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Over the past two decades, biometric technologies have exploded because anything that identifies a person 

provides a source of information. The palmprint modality is a biometric characteristic of great interest to 

researchers, and its traits can be found in various representations, including grayscale, colour, and 

multi/hyperspectral representations. The most difficult challenge in developing a hyperspectral palmprint-

based recognition system is determining how to use all the information available in these spectral bands. 

In this paper, we propose a hyperspectral palmprint identification system. In the first stage, an Optimal 

Clustering Framework (OCF) is proposed to extract the most representative bands. Then, two types of 

feature extraction methods (handcrafted and deep learning approaches) were used to determine the best 

method to describe palmprint features. After setting the number of selected bands to 4, we performed our 

set of experiments using the Hong Kong Polytechnic University (Poly U), which consists of 69 spectral 

bands. The results indicated that the proposed system offers the best performance, which qualifies it to be 

intended for usage in high-security situations. 

Povzetek:glavni cilj tega dela je oblikovati biometrični identifikacijski sistem z uporabo hiperspektralnega 

slikanja odtisa dlani (HSP) in nove sheme izbire pasu. 

 

1 Introduction 
Due to the progression of information security technology, 

the number of risks to the recognition system and its 

resources has increased, necessitating the need to 

strengthen security measures. The necessity for faster and 

more reliable user authentication approaches has 

increased security concerns in these days of rapid 

improvements in communication, networking, and 

mobility [1]. 

Researchers suggest the use of human biometric traits as a 

solution to guarantee the identity of system clients [2]. 

Biometrics is a term that refers to technologies that use a 

person's unique physiological or behavioural features for 

identification and/or authentication. Fingerprints, 

palmprints, facial patterns, iris patterns, voice, signatures, 

and gait are unique biometric attributes, often known as 

"biometric data". Nowadays, many biometric systems are 

being designed and used, and the utility of biometric 

systems is becoming more commonly understood and 

accepted because of the uniqueness of human biometrics, 

which is essential in preventing imposter threats. These 

authentication systems have defeated traditional security 

measures based on knowledge (such as a password) or  

 

 

 

 

possession (such as a key), which can be faked or broken 

[3], [4]. 

Palmprint recognition has recently been identified as a 

novel biometric recognition technology, and it has 

received great interest. Palmprint recognition is the term 

for the technology that uses images of the palm skin on a 

human’s hands to verify that the person is who they say 

they are [5]. The palmprint is of great interest to 

researchers because it is the most advanced biometric 

technique and has been used for over a century. However, 

this interest is due to its many advantages over other 

biometric modalities, such as usability, long-term 

stability, affordability, availability of materials, higher 

accuracy, and so on [6]. 

The research in palmprint imaging-based systems can be 

found in various representations. One can find a multi-

spectral (MSP) based palmprint representation that 

provides additional discriminating information. Because 

four spectral bands have peaks at various light 

wavelengths, such as vein networks where the near-

infrared band (NIR) penetrates the skin, visualisation of 

the vein pattern is allowed [7]. Therefore, hyperspectral-

based palmprint imaging is a new research area in which 

researchers in numerous domains have been interested 

because of its high ability to distinguish between 

customers (users). In comparison to multi-spectral 
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palmprint identification, the hyperspectral palmprint 

sensor collects spectral information varying from 420 nm 

to 1100 nm from 69 different bands, which could provide 

more discriminative information. 

Nevertheless, two major difficulties must be solved before 

hyperspectral biometrics can be used. Firstly, how many 

spectral bands are required to distinguish between distinct 

palms? On the one hand, typically, more feature bands 

provide more information, implying more accuracy. In 

contrast, increasing the number of feature bands increases 

feature extraction and matching costs. Moreover, 

providing more information may not always improve 

accuracy due to redundancies between distinct spectra. 

Secondly, how do we choose representative spectra for a 

given number of feature bands? In hyperspectral palmprint 

identification, optimal band selection and band 

combination are major research topics [8–9]. 

However, exploiting all the possible information from 

hyperspectral imaging is a difficult challenge. To do that, 

two main strategies can be found in the literature to utilise 

all the possible information. Clustering, band 

combination, and band selection are the most commonly 

used approaches in hyperspectral-based palmprint 

recognition systems. In this paper, to maintain all of the 

important information about the palmprint and reduce the 

number of bands as much as possible, a selection of bands 

should be made first before palmprint identification. Thus, 

a band selection scheme is developed and adapted to 

extract the most representative hyperspectral palmprint 

bands. A multimodal palmprint-based recognition system 

is proposed, with two feature extraction approaches: 

handcrafted-based and deep learning-based. After 

extracting the relevant information from the selected 

hyperspectral palmprint band images, a Deep Rule-Based 

classifier (DRB) is deployed to determine whether the 

person who tries to access the system is genuine or an 

impostor. 

To summarise our work, the following contributions can 

be cited: 

▪ An Optimal Clustering Framework (OCF) is 

proposed for automatically selecting the most 

discriminative hyperspectral palmprint bands. 

▪ Efficient unimodal and multimodal HSP 

palmprint identification systems have been made 

based on the chosen bands. 

▪ An extensive comparative analysis between the 

handcrafted features and the deep learning is 

performed to choose the best techniques that 

better describe the palmprint features. 

▪ The impact of incorporating a deep rule-based 

classifier (DRB) for classification tasks was 

investigated. 

To construct our paper, we followed the following steps: 

Firstly, in Section 2, we introduce the state of the art of 

hyperspectral palmprint-based recognition systems. Then, 

Section 3 discusses the proposed scheme for an HSP 

palmprint-based identification system. After that, the 

optimal clustering framework for hyperspectral band 

selection is outlined in Section 4. Section 5 briefly 

describes the feature extraction descriptors used 

(handcrafted-based and deep learning-based). The 

architecture of the Deep Rule-Based classifier (DRB) is 

described in Section 6. Section 7 then presents the 

experimental results on the PolyU hyperspectral palmprint 

database. Section 8 concludes with conclusions and future 

work. 

2 Hyperspectral palmprint 

recognition: A literature review 
Relevant research has been published for the identification 

of a person’s palmprint traits. So, many approaches for 

extracting features from palmprint scans have recently 

attracted a variety of research interests. The biggest 

challenge for constructing an HSP- or even MSP-based 

palmprint recognition system is how to exploit all the 

possible information from those images. Therefore, one of 

the crucial tasks in the HSP palmprint-based recognition 

system is the extraction of features. This step is all about 

getting the most important discriminative information 

from the region of interest (ROI) that has been identified 

and making the palmprint of different subjects more 

separable. In this context, we are going to talk in this 

section about the most pertinent studies that treat the 

subject of HSP-based palmprint recognition systems. 

Although the literature on hyperspectral palmprint 

identification is relatively limited, some works extract 2D 

features from each band image and fuse them for 

recognition. In contrast, clustering and band selection 

techniques are used in other works to select the most 

informative bands. 

Hereafter, we classify the feature extraction approaches 

into two primary categories: handcrafted-based techniques 

and deep learning-based techniques. 

2.1 Handcrafted-based approaches 

Handcrafted features-based palmprint recognition 

depends on texture characteristics, which are low-level 

features that characterise a specified area of an image and 

give accurate features for the highest palmprint 

recognition rate [10]. 

Shen et al. [11] developed a 3D Gabor wavelet-based 

approach to concurrently extract information in the spatial 

and spectral domains. However, a series of three-

dimensional Gabor wavelets with different frequencies 

and orientations were created and convolved with the cube 

to extract discriminative information. The authors of this 

study calculated the similarity between two hyperspectral 

cubes using the humming distance. 

As an extended version of their work, Shen in [12] and 

[13] suggested using clustering techniques and 3D Gabor 

wavelets to reduce the band’s number. To choose the most 

representative bands, they propose the use of a clustering-

based method known as Affinity Propagation (AP) in their 

work. 

Another research work is based on using a 2D Gabor filter 

response for hyperspectral palmprint recognition [14]. The 

features descriptor is applied to each hyperspectral band 
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separately after a dimensionality reduction using (2D)2 

LDA. The similarity measure is performed through the use 

of SVM and KNN classifiers. 

Exploiting all the information offered by the hyperspectral 

images is a difficult challenge. Therefore, Korichi et al. 

