
 Informatica 37 (2013) 389–397 389 

An Ultra-fast Approach to Align Longer Short Reads onto Human 
Genome 

Arup Ghosh and Gi-Nam Wang 
Unified Digital Manufacturing Lab 
Department of Industrial Engineering, Ajou University 
San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea 
E-mail: {arupghosh, gnwang}@ajou.ac.kr 
 
Satchidananda Dehuri,  
Department of Systems Engineering, 
Ajou University, San 5, Woncheon-dong, Yeongtong-gu, Suwon 443-749, South Korea 
E-mail: satchi@ajou.ac.kr 
 
Keywords: DNA, sequence alignment, second-generation sequencing (SGS), substring matching, BWT 

Received: April 13, 2013 
 

With the advent of second-generation sequencing (SGS) technologies, deoxyribonucleic acid (DNA) 
sequencing machines have started to produce reads, named as “longer short reads”, which are much 
longer than previous generation reads, the so called “short reads”. Unfortunately, most of the existing 
read aligners do not scale well for those second-generation longer short reads. Moreover, many of the 
existing aligners are limited only to the short reads of previous generation. In this paper, we have 
proposed a new approach to solve this essential read alignment problem for current generation longer 
short reads. Our ultra-fast approach uses a hash-based indexing and searching scheme to find exact 
matching for second-generation longer short reads within reference genome. The experimental study 
shows that the proposed ultra-fast approach can accurately find matching of millions of reads against 
human genome within few seconds and it is an order of magnitude faster than Burrows-Wheeler 
Transform (BWT) based methods such as BowTie and Burrows-Wheeler Aligner (BWA) for a wide 
range of read length. 

Povzetek: Metoda omogoča izredno pohitritev iskanja daljših vzorcev v človeškem genomu. 

1 Introduction 
The rapid advances in DNA sequencing technology have 
dramatically accelerated the biomedical and 
biotechnology research [2, 6, 28]. Thereby opportunities 
have been created for data mining researchers to analyze 
a gamut of data. With the advent of second-generation 
sequencing (SGS) technologies, there is an increasing 
pressing need of an approach that can align large 
collections of reads (possibly millions) onto the reference 
genome rapidly. The main motivation behind this read 
alignment is to discover commonalities and connections 
between newly sequenced molecules with respect to 
existing reference genomes [16]. 

Currently, DNA sequencing machines are capable of 
generating millions of reads in a single run when a DNA 
sample is given as an input [9, 16, 27]. The DNA 
sequencing machines take the DNA sample as input and 
break it into a number of short pieces, which then are 
again broken into equal-length fragments called reads 
[25]. The ‘read alignment problem’ is to find matching of 
those reads onto a reference genome. From the computer 
science point of view, a genome can be considered as a 
long string of characters/bases (human genome contains 
nearly 6 billion characters/bases), and reads can be 

regarded as a set of equal-length small strings of 
characters/bases. Now, read alignment task is to map 
those reads (small string of characters) onto genome 
(long string of characters). Simply, we can think of it as a 
common substring matching problem [25]. The main 
challenge of this read alignment problem is to efficiently 
build the reference genome index thus reads (usually 
millions) can be mapped rapidly. This read alignment 
task has many potential applications in biomedical and 
bioinformatics fields, for example: ‘to detect genetic 
variations’ [4, 21] which will indeed help to identify 
‘disease genome’ [21], ‘to map DNA-protein 
interactions’ [18], ‘to profile DNA methylation patterns’ 
[11, 13], etc. 

To deal with this read alignment problem, several 
read alignment tools or approaches have been proposed. 
However, they are primarily focused on previous 
generation short reads which are usually of 25-70 bases 
long [26, 27]. Unfortunately, with the advent of SGS 
technologies DNA sequencing machines have started to 
produce reads (named as longer short reads) which are 
much longer than the previous short reads. Read lengths 
have just increased to more than 100 bases within a few 
years [27]. This trend of increment in read length makes 
the existing aligners computationally infeasible. Hence, 
there is an increasing need of an approach that can 
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handle this current generation reads efficiently and also 
can handle future generation more long reads (by 
observing the trend). Here the particular importance of 
the longer short read alignment problem can be realized. 
It is theoretically and also practically difficult to avoid 
the overhead of processing the increased read length. 
However, it is needed to bind the growth rate of the 
processing cost efficiently. Currently, most of the read 
aligners are unable to achieve this scalability which 
makes them limited to the short reads. To this end, this 
paper proposes an ultra-fast method for aligning longer 
short reads onto human genome by combining the best 
attributes of hash based indexing and searching. Our 
approach is not bounded to a particular range of reads 
and can scale well for more long reads.   

