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This paper presents an intelligent interpretation of ultrasonic C-scan results for carbon-fiber-reinforced 
plastic (CFRP) panels by using fuzzy logic approach. Ultrasonic C-scan results have relatively low 
resolution and poor imaging quality in anisotropic composites due to the speckle noise produced by the 
interference of backscattered signals. In this study, fuzzy logic was implemented to accurately determine 
a defect’s shape and size and to avoid over-segmentation and under-segmentation. For this, first, a 3×3 
mask was considered to define the central value and the mean value within the C-scan amplitude data. 
Then, five linguistic labels for the central value and mean value were defined as: very low, low, neutral, 
high, and very high so as to determine fuzzy sets for the fuzzy inference system (FIS). Combined with 25 
fuzzy rules, the FIS was capable of making decisions based on fuzzy sets and fuzzy rules. Experimental 
results demonstrated this fuzzy logic method can detect the size and shape of sub-surface delamination 
correctly, and restrain the noises effectively. The authors believe this approach for automatic defect 
detection and classification can be an integral part of the development of an intelligent NDE expert 
system for composite structures in the future, thus making defect evaluation process much easier and 
more accurate. 

Povzetek: Predstavljena je inteligentna metoda mehke logike za analizo z ogljikom ojačane plastike. 

1 Introduction 
Carbon-fiber-reinforced plastic (CFRP) panels are now 
widely being used in many structural applications, 
especially in the aviation industry, due to their superior 
thermal and physical properties compared to metals. 
However, low velocity impacts, for instance, bird or hail 
strikes on an aircraft, can cause impact damage in CFRP 
structures. Such damage can take the form of cracking, 
delaminations, or fiber fractures [1, 2]. The damages in 
CFRP structures are usually complicated and highly 
dependent on the properties of the constituent materials, 
fiber orientation, stacking sequence, and nature of 
loading [3]. Therefore, a fast and reliable non-destructive 
evaluation (NDE) process is constantly required to 
economically ensure the integrity, safety, and reliability 
of these structures. Ultrasonic NDE is increasingly being 
used in composite inspection because of its large surface, 
speed, and non-contact testing capabilities [4-7]. 
However, due to the anisotropic properties and non-
homogeneous behavior of these structures, they have 
brought a lot of challenges in the NDE industry. One 
critical problem is how aggressively to decide whether or 
not variations in the C-scan results are defects [8]. 
Another problem is the risk of under-segmentation or 
over-segmentation of the defect area. Both incidents will 
affect the size, location, and even features of defects, 
which are critical for defect evaluation. To meet these 

challenges, various imaging segmentation approaches [9, 
10] have been reported to aid the inspection technique. 
Most segmentation algorithms are based on discontinuity 
and similarity. In the first category, an abrupt change in 
density is considered as the edge. Typical edge detection 
algorithms are Laplacian of a Gaussian (LoG) and Zero 
crossings. In the second category, segmentation is 
achieved by partitioning an image into similar density 
regions according to a set of predefined criteria. Image 
thresholding and region growing, splitting and merging 
are typical algorithms in this category. However image 
segmentation is still one of the most difficult tasks in 
image processing. Segmentation accuracy determines the 
eventual success or failure of computerized analysis 
procedures [10]. A study has demonstrated that rule 
based algorithms have better performance than the 
traditional image segmentation method in distinguishing 
defect areas [11, 12]. 

For this work, a rule based fuzzy logic approach was 
applied to solve this problem. The algorithm utilizes the 
fuzzy inference system of a center element and its eight 
neighboring elements to define a new objective function 
and determine the variance by classifying the function. 
The paper is organized as follows: a discussion of the 
basic theory, algorithm of fuzzy logic rules, and the 
experimental setup. They are then followed by the 



360 Informatica 37 (2013) 359–366 S. Li et al. 

experimental result. Finally, conclusions are provided at 
the end. 