[15] introduced a new feature descriptor called 3D local 

binary pattern (3DLBP). The proposed features descriptor 

is an extended version of the well-known descriptor LBP 

(Local Binary Pattern), and it can be applied to any image 

type (grayscale, colour, multi-spectral, and hyperspectral 

images). 

In their study [16], Guo et al. found that the spectral bands 

700 nm and 960 nm provided the strongest discriminatory 

information. The extracted features are based on using a 

feature descriptor called (2D)2 PCA, where the bands are 

selected according to their recognition accuracy. 

Also, using Principal Component Analysis (PCA) and the 

Hidden Markov Model, Meraoumia et al. [17] presented a 

biometric recognition system based on multispectral and 

hyperspectral palmprint images. Firstly, the feature 

vectors are extracted using PCA [18], and after that, the 

feature vectors are modelled using HMM. 

Sun [19] and Chlaoua [20] introduced the use of k-mean-

based clustering techniques, which are aimed at reducing 

the number of spectral bands. Their method eliminates 

low-quality bands by computing image entropy and EER 

with a 2D Gabor filter response. In addition, the optimal 

band combination is chosen using a clustering technique 

that is validated by the band fusion technique after this 

procedure. 

Guo et al. [21] use hyperspectral palmprint data to 

investigate feature band selections. Although there were 

some promising results in accuracy and anti-spoofing 

capacity, the feature band selection from many 

hyperspectral palmprints needed to be faster, making it 

unsuitable for real-time deployment. 

2.2 Deep learning-based approaches 

Deep learning is regarded as a breakthrough in computer 

vision and has been effectively applied in different 

domains. Neural networks and deep learning approaches 

are the most recent categories of methods. Because of their 

adaptability and representational capacity, these methods 

are gaining popularity in various fields, particularly 

palmprint-based biometric systems [18]. 

Zhao et al. [22] presented a joint deep convolution feature 

representation to recognise hyperspectral palmprints. All 

spectral bands can be used with a CNN stack to create a 

single convolutional feature. They tested their model's 

performance on a hyperspectral palmprint dataset with 53 

bands. They were able to attain an EER of 0.01 %. 

The same author, Zhao [23], proposes combining features 

from different hyperspectral palmprints. This strategy 

combines global Deep Convolutional Neural Network 

(DCNN) features, texture LBP features, and direction 

LDP features. The hyperspectral palmprint images are 

subjected to the LBP, LDP, and DCNN algorithms to 

extract their features, resulting in three feature matrices. 

The 2D PCA is then applied to each feature matrix to 

remove redundant information and reduce the dimension. 

An EER of 0.11% was reported for a database including 

53 distinct bands. 

Based on PCANet's deep learning features, Meraoumia et 

al. [24] propose a palmprint biometric identification 

system. After extracting the PCANet features, four 

classifiers (SVM, RBF, RFT, and KNN) are used to 

differentiate between the distinct palmprint feature 

vectors. In their research work, two multi-spectral 

palmprint databases are used. 

However, a recent research study introduced by Trabelsi 

and her team [10] aimed to construct a multispectral 

palmprint identification system. The suggested system 

relies on PalmNet and Log-Gabor capabilities, utilising 

feature selection and dimensionality reduction algorithms. 

The proposed method is evaluated using three different 

multispectral palmprint databases. 

Bensid et al. [25] suggested using a deep learning-based 

feature extraction technique called discrete cosine 

transform network (DCTNet) to construct a multi-spectral 

palmprint recognition system. The CASIA and PolyU 

palmprint databases are the most commonly used 

benchmarks for evaluating their proposed systems. 

Hence, after analyzing a variety of research articles that 

treat the use of deep learning-based approaches, one can 

find that the majority of those research articles use a 

database of 4 or 6 bands maximally (multi-spectral 

databases), where they try to select which band or which 

combination is the most appropriate to represent a 

palmprint identification system without the use of a band 

selection algorithm. On one hand, as we previously 

mentioned, hyperspectral imaging offers more 

information that can be useful to differentiate between 

users. On the other hand, the more the number of bands 

there are, the more redundant information we have, which 

influences the system accuracy. For this reason, we 

suggest using a new bands selection algorithm before 

constructing a deep learning-based hyperspectral 

palmprint system. This will help choose the most useful 

bands and eliminate redundant information. 

3 Proposed system design 
The objective of this study is to develop a hyperspectral 

palmprint identification system and an Optimal Clustering 

Framework (OCF) for the selection of hyperspectral 

bands. To do this, an OCF is first applied to the utilised 

hyperspectral palmprint database (the Hong Kong 

University hyperspectral palmprint database), where the 

objective is to extract the most representative bands. After 

choosing the bands, the proposed hyperspectral palmprint 

recognition system is made up of two separate subsystems 

that interface with each other at the matching score level. 

As shown in Figure 1, there are four steps in each 

subsystem: preprocessing, feature extraction, matching, 

and making a decision. To get into the system's database 

(enrollment), a person has to give a set of training 

palmprint modalities. Typically, two approaches for 

feature vector extraction are used, namely, a handcrafted 

approach where Local Phase Quantization (LPQ) and 

Binarized Statistical Image Feature (BSIF) are used. The 

second approach is based on the use of a deep learning 
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approach, specifically the use of well-known pre-trained 

networks like AlexNet, VGG16, and VGG19. For 

identification, the same feature descriptors are used to 

extract the feature vectors from the test palmprint. Then, 

the Deep Rule-Based classifier (DRB) is used to compare 

the test palmprint templates with the database of reference 

feature vectors. Finally, for the multimodal system, each 

subsystem generates its own matching score, which is then 

combined to obtain a final score (fusion at the score level). 

This last score is used to determine whether the user 

should be accepted or rejected. 

4 Hyperspectral palmprint band 

selection 
From such an implementation viewpoint, a well-chosen 

band set should maintain just the most informative bands 

while removing those that offer little discriminating 

information. Because the first step of our work is selecting 

the representative hyperspectral bands, we suggest the use 

of an Optimal Clustering Framework (OCF). In this 

section, we will briefly present the proposed method for 

selecting the appropriate hyperspectral palmprint bands. 

The next three steps in installing the proposed framework 

are as follows: 

▪ Firstly, an optimal clustering framework is 

developed to find the best HSI clustering 

structure. However, the hyperspectral palmprint 

database can be analysed using the proposed 

OCF, which can determine the optimal solution 

under an acceptable constraint. Furthermore, 

because the proposed OCF is a global 

framework, many types of objective functions 

can be optimised using the same approach as long 

as they accord with the framework's specific 

form. Also, the suggested OCF is a global 

framework. This implies that the same method 

can be used to optimise different types of 

objective functions, as long as they fit the 

specific form of the framework. 

▪ After the clustering structure is achieved, an RCS 

(ranking on clusters strategy) is proposed as a 

useful criterion to select the most representative 

bands. With the addition of an arbitrary ranking 

algorithm, the RCS may better use the 

advantages of both clustering and ranking-based 

techniques. This will produce band subsets with 

lower correlation and more discriminative 

information. Some ranking criteria, such as 

MVPCA (Maximum-Variance Principal 

Component Analysis), Enhanced Fast Density-

Peak-based Clustering (E-FDPC), and 

Information Entropy (IE), can also be used to 

finish the RCS task. 

▪ Finally, an automated approach for determining 

the required number of bands is proposed 

because the goal is to reduce the correlation 

between bands to determine how much unique 

information may be generated by a given number 

of bands. 

The overall procedure for designing a band selection 

algorithm is shown in Figure 2. 

5 Feature extraction 
One of the difficult tasks in constructing such a biometric-

based identification system is extracting the relevant 

information that can be used to differentiate between 

users. Typically, several algorithms are utilised in the 

feature extraction process; the approach differs based on 

the type of biometric identification being used. Our study 

uses two feature extraction approaches: a handcrafted-

based and a deep learning-based approach. In this section, 

we will briefly explain the feature descriptors used. 

5.1 Local phase quantization (LPQ) 

Ojansivu et al. [26] proposed local phase quantization as a 

texture descriptor. Also, it was difficult to blur and 

outperform for texture classification compared to other 

descriptors. For the first time, the LPQ descriptor has been 

designated for use in the classification of texture blur. LPQ 

is designed to preserve an image's local invariant 

 
Figure 1: Architecture of the proposed hyperspectral palmprint recognition system. 
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information against artefacts caused by various types of 

blurring. 