The remainder of this paper is organized as follows. 
Section 2 discusses the related work. Our proposed 
approach is described in Section 3. Experimental results 
are presented in Section 4. Section 5 contains our 
conclusive remarks of the work followed by a list of 
relevant and state-of-the-art references. 

2 Related work 
The approaches proposed so far by the several research 
groups for read alignment problem can be broadly 
classified into four categories. 

1) Traditional sequence mapping tools, such as Basic 
Local Alignment Search Tool (BLAST) [1] and 
BLAST-Like Alignment Tool (BLAT) [19], are 
unable to cope efficiently with the massive amount of 
reads generated by the current generation DNA 
sequencing machines, which make it computationally 
infeasible for solving the current generation read 
alignment problem [9, 16, 24]. 

2) BWT [7] based approaches, such as BowTie [20] and 
BWA [22], create a BWT based index and use an 
iterative prefix matching technique to find an 
alignment. A BWT-based index takes small memory 
footprint for example, BowTie takes less than 2 GB 
[30] and BWA takes less than 6 GB [29] memory to 
work with complete human genome. BWT based 
approaches have another significant feature i.e., they 
can handle a wide range of read lengths. For example, 
BowTie can handle up to 1024 bases read length [30]. 
So, it can easily handle current generation reads and 
also able to handle future generation more long reads. 
However, its performance degrades rapidly as the 
read length increases [25]. 

3) Hash table based approaches have got more and more 
popularity nowadays. Some of them create hash table 
based index for reads e.g., Efficient Large-Scale 
Alignment of Nucleotide Databases (ELAND) [10], 
Mapping and Assembly with Quality (MAQ) [23], 
Short Read Mapping Package (SHRiMP) [26] etc. 
Other approaches use hash table for the reference 
genome indexing e.g., Wisconsin’s High- throughput 
Alignment Method (WHAM) [25], Periodic Seed 
Mapping (PerM) [9], Short Oligonucleotide 
Alignment Program (SOAP) [24], etc. However, only 

Q-Pick [16] uses hash table for both read and 
reference genome indexing. Hash table based 
approaches are in general significantly faster. 
However, those hash table based approaches or their 
software implementation have some significant 
drawbacks. WHAM and Q-Pick create reference 
genome index for a specific length of the read, which 
cannot be used for the different length reads (means, 
if WHAM and Q-Pick create index to align X bases 
length reads then that index cannot be used for 
alignment of N bases length reads where X ≠ N). This 
is a significant issue because we have to create index 
for each of the read length. This will cause a 
significant overhead with respect to the index 
building time and disk space consumption because, 
nowadays most of the genome sequence mining 
companies have large number of databases of varied 
read lengths. The most significant problem with the 
above approaches is that, they are primarily focused 
on short reads. Thus, these approaches or their 
software implementations are limited to a specific 
read length which does not cover the read length of 
the current generation (for example, currently 
Illumina can produce read length up to 250 base long 
[31]) and there is no straight forward way to extend it 
to handle current generation longer short reads (or 
future generation more long reads). For example, 
ELAND can handle up to 32 bases [24, 33], MAQ 
can handle up to 127 bases [20], Shrimp can handle 
up to 70 bases [26], WHAM can handle up to 128 
bases [36], PerM can handle up to 64 bases [34], 
SOAP can handle up to 60 bases [35] which are 
significantly lower length than the current generation 
read length. 

4) Sorted Index File based approach such as fetchGWI 
and tagger [17] index either the reference genome or 
the query set and perform an efficient mapping of 
those two set of sorted entries (one for reference 
genome and another for query set) to find matches. 
However, this approach is also limited to 30 bases 
read length [17]. 