2 Fuzzy logic theory and application 
Fuzzy logic originally developed by Zadeh [13] is not a 
logic that is fuzzy, but the logic that is used to describe 
fuzziness. It is an integral component of an expert system 
and has been widely implemented in many control and 
prediction systems because it can tackle many problems 
under various assumptions and approximations with 
greater accuracy. In addition, its extraordinary 
controlling and reasoning capabilities have also made it 
popular in many complex industrial systems. In a fuzzy 
system, it is possible to define expert knowledge even if 
statistical data is not available. A fuzzy rule is 
mathematically described as a fuzzy relation between the 
sets describing the antecedent and consequent. Each rule 
in a fuzzy logic is expressed by the following relation 
[14]: 

�� �	� ���, 
�, �
��, 
��	|	��, 
� 	∈ �� 	� �� , �
��, 
� 	∈ �1,0�	�   (1) 

 
where, x ∈X and y ∈ Y, �� and �� are fuzzy subsets 

of the domains X and Y associated with linguistic labels, ����, 
�  is a fuzzy relation defined on the Cartesian 
product universe X × Y.  

A general fuzzy inference system (FIS) is shown in 
Figure 1. It consists of crisp input, fuzzifier, knowledge 
base, inference methods, deffuzifier, and a crisp output. 
The FIS takes a crisp input and determines the degree to 
which they belong to each of the appropriate fuzzy sets 
via membership functions. A membership function is a 
curve that defines how each point in the input space is 
mapped to a membership value. The fuzzifier then 
measures the value of input variables and performs a 
scale mapping that transfers the range of values of input 
variables into corresponding universes of discourse. The 
knowledge base consists of fuzzy sets and fuzzy rules. 
Fuzzy sets provide the necessary definitions which are 
used to define linguistic rules and fuzzy data 
manipulation, and fuzzy rules characterize the control 
goals and control policy of domain experts by means of a 
set of linguistic control rules. 

 
Figure 1: Fuzzy Inference System. 

The inference method is the kernel of the FIS and it 
has the capability of making decisions based on fuzzy 
sets and fuzzy rules. Finally, defuzzifier performs a scale 
mapping that converts the range of values of output 
variables into corresponding universes of discourse. 

3 Fuzzy logic algorithm 

3.1 Central value and local mean value 
The C-scan result obtained from ultrasonic testing is a 
2D matrix corresponding to the plan-type view of the 
location and size of the test specimen. Each element of 
the matrix indicates the coordinate and the amplitude of 
received signals. Let ���, �� be the ultrasonic amplitude 
data of the element ��, �� in a two dimensional M	�	N 
matrix. The mask is defined as a (2m+1) �	 (2n+1) 
window centered at ��, ��  where m and n are integers. 
This window will go through each element to obtain 
central amplitude and local mean amplitude values of 
every element in the M	�	N matrix.  Note that the 
window’s shape is not necessarily a square.  The central 
amplitude value is: 

����, �� 	� ���, ��																																		�2� 
The local mean of an element ��, �� can be computed as: 

����, �� � �
� !"���� #"��∑ ∑ ��%, &��"!'(�)!*"#+(*)#  (3) 

In equations (2) and (3), the parameters of the central 
value distribution and local mean value distribution for a 
given matrix are strongly dependent on the window size 
(2m+1) �	(2n+1). For this, the data are assumed strongly 
correlated between the central element and its  � � , -1 neighbors. Thus, the computed central amplitude and 
local mean amplitude will increase as the window size is 
increased. The window size also depends on the detail 
pattern as well as the C-scan data “resolution” (step 
increment of x and y axes). Higher resolution C-scans 
should use larger window sizes to facilitate the 
visualization of local details. However, a large window 
increases the computational requirement. Thus, there is a 
trade-off between the enhancement of local details and 
computational loading when determining the proper 
window size. In this study, to simplify the task, we 
choose	� � , � 1 , i.e. a 3 � 3  window as shown in 
Figure 2. For the given CFRP specimen A, the 2D matrix 
of C-scan result has 361 � 961  elements. A 3 � 3 
window is large enough to carry sufficient detail and 
small enough to keep lower computational time in the 
whole 2D matrix area.  
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3 - 2 
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3 - 2 

1 4 2, 
3 - 2 
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3 
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Figure 2: Applied 3 � 3 mask with � � , � 1. 