5.2 Binarized statistical image features 

(BSIF) 

Kannala et al. [27] developed a texture descriptor called 

Binarized Statistical Image Features. The BSIF is a binary 

code string representing a given image's pixels. A pixel's 

code value is regarded as a local descriptor of the image in 

its surroundings. BSIF has been developing local image 

descriptors that efficiently encapsulate texture information 

and can be used to represent image regions using 

histograms. The method generates a binary code for each 

pixel by linearly projecting local image patches onto a 

subspace whose basis vectors are binarized by 

thresholding after being learned from natural images using 

Independent Component Analysis (ICA). The number of 

basis vectors determines the length of the binary code 

string. Histograms of pixel binary codes can be used to 

represent image regions. 

5.3 AlexNet 

AlexNet has eight weighted layers, five convolutional 

layers, and three fully linked layers. Except for the last 

layer, which outputs a softmax with a distribution over the 

1000 class labels, ReLu activation is performed after each 

layer. In the first two completely connected layers, 

dropout is used. 

Alex Krizhevsky and his team won the 2012 ImageNet 

Large Scale Visual Recognition Challenge with AlexNet, 

which used an 8-layer CNN [28]. This network showed for 

the first time that learning-based features can do better 

than manually designed ones, shattering the old paradigm 

in computer vision. 

5.4 VGG models 

VGG (Visual Geometry Group) is a convolutional 

neural network designed by K. Simonyan and A. 

Zisserman [29] of the University of Oxford that achieved 

recognition in 2014 after winning the ILSVRC (ImageNet 

Large Scale Visual Recognition Challenge). On Imagenet, 

the model achieved 92.7% accuracy, one of the greatest 

results ever. 

It was a step forward from earlier models in that it 

proposed convolution kernels with lower dimensions (33) 

in the convolution layers than had been done previously. 

Using cutting-edge graphics cards, the model was trained 

over several weeks. 

VGG16 [29] is a convolutional neural network trained on 

images from the ImageNet database. The network has an 

image input size of (224 ×  224) and can categorise 

images into 1000 item categories with 16 layers. It has 

about 138 million parameters, making evaluation 

challenging and necessitating a large amount of memory. 

As a result, the network has learned a variety of rich 

feature representations for various images. 

The VGG19 model is a variant of the VGG model with 19 

layers (16 convolution layers, 5 MaxPool layers, 1 

SoftMax layer, and three fully connected layers). 

6 Matching and fusion 
Once each image's distinctive and relevant characteristics 

have been determined, the images are divided into 

numerous groups, and a decision is made to realise 

whether the user is a client or an impostor. In our system, 

the Deep Rule Based classifier (DRB) is devoted to 

performing the matching task. 

 

 
 

Figure 2: Diagram showing the required steps to conduct the OCF-based band selection process.    

 
Figure 2: The DRB classifier's general architecture 
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6.1 Deep Rule-Based classifier 

The Deep Rule-Based classifier (DRB) [30] is a Semi-

Supervised Multi-Layer Neuro-fuzzy Modeling 

(SSMNM) technique based on image prototypes that 

produce visible and human-comprehensible fuzzy rules 

(IF... THEN. Once new classes are added to the system, an 

incremental learning algorithm can be utilised in real-time 

applications to monitor new concepts, deal with 

uncertainty, self-evolve, and adapt their network and 

meta-parameters. The DRB's layers are as follows: 1) the 

scaling layer, 2) the normalisation layer, 3) the feature 

descriptor layer, 4) the FRB layer, and 5) the decision-

maker layer. 

A. Layer of Scaling (Optional): The Scaling Layer is in 

charge of shrinking the original image to reduce 

computational complexity, improve generalisation, 

etc. All images were resized to (128 x 128) as in the 

study, according to the requirements of the feature 

descriptor layer. 

B. Normalization Layer (A standard pre-processing 

step): The Normalisation Layer is in charge of 

translating image pixel values into the feature 

descriptor's specified range. This study's pixels are 

normalised between 0 and 1 because of the feature 

descriptor layer requirements. 

C. The Feature Descriptor Layer: The Feature 

Descriptor Layer extracts the global feature vectors 

from the images. The retrieved features are applied to 

the classification model's training and validation. 

D. Base layer using Fuzzy-Rule (Model engine): The 

DRB classifier's basic engine is the Fuzzy-Rule base 

(FRB) layer, composed of a massively parallel 

ensemble of type 0-order fuzzy rules. This layer is 

responsible for producing a highly accurate classifier 

while simultaneously providing interpretability and 

transparent models for human comprehension, in 

contrast to ordinary deep learning techniques, known 

as black boxes, since they do not offer insights into the 

network's structure. 

E. The Decision-Maker Layer: This layer is responsible 

for making the final decision by labelling the 

validation images depending on the degree of 

prototype similarity determined by the FRB layer. 

The essential layers of the DRB classifier architecture are 

shown in Figure 3 [30]. 

6.1.1 The DRB classifier algorithm 

First, we describe the important notations utilised in the 

DRB classifier algorithm in Table 1. 

 

 

Table 1: DRB classifier algorithm key notation 

description 

Notations Descriptions 

C The dataset's classes number 

D The feature vector's 

dimensionality 

K The observed training images 

number/instance of the current time  

I A single input image 

X The I corresponding feature vector  

NC The cth class identified prototypes 

number  

𝝁𝒄 The cth class training images 

feature vector’s global average.  

Ic,k The  cth class kth training image  

𝝌𝒄,𝒌 The Ic,k corresponding feature 

vector  

Pc,i The cth class ith prototype 

pc,i The average of training images 

feature vectors associated with Pc,i 

Sc,i The training images number 

associated with Pc,i 

rc,i The data cloud influences area 

radius associated with  Pc,i 

𝝀𝒄 The confidence score is given by 

the local decision-maker of the cth 

fuzzy rule.  

The four main phases of the DRB classification algorithm 

are as follows [30]: 

1. Step 01: Pre-processing block- Most of the 

time, the DRB classifier uses simple and 

common pre-processing techniques, such as 

image normalisation, rotation, scaling, and image 

segmentation. 

2. Step 02: Feature extraction layer- Various 

types of feature descriptors can be used on this 

layer. 

3. Step 03: Massive parallel FRB layer- This step 

consists of four parts, which are as follows: 

initialization, preparation, system updating, and 

fuzzy rule creation, as stated below: 

Massive parallel FRB layer stages 

Stage 1: Initialization 

The identical DRB algorithm parameters are 

initialized by: 

𝑘 ← 1; 𝜇𝑐 ← �̅�𝑐1; Ν𝑐 ← 1; Ρ𝑐,Ν𝑐
← Ι𝑐,1; 𝑝𝑐,Ν𝑐

← �̅�𝑐1; 

𝑆𝑐,Ν𝑐
← 1; 𝑟𝑐,Ν𝑐

← 𝑟0  

Stage 2: Preparation 

The �̅�𝑐𝑘  and 𝐷(Ρ𝑐,𝑖) for each image Ι𝑐,𝑘 are calculated 

by: 

�̅�𝑐𝑘 =
𝜒𝑐𝑘

‖𝜒𝑐𝑘‖
;  𝜇𝑐 =

𝑘−1

𝑘
𝜇𝑐 + �̅�𝑐𝑘    

𝐷(Ρ𝑐,𝑖) =
1

1+‖𝐶−𝜇𝑐‖2/𝜎2  

Stage 3: Updating system 
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The DRB algorithm verifies two conditions 

(Conditions 1 and 2) before updating the parameters of 

all images in stage 1. 

