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This paper presents an intelligent interpretatidrutirasonic C-scan results for carbon-fiber-reinfed
plastic (CFRP) panels by using fuzzy logic approddhrasonic C-scan results have relatively low
resolution and poor imaging quality in anisotromiomposites due to the speckle noise produced by the
interference of backscattered signals. In this gfddzzy logic was implemented to accurately daterm

a defect’s shape and size and to avoid over-segtientand under-segmentation. For this, first, a33x
mask was considered to define the central valuetaadnean value within the C-scan amplitude data.
Then, five linguistic labels for the central valaed mean value were defined as: very low, low, agut
high, and very high so as to determine fuzzy setthé fuzzy inference system (FIS). Combined 2&th
fuzzy rules, the FIS was capable of making dedsiased on fuzzy sets and fuzzy rules. Experimental
results demonstrated this fuzzy logic method cdecti¢he size and shape of sub-surface delamination
correctly, and restrain the noises effectively. Bhghors believe this approach for automatic defect
detection and classification can be an integral tpaf the development of an intelligent NDE expert
system for composite structures in the future, tmaking defect evaluation process much easier and
more accurate.

Povzetek: Predstavljena je inteligentna metoda mébdike za analizo z ogljikom @fne plastike.

1 Introduction

Carbon-fiber-reinforced plastic (CFRP) panels apsvn challenges, various imaging segmentation approgéhes
widely being used in many structural applications10] have been reported to aid the inspection teghmi
especially in the aviation industry, due to thaiperior Most segmentation algorithms are based on disagititin
thermal and physical properties compared to metaland similarity. In the first category, an abruptobe in
However, low velocity impacts, for instance, bindhail density is considered as the edge. Typical edgectien
strikes on an aircraft, can cause impact dama@&FRP algorithms are Laplacian of a Gaussian (LoG) and Ze
structures. Such damage can take the form of argcki crossings. In the second category, segmentation is
delaminations, or fiber fractures [1, 2]. The daesmin achieved by partitioning an image into similar dgns
CFRP structures are usually complicated and highhggions according to a set of predefined criteln@age
dependent on the properties of the constituentnmdéte thresholding and region growing, splitting and niegg
fiber orientation, stacking sequence, and nature afe typical algorithms in this category. Howeveraga
loading [3]. Therefore, a fast and reliable nontdegive  segmentation is still one of the most difficult kasin
evaluation (NDE) process is constantly required tomage processing. Segmentation accuracy deterrttiees
economically ensure the integrity, safety, andatglity eventual success or failure of computerized analysi
of these structures. Ultrasonic NDE is increasifging procedures [10]. A study has demonstrated that rule
used in composite inspection because of its langace, based algorithms have better performance than the
speed, and non-contact testing capabilities [4-7{raditional image segmentation method in distinking
However, due to the anisotropic properties and nouefect areas [11, 12].

homogeneous behavior of these structures, they have For this work, a rule based fuzzy logic approack wa
brought a lot of challenges in the NDE industry.eOnapplied to solve this problem. The algorithm ué&Bzthe
critical problem is how aggressively to decide vieetor fuzzy inference system of a center element andight

not variations in the C-scan results are defecfs [8eighboring elements to define a new objective tionc
Another problem is the risk of under-segmentation cand determine the variance by classifying the fionct
over-segmentation of the defect area. Both incil@ili The paper is organized as follows: a discussiorthef
affect the size, location, and even features otadsf basic theory, algorithm of fuzzy logic rules, arfet
which are critical for defect evaluation. To mebéde experimental setup. They are then followed by the
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experimental result. Finally, conclusions are pded at 3 Fuzzy Iogic algorithm
the end.

> E logic th d licati 3.1 Central valueand local mean value
uzzy logic theory and application The C-scan result obtained from ultrasonic testsg

Fuzzy logic originally developed by Zadeh [13] ist@ 2D matrix corresponding to the plan-type view oé th
logic that is fuzzy, but the logic that is useddiscribe |ocation and size of the test specimen. Each elemien
fuzziness. It is an integral component of an expgstem  the matrix indicates the coordinate and the angditof
and has been widely implemented in many control andceived signals. Let(i, ;) be the ultrasonic amplitude
prediction systems because it can tackle many endl data of the elemer(t, ;) in a two dimensional M N
under various assumptions and approximations WitRatrix. The mask is defined as am@l) x (2n+1)
greater accuracy. In addition, its extraordinaryyindow centered ati,j) where m and n are integers.
controlling and reasoning capabilities have alsalend  This window will go through each element to obtain
popular in many complex industrial systems. In 2zu  central amplitude and local mean amplitude valués o
system, it is possible to define expert knowledgeneif every element in the Mk N matrix. Note that the

statistical _ data is not available. A f.uzzy rule isyindow’s shape is not necessarily a square. Theae
mathematically described as a fuzzy relation betwtbe amplitude value is:

sets describing the antecedent and consequent.rikech

in a fuzzy logic is expressed by the following tiela Ce(i,)) =x(,)) (2
[14]: The local mean of an eleme(ifj) can be computed as:
R, = { (Coy), R Ce, 7)) | } (1) - 1 jHn gi+m