 
Figure 1: System Architecture. 
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Taking into account the limitations presented above, 
it can be summarized that, there is a significant lack of 
approaches or tools that can handle longer short reads 
efficiently. We propose to use BowTie and BWA 
approaches to solve this problem. From the trend of 
increment in read lengths, it does not seem that it will 
become infeasible in near future (because of its wide 
range of read length acceptance). So, we take BowTie 
and BWA as our base methods to experiment with longer 
short reads. As memory became cheap nowadays, we 
have no need to keep such unnecessary tight memory 
restriction in our approach as maintained by BowTie and 
BWA. 

3 Proposed approach 
This section is divided into two Subsections. In 
subsection 3.1, the statement of the problem is defined. 
The system architecture and working procedure of the 
proposed approach are described in subsection 3.2. 

3.1 Problem Statement 
A complete genome sequence is a set of all its 
chromosomal sequences. A chromosomal sequence is a 
series of characters. Each character (nucleic acid) is 
represented by the symbols A, G, C, or T (stands for 
adenine, guanine, cytosine and thymine respectively) or 
an unknown/ambiguous character, named N. The 
unknown character, N, represents that there is an 
uncertainty about the nucleotide in that position or there 
is a repetitive junk region in the genome and thus, all 
nucleotides in that region are converted into N’s [25]. In 
the genome sequencing task, it has no biological sense to 
match reads onto those repetitive junk regions [25]. For 
simplicity, we can think N indicates error while matching 
[30]. 

The read alignment task is to efficiently build an 

index of the reference genome thus a fast and exhaustive 
mapping of a large collection of equal length query reads 
is possible while maintaining the accuracy in alignment. 
Query read database usually contains millions of reads 
and while mapping, read aligner has to report the 
matching position/s in the chromosomal sequence (if any 
matching occurs). 

3.2 System Architecture of Proposed 
Approach 

System architecture of our proposed approach is given in 
Figure 1. It has two main components: i) reference 
genome database processor and ii) query database 
processor. We will discuss them separately to present our 
approach in greater detail. 

3.2.1 Reference Genome Database Processor 
Reference genome database processor takes the complete 
genome sequence database as an input and creates an 
index for that genome into the file system (Figure 1). 
Complete genome sequence contains full set of 
chromosomal sequences. Note that though we are 
interested in mapping the query reads on both the 
forward and reverse strands of each chromosome, we 
will build index only for forward strand of each 
chromosome. We will compensate this while processing 
the query database (detail in subsection 3.2.2). We have 
selected this technique to reduce the index size because 
with this technique, we have to process only the half of 
the original genome sequence which will indeed provide 
us with speed gain while query read is searching. 

Main idea behind our approach is to store in index all 
possible substrings of length L of every chromosomal 
sequence (only forward strand) with its position 
information. We set the length L value to 32. Note that as 
we are going to index each possible substring in a hash 

 
Figure 2: Concatenated Chromosomal Sequence. 

 
Figure 3: Sliding Window Extraction Protocol. 
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table, there are 432 possible values (recall that, sequence 
can contain four bases i.e. A, C, G, or T), which will 
dramatically mitigate the possibility of hash collision. 

Reference genome database processor starts working 
by concatenating (or merging) the forward strands of 
each chromosome (Figure 2). This is done by merger part 
of reference genome database processor (Figure 1). Note 
that with this concatenation we will lose information 
about “in which chromosome (or in which position of 
that chromosome) the subsequence of the concatenated 
sequence originally belongs to?” This information will be 
required when we find a match on a specific position on 
the concatenated sequence. Note that chromosome 
number (or position value in that chromosome) can be 
easily calculated by noting down the length of each 
chromosome. Motivation behind concatenation is to 
reduce the index space because with this technique, we 
have no need to store the chromosome number as we are 
going to calculate it during query read processing phase 
(detail in subsection 3.2.2). 