 

If condition 1 is true then add a new data cloud else 

find the nearest prototype 𝑃𝑐,𝑛 corresponding to Ι𝑐,𝑘 and 

go to the condition 2 

 

If condition 2 is true, Update 𝑃𝑐,𝑛 , 𝑆𝑐,𝑛 and 𝑟𝑐,𝑛
2  else 

add a new data cloud 

 

Stage 4: Fuzzy rules generation-Generate rule type 

Rulec 

𝒊𝒇 (𝑰~𝑃𝑐,1) 𝑂𝑅 ⋯  𝑂𝑅 (𝑰~𝑃𝑐,𝑁𝑐
) 𝑻𝒉𝒆𝒏 (𝑐𝑙𝑎𝑠𝑠𝑒 𝑐)   

 

Condition 1  

 

𝒊𝒇 (𝐷(Ι𝑐,𝑘) >𝑖=1,2,3,⋯,𝑁𝑐

𝑚𝑎𝑥 (𝐷(Ρ𝑐,𝑖))) 𝑂𝑅  

 (𝐷(Ι𝑐,𝑘) <𝑖=1,2,3,⋯,𝑁𝑐

𝑚𝑖𝑛 ( 𝐷(Ρ𝑐,𝑖)))   𝑻𝒉𝒆𝒏 Ι𝑐,𝑘 is new 

prototype 

𝑁𝑐 ← 𝑁𝑐  +  1  

Ρ𝑐,Ν𝑐
← Ι𝑐,𝑘; 𝑝𝑐,Ν𝑐

← �̅�𝑐,𝑘;  𝑆𝑐,Ν𝑐
← 1; 𝑟𝑐,Ν𝑐

← 𝑟0  

Else  

Find 𝑃𝑐,𝑛 by 𝑃𝑐,𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛 (‖�̅�𝑐,𝑘 −  𝑃𝑐,𝑗‖  

where 

𝑗 = 1,2, ⋯ , Ν𝑐  
Condition 2 

𝑖𝑓 (‖�̅�𝑐,𝑘 − 𝑃𝑐,𝑛‖ < 𝑟𝑐,Ν𝑐
)  𝑻𝒉𝒆𝒏 Ι𝑐,𝑘 is assigned to 

 𝑃𝑐,𝑛 

Else  

𝑁𝑐 ← 𝑁𝑐  +  1; Ρ𝑐,Ν𝑐
← Ι𝑐,𝑘; 𝑝𝑐,Ν𝑐

← �̅�𝑐,𝑘;  

𝑆𝑐, Ν𝑐 ← 1;  
 𝑟𝑐,Ν𝑐

← 𝑟0    

 

Endif  

Endif  

 

4. Step 4. Decision maker layer: For each image 𝐼 

in the test data, find the confidence score 𝜆𝑐(𝐼) 

based on the image's feature vector by using the 

following formula:  

𝜆𝑐(𝐼)  =  𝑎𝑟𝑔𝑚𝑎𝑥 (𝑒𝑥𝑝(−‖𝜒 −  𝑃𝑐,𝑗‖
2

), 𝑗 =

1,2, ⋯ , Ν𝑐 .   

- the labels are identified by: 

𝑙𝑎𝑏𝑒𝑙(𝐼) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜆𝑐(𝐼) , 𝑐 = 1,2, ⋯ , 𝑐. 

6.2 Fusion process 

It has been demonstrated in several studies that combining 

the results from different unimodal biometric 

identification systems generally leads to better system 

efficiency. Fusion at the matching-score level involves 

integrating the scores generated by each biometric system 

that describe the similarity between the biometrics 

acquired and their models [31]. We experimented with 

four different schemes during the system's design: 

▪ SUM-score (SUM):  

𝑆 = ∑ 𝑆𝑖
𝑁
𝑖=1                      (1) 

 

▪ SUM-Weighting-Score (WSum): 

𝑆 = ∑ wiSi
N
i=1                    (2) 

 
▪ Production-score (Prod): 

𝑆 = ∏ 𝑆𝑖𝑖=1,2,...,𝑁                           (3) 

 
▪ Production-Weighting- score (WProd): 

𝑺 = ∏ 𝒘𝒊𝑺𝒊𝒊=𝟏,𝟐,...,𝑵                         (4) 

 

Where 𝑤𝑖  denotes the weight of the 𝑖𝑡ℎ biometric 

attribute of the 𝑘𝑡ℎ user's matching score, which is 

determined as follows: 

𝑤𝑖 =

1

𝐸𝐸𝑅𝑖

∑
1

𝐸𝐸𝑅𝑖

𝑁
𝑖=1

                                (5) 

7 Experiment results and discussion 
As mentioned previously, this work's main objective is to 

design a biometric identification system using 

hyperspectral palmprint (HSP) imaging. A band selection 

scheme is first implemented before constructing our 

system and reducing the spectral band's number. When the 

representative bands have been established, two feature 

extraction methods are used to perform the feature 

extraction task: handcrafted and deep learning-based 

approaches. To test and evaluate the proposed system, 

experiments were conducted using the hyperspectral 

palmprint database collected by the HK PolyU Institute. 

7.1 Hyperspectral palmprint database 

description 

In the experiment test phase, the publicly available HK-

PolyU Hyperspectral palmprint database is used [32]. 

The Hong Kong Polytechnic University's Biometric 

Research Centre (UGC/CRC) has designed a 

hyperspectral palmprint capture device to collect images 

from 420 nm to 1100 nm. 

The Hong Kong PolyU hyperspectral palmprint database 

is a large database comprised of 190 volunteer images. 

However, the volunteers in this database range from 20 to 

60 years old. The samples were collected in two separate 

sessions. The patient was instructed to create seven 

palmprint images, with a size of 128 x 128 pixels, for each 

wavelength throughout each session. A set of 69 spectral 

bands with a step length of 10 nm might be used to image 

a palmprint over a range of 420 nm–1100 nm. With the 

first and second sessions separated by a month, there is 

typically a month between them. The database contains 

5,240 images from 380 different palms at one wavelength. 

7.2 OCF based hyperspectral palmprint 

bands selection 

The problem of huge processing complexity occurred 

with HSI's extensive dimensional data, and it remained a 
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significant challenge because of the strong correlations 

and dependencies among said data. The first step in 

designing our proposed hyperspectral palmprint system is 

to reduce the number of spectral bands and only use the 

most representative ones. This section investigates the 

implementation of the OCF framework to select HIS's 

most representative bands. However, three RCS were 

tested and evaluated to achieve the optimum results, 

including MVPCA, E. FDPC, and IE. Table 2 shows the 

results that came from using these methods. 

It should be noted that the PolyU hyperspectral palmprint 

database comprises two samples taken from the right and 

left hands. To accomplish the band selection process, the 

RCS procedures are applied independently to the two 

samples. While implementing the OCF framework, we set 

the number of the output selected bands to 4. It is possible 

to justify this by comparing it to the MSP palmprint 

database, which has four different modalities (Red, Green, 

Blue, and NIR). 

As previously stated, one of our objectives is to select the 

most representative HSI spectral bands. As a result, 

various experiments were carried out and evaluated using 

three RCS methods. When looking at and analysing Table 

1, If the left-hand spectral bands are employed, the 

MVPCA RCS techniques generate bands of wavelength 

(rank) as follows: 610 nm (20), 710 nm (30), 810 nm (40), 

and 960 nm (55). When the right-hand spectral bands are 

employed, the selectable bands are 610 nm (20), 710 nm 

(30), 870 nm (46) and 940 nm (940 nm) (53). However, 

by employing the left-hand spectral bands and the E FDPC 

techniques as an RCS methodology, the resulting OCF-

based systems are 470 nm (06), 690 nm (28), 960 nm (55), 

and 990 nm (58). The system-selected bands for the right-

hand spectral bands are 480 nm (07), 590 nm (18), 850 nm 

(44) and 990 nm (58). Finally, if the IE-based RCS 

technique is employed in conjunction with the left-hand 

spectral bands, the selected bands are 610 nm (20), 690 

nm (28), 850 nm (44) and 940 nm (53). The IE selectable 

bands for the right-hand spectral bands are 610 nm (20), 

760 nm (35), 850 nm (44) and 940 nm (53). 

We noticed through manual visual analysis that the first 

two bands chosen by E_FDPC-based RCS techniques (the 

06th spectral band (470 nm) for the left hand and the 07th 

(480 nm) with the 18th (590 nm) spectral bands for the 

right hand) carry little to no information, making them 

useless for our proposed system. 

As a result, we concluded that it would produce 

undesirable effects on the proposed system's performance. 

This leaves us with the two remaining techniques that 

produce relatively similar results, compelling us to 

experiment with the selected bands. In conclusion, the 

entropy bands produced a more desired effect than the 

MVPCA bands. 