Vo ny) €40 xByup(x,y) €[1,0] M) = Gy 2t=i—n Zi=i-m ¥, D) (3)

In equations (2) and (3), the parameters of théraken

value distribution and local mean value distribntfor a
iven matrix are strongly dependent on the wind@e s
2m+1) x (2n+1). For this, the data are assumed strongly
orrelated between the central element andnits n —

neighbors. Thus, the computed central amplituddé an
local mean amplitude will increase as the windoxe $&
increased. The window size also depends on thdl deta
pattern as well as the C-scan data “resolution&p(st
increment of x and y axes). Higher resolution Casca
should use larger window sizes to facilitate the
}('isualization of local details. However, a largendow
increases the computational requirement. Thuse tisea
trade-off between the enhancement of local detaild
computational loading when determining the proper
window size. In this study, to simplify the taskew
choosem =n =1, i.e. a3 x 3 window as shown in
A:igure 2. For the given CFRP specimen A, the 2Dximat
of C-scan result has861 x 961 elements. A3 x 3
window is large enough to carry sufficient detailda
small enough to keep lower computational time ia th
whole 2D matrix area.

where,x OX andy 0O Y, 4; andB; are fuzzy subsets
of the domains X and Y associated with linguiséibdls,
R;(x,y) is a fuzzy relation defined on the Cartesia
product universe X Y.

A general fuzzy inference system (FIS) is shown i
Figure 1. It consists of crisp input, fuzzifier,dmledge
base, inference methods, deffuzifier, and a crisip.
The FIS takes a crisp input and determines theedetyr
which they belong to each of the appropriate fugeis
via membership functions. A membership functiorais
curve that defines how each point in the input spiac

measures the value of input variables and perfoams
scale mapping that transfers the range of valuespoift
variables into corresponding universes of discaufée
knowledge base consists of fuzzy sets and fuzzysrul
Fuzzy sets provide the necessary definitions wiaih
used to define linguistic rules and fuzzy dat
manipulation, and fuzzy rules characterize the robnt
goals and control policy of domain experts by meares
set of linguistic control rules.

Knowledge Base i— 1‘ i’ i+ 1‘
Fuzzy set j—l j—l j—l
i1 i1
. LJj .
] J
Crisp i Inference : Crisp : z z
Pl l—-)) Fuzzifier Tethod H Defuzzifie }——>| ontput i 1’ i i+ 1’

jt+1 jt+1 jt+1

Figure 1: Fuzzy Inference System.

The inference method is the kernel of the FIS and i Figure 2: Applied3 x 3 mask withm =n = 1.

has the capability of making decisions based omyfuz i i

sets and fuzzy rules. Finally, defuzzifier performscale 32 ~Membership functions

mapping that converts the range of values of outpOthe central value and local mean value for a 3ma3k
variables into corresponding universes of discaurse  were used to define the membership functions. Fisr t
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five linguistic labels for the central value ana tthean decision. It is impractical or impossible to findaet rule
value were defined as very low, low, neutral, highd sets made by a mathematical formula or model.
very high. These levels are based on thresholdesdir Especially for sufficiently complex problems, sueb
each element amplitude signal value. For example, | defect detection, mathematical methods cannot gener
amplitude indicates less received ultrasonic sigmhlch accurate sets of rules. In this case, mathematical
has a greater probability to be classified as aadefThe methods can only support rules that have already be
central value classes are denotedCas C,, Cn, Cu, and created. Thus, manual intervention based on expert
Cvn. Similarly, the local mean value is classifiedMag, knowledge is still required. Although most fuzzyles