Binary converter takes the concatenated sequence 
from merger (Figure 1) and converts each A/C/G/T 
character into two bit binary representation. A, C, G, T 
will be binary represented by 00, 01, 10, 11 respectively. 
Note that, as we are going to index each possible 
substring of L = 32, this representation will allow us to 
pack each of them into one computer word in the 64 bit 
computer architecture. Actually, we have set the L value 
to 32 thus our method can take advantage of current 
day’s 64 bit computer architecture. Also note that, we are 
not going to index the subsequences in which N occurs 
(because N indicates ‘error in matching’). So, if N occurs 
in the concatenated sequence, we will simply replace it 
by any two special characters (say with ‘$$’). By doing 
so, we can identify if N has occurred in the sequence. For 
example, if the concatenated sequence is ‘NGACTN’, 
Binary Converter will encode it as ‘$$10000111$$’. 

Index builder takes the binary converter outputted 
sequence and creates an index which can be used by 

query database processor (Figure 1). Index builder moves 
a sliding window of length 64 over the input sequence 
and extracts the subsequence within it, and then moves 
two positions (Figure 3). Recall that, by doing so, it is 

originally extracting all possible subsequences of length 
L = 32 from the concatenated chromosomal sequence. 

Sliding window will extract the subsequences only if no 
$$ ($$ refers to N which means error in matching) 

appears in that window (Figure 3). Here, we have to keep 
in mind that sliding window should not extract any 

subsequences which do not belong to the original 
chromosomal sequences. This can happen while 

extracting subsequences from the position of 
concatenation of chromosomal sequence n and 

chromosomal sequence (n + 1) [here, n = 1, 2… up to 
(maximum chromosome number – 1)] (depicted in 

Figure 4). This can be easily avoided by keeping in mind 
the length of chromosomal sequences. 

All extracted subsequences, which are basically 64 
bit integer numbers, are hashed and their hash value 
provides the hash table bucket number.  We have used 
Thomas Wang’s hash function [14] to uniformly 
distribute values over the hash table. Thomas Wang’s 
hash function has been widely used by many approaches 
for various purposes [8, 12, 15]. This is well suited for 
our purpose because it is fast to compute and has very 
high avalanche effect [3, 14]. Hash table values are the 
position values of the corresponding subsequences 
(represented by 32 bit integer numbers) in the 
concatenated chromosomal sequence. All those key-
value pairs are inserted into the hash table, whose 
structures are depicted in Figure 5. Our hash table 

structure is basically a long array, initially filled with 
NULL values and when we have to insert a key-value 
pair, we just insert that value in the corresponding array 
position (array position is found by hashing the key). 
Note that if corresponding array position is filled, then it 
will be replaced by a pointer to an array and the old value 
(or values) and the new value will be inserted into that 

 
Figure 5: Hash Table Structure. 

 

 
Figure 4: Error in Subsequence Extraction. 
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array. We have used this type of hash table structure in 
place of traditional hash table structure (which is usually 
two dimensional linked lists or an array of linked lists) to 
reduce the hash table space requirement. This kind of 
hash table structure efficiently reduces the requirement of 
pointers with the cost of an additional array which stores 
the number of values associated with the corresponding 
key (easily represented by 8 bit integer number - recall 
that we have used subsequence of length L = 32 to 
mitigate the possibility of collision). By doing this, we 
can dramatically reduce the hash table space requirement 
(realized through experiments also) because the size of a 
pointer in current day’s system architecture is much 
longer than the 8 bit integer and many subsequences may 
appear only one time in the concatenated chromosomal 
sequence. 

 
Figure 6: Converted Sequential Structure Hash Table. 

However, though we have reduced the space 
requirement with that hash table structure (as presented 
in Figure 5), there are some issues with that data 
structure also. In such data structure, index loading will 
be quite time consuming as we are not able to bulk load 
that data structure after saving it into the file system. For 
a significant number of hash table keys (as many 
subsequences can appear more than once), every time we 
have to access the values (a key can have many 
corresponding values) associated with it through a 
pointer access. This will make it relatively slow in 
comparison with the data structure where we can access 
the values directly. Thus, we convert our hash table 
structure (Figure 5) into two sequential structures shown 
in Figure 6. This will make bulk loading possible and 
with that data structure we can directly access the value/s 
through its corresponding key. In Figure 6, we have 
depicted the conversion of the hash table structure shown 
in Figure 5 to the sequential structures. The conversion 
algorithm is simple. The position array (as in Figure 6) 
contains all the hash table values (or position numbers - 
as in Figure 5) inserted into it, one by one according to 
hash bucket number, started from n = 0 to (number of 
hash bucket -1). To calculate the mapping array value at 
position i, we have to just add Additional Array value of 
position i and mapping array value at position (i -1) (see 
Figure 5 and 6). Please note that, for i = 0, this is not true 
(as array position can’t be negative). So, we have to 
check every time whether i = 0 or not. We just remove 
this checking requirement by making hash function to 
produce hash values greater than 0 and setting 0th index 
of mapping array to 0 (see Figure 5 and 6). This will help 
us to avoid checking (thus speed gain) while performing 
query read mapping. Now, from mapping array, we can 
easily map keys to its corresponding value/s. For 