An example of the HSI-selected bands using the IE-based 

RCS techniques is shown in Figure 4. Hence, the selected 

bands for both the right and left hand are then used to 

construct a unimodal/multimodal biometric identification 

system where two feature extraction approaches are used 

Table 2: Hyperspectral palmprint band selection using OCF framework 

Modality RCS method 1st band 2nd 3rd band 4th band 

 

LEFT Hand 

MVPCA 610 nm (20) 710 nm (30) 810 nm (40) 960 nm (55) 

E_FDPC 470 mm (06) 690 nm (28) 960 nm (55) 990 nm (58) 

IE 610 nm (20) 690 nm (28) 850 nm (44) 940 nm (53) 

 

RIGHT Hand 

MVPCA 610 nm (20) 710 nm (30) 870 nm (46) 940 nm (53) 

E_FDPC 480 nm (07) 590 nm (18) 850 nm (44) 990 nm (58) 

IE 610 nm (20) 760 nm (35) 850 nm (44) 940 nm (53) 

 

 
 

Figure 4: Information Entropy (IE) based RCS techniques most representative 
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along with the DRB classifier. The next section will 

describe and assess the proposed identification system's 

performance. 

7.3 Unimodal systems test results 

After extracting the most representative HSI palmprint 

bands based on the OCF framework, our experiment's next 

step is to deploy them to design a reliable biometric 

identification system. It was necessary to conduct three 

separate experiments in order to evaluate the performance 

of our proposed hyperspectral palmprint identification 

system. In the first experiment, we used only one spectral 

band. In contrast, we will integrate multiple spectral bands 

in the second and third experiments to construct a 

multimodal biometric system. Note that in all 

experiments, two approaches for feature extraction are 

used: handcrafted approaches (LPQ and BSIF) and deep 

learning techniques with three pre-trained networks 

named VGG16, VGG19, and the AlexNet network. 

As we reported earlier, the palmprint image database 

contains 190 persons. Each person has 12 images of the 

left hand and 12 of the right hand, which were taken in 4 

bands. We chose six images from 12 for training 

[𝟏 𝟑 𝟓 𝟕 𝟗 𝟏𝟏] and the other six [𝟐 𝟒 𝟔 𝟖 𝟏𝟎 𝟏𝟐] for the 

test (this applies to both the left-hand and right-hand 

palmprint images). 

Table 3 shows the performance of the proposed unimodal 

system by using palmprint images captured at the selected 

band wavelength. 

For the best biometric identification system performance, 

which means minimising the Error Equal Rate (EER) 

for the open-set identification mode and maximising the 

Recognition of One Rate (ROR) for the closed-set 

identification mode, our experiments aim to find the best 

selected spectral bands and the best feature descriptor 

(handcrafted or deep learning-based) to represent the 

palmprint features. 

According to the results shown in Table 3 and Figures 5, 

6, 7, and 8, one can observe that: 

The first remark is that the band 610 nm-based system 

performance achieves the lowest performance for both 

identification modes and feature extraction approaches. 

Also, one can observe that the performance of the deep 

learning feature-based feature extraction system 

 
 

Figure 5: Proposed open-set identification system based on Handcrafted feature extraction approach. 

 

 
Figure 6: Proposed closed-set identification system based on Handcrafted feature extraction approach. 
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outperforms the system performance when using 

handcrafted feature ex traction techniques. Hereafter, we 

will discuss and analyse the proposed unimodal system's 

performance. In the case of the open-set identification 

mode, handcrafted feature descriptors are used. Our 

results show that the system performs best when utilising 

the left-hand-based spectral bands, except when the 850 

nm right-hand-based spectral band is employed, where the 

system achieves its optimum performance, which results 

in an EER of 0.0318% at the threshold T0 = 0.8173 when 

the LPQ is used as a feature descriptor. 

Furthermore, if the LPQ is deployed, the EER ranges 

between [0.3508%–5.2631%] for the left-hand spectral 

bands and [0.3911%–6.4035% for the right-hand spectral 

bands. Whenever the proposed system uses the BSIF as a 

feature descriptor, the results are noticeably better than 

when the LPQ features are used. The EER of left-hand 

selectable bands based on BSIF features ranged from 

[0.1754%–4.2982%], whereas it ranged from [0.2154%–

5,4385%] for the right-hand selected bands. 

The second part of this section's experiments will evaluate 

the proposed system's performance when some well-

known deep pre-trained networks are used to extract deep 

features from the selected bands. Once the AlexNet model 

is used as a feature descriptor, it is possible to see that the 

proposed system achieves its best performance by 

providing the lowest value of EER (0.0129%) at a 

threshold value of T0 = 0.8701. This is the case when 

using the 850 nm right-hand spectral bands. However, 

through this series of experiments, we are convinced that 

the right-hand band of the 850 nm spectrum contains the 

most discriminative information. Now, turning our 

attention to the system's performance when deep learning 

feature descriptors were applied, what stands out in Table 

3 is that the proposed deep feature descriptors gave perfect 

results in certain bands for both the left and right hand. As 

can be seen, when the VGG16 is used with the right-hand-

            
 

Figure 7: Proposed open-set identification system based on deep learning deep features approach 
 

  
Figure 8: Proposed closed-set identification system based on deep learning deep features approach. 
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based bands, the system produces an EER between 

[0.3508%-5.5263%], whereas when the left-hand-based 

bands are utilized, the system produces an EER between 

[0.0877%-4.1228%]. For the VGG19-based proposed 

system performance, one can notice that the system 

achieves approximately similar results to those obtained 

when using VGG16. Finally, Figures 5 and 7 are plotted 

to show how the open-set unimodal system performs when 

using the two feature approaches. 

In the case of closed-set identification, we notice from 

Table 3 that the previous observations made in the open-

set mode still apply to the closed-set mode. The proposed 

system achieves its best performance when the 850 nm 

spectrum right-hand band is deployed along with 

AlexNet-based deep learning techniques, where the 

system gives a ROR of 99.9123% with an RPR equal 

to 4. In addition, if the system works under a handcrafted-

based features descriptor, the best performance is obtained 

using the same spectrum and an LPQ descriptor (ROR = 

99.5614%, RPR = 9). However, it can be shown that both 

hands' two wavelengths, 850 nm and 940 nm, performed 

similarly. Compared to the other networks, the system's 

efficiency is clearly superior when the AlexNet network is 

utilized. To give a concise summary of the performance of 

the proposed closed-set identification mode for both 

feature extraction approaches, Figures 6 and 8 have been 

plotted. 

7.4 Multimodal systems test results 
This stage of experiments aims to improve the results 

given by the unimodal biometric identification system by 

using information from various bands and instances (left 

and right palmprints). Two fusion scenarios were used to 

accomplish this. The first is based on the fusion of four 

bands from the same instance (left or right hand). The 

second fusion scheme employs all bands from the two 

instances. The fusion process is carried out at the score 

level in our study work. When using matching score level 

fusion, the two sub-systems' matching scores are blended 

to produce a single score. The ultimate decision is then 

based on the outcome. To accomplish this, we experiment 

with rules-based fusion, which employs four distinct rules 

(described in Section 6.2). 

Therefore, several tests were carried out to choose the best 

fusion scenario and the fusion rule. The results are 

displayed in Tables 4 and 5. Once again, the EER is used 

to test the performance of the multimodal system in open-

set identification mode. From Table 4, where the first 

fusion scenario is applied, one can see that the basis of 

fusion for both feature extraction approaches enhance the 

efficiency of the unimodal system. This can be justified by 

the results obtained in Table 4 compared to those in Table 

3. As an example, one can observe that the EER is 

reduced to 0.000% at a threshold of 0.8440 when the 

right-hand spectral bands are fused using the PROD 

fusion rule and the AlexNet as a feature descriptor. This 

table also makes it clear how much the performance of the 

handcrafted feature-based approach has improved. For 

instance, in the right-hand fused bands, the maximum 

value of EER when utilising the LPQ descriptor was 

6.4035%, but after the fusion, it was only 0.5263%. This 

observation was also confirmed when the pre-trained deep 

learning networks were used, which served to justify the 

usefulness of incorporating the fusion process. By fusing 

all selected bands from the left and right hand (second 

fusion scenario), the system achieves its optimum 

performances under both feature approaches, where the 

EER is reduced to 0.000% for all feature descriptors (see 

Table 5) under the use of SUM and WSUM-based fusion 

rules (in the case of AlexNet-based system performances, 

the system achieves the same performances for all fusion 

rules). 