3.2 Membership functions 
The central value and local mean value for a 3 x 3 mask 
were used to define the membership functions. For this, 
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five linguistic labels for the central value and the mean 
value were defined as very low, low, neutral, high, and 
very high. These levels are based on threshold values for 
each element amplitude signal value. For example, low 
amplitude indicates less received ultrasonic signal, which 
has a greater probability to be classified as a defect. The 
central value classes are denoted as CVL, CL, CN, CH, and 
CVH. Similarly, the local mean value is classified as MVL, 
ML, MN, MH, and MVH. To separate different classes, 4 
groups predefined thresholds 5�,	6� 	…… 	58, 68 are used 
as shown in Figure 3. These threshold values are 
determined experimentally. As an example, if a central 
amplitude value falls into the range of	�	69, 58	�, it will be 
classified to “High” as CH. If the value falls into [α9,	β9], 
it partially belongs to both “Neural” and “High”.  In this 
case, 2 fuzzy rules are fired to determine the output 
linguistic label of this value. Similar functions and 
classes are determined for local mean values. Different 
values fall into different intervals and are classified into 
the corresponding linguistic labels (classes) 
appropriately. The linguistic labels and membership 
functions are depicted in Figure 3. 

 
Figure 3: Input variable membership functions and 

thresholds. 

For the output variable, 5 labels were attributed: VL 
(Very Low) indicating it is a positive defect, L (Low) 
indicating a potential defect, N (Neutral) indicating it 
may or may not be a defect, H (High) indicating a 
potential good area, and VH (Very High) indicating a 
positive good area. The inference method proposed by 
Sugeno was utilized in the output which is a constant 
value for each linguistic label of the variable in the range 
[0, 1]. The 5 output linguistic labels OVL, OL, ON, OH, and 
OVH are shown in Figure 4. 
 

 
Figure 4: Output variable membership functions and 

thresholds. 

3.3 Fuzzy logic rules 
In the fuzzy inference system, fuzzy rules are usually 
elaborated arbitrarily based on experience and expert 

decision. It is impractical or impossible to find exact rule 
sets made by a mathematical formula or model. 
Especially for sufficiently complex problems, such as 
defect detection, mathematical methods cannot generate 
accurate sets of rules.  In this case, mathematical 
methods can only support rules that have already been 
created.  Thus, manual intervention based on expert 
knowledge is still required. Although most fuzzy rules 
cannot be accurately developed by a mathematical 
method, if one of the rules is wrong, even greatly wrong, 
the fuzzy inference system will compensate for the error 
just by firing the other correct rules. However, fuzzy 
rules should be decided carefully by using prior 
knowledge and NDE expert experience to avoid 
underperformance in the fuzzy inference system. These 
rules should be tested vigorously and refined if 
necessary. 

For this study, two variables (central value and local 
mean value) are utilized as fuzzy inference system 
inputs; fuzzy logic rules are defined as the following: 

 
 
 
 
 

Rule 
Number 

Inputs 
 
 
 
 
 

Outputs (O) 
Central 

Value(C) 
Mean 

Value(M) 

 

R1 VL VL L Positive 
defect 

R2 VL L VL Positive 
defect 

R3 VL N L Potential 
defect 

R4 VL H N May or not 
be a defect 

R5 VL VH H Potential 
good area 

R6 L VL VL Positive 
defect 

R7 L L L Potential 
defect 

R8 L N N May or not 
be a defect 

R9 L H H Potential 
good area 

R10 L VH VH Positive 
good area 

R11 N VL L Positive 
defect 

R12 N L L Potential 
defect 

R13 N N N May or not  
be a defect 

R14 N H H Potential 
good area 

R15 N VH VH Positive 
good area 

R16 H VL L Potential 
defect 

R17 H L N May or not 
be a defect 

R18 H N H Potential 
good area 
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Rule 
Number 