ML, M, My, andMvh. To separate different classes, 4annot be accurately developed by a mathematical
groups predefined thresholds, g; ... ... a,, B, are used method, if one of the rules is wrong, even greaitigng,

as shown in Figure 3. These threshold values atiee fuzzy inference system will compensate fordher
determined experimentally. As an example, if a @@nt just by firing the other correct rules. HoweverzZy
amplitude value falls into the range[gf;, a, ], it will be  rules should be decided carefully by using prior
classified to “High” a<Cy. If the value falls intods, B3], knowledge and NDE expert experience to avoid
it partially belongs to both “Neural” and “High”ln this  underperformance in the fuzzy inference system.s&he
case, 2 fuzzy rules are fired to determine the wutprules should be tested vigorously and refined if
linguistic label of this value. Similar functionsnca necessary.

classes are determined for local mean values. reiite For this study, two variables (central value anchlo
values fall into different intervals and are clissi into mean value) are utilized as fuzzy inference system
the  corresponding  linguistic  labels  (classeshputs; fuzzy logic rules are defined as the foitogy
appropriately. The linguistic labels and membership

functions are depicted in Figure 3. Rule | nputs Outputs (O)
S Number Central Mean
Membership Function Plots Va|ue(c) Va|uea\/| )
Very Low Low Neutral High Very High R1 VL VL L Positive
N defect
Z R2 VL L VL Positive
£ defect
= R3 VL N L | Potential
defect
o B o B2 o3 B3 o B4 Amplitude R4 VL H N May or not
. . . . be a defect
Figure 3:Input variable membership functions and -
9 g P R5 VL VH H | Potental
good area
For the output variable, 5 labels were attributéd: R6 L VL VL Positive
(Very Low) indicating it is a positive defect, L ¢l) defect
indicating a potential defect, N (Neutral) indicefi it R7 L L L Potential
may or may not be a defect, H (High) indicating a defect
potential good area, and VH (Very High) indicatiag RS L N N | May or not
positive good area. The inference method proposed p be a defect
Sugeno was utilized in the output which is a camista R9 L H H Potential
value for each linguistic label of the variabletle range good area
[0, 1]. The 5 output linguistic labe@®y., O, On, On, and R10 L VH VH Positive
Own are shown in Figure 4. good area
R11 N VL L Positive
Membership Function Plots defect
Very Low Low Neutral High Very High R12 N L L Potential
defect
£ R13 N N N | May or not
2 be a defect
2 R14 N H H Potential
good area
= . = = Y< R15 N VH VH | Positive
' - ’ ' Amplitude good area
Figure 4:Outputvariable membership functions and | R16 H VL L | Potential
thresholds. defect
R17 H L N | May or not
3.3 Fuzzy logicrules be a defect
. R18 H N H Potential
In the fuzzy inference system, fuzzy rules are lgua good area

elaborated arbitrarily based on experience and rexpe
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Inputs
Nl?nlilk?er Central Mean Outputs (O)
Value(C) | ValueM)

R19 H H H Potential
good area

R20 H VH VH Positive
good area

R21 VH VL N | May or not
be a defect

R22 VH L H Potential
good area

R23 VH N VH Positive
good area

R24 VH H VH Positive
good area

R25 VH VH VH Positive
good area

In the fuzzy inference system, multiple rules ciaa f
at once. For instance, if a central value fallo ithe
region of |a,, B8], the overlap part of linguistic labels
“Neutral” and “High”, both rules will fire. In caséhe
value is more “High” than “Neutral”’, the “High” ral
will generate a stronger response. The fuzzy dlyori
will evaluate the result that fired based on furzles in
Table 1, and use an appropriate defuzzificatiorhogto

Table 1:Fuzzy logic rules.

generate the output response.
To make the fuzzy rules easy to visualize, a fuzzgorresponding to Figure 3, output class ceptere pre-

associate matrix is depicted in Table 2.

com VUL [N [H [V
VL |vL|VvL| L | N|H
L |[ve|L | N|H]|VH

N [wve| L |N|H]|VH

H LIN|H|H]|VH
VH | N | H |VH|VH | VH

Table 2: Fuzzy rules in associative matrix.

As shown in Table 2, more weight is attributedhe t

S. Lietal.

from FIS. In the COA method, first the area under t
scaled membership functions and within the rangehef
output variable is calculated. Then, the geometeicter
of this area is obtained by using the following aiipn:

o _ DI WiXYVi

Ye =5 (4)
where:y; is the desired crisp defuzzification value witk th
COA method.

u; is theim membership degree of input variables.

y; is thein output class center (output variables
membership function).

n is the number of elements in a fuzzy set.