To validate our concepts, we have to run other 

experiments for closed-set identification. For the first 

scenario, we can also see from Table 4 that the AlexNet-

based system performs well where the system achieves a 

ROR of 100% with an RPR equal to one under the fuse 

of right-hand bands with the PROD fusion rules. Contrary 

to the second fusion scenario, the system, like the open-set 

experiment tests, achieves optimal performance under all 

feature descriptors when using SUM and WSUM fusion 

rules. The system produces a ROR of 100% and an RPR 

of 1. 

7.5 Comparison with state of the art 
To show the proposed protocol's efficiency, a comparison 

study with the most relevant and related research works is 

performed. 

It is necessary to mention that the comparison is 

performed to the research works where the protocols are 

evaluated using the PolyU hyperspectral palmprint 

database. 

Although, as mentioned in Section 2, the literature on 

hyperspectral palmprint identification is very limited, 

some works concentrate on extracting 2D information 

from each band image and fusing them for recognition. In 

contrast, other works use clustering and band selection 

approaches to select the most informative bands.  

However, the main objective in designing such a 

hyperspectral palmprint system is to obtain the optimum 

system performance using minimum features. For 

example,[21] achieves an EER of 0.0780% by increasing 

the number of clusters to 4. Also, [19] research is based on 

the clustering technique (3 clusters), where the obtained 

EER was 0.17325%. In addition, [12] designed a 

hyperspectral palmprint system and a clustering technique 

(10 clusters), and he obtained an EER=3.26%. Other 

works also extract information from the hyperspectral 

cube. For example, [11] obtained an EER= 4.00% using 

a hyperspectral palmprint of 52 bands, whereas [23] and 

[22] used a cube of 53 bands and obtained (EER=0.11%, 

ROR=99.76%) and (EER=0.015%, ROR=99.625%) 

respectively.  

By manually evaluating all 69 hyperspectral bands, [14] 

made a simple hyperspectral palmprint system with a 

ROR of 99.92%. This method is not preferred because it 

takes more processing time. 

The results in Table 6 clearly show that our proposed 

hyperspectral palmprint system exceed most of the cited 

relevant work in term of EER and ROR by achieving a 
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(EER = 0.0123%, ROR=99.9123%) in the case of 

unimodal system conception and a (EER=0.000%, 

ROR=100%) in the case of multimodal system. 

8 Conclusion 
Through technological improvements, we are becoming 

highly dependent on data, which is increasing in size and 

becoming vital and influential in our lives. Recently, 

palmprint-based biometric recognition systems have 

emerged as a promising field with a high ability to 

distinguish between people. Among the palmprint 

recognition systems, one can find systems that use 

hyperspectral palmprint images as a biometric modality. 

Due to the larger system database size and longer 

processing times, the most challenging part of designing 

such a hyperspectral palmprint system is utilizing all the 

information these images may offer. As a solution, we 

proposed optimal framework clustering (OCF) that 

automatically extracts the most representative 

hyperspectral bands to reduce the system database size 

and eliminate redundant information. After that, a 

biometric identification system based on the selected 

bands is constructed, and two feature descriptors are 

applied. The handcrafted features are extracted using LPQ 

and BSIF descriptors, and the AlexNet, VGG16, and 

VGG19 pre-trained networks are used to extract the deep-

learning features. The DRB classifier is devoted to 

performing the classification tasks. The proposed system 

is evaluated and tested using the PolyU hyperspectral 

palmprint database. The obtained unimodal experimental 

results showed that the bands of 850 nm and 940 nm can 

be considered the most representative’ bands according to 

the proposed protocol. Also, the experiments showed that 

the deep learning-based approach outperformed the 

handcrafted methods. However, the multimodal biometric 

system was introduced in order to overcome the 

limitations of the unimodal systems. As a result, according 

to the proposed fusion scenario, one can observe that the 

EER is reduced to 0.000% in the open-set identification 

mode and obtains a ROR equal to 100% in the closed-set 

mode. 

For future work directions, we will extend our proposed 

framework for band selection to other hyperspectral traits, 

such as face or iris hyperspectral images. We will also 

look into combining deep learning or handcrafted features 

from different bands to make a better biometric system. 

9 Acknowledgment 
The authors gratefully acknowledge the Directorate 

General for Scientific Research and Technological 

Development (DGRSDT) of Algeria for the financial 

support for this work. The authors also acknowledge 

resources and support from the electrical engineering 

laboratory (laboratoire de génie électrique (LAGE)) of 

KASDI Merbah University, Ouargla, Algeria. 

 

 

References 
[1] Altarawneh, Mokhled Sueliman. Cancelable 

fingerprint features using chaff points 

encapsulation. Informatica, 2018, vol. 42, no 3..  
https://doi.org/10.31449/inf.v42i3.1855   

[2] Sharif, M., Raza, M., Shah, J.H., Yasmin, M., 

Fernandes, S.L. (2019). An Overview of 

Biometrics Methods. In: Singh, A., Mohan, A. 

(eds) Handbook of Multimedia Information 

Security: Techniques and Applications. Springer, 

Cham. https://doi.org/10.1007/978-3-030-15887-

3_2 

[3] A. Benlamoudi, S. E. Bekhouche, M. Korichi, K. 

Bensid, and A. H. and A. T.-A. Abdeldjalil 

Ouahabi, “Face Presentation Attack Detection 

Using Deep Background Subtraction,” sensors, 

vol. 22, no. 10, pp. 1–17, 2022. 

https://doi.org/10.3390/s22103760 

 [4] S. A. Abdulrahman and B. Alhayani, “A 

comprehensive survey on the biometric systems 

based on physiological and behavioural 

characteristics,” Materials Today: Proceedings, 

2021. 

https://doi.org/10.1016/j.matpr.2021.07.005 

[5] Jia, W., Xia, W., Zhao, Y. et al. 2D and 3D 

Palmprint and Palm Vein Recognition Based on 

Neural Architecture Search. Int. J. Autom. 

Comput. 18, 377–409 (2021). 

https://doi.org/10.1007/s11633-021-1292-1 

[6] Raouia Mokni, Hassen Drira, Monji Kherallah. 

Deep-Analysis of Palmprint Representation based 

on Correlation Concept for Human Biometrics 

identification. International Journal of Digital 

Crime and Forensics, vol. 12, no. 2, pp. 40–58, 

2020.      

https://doi.org/10.4018/ijdcf.2020040103  

[7] Y. Aberni, L. Boubchir and B. Daachi, 

"Multispectral palmprint recognition: A state-of-

the-art review," 2017 40th International 

Conference on Telecommunications and Signal 

Processing (TSP), 2017, pp. 793-797,                    

https://doi.org/10.1109/tsp.2017.8076097 . 

[8] THAMRI, Essia, ALOUI, Kamel, et NACEUR, 

Mohamed Saber. Selection of hyperspectral bands 

by adopting a dimension reduction strategy for 

recognition of multispectral palmprint. In : 2017 

International Conference on Advanced Systems 

and Electric Technologies (IC_ASET). IEEE, 

2017. p. 91-96. 

https://doi.org/10.1109/aset.2017.7983672  

[9] Q. Wang, F. Zhang and X. Li, "Optimal Clustering 

Framework for Hyperspectral Band Selection," in 

IEEE Transactions on Geoscience and Remote 

Sensing, vol. 56, no. 10, pp. 5910-5922, Oct. 

2018,  

https://doi.org/10.1109/tgrs.2018.2828161 . 

[10] Trabelsi, S., Samai, D., Dornaika, F. et al. 

Efficient palmprint biometric identification 

systems using deep learning and feature selection 

methods. Neural Comput & Applic 34, 12119–

https://doi.org/10.31449/inf.v42i3.1855
https://doi.org/10.1007/978-3-030-15887-3_2
https://doi.org/10.1007/978-3-030-15887-3_2
https://doi.org/10.3390/s22103760
https://doi.org/10.3390/s22103760
https://doi.org/10.1016/j.matpr.2021.07.005
https://doi.org/10.1007/s11633-021-1292-1
https://doi.org/10.4018/ijdcf.2020040103
https://doi.org/10.1109/tsp.2017.8076097
https://doi.org/10.1109/aset.2017.7983672
https://doi.org/10.1109/tgrs.2018.2828161


An Effective Hyperspectral Palmprint Identification System Based… Informatica 47 (2023) 63–80 75 

 

12141,(2022).                

https://doi.org/10.1007/s00521-022-07098-4 

[11] L. Shen, W. Wu, S. Jia and Z. Guo, "Coding 3D 

Gabor Features for Hyperspectral Palmprint 

Recognition," 2014 International Conference on 

Medical Biometrics, 2014, pp. 169-173, 

https://doi.org/10.1109/icmb.2014.36 . 