Inputs 
 
 
 
 
 

Outputs (O) 
Central 

Value(C) 
Mean 

Value(M) 

 

R19 H H H Potential 
good area 

R20 H VH VH Positive 
good area 

R21 VH VL N May or not 
be a defect 

R22 VH L H Potential 
good area 

R23 VH N VH Positive 
good area 

R24 VH H VH Positive 
good area 

R25 VH VH VH Positive 
good area 

Table 1: Fuzzy logic rules. 

In the fuzzy inference system, multiple rules can fire 
at once. For instance, if a central value falls into the 
region of [5<,	6< ], the overlap part of linguistic labels 
“Neutral” and “High”, both rules will fire. In case the 
value is more “High” than “Neutral”, the “High” rule 
will generate a stronger response. The fuzzy algorithm 
will evaluate the result that fired based on fuzzy rules in 
Table 1, and use an appropriate defuzzification method to 
generate the output response.  

To make the fuzzy rules easy to visualize, a fuzzy 
associate matrix is depicted in Table 2. 
 

Mean 
Central VL L N H VH 

VL VL VL L N H 

L VL L N H VH 

N VL L N H VH 

H L N H H VH 

VH N H VH VH VH 

Table 2: Fuzzy rules in associative matrix. 

As shown in Table 2, more weight is attributed to the 
mean values than central values. For instance, if the 
mean value is VH, but the central value is L, the central 
value is “isolated” by its 8 neighbors. Such a point 
should be considered as an independent “mutation” point 
due to the possibility of noise or system error. Therefore, 
mean values are given more weight than central values to 
make sure the local defect information in 3 � 3 window 
does not contain a misjudged signal mutation caused by 
noise. Eventually the output result of this point will be 
VH. 

3.4 Defuzzification 
For this study, the central of area (COA) defuzzification 
method [15] was utilized to obtain a crisp output value 

from FIS. In the COA method, first the area under the 
scaled membership functions and within the range of the 
output variable is calculated. Then, the geometric center 
of this area is obtained by using the following equation: 


=∗ � ∑ ?@�A@B@CD∑ ?@B@CD    (4) 

where: y=∗ is the desired crisp defuzzification value with the 
COA method. �� is the i th membership degree of input variables. F�  is the i th output class center (output variables 
membership function). 

n  is the number of elements in a fuzzy set. 
 

The prod method is applied to both of the 
conjunction evaluation of the rule antecedents and fuzzy 
rules implication. The aggregation of the rule outputs is 
carried out by the sum method. Experiment values of 
input variables are pre-determined with expert 
knowledge as follows:  

 
Membership functions of central value: �GD � 0.09,	�ID � 0.11, �GJ � 0.15,	�IJ � 0.17, �G< �0.19,	�I< � 0.21,	�GM � 0.25,	�IM � 0.27 
 
Membership functions of the mean value: NGD � 0.13 , 	NID � 0.15 , NGJ � 0.17 , 	NIJ � 0.19 , 
NG< � 0.19,	NI< � 0.21,	NGM � 0.22,	NIM � 0.23 
 
Corresponding to Figure 3, output class center F� are pre-
determined as: F� � 0, F � 0.25, F9 � 0.5, F8 � 0.75, and FO � 1  
 

A simple demonstration is given below to briefly 
explain how the fuzzy logic algorithm works. For one 
certain element in a 2D matrix of C-scan result, its 
central amplitude value is 0.105 V and its mean 
amplitude value (in 3 � 3  window) is 0.227 V. 
According to the input membership sets and defined 
fuzzy rules, during the fuzzy-inference process, 4 fuzzy 
logic rules are fired in parallel: 

