches
for various purposes [8, 12, 15]. This is well suited for
our purpose because it is fast to compute and has very
high avalanche effect [3, 14]. Hash table values are the
position values of the corresponding subsequences
(represented by 32 bit integer numbers) in the
concatenated chromosomal sequence. All those key-
value pairs are inserted into the hash table, whose
structures are depicted in Figure 5. Our hash table

structure is basically a long array, initially filled with
NULL values and when we have to insert a key-value
pair, we just insert that value in the corresponding array
position (array position is found by hashing the key).
Note that if corresponding array position is filled, then it
will be replaced by a pointer to an array and the old value
(or values) and the new value will be inserted into that

Figure 5: Hash Table Structure.

Figure 4: Error in Subsequence Extraction.

An Ultra-fast Approach to Align Longer Short… Informatica 37 (2013) 389–397 393

array. We have used this type of hash table structure in
place of traditional hash table structure (which is usually
two dimensional linked lists or an array of linked lists) to
reduce the hash table space requirement. This kind of
hash table structure efficiently reduces the requirement of
pointers with the cost of an additional array which stores
the number of values associated with the corresponding
key (easily represented by 8 bit integer number - recall
that we have used subsequence of length L = 32 to
mitigate the possibility of collision). By doing this, we
can dramatically reduce the hash table space requirement
(realized through experiments also) because the size of a
pointer in current day’s system architecture is much
longer than the 8 bit integer and many subsequences may
appear only one time in the concatenated chromosomal
sequence.

Figure 6: Converted Sequential Structure Hash Table.

However, though we have reduced the space
requirement with that hash table structure (as presented
in Figure 5), there are some issues with that data
structure also. In such data structure, index loading will
be quite time consuming as we are not able to bulk load
that data structure after saving it into the file system. For
a significant number of hash table keys (as many
subsequences can appear more than once), every time we
have to access the values (a key can have many
corresponding values) associated with it through a
pointer access. This will make it relatively slow in
comparison with the data structure where we can access
the values directly. Thus, we convert our hash table
structure (Figure 5) into two sequential structures shown
in Figure 6. This will make bulk loading possible and
with that data structure we can directly access the value/s
through its corresponding key. In Figure 6, we have
depicted the conversion of the hash table structure shown
in Figure 5 to the sequential structures. The conversion
algorithm is simple. The position array (as in Figure 6)
contains all the hash table values (or position numbers -
as in Figure 5) inserted into it, one by one according to
hash bucket number, started from n = 0 to (number of
hash bucket -1). To calculate the mapping array value at
position i, we have to just add Additional Array value of
position i and mapping array value at position (i -1) (see
Figure 5 and 6). Please note that, for i = 0, this is not true
(as array position can’t be negative). So, we have to
check every time whether i = 0 or not. We just remove
this checking requirement by making hash function to
produce hash values greater than 0 and setting 0th index
of mapping array to 0 (see Figure 5 and 6). This will help
us to avoid checking (thus speed gain) while performing
query read mapping. Now, from mapping array, we can
easily map keys to its corresponding value/s. For

example, suppose the hash value of a key is i where i can
be any value ranging from 1 to (number of hash bucket -
1). Now, from Figure 6, we can easily find that,
(mapping array [i] - mapping array [i-1]) provides the
number of value/s associated with that key (for example,
if i = 1, then the key has two values associated with it,
also see Figure 5). To find that value/s, we have to just
run a loop, collecting value/s from position array starting
from position number mapping array [i-1] (for example,
if i = 1, we have to collect two values from position array
starting from position number 0). The mapping process is
presented in Figures 5 and 6.

3.2.2 Query Database Processor
Query database processor takes a query read database
(possibly contains millions of equal length reads) and the
saved index (index saved into file system by reference
genome database processor (Figure 1)) as inputs and
outputs ‘query read matching information’ into file
system for each such matched reads. The ‘query read
matching information’ contains information about query
read alignment region (at what position in which
chromosome the matching occurs), number of other
alignments etc.

Our query database processor starts working by bulk
loading the index (index refers to mapping array and
position array as in Figure 6). This bulk loading (which
will save significant amount of time) is possible only
because we have converted our index into two sequential
structures. After loading the index into memory, our
query database processor takes each query read from the
query database and searches into the index for matching
in the following manner.