[12] L. Shen, Z. Dai, S. Jia, M. Yang, Z. Lai and S. Yu, 

"Band selection for Gabor feature based 

hyperspectral palmprint recognition," 2015 

International Conference on Biometrics (ICB), 

2015, pp. 416-421, 

https://doi.org/10.1109/icb.2015.7139104  

[13] Jie Zhou· Yunhong Wang· Zhenan Sun · Yong Xu 

Linlin Shen · Jianjiang Feng Shiguang Shan · Yu 

Qiao Zhenhua Guo · Shiqi Yu, Biometric 

recognition, Proceedings:12th Chinese 

Conference, CCBR 2017, Shenzhen, China, 

October 28-29, vol. 449, no. 7158,2017. 

https://doi.org/10.1007/978-3-319-69923-3  

[14] Khandizod, A.G., Deshmukh, R.R. (2019). 

Optimal Band Selection for Improvement of 

Hyperspectral Palmprint Recognition System by 

Using SVM and KNN Classifier. In: Santosh, K., 

Hegadi, R. (eds) Recent Trends in Image 

Processing and Pattern Recognition. RTIP2R 

2018. Communications in Computer and 

Information Science, vol 1036. Springer, 

Singapore. https://doi.org/10.1007/978-981-13-

9184-2_38  

[15] M. Korichi and A. Meraoumia, “Improved 

biometric identification system using a new 

scheme of 3D local binary pattern,” International 

Journal of Information and Communication 

Technology, Vol. 14, No. 4, p. 439-455, 2019.  

https://doi.org/10.1504/ijict.2019.101863  

[16] Z. Guo, L. Zhang and D. Zhang, "Feature Band 

Selection for Multispectral Palmprint 

Recognition," 2010 20th International Conference 

on Pattern Recognition, 2010, pp. 1136-1139, 

https://doi.org/10.1109/icpr.2010.284 . 

[17] A. Meraoumia, S. Chitroub, and A. Bouridane, 

“An efficient palmprint identification system 

using multispectral and hyperspectral imaging,” 

In: Modeling Approaches and Algorithms for 

Advanced Computer Applications. Studies in 

Computational Intelligence, vol 488. Springer, 

Cham.                                             

https://doi.org/10.1007/978-3-319-00560-7_20 

[18] V. Roşca and A. Ignat, "Quality of Pre-trained 

Deep-Learning Models for Palmprint 

Recognition," 2020 22nd International 

Symposium on Symbolic and Numeric 

Algorithms for Scientific Computing (SYNASC), 

2020, pp. 202-209, 

https://doi.org/10.1109/synasc51798.2020.00041  

[19] Junwen Sun, Waleed Abdulla, Weiming Wang, 

Qiong Wang, and Hai Zhang, "Band Selection for 

Palmprint Recognition," Journal of Advances in 

Information Technology Vol. 7, No. 4, pp. 287-

290, November, 2016. 

https://doi.org/10.12720/jait.7.4.287-290  

[20] R. Chlaoua, A. Meraoumia, M. Korichi and K. 

Aiadi, "Visible spectrum bands of palmprint 

image for a robust biometric identification 

system," 2016 International Conference on 

Information Technology for Organizations 

Development (IT4OD), 2016, pp. 1-4, 

https://doi.org/10.1109/it4od.2016.7479292  

[21] Z. Guo, D. Zhang, L. Zhang and W. Liu, "Feature 

Band Selection for Online Multispectral 

Palmprint Recognition," in IEEE Transactions on 

Information Forensics and Security, vol. 7, no. 3, 

pp. 1094-1099, June 2012, 

https://doi.org/10.1109/tifs.2012.2189206  

[22] S. Zhao, B. Zhang, and C. L. Philip Chen, “Joint 

deep convolutional feature representation for 

hyperspectral palmprint recognition,” Inf. Sci. 

(Ny)., vol. 489, pp. 167–181, 2019.  

https://doi.org/10.1016/j.ins.2019.03.027. 

[23] S. Zhao, W. Nie and B. Zhang, "Multi-Feature 

Fusion Using Collaborative Residual for 

Hyperspectral Palmprint Recognition," 2018 

IEEE 4th International Conference on Computer 

and Communications (ICCC), 2018, pp. 1402-

1406, 

https://doi.org/10.1109/compcomm.2018.878074

8 

[24] Meraoumia, A., Kadri, F., Bendjenna, H., 

Chitroub, S., Bouridane, A. (2017). Improving 

Biometric Identification Performance Using 

PCANet Deep Learning and Multispectral 

Palmprint. In: Biometric Security and Privacy. 

Signal Processing for Security Technologies. 

Springer, Cham. 

             https://doi.org/10.1007/978-3-319-47301-7_3 

[25] BENSID, Khaled, SAMAI, Djamel, LAALLAM, 

Fatima Zohra, et al. Deep learning feature 

extraction for multispectral palmprint 

identification. Journal of Electronic Imaging, 

2018, vol. 27, no 3, p. 033018. 

https://doi.org/10.1117/1.JEI.27.3.033018 

[26] J. Heikkila and V. Ojansivu, "Methods for local 

phase quantization in blur-insensitive image 

analysis," 2009 International Workshop on Local 

and Non-Local Approximation in Image 

Processing, 2009, pp. 104-111, 

https://doi.org/10.1109/lnla.2009.5278397  

[27] ADJIMI, Ahlem, HACINE-GHARBI, Abdenour, 

RAVIER, Philippe, et al. Extraction and selection 

of binarised statistical image features for 

fingerprint recognition. International Journal of 

Biometrics , vol. 9, no 1, p. 67-80, 2017. 

https://doi.org/10.1504/ijbm.2017.10005054  

[28] Alex Krizhevsky, “ImageNet Classification with 

Deep Convolutional Neural Networks Alex,” 

Handb. Approx. Algorithms Metaheuristics, pp. 

1–9, 2017. 

             https://doi.org/10.1145/3065386  

[29] K. Simonyan and A. Zisserman, “Very deep 

convolutional networks for large-scale image 

recognition,” 3rd Int. Conf. Learn. Represent. 

https://doi.org/10.1007/s00521-022-07098-4
https://doi.org/10.1109/icmb.2014.36
https://doi.org/10.1109/icb.2015.7139104
https://doi.org/10.1007/978-3-319-69923-3
https://doi.org/10.1007/978-981-13-9184-2_38
https://doi.org/10.1007/978-981-13-9184-2_38
https://www.inderscienceonline.com/journal/ijict
https://www.inderscienceonline.com/journal/ijict
https://www.inderscienceonline.com/journal/ijict
https://www.inderscienceonline.com/toc/ijict/14/4
https://doi.org/10.1504/ijict.2019.101863
https://doi.org/10.1109/icpr.2010.284
https://doi.org/10.1007/978-3-319-00560-7_20
https://doi.org/10.1109/synasc51798.2020.00041
http://www.jait.us/uploadfile/2022/1110/20221110022216537.png
http://www.jait.us/uploadfile/2022/1110/20221110022216537.png
https://doi.org/10.12720/jait.7.4.287-290
https://doi.org/10.1109/it4od.2016.7479292
https://doi.org/10.1109/tifs.2012.2189206
https://doi.org/10.1016/j.ins.2019.03.027
https://doi.org/10.1109/compcomm.2018.8780748
https://doi.org/10.1109/compcomm.2018.8780748
https://doi.org/10.1007/978-3-319-47301-7_3
https://doi.org/10.1117/1.JEI.27.3.033018
https://doi.org/10.1109/lnla.2009.5278397
https://doi.org/10.1504/ijbm.2017.10005054
https://doi.org/10.1145/3065386


76 Informatica 47 (2023) 63–80 M. Korichi et al. 

ICLR 2015 - Conf. Track Proc., pp. 1–14, 2015. 

             https://doi.org/10.48550/arXiv.1409.1556 

[30] X. Gu, P. P. Angelov, C. Zhang and P. M. 

Atkinson, "A Massively Parallel Deep Rule-

Based Ensemble Classifier for Remote Sensing 

Scenes," in IEEE Geoscience and Remote Sensing 

Letters, vol. 15, no. 3, pp. 345-349, March 2018, 

https://doi.org/10.1109/lgrs.2017.2787421 . 