The prod method is applied to both of the
conjunction evaluation of the rule antecedents faady
rules implication. The aggregation of the rule a$pis
carried out by the sum method. Experiment values of
input variables are pre-determined with expert
knowledge as follows:

Membership functions of central value:
Ce, = 0.09, Cp, = 0.11, Co, = 0.15, Cg, = 0.17, C, =
0.19, Cg, = 0.21, C,, = 0.25,Cp, = 0.27

Membership functions of the mean value:
M,, =013, Mg =0.15, M,, =017, Mg, = 0.19 ,
M,, = 0.19, Mg, = 0.21, M,, = 0.22, Mg, = 0.23

determined as:
y, =0,y, =0.25,¥y3; =0.5,y, = 0.75, andys = 1

A simple demonstration is given below to briefly
explain how the fuzzy logic algorithm works. Foreon
certain element in a 2D matrix of C-scan resul, it
central amplitude value is 0.105 V and its mean
amplitude value (in3x3 window) is 0.227 V.
According to the input membership sets and defined
fuzzy rules, during the fuzzy-inference processuzzy
logic rules are fired in parallel:

Rule 4 1, =u(Cp)x u(My) =0.125x% 0.15

Rule5 pus = u(Cy) X u(Myy) = 0.125 x 0.35
=0.04375 - ps in H  (, = 0.75)

mean values than central values. For instancehdf t

mean value is VH, but the central value is L, tkatral
value is “isolated” by its 8 neighbors. Such a poin

Rule9 puy =u(C) x u(My) = 0.375x%0.15
=0.05625 - ug in H  (, = 0.75)

should be considered as an independent “mutatioirit p

due to the possibility of noise or system errorefEfore,
mean values are given more weight than centralegaio
make sure the local defect information3irx 3 window

Rule 10 pqyy = u(Cy) x u(Myy) = 0.375 % 0.35
=0.13125 - pyoin VH (y5=1)
Based on equation (4), the fuzzy outpyt with

does not contain a misjudged signal mutation cabsed COA method can be obtained:

noise. Eventually the output result of this poiritl Wwe

VH.

3.4 Defuzzification

For this study, the central of area (COA) defuzaifion
method [15] was utilized to obtain a crisp outpatue

Ye = m
= (0.18175 x 0.5 + 0.04375 x 0.75 + 0.05625
x 0.7 +0.13125 x 1)/( 0.5 + 0.75 + 0.75 + 1)
= 0.8625 (5)
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The fuzzy logic outputy* of C-scan data will be
normalized to 0~255 and plot in 2D matrix
corresponding to column and index, shown as a gray-
level image.

4 Experimental setup

The immersion ultrasonic system with associated
instrumentation used to inspect the CFRP pandidg/s

in Figure 5. A 5 MHz dual element Panametric
transducer with a 2 inch focal length was utilizada
pulse-echo mode for the inspection. The standoff
distance between the transducer and the panelatds s

2 inches and the scan was conducted at an increofient
0.01 inches.

Figure 5: Immersion ultrasonic testing system.

(a) Optical image of specimen A

A Lo :
iy © @ &
3'3 A o ® & /"Cﬁ
l %
®
‘ 76 65 65 51 75 75
(c) Defect map of specimen A (dpefect map of specimen B

Figure 6: Optical images and defect maps of spatimand B. All dimensions are in mm.

To verify the application of fuzzy logic defect ) )
detection, two different CFRP panels with predefined Result and discussion
phantom defects, i.e. delamination defects duenfmatt The fuzzy logic algorithm as described earlier, was
damage were considered. These delamination defegisplied to the ultrasonic C-scan results (maximuaokb
were artificially simulated by impacting the paneith  wall amplitude data) obtained from both panels ¢dfy
an external object of known energy. These defems ahe versatility and stability of the fuzzy inferensystem.
difficult to recognize by visual inspection, butvea The proposed method was implemented in MATLAB
severely progressed within the panel. Specimen A iSR2012b. The reconstructed raw C-scan results are
102x 257x 4.445 mm panel which consists of impacpresented in Figure7, where defect areas are wpEss
damage at three different locations. Similarly,cspen by dark shade of gray i.e. significant drop in puésho
B measured 208 300x 3.581 mm in dimensions. The signal amplitude. The shaded area labeled “Marker”
optical images and defect maps of each specimen @gure 7 is the marker that was attached to thelpi@n

shown in Figure 6. indication purposes.
Hole
Marker
el Yk 5 : B B SV X ~Llinch oX; S inc
(a) Reconstructed C-scan image of specimen A (bpRructed C-scan image of specimen B

Figure 7: Reconstructed C-scan result for CFRPIpane



364 Informatica37 (2013) 359-366 S. Lietal.

The fuzzy logic output of ultrasonic C-scan data fodefects with more confidence by eliminating the
CFRP panels A and B are normalized and plottedbit 8 background compared to the raw C-scan image as in

grayscale images (256 gray-level) as shown in Ei@ur Figure 7 (a) and (b). The defect outline presenhige
Figure 8 (a) and (b) are the fuzzy logic outputuliss distinct to recognize, allowing post-processing kvsuch
with the COA defuzzification method. From the résul as measurement of defect size, shape, and lodatiba
obtained, the fuzzy logic method is able to dethet much easier.