Query database processor will process each query
read following the same procedure as done in section
3.2.1, except, it will not process the query reads in which
N (or error in matching) occurs. Query read encoding
(dividing the read into subsequence of L = 32 and
converting them into binary) is performed by the Query
Encoder and Query Aligner is responsible for matching
task (Figure 1). Please remember that we have indexed
all possible subsequence of length L = 32 of the genomic
sequence. Hence, Query Encoder will first divide each
query read into the subsequence of length L = 32. For
example, if the query read is of 100 bases, Query
Encoder will divide it into four subsequence of length L
= 32. The first subsequence will be from base 1 to 32, the
second subsequence will be from base 33 to 64, the third
subsequence will be from base 65 to 96, and the fourth
subsequence will be from base 69 to 100. Note that, the
last subsequence will be taken from the end of the read
and overlapping in subsequence may happen. Query
Aligner searches the index for each such subsequence
(after binary converted by Query Encoder) of the query
read by hashing and mapping them into the hash table
(following the same procedure as stated in section 3.2.1).
Returned matching position/s is stored into arrays. If any
of the subsequence of that read is failed to align, then we
can easily conclude that the read is failed to align. The
worst case time complexity to find it is O(2n) where n =

394 Informatica 37 (2013) 389–397 A. Ghosh et al.

number of subsequence of that read. However, reverse is
not true because, if searching of all query read segments
is successful, it only means that all the query read
segments appear in the concatenated chromosomal
sequence and not necessarily mean that the whole read
appeared in the concatenated chromosomal sequence.

To check if the read is aligned or not, Query Aligner
has to perform some additional task i.e., it has to check
whether the returned positions are the consecutive
segment positions or not. Take example of 100 bases
read length. Suppose, all the four subsequence are able to
align and returned position value/s are stored in the
arrays named A1 = {200, 415}, A2 = {232, 327, 1215},
A3 = {264, 416, 917, 971} and A4 = {268}
consecutively (values inside the curly brackets are the
returned position value/s). Now, to check whether the
read is aligned or not (or in which position/s), Query
Aligner has to search for (A1[i] + 32) in A[2], (A1[i] +
64) in A[3], (A1[i] + 68) in A[4] means for every value
of i i.e., from 0 to (size of A1 – 1). By doing so, we are
only checking whether the segments are consecutive
segments in the concatenated chromosomal sequence or
not. If searching in all the arrays is successful, then only
we can conclude that the read is aligned at position A1[i]
in the concatenated chromosomal sequence (for above
example, the query read matches only in position 200).
Here, we should mention that all arrays that store the
returned matching positions are the sorted array (easy to
see). Thus, Query Encoder will perform an efficient
linear search in the sorted array to find a match, instead
of other searching procedures (for example binary
searching). This will help us to gain speed over other
searching procedures because the length of the array is
typically very small due to very high indexed substring
length i.e., 32 [5, 32]. With this linear search we can find
all the matches by only one pass through the array
(means with worst case time complexity O(n) where n =
very small array length). Another point to note that, with
the above procedure we can only identify in which
position of the concatenated chromosomal sequence the
match occurs. Now, Query Aligner finds the original
matching position (means chromosome number and the
position value in that chromosome) by using the
following procedure. First it finds the previous
chromosome ending position in the concatenated
chromosomal sequence (so, chromosome number is
found) and then deducts that position value from the
matched position value (except that matched position is
not within the first chromosome ending position) to find
real position in that chromosome. The previous
chromosome ending position is found by performing an
efficient binary search on a sorted array which contains
the ending position of each chromosome in concatenated
chromosomal sequence (reported by Reference Genome
Database Processor).

As mentioned above, only the forward strand of each
chromosome is processed by the Reference Genome
Database Processor (subsection 3.2.1). This will be
addressed in details in this section. Two strands of
chromosome are of complementary nature i.e., A always
pairs with T, and C always pairs with G (vice versa). So,

for each query read in the query read database, Query
Database Processor will not only search for that query
read but also search for the reverse complement of it. For
example, suppose, a query read is ‘ACCTGGA’. Query
Database Processor will first reverse it i.e., ‘AGGTCCA’
and then will take complement of it i.e., ‘TCCAGGT’
and then search into the index for matching following the
same procedure as stated above.

From the above, it is easy to see that our approach
has no upper limit restriction on the read length like
many other approaches. In the next section, we will
provide empirical evaluation of our approach for a wide
length of reads.