[31] K. Nandakumar, Yi Chen, A. K. Jain and S. C. 

Dass, "Quality-based Score Level Fusion in 

Multibiometric Systems," 18th International 

Conference on Pattern Recognition (ICPR'06), 

2006, pp. 473-476, 

https://doi.org/10.1109/icpr.2006.951  

[32] Department of Computing, the Hong Kong 

Polytechnic University (PolyU), Hyperspectral 

Palmprint database, PolyU, available at: 

http://www4.comp.polyu.edu.hk/~biometrics 

/Hyperspectral Palmprrint /HSP .htm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/lgrs.2017.2787421
https://doi.org/10.1109/icpr.2006.951


An Effective Hyperspectral Palmprint Identification System Based… Informatica 47 (2023) 63–80 77 

 

 

Table 3: proposed unimodal system performance (handcrafted & deep learning approach)  

Method Modality Band 
EER 

(%) 
T0 

ROR 

(%) 
RPR 

LPQ 27 

Left 

610 (20) 5.2631 0.9683 89.4737 188 

690 (28) 0.8170 0.7813 96.2281 171 

850 (44) 0.0877 0.7698 99.5614 17 

940 (53) 0.3508 0.7210 99.1228 92 

Right 

610 (20) 6.4035 0.7194 88.0702 188 

760 (35) 2.2807 0.7539 94.7368 188 

850 (44) 0.0318 0.8173 99.5614 9 

940 (53) 0.3911 0.7444 99.2105 88 

BSIF 

Left 

610 (20) 4.2982 0.6489 90.5263 190 

690 (28) 0.7894 0.7895 96.4912 143 

850 (44) 0.1619 0.7158 99.6491 19 

940 (53) 0.1754 0.7381 99.2982 71 

Right 

610 (20) 5.4385 0.6744 89.2982 188 

760 (35) 1.2595 0.7753 95.8772 187 

850 (44) 0.0877 0.7515 99.5614 6 

940 (53) 0.2154 0.7124 99.5614 91 

CNN-

VGG16 

Left 

610 (20) 4.1228 0.7972 88.1579 180 

690 (28) 1.0337 0.8197 96.1404 98 

850 (44) 0.0877 0.8553 99.3860 147 

940 (53) 0.0877 0.8465 99.4737 108 

Right 

610 (20) 5.5263 0.8395 86.2281 190 

760 (35) 0.4385 0.8436 97.2807 67 

850 (44) 0.1896 0.8371 98.9474 12 

940 (53) 0.3508 0.8175 98.8596 32 

CNN-

VGG19 

Left 

610 (20) 3.8179 0.8265 87.6316 175 

690 (28) 1.3157 0.8053 96.0526 123 

850 (44) 0.1754 0.8317 99.6491 93 

940 (53) 0.0877 0.8742 99.3860 69 

Right 

610 (20) 5.4321 0.8389 86.0526 189 

760 (35) 0.5047 0.8267 97.3684 29 

850 (44) 0.1754 0.8421 99.1228 21 

940 (53) 0.9430 0.8670 99.9123 3 

CNN-

AlexNet 

Left 

610 (20) 1.9298 0.7842 93.5088 113 

690 (28) 0.7017 0.7851 97.8070 165 

850 (44) 0.0877 0.7642 99.9123 55 

940 (53) 0.0877 0.7687 99.7368 
31 

 

Right 

610 (20) 3.0701 0.7839 90.2632 145 

760 (35) 0.2631 0.8091 99.2982 107 

850 (44) 0.0129 0.8701 99.9123 4 

940 (53) 0.0349 0.8513 99.8246 5 
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Table 4: Multimodal open/closed-set test results (first scenario) 

Method Modality Band EER (%) T0 
ROR 

(%) 
RPR 

LPQ 27 

Left 

Bands 

Sum 0.0877 0.7535 99.6491 26 

WSum 0.0877 0.7819 99.6491 15 

Prod 0.7260 0.2372 97.8070 135 

WProd 0.0877 0.7449 99.6491 15 

Right 

Bands 

Sum 0.0352 0.8184 99.6491 10 

WSum 0.2190 0.7505 99.0351 83 

Prod 0.5358 0.3085 98.3333 171 

WProd 8.2667.10-3 0.8820 99.5614 7 

BSIF 

Left 

Bands 

Sum 0.0647 0.7137 99.8246 17 

WSum 0.0536 0.7446 99.7368 11 

Prod 0.5263 0.2070 98.5088 187 

WProd 0.2631 0.6821 99.6491 187 

Right 

Bands 

Sum 0.0129 0.8351 99.8246 13 

WSum 0.1754 0.7570 99.5614 75 

Prod 0.2227 0.3485 99.0351 88 

WProd 0.0445 0.7715 99.8246 3 

CNN-

VGG16 

Left 

Bands 

Sum 0.0877 0.7973 99.8246 80 

WSum 0.0877 0.8177 99.7368 36 

Prod 0.0877 0.5151 99.7368 63 

WProd 0.0877 0.8168 99.8246 117 

Right 

Bands 

Sum 0.0459 0.8435 99.2982 5 

WSum 0.0877 0.8288 99.2982 16 

Prod 0.0877 0.5232 99.2982 188 

WProd 0.1754 0.7980 99.0351 188 

CNN-

VGG19 

Left 

Bands 

Sum 0.0877 0.7935 99.9123 41 

WSum 0.0536 0.8296 99.7368 15 

Prod 0.0877 0.4917 99.7368 29 

WProd 0.0877 0.8242 99.9123 69 

Right 

Bands 

Sum 0.0120 0.9131 99.4737 2 

WSum 0.0297 0.8883 99.1228 6 

Prod 0.0877 0.5005 99.6491 188 

WProd 0.1754 0.8036 99.2982 188 

CNN-

AlexNet 

Left 

Bands 

Sum 7.4259.10-3 0.8030 99.9123 13 

WSum 5.5111.10-3 0.8930 99.7368 5 

Prod 6.4977.10-3 0.6360 99.8246 6 

WProd 0.0877 0.7267 99.9123 30 

Right 

Bands 

Sum 1.8564.10-3 0.9760 99.9123 2 

WSum 0.0102 0.9431 99.7368 9 

Prod 0 0.8440 100 1 

WProd 3.6741.10-3 0.9110 99.8246 3 
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Table 5: Multimodal open/closed-set test results (second scenario) 

Method Band EER (%) T0 
ROR 

(%) 
RPR 

LPQ 27 

Sum 0 0.9130 100 1 

WSum 0 0.9850 100 1 

Prod 0.0891 0.2130 99.3860 62 

WProd 9.2824x10-4 0.9740 99.9123 2 

BSIF 

Sum 0 0.9600 100 1 

WSum 0 0.9590 100 1 

Prod 0.1754 0.0725 99.7368 184 

WProd 0.1754 0.4195 99.8246 184 

CNN-

VGG16 

Sum 0 0.8210 100 1 

WSum 0 0.8770 100 1 

Prod 0.0877 0.1327 99.9123 186 

WProd 0.0877 0.5821 99.9123 186 

CNN-

VGG19 

Sum 0 0.8050 100 1 

WSum 0 0.8950 100 1 

Prod 0.0877 0.1221 99.9123 184 

WProd 0.0877 0.5761 99.9123 184 

CNN-

AlexNet 

Sum 0 0.7930 100 1 

WSum 0 0.8260 100 1 

Prod 0 0.1510 100 1 

WProd 0 0.7450 100 1 

 

Table 6: proposed system performance comparison with the state-of-the-art 

Method 
Band selection 

evaluation way 

Number of 

selected bands 

Feature 

extraction approach 
EER ROR 

[21] 

 

Clustering (4 

clusters) 
4 Handcrafted 0.0780% / 

[11] / 52 Handcrafted 4.00% / 

[12] 
Clustering (10 

cluster) 
/ Handcrafted 3.26% / 

[19] 
Clustering (3 

clusters) 
3 Handcrafted 0.17325% / 

[13] / All Handcrafted / 99.43% 

[23] / 53 Deep learning 0.11% 99.76% 

[22] / 53 Deep learning 0.015% 99.62% 

[14] Manual 2 Handcrafted / 99.92% 

Proposed 

approach 
Automatically 4 

Handcrafted/deep   

learning 
0.000% 100% 
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