Marker .
' L]

—
1linch

7

Hole Y

/s

Marker

°
—

1linch .A/

Hole

(a) Specimen A fuzzy logic output result image with the (b) Specimen B fuzzy logic output results image with
the COA defuzzification method

Figure 8: Fuzzy logic output results.

COA defuzzification method

To demonstrate the effectiveness and robustness of
the fuzzy logic method applied, defects in specimen
and 3 of 6 defects in specimen B are shown in Eigur
and Figure 10, respectively. The experiment results
indicate that the fuzzy logic method has satisfied
performance on both CFRP panels (sample A and B),
which have different carbon fiber orientation and
laminates. As shown in Figure 9 and Figure 10, yuzz
logic results provide a clear and smooth edge fareall
defects in sample A and B. The fuzzy logic methed i
able to remove the background noise in C-scan im&me
obtain high contrast and enhanced images.

(a) C-scanimage of
sample A defect 1

r g o

(b) Fuzzy result of
sample A defect 1

o ¥
(c) C-scanimage of
sample A defect 2

W

(d) C-scanimage of
sample A defect 2

() C-scan image of
sample A defect 3

(f) C-scanimage of
sample A defect 3

Figure 9:Comparison of C-scan images and fuzzy
logic results of 3 defects in specimen A.

L

1.
it

(a) C-scanimage of
sample B defect 1

o oE
:.';_"'-f_ @ ».'_i"# b
A

i W o 4
(c) C-scanimage of
sample B defect 2

i

(e) C-écan image of
sample B defect 3

(b) C-scanimage of
sample B defect 1

(d) C-scanimage of
sample B defect 2

() C-scanimage of
sample B defect 3

Figure 10: Comparison of C-scan images and fuzzy
logic results of 3 defects in specimen B.

For subjective evaluation, fuzzy logic output résul

) ] are compared to the reconstructed C-scan imagedyid

¥ side in Figure 9 and Figure 10. From the resultaiabd,
the fuzzy logic method is able to detect the dsfeath
more confidence by eliminating the noises seeménG-
- scan images on the left side. The fuzzy logic outpu
capable of providing higher contrast of the defecta
which allows NDE inspector make accurate decistons
identify the defect size and location.

In addition to the perceived image quality with

human visual system (HVS), for objective evaluation
peak signal-to-noise ratio (PSNR) and contrastaditm:
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noise ratio (CNR) are employed for quantitativeg Conclusions

assessment. The fuzzy logic result and C-scantrasell , )
tested to demonstrate the image quality and robastaf Analysis of the raw C-scan result of composites maly

the fuzzy logic method provide the reliable classification of differentgiens
The PSNR is given as:’ (defect, non-defect). A fuzzy logic methodology is
MAX,2 applied to classify the defect and non-defect areas
PSNR =10 -lo ! 6 CFRP panels with simulated delamination defecte Th
810 S (6) . .
MSE experimental results obtained for these panels have

demonstrated the effectiveness of the applied ndethio
Where:MAYX; is the maximum possible pixel value ofcan be used as preprocessing of defect segmentation
the image. In this study, all pixels arerequce the computation complexity and time. However

represented using 8 bits gray levels, herghempership function and fuzzy rules need to besaei

MAX; is 255. for different types of CFRP materials to achievétdye
MSE is the mean squared error between tw@erformance. An automated classification of defeud
compared images. non-defect areas in composites remains a challgrign
which requires a considerable amount of researatk wo
The CNR is given as: to be carried out in future. In addition, the pemfiance
CNR = Si = So ) of the system can also be improved by studying the
m correlation between the damage mechanism and tae da

distribution, and by applying more sophisticated
Where: S; andS, are the mean values inside and outsid@l/gorithms. Further, better performance can beexeki
the ROI respectively by constantly updating the knowledge and ruleshsd t
o; and 6, are the standard deviations,the systems can adapt to new kinds of problems.
respectively
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