 
Rule 4  �8 		� ���PQ� � 	��NR� 		� 0.125 � 0.15 � 0.18175	 → 	�8		�,		U      (F9 � 0.5) 

 
Rule 5  �O 		� ���PQ� � 	��NPR� � 0.125 � 0.35 � 0.04375	 → 	�O		�,		W      (F8 � 0.75) 

 
Rule 9  �X 		� ���Q� 		� 	��NR� 		� 0.375 � 0.15 � 0.05625	 → 	�X		�,		W      (F8 � 0.75) 

 
Rule 10  ��Y � ���Q� 		� 	��NPR� � 0.375 � 0.35 � 0.13125	 → 	��Y	�,		ZW   (FO � 1) 

Based on equation (4), the fuzzy output  
∗  with 
COA method can be obtained: 


=∗ � ∑ �� � F�#�(�∑ ��#�(�
 

� �0.18175 � 0.5 4 0.04375 � 0.75 4 0.05625 
													� 0.7 4 0.13125 � 1�/�	0.5 4 0.75 4 0.75 4 1�  

� 0.8625             (5) 
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The fuzzy logic output  y∗  of C-scan data will be 
normalized to 0~255 and plot in 2D matrix 
corresponding to column and index, shown as a gray-
level image. 

4 Experimental setup 
The immersion ultrasonic system with associated 
instrumentation used to inspect the CFRP panel is shown 
in Figure 5. A 5 MHz dual element Panametric 
transducer with a 2 inch focal length was utilized in a 
pulse-echo mode for the inspection. The standoff 
distance between the transducer and the panel was set to 
2 inches and the scan was conducted at an increment of 
0.01 inches.  

 
Figure 5: Immersion ultrasonic testing system. 

 

  
(a) Optical image of specimen A (b) Optical image of specimen B 

  
(c) Defect map of specimen A (d) Defect map of specimen B 

Figure 6: Optical images and defect maps of specimen A and B. All dimensions are in mm. 

To verify the application of fuzzy logic defect 
detection, two different CFRP panels with predefined 
phantom defects, i.e. delamination defects due to impact 
damage were considered. These delamination defects 
were artificially simulated by impacting the panel with 
an external object of known energy. These defects are 
difficult to recognize by visual inspection, but have 
severely progressed within the panel. Specimen A is a 
102 � 257 � 4.445 mm panel which consists of impact 
damage at three different locations. Similarly, specimen 
B measured 200 � 300 � 3.581 mm in dimensions. The 
optical images and defect maps of each specimen are 
shown in Figure 6.  

5 Result and discussion 
The fuzzy logic algorithm as described earlier, was 
applied to the ultrasonic C-scan results (maximum back 
wall amplitude data) obtained from both panels to verify 
the versatility and stability of the fuzzy inference system. 
The proposed method was implemented in MATLAB 
R2012b. The reconstructed raw C-scan results are 
presented in Figure7, where defect areas are represented 
by dark shade of gray i.e. significant drop in pulse-echo 
signal amplitude. The shaded area labeled “Marker” in 
Figure 7 is the marker that was attached to the panel for 
indication purposes. 

  
(a) Reconstructed C-scan image of specimen A (b) Reconstructed C-scan image of specimen B 

Figure 7: Reconstructed C-scan result for CFRP panels. 
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The fuzzy logic output of ultrasonic C-scan data for 
CFRP panels A and B are normalized and plotted in 8 bit 
grayscale images (256 gray-level) as shown in Figure 8.  
Figure 8 (a) and (b) are the fuzzy logic output results 
with the COA defuzzification method. From the results 
obtained, the fuzzy logic method is able to detect the 

defects with more confidence by eliminating the 
background compared to the raw C-scan image as in 
Figure 7 (a) and (b). The defect outline present is more 
distinct to recognize, allowing post-processing work such 
as measurement of defect size, shape, and location to be 
much easier. 