4 Experimental study, results, and
discussion

We ran our experiments on a desktop computer with 3.70
GHz Intel Xeon dual-cores CPU and 32 GB of DDR3
main memory, running 64 bit Ubuntu (kernel 3.5.0) as
operating system. All our algorithms were implemented
in C++, and compiled using g++ 4.7.2. We had followed
the similar comparison strategy as performed in [25]. We
have taken repeat-masked NCBI build 36 human genome
as our reference genome and all the approaches obliged
to report all the valid matches (as done in [25]). Our

Figure 7: Comparison of Index Building Time.

Figure 8: Comparison of Query Read Database Aligning
Time for Read Length of 100 bases.

An Ultra-fast Approach to Align Longer Short… Informatica 37 (2013) 389–397 395

approach followed the same default output format of
BowTie and all the approaches ran on single thread.

We have performed experiments with various length
reads i.e. with 100, 150, 200, 250 bases read length (note
that 250 bases read length is the currently maximum read

length which Illumina can produce [31]). We selected
four sets of query read database for experimenting with
each of the read lengths. Our experimental results show
comparison of our approach with BowTie [20, 30] and
BWA [22, 29] by averaging results over those four sets
of query read database. Each of our read databases
contains 10 million of query reads. We have set the hash
table bucket number to 1.5 billion throughout our
experiments. We have also created four synthetic query
read databases, one for each 100, 150, 200, 250 bases
read lengths (each contains 10 million query reads with
randomly inserted errors) to measure accuracy of our
approach.

Comparison of index building time of our approach
with BowTie and BWA is given in Figure 7. Our
experimental result show that our approach is
significantly faster than BowTie (3X faster) and BWA
(3.8X faster) as presented in Figure 7. Please note we
have to build our index just only one time for a genome
and we can use it repeatedly for searching various length
reads (easy to see from section 3) unlike many other
approaches. Experimental results for comparison of our
approach with BowTie and BWA for various length
reads i.e. of 100, 150, 200, 250 bases read length are
given in Figures 8-11 respectively. From those
experimental results it can be easily seen that, our
approach is significantly faster for query read alignment
than BowTie (3.7X, 3.9X, 3.7X, 4X faster for 100, 150,
200, 250 bases read length respectively) and BWA
(4.6X, 5.2X, 5.1X, 5.6X faster for 100, 150, 200, 250
bases read length respectively). By significantly reducing
the index building and query read searching time over
BowTie and BWA, our approach is able to fulfill its
primary motivation. To measure how much accurate our
approach is, we ran it on four synthetic databases one for
each 100, 150, 200, 250 bases read length, where it was
previously known a number of query reads that provide
an alignment. Our approach is able to align exactly the
same number of query reads within these databases. In
addition, during the previous experiments with BowTie
for various length read databases (i.e. four sets of
databases for each of 100, 150, 200, 250 bases read
length, as stated early of this section), we have found that
for all the databases of all the read length, our approach
is able to align exactly the same number of query reads
as aligned by BowTie (which is one of the most accurate
read aligner as can be found from the experimental
results of [16]). Actually, the accuracy of our approach
can be outlined as follows:

o We have indexed subsequence of length L = 32
and used Thomas Wang’s hash function (which
uniformly distributes the key values) to mitigate
the possibility of collision.

o We have used large number of hash table
buckets i.e. 1.5 billion during our experiments
which will also dramatically mitigate the
possibility of collision. During index building
time, we have found that our approach has
extracted around 1.25 billion subsequences of

Figure 9: Comparison of Query Read Database
Aligning Time for Read Length of 150 bases

Figure 10: Comparison of Query Read Database
Aligning Time for Read Length of 200 bases

Figure 11: Comparison of Query Read Database
Aligning Time for Read Length of 250 bases

396 Informatica 37 (2013) 389–397 A. Ghosh et al.

length L = 32 from NCBI human genome (build
36) which is quite lower value than 1.5 billion.

o Our approach is primarily targeted for current
generation reads (or future generation more long
reads) which is > 100 bases. So, query reads
will be divided into >= 4 fragments and our
approach will provide false positive match only
if all the fragments gives collision (easy to see)
which is quite unlikely to occur.