example, suppose the hash value of a key is i where i can 
be any value ranging from 1 to (number of hash bucket -
1). Now, from Figure 6, we can easily find that, 
(mapping array [i] - mapping array [i-1]) provides the 
number of value/s associated with that key (for example, 
if i = 1, then the key has two values associated with it, 
also see Figure 5). To find that value/s, we have to just 
run a loop, collecting value/s from position array starting 
from position number mapping array [i-1] (for example, 
if i = 1, we have to collect two values from position array 
starting from position number 0). The mapping process is 
presented in Figures 5 and 6. 

3.2.2 Query Database Processor 
Query database processor takes a query read database 
(possibly contains millions of equal length reads) and the 
saved index (index saved into file system by reference 
genome database processor (Figure 1)) as inputs and 
outputs ‘query read matching information’ into file 
system for each such matched reads. The ‘query read 
matching information’ contains information about query 
read alignment region (at what position in which 
chromosome the matching occurs), number of other 
alignments etc. 

Our query database processor starts working by bulk 
loading the index (index refers to mapping array and 
position array as in Figure 6). This bulk loading (which 
will save significant amount of time) is possible only 
because we have converted our index into two sequential 
structures. After loading the index into memory, our 
query database processor takes each query read from the 
query database and searches into the index for matching 
in the following manner. 

Query database processor will process each query 
read following the same procedure as done in section 
3.2.1, except, it will not process the query reads in which 
N (or error in matching) occurs. Query read encoding 
(dividing the read into subsequence of L = 32 and 
converting them into binary) is performed by the Query 
Encoder and Query Aligner is responsible for matching 
task (Figure 1). Please remember that we have indexed 
all possible subsequence of length L = 32 of the genomic 
sequence. Hence, Query Encoder will first divide each 
query read into the subsequence of length L = 32. For 
example, if the query read is of 100 bases, Query 
Encoder will divide it into four subsequence of length L 
= 32. The first subsequence will be from base 1 to 32, the 
second subsequence will be from base 33 to 64, the third 
subsequence will be from base 65 to 96, and the fourth 
subsequence will be from base 69 to 100. Note that, the 
last subsequence will be taken from the end of the read 
and overlapping in subsequence may happen. Query 
Aligner searches the index for each such subsequence 
(after binary converted by Query Encoder) of the query 
read by hashing and mapping them into the hash table 
(following the same procedure as stated in section 3.2.1). 
Returned matching position/s is stored into arrays. If any 
of the subsequence of that read is failed to align, then we 
can easily conclude that the read is failed to align. The 
worst case time complexity to find it is O(2n) where n = 
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number of subsequence of that read. However, reverse is 
not true because, if searching of all query read segments 
is successful, it only means that all the query read 
segments appear in the concatenated chromosomal 
sequence and not necessarily mean that the whole read 
appeared in the concatenated chromosomal sequence. 