From the above discussion, we can conclude that,
our approach is significantly faster than other methods
presented and discussed above for comparison in all their
aspects without compromising the accuracy. Moreover,
from Figures 8 and 11, we can see that our approach
becomes 1.91X slower (for BowTie, it is 2.09X and for
BWA, it is 2.32X) by increasing the read length from
100 bases to 250 bases (note that the read length is
increased 2.5X). This performance degradation rate is not
completely accurate because of the difference in query
reads in the databases (thus will give different processing
execution). However, we can use this to get a rough idea
about the growth rate of the performance degradation (as
the database contains same number of reads and have to
perform same kind of task). As we have argued
previously, it is practically impossible to avoid the
processing cost of the increased read length. However,
we can summarise that our approach is able to bind it
efficiently. By observing this bounded growth rate of
performance degradation over BowTie and BWA, we
can draw a conclusion that our approach will scale well
for more long reads of future generation as well.

5 Conclusion
With the advent of second-generation sequencing
technology, there is an increasing need of a fast and
accurate read alignment method that can deal with longer
short reads. In this paper, we address that need. Our
experimental section shows that, for the longer short read
of the current generation, our approach is an order of
magnitude faster than BowTie and BWA in all aspects
and this is done by keeping the accuracy intact. It can
also be seen from the results that our approach can
handle current generation’s longer short read efficiently
and also scale well for future generation’s more longer
short reads (by observing the bounded growth rate of
performance degradation) and hence, will not become
infeasible in near future (by observing the trend of
increment in read length). Moreover, our approach has
no upper bound in the read length like many other
approaches.

References
[1] Altschul, S.F., Gish, W., Miller, W., Myers, E.W.,

and Lipman, D.J. (1990) “Basic local alignment
search tool”, Journal of Molecular Biology, Vol.
215, No. 3, pp. 403-410.

[2] Ansorge, W.J. (2009) “Next-generation DNA
sequencing techniques”, New Biotechnology, Vol.
25, No. 4, pp. 195–203.

[3] Aydin, F. and Dogan, G. (2013) “Development of a
new integer hash function with variable length
using prime number set”, Balkan Journal of
Electrical & Computer Engineering, Vol. 1, No. 1,
pp. 10-14.

[4] Bentley, D.R., Balasubramanian, S., et al. (2008)
“Accurate whole human genome sequencing using
reversible terminator chemistry”, Nature, Vol. 456,
No. 7218, pp 53-59.

[5] Bentley, J.L. and McGeoch, C.C. (1985)
“Amortized analyses of self-organizing sequential
search heuristics”, Communications of the ACM,
Vol. 28, pp 404-411.

[6] Berglund, E.C., Kiialainen, A., and Syvanen, A.C.
(2011) “Next-generation sequencing technologies
and applications for human genetic history and
forensics”, Investigative Genetics, Vol. 2, No. 1, pp.
23.

[7] Burrows, M. and Wheeler, D. (1994) A block
sorting lossless data compression algorithm,
Technical Report 124, Digital Equipment
Corporation.

[8] Chavarria-Miranda, D., Márquez, A., Nieplocha, J.,
Maschhoff, K., and Scherrer, C. (2008) “Early
experience with out-of-core applications on the cray
XMT”, IEEE International Symposium on parallel
and Distributed Processing (IPDPS 2008), pp. 1-8.

[9] Chen, Y., Souaiaia, T., and Chen, T. (2009) “PerM:
Efficient mapping of short sequencing reads with
periodic full sensitive spaced seeds”,
Bioinformatics, Vol. 25, No. 19, pp. 2514-2521.

[10] Cox, A. J. (2007) ELAND: efficient large-scale
alignment of nucleotide databases, Illumina, San
Diego, USA.

[11] Deng, J., Shoemaker, R., et al. (2009) “Targeted
bisulfite sequencing reveals changes in DNA
methylation associated with nuclear
reprogramming”, Nature Biotechnology, Vol. 27,
No. 4, pp 353–360.

[12] Devarakonda, K., Ziavras, S.G., and Rojas-Cessa,
R. (2007) “Measuring Network Parameters with
Hardware Support”, Third International Conference
on Networking and Services (ICNS'07), pp. 2-2.

[13] Down, T.A., Rakyan, V.K. et al. (2008) “A
Bayesian deconvolution strategy for
immunoprecipitation-based DNA methylome
analysis”, Nature Biotechnology, Vol. 26, No. 7, pp
779-785.

[14] Golubitsky, O. and Maslov, D. (2012) “A study of
optimal 4-bit reversible Toffoli circuits and their
synthesis”, IEEE Transactions on Computers, Vol.
61, No. 9, pp. 1341–1353.