To check if the read is aligned or not, Query Aligner 
has to perform some additional task i.e., it has to check 
whether the returned positions are the consecutive 
segment positions or not. Take example of 100 bases 
read length. Suppose, all the four subsequence are able to 
align and returned position value/s are stored in the 
arrays named A1 = {200, 415}, A2 = {232, 327, 1215}, 
A3 = {264, 416, 917, 971} and A4 = {268} 
consecutively (values inside the curly brackets are the 
returned position value/s). Now, to check whether the 
read is aligned or not (or in which position/s), Query 
Aligner has to search for (A1[i] + 32) in A[2], (A1[i] + 
64) in A[3], (A1[i] + 68) in A[4] means for every value 
of i i.e., from 0 to (size of A1 – 1). By doing so, we are 
only checking whether the segments are consecutive 
segments in the concatenated chromosomal sequence or 
not. If searching in all the arrays is successful, then only 
we can conclude that the read is aligned at position A1[i] 
in the concatenated chromosomal sequence (for above 
example, the query read matches only in position 200). 
Here, we should mention that all arrays that store the 
returned matching positions are the sorted array (easy to 
see). Thus, Query Encoder will perform an efficient 
linear search in the sorted array to find a match, instead 
of other searching procedures (for example binary 
searching). This will help us to gain speed over other 
searching procedures because the length of the array is 
typically very small due to very high indexed substring 
length i.e., 32 [5, 32]. With this linear search we can find 
all the matches by only one pass through the array 
(means with worst case time complexity O(n) where n = 
very small array length). Another point to note that, with 
the above procedure we can only identify in which 
position of the concatenated chromosomal sequence the 
match occurs. Now, Query Aligner finds the original 
matching position (means chromosome number and the 
position value in that chromosome) by using the 
following procedure. First it finds the previous 
chromosome ending position in the concatenated 
chromosomal sequence (so, chromosome number is 
found) and then deducts that position value from the 
matched position value (except that matched position is 
not within the first chromosome ending position) to find 
real position in that chromosome. The previous 
chromosome ending position is found by performing an 
efficient binary search on a sorted array which contains 
the ending position of each chromosome in concatenated 
chromosomal sequence (reported by Reference Genome 
Database Processor). 

As mentioned above, only the forward strand of each 
chromosome is processed by the Reference Genome 
Database Processor (subsection 3.2.1). This will be 
addressed in details in this section. Two strands of 
chromosome are of complementary nature i.e., A always 
pairs with T, and C always pairs with G (vice versa).  So, 

for each query read in the query read database, Query 
Database Processor will not only search for that query 
read but also search for the reverse complement of it. For 
example, suppose, a query read is ‘ACCTGGA’. Query 
Database Processor will first reverse it i.e., ‘AGGTCCA’ 
and then will take complement of it i.e., ‘TCCAGGT’ 
and then search into the index for matching following the 
same procedure as stated above. 

From the above, it is easy to see that our approach 
has no upper limit restriction on the read length like 
many other approaches. In the next section, we will 
provide empirical evaluation of our approach for a wide 
length of reads. 

4 Experimental study, results, and 
discussion 

We ran our experiments on a desktop computer with 3.70 
GHz Intel Xeon dual-cores CPU and 32 GB of DDR3 
main memory, running 64 bit Ubuntu (kernel 3.5.0) as 
operating system. All our algorithms were implemented 
in C++, and compiled using g++ 4.7.2. We had followed 
the similar comparison strategy as performed in [25]. We 
have taken repeat-masked NCBI build 36 human genome 
as our reference genome and all the approaches obliged 
to report all the valid matches (as done in [25]). Our 

 
Figure 7: Comparison of Index Building Time. 

Figure 8: Comparison of Query Read Database Aligning 
Time for Read Length of 100 bases. 
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approach followed the same default output format of 
BowTie and all the approaches ran on single thread. 

We have performed experiments with various length 
reads i.e. with 100, 150, 200, 250 bases read length (note 
that 250 bases read length is the currently maximum read 

length which Illumina can produce [31]). We selected 
four sets of query read database for experimenting with 
each of the read lengths. Our experimental results show 
comparison of our approach with BowTie [20, 30] and 
BWA [22, 29] by averaging results over those four sets 
of query read database. Each of our read databases 
contains 10 million of query reads.  We have set the hash 
table bucket number to 1.5 billion throughout our 
experiments. We have also created four synthetic query 
read databases, one for each 100, 150, 200, 250 bases 
read lengths (each contains 10 million query reads with 
randomly inserted errors) to measure accuracy of our 
approach. 