[15] Greuter, S., Parker, J., Stewart, N. and Leach, G.
(2003) “Real-time procedural generation of 'pseudo
infinite' cities”, Proceedings of the 1st International
Conference on Computer Graphics and Interactive
Techniques in Australasia and South East Asia
(GRAPHITE '03), pp. 87–94.

[16] Huynh, T., Vlachos, M. and Rigoutsos, I. (2010)
“Anchoring millions of distinct reads on the human
genome within seconds”, Proceedings of the 13th

An Ultra-fast Approach to Align Longer Short… Informatica 37 (2013) 389–397 397

International Conference on Extending Database
Technology, pp. 252-262.

[17] Iseli, C., Ambrosini, G., Bucher, P. and Jongeneel,
C. (2007) “Indexing Strategies for Rapid Searches
of Short Words in Genome Sequences”, PLoS ONE,
Vol. 2, No. 6, Article e579.

[18] Johnson, D.S., Mortazavi, A., Myers, R.M. and
Wold, B. (2007) “Genome-wide mapping of in vivo
protein-DNA interactions”, Science, Vol. 316, No.
5830, pp. 1497-1502.

[19] Kent, W. J. (2002) “BLAT–the BLAST-like
alignment tool”, Genome Research, Vol. 12, No. 4,
pp. 656–664.

[20] Langmead, B., Trapnell, C., Pop, M. and Salzberg,
S.L. (2009), “Ultrafast and memory-efficient
alignment of short DNA sequences to the human
genome”, Genome Biology, Vol. 10, No. 3, Article
R25.

[21] Ley, T.J., Mardis, E.R. et al. (2008) “DNA
sequencing of a cytogenetically normal acute
myeloid leukaemia genome”, Nature, Vol. 456, No.
7218, pp. 66–72.

[22] Li, H. and Durbin, R. (2009) “Fast and accurate
short read alignment with Burrows-Wheeler
transform”, Bioinformatics, Vol. 25, No. 14, pp.
1754–1760.

[23] Li, H., Ruan, J. and Durbin, R. (2008) “Mapping
short DNA sequencing reads and calling variants
using mapping quality scores”, Genome Research,
Vol. 18, No. 11, pp. 1851–1858.

[24] Li, R., Li, Y., Kristiansen, K. and Wang, J. (2008)
“SOAP: short oligonucleotide alignment program”,
Bioinformatics, Vol. 24, No. 5, pp. 713–714.

[25] Li, Y., Terrell, A. and Patel, J.M. (2011) “WHAM:
A High-throughput Sequence Alignment Method”,
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 445–456.

[26] Rumble, S.M., Lacroute, P., Dalca, A.V., Fiume,
M., Sidow, A. and Brudno, M. (2009) “SHRiMP
Accurate Mapping of Short Color-space Reads”,
PLoS Computational Biology, Vol. 5, No. 5, Article
e1000386.

[27] Schatz, M.C., Delcher, A.L. and Salzberg, S.L.
(2010) “Assembly of large genomes using second-
generation sequencing”, Genome Research, Vol.
20, No. 9, pp. 1165-1173.

[28] Shendure, J. and Ji, H. (2008) “Next-generation
DNA sequencing”, Nature Biotechnology, Vol. 26,
No. 10, pp. 1135–1145.

[29] BWA Software, available from: http://bio-
bwa.sourceforge.net/ (last visited: 15 December
2012).

[30] BowTie Software, available from: http://BowTie-
bio.sourceforge.net/index.shtml (last visited: 15
December 2012).

[31] Illumina Sequencing Systems, available from:
http://www.illumina.com/systems/sequencing.ilmn
(last visited: 17March 2013).

[32] Wikipedia - Linear Search, available from:
https://en.wikipedia.org/wiki/Linear_search (last
visited: 17 March 2013).

[33] NGS Alignment Programs, available from:
http://lh3lh3.users.sourceforge.net/NGSalign.shtml
(last visited: 15 February 2013).

[34] PerM Software, available from:
http://code.google.com/p/perm (last visited: 1
February 2013).

[35] SOAP Software, available from:
http://soap.genomics.org.cn/soap1/ (last visited: 1
February 2013).

[36] WHAM Software, available from:
http://research.cs.wisc.edu/wham/ (last visited: 15
December 2012).

398 Informatica 37 (2013) 389–397 A. Ghosh et al.