Comparison of index building time of our approach 
with BowTie and BWA is given in Figure 7. Our 
experimental result show that our approach is 
significantly faster than BowTie (3X faster) and BWA 
(3.8X faster) as presented in Figure 7. Please note we 
have to build our index just only one time for a genome 
and we can use it repeatedly for searching various length 
reads (easy to see from section 3) unlike many other 
approaches. Experimental results for comparison of our 
approach with BowTie and BWA for various length 
reads i.e. of 100, 150, 200, 250 bases read length are 
given in Figures 8-11 respectively. From those 
experimental results it can be easily seen that, our 
approach is significantly faster for query read alignment 
than BowTie (3.7X, 3.9X, 3.7X, 4X faster for 100, 150, 
200, 250 bases read length respectively) and BWA 
(4.6X, 5.2X, 5.1X, 5.6X faster for 100, 150, 200, 250 
bases read length respectively). By significantly reducing 
the index building and query read searching time over 
BowTie and BWA, our approach is able to fulfill its 
primary motivation. To measure how much accurate our 
approach is, we ran it on four synthetic databases one for 
each 100, 150, 200, 250 bases read length, where it was 
previously known a number of query reads that provide 
an alignment. Our approach is able to align exactly the 
same number of query reads within these databases. In 
addition, during the previous experiments with BowTie 
for various length read databases (i.e. four sets of 
databases for each of 100, 150, 200, 250 bases read 
length, as stated early of this section), we have found that 
for all the databases of all the read length, our approach 
is able to align exactly the same number of query reads 
as aligned by BowTie (which is one of the most accurate 
read aligner as can be found from the experimental 
results of [16]). Actually, the accuracy of our approach 
can be outlined as follows: 

o We have indexed subsequence of length L = 32 
and used Thomas Wang’s hash function (which 
uniformly distributes the key values) to mitigate 
the possibility of collision. 

o We have used large number of hash table 
buckets i.e. 1.5 billion during our experiments 
which will also dramatically mitigate the 
possibility of collision. During index building 
time, we have found that our approach has 
extracted around 1.25 billion subsequences of 

 
Figure 9: Comparison of Query Read Database 
Aligning Time for Read Length of 150 bases 

Figure 10: Comparison of Query Read Database 
Aligning Time for Read Length of 200 bases 

Figure 11: Comparison of Query Read Database 
Aligning Time for Read Length of 250 bases 

 



396 Informatica 37 (2013) 389–397 A. Ghosh et al.  
 

length L = 32 from NCBI human genome (build 
36) which is quite lower value than 1.5 billion. 

o Our approach is primarily targeted for current 
generation reads (or future generation more long 
reads) which is > 100 bases. So, query reads 
will be divided into >= 4 fragments and our 
approach will provide false positive match only 
if all the fragments gives collision (easy to see) 
which is quite unlikely to occur. 

From the above discussion, we can conclude that, 
our approach is significantly faster than other methods 
presented and discussed above for comparison in all their 
aspects without compromising the accuracy. Moreover, 
from Figures 8 and 11, we can see that our approach 
becomes 1.91X slower (for BowTie, it is 2.09X and for 
BWA, it is 2.32X) by increasing the read length from 
100 bases to 250 bases (note that the read length is 
increased 2.5X). This performance degradation rate is not 
completely accurate because of the difference in query 
reads in the databases (thus will give different processing 
execution). However, we can use this to get a rough idea 
about the growth rate of the performance degradation (as 
the database contains same number of reads and have to 
perform same kind of task). As we have argued 
previously, it is practically impossible to avoid the 
processing cost of the increased read length. However, 
we can summarise that our approach is able to bind it 
efficiently. By observing this bounded growth rate of 
performance degradation over BowTie and BWA, we 
can draw a conclusion that our approach will scale well 
for more long reads of future generation as well. 

5 Conclusion 
With the advent of second-generation sequencing 
technology, there is an increasing need of a fast and 
accurate read alignment method that can deal with longer 
short reads. In this paper, we address that need. Our 
experimental section shows that, for the longer short read 
of the current generation, our approach is an order of 
magnitude faster than BowTie and BWA in all aspects 
and this is done by keeping the accuracy intact. It can 
also be seen from the results that our approach can 
handle current generation’s longer short read efficiently 
and also scale well for future generation’s more longer 
short reads (by observing the bounded growth rate of 
performance degradation) and hence, will not become 
infeasible in near future (by observing the trend of 
increment in read length). Moreover, our approach has 
no upper bound in the read length like many other 
approaches. 
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