 

 

 

 

(a) Specimen A fuzzy logic output result image with the 
COA defuzzification method 

(b) Specimen B fuzzy logic output results image with 
the COA defuzzification method 

Figure 8: Fuzzy logic output results. 

To demonstrate the effectiveness and robustness of 
the fuzzy logic method applied, defects in specimen A 
and 3 of 6 defects in specimen B are shown in Figure 9 
and Figure 10, respectively. The experiment results 
indicate that the fuzzy logic method has satisfied 
performance on both CFRP panels (sample A and B), 
which have different carbon fiber orientation and 
laminates. As shown in Figure 9 and Figure 10, fuzzy 
logic results provide a clear and smooth edge area for all 
defects in sample A and B. The fuzzy logic method is 
able to remove the background noise in C-scan images to 
obtain high contrast and enhanced images.  
 

  
(a) C-scan image of 

sample A defect 1 
(b) Fuzzy result of 

sample A defect 1 

  
(c) C-scan image of 

sample A defect 2 
(d) C-scan image of 

sample A defect 2 

  
(e) C-scan image of 

sample A defect 3 
(f) C-scan image of 

sample A defect 3 

Figure 9: Comparison of C-scan images and fuzzy 
logic results of 3 defects in specimen A. 

 

  
(a) C-scan image of 

sample B defect 1 
(b) C-scan image of 

sample B defect 1 

  
(c) C-scan image of 

sample B defect 2 
(d) C-scan image of 

sample B defect 2 

  
(e) C-scan image of 

sample B defect 3 
(f) C-scan image of 

sample B defect 3 

Figure 10: Comparison of C-scan images and fuzzy 
logic results of 3 defects in specimen B. 

For subjective evaluation, fuzzy logic output results 
are compared to the reconstructed C-scan images side by 
side in Figure 9 and Figure 10. From the results obtained, 
the fuzzy logic method is able to detect the defects with 
more confidence by eliminating the noises seen in the C-
scan images on the left side. The fuzzy logic output is 
capable of providing higher contrast of the defect area 
which allows NDE inspector make accurate decisions to 
identify the defect size and location. 

In addition to the perceived image quality with 
human visual system (HVS), for objective evaluation, 
peak signal-to-noise ratio (PSNR) and contrast signal-to-

Marker 

Marker 
Hole 

Hole 
1 inch 1 inch 
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noise ratio (CNR) are employed for quantitative 
assessment. The fuzzy logic result and C-scan result are 
tested to demonstrate the image quality and robustness of 
the fuzzy logic method,  
The PSNR is given as: 

\]U� � 10 ⋅ log�Y bN�cd
 

N]e f																	�6� 
 
Where: N�cd   is the maximum possible pixel value of 

the image. In this study, all pixels are 
represented using 8 bits gray levels, here N�cd is 255. 

MSE  is the mean squared error between two 
compared images. 

 
The CNR is given as: 

�U� � ]� - ]g
hi� 4 ig 																																						�7� 

 
Where:   ]� and ]g are the mean values inside and outside 

the ROI respectively i� and ig  are the standard deviations, 
respectively 

ROI CNR 
(dB) 

PSNR 
(dB) 

Sa
m

pl
e 

A
 

Whole 
Sample 

C-scan result 5.63  
6.17 Fuzzy logic 8.97 

Defect 
1 

C-scan result 5.09  
7.18 Fuzzy logic 6.20 

Defect 
2 

C-scan result 4.38  
7.08 Fuzzy logic 5.07 

Defect 
3 

C-scan result 3.83  
7.47 Fuzzy logic 4.69 

Sa
m

pl
e 

B
 

Whole 
Sample 

C-scan result 3.88  
10.06 Fuzzy logic 5.38 

Defect 
1 

C-scan result 3.15  
10.20 Fuzzy logic 4.37 

Defect 
2 

C-scan result 3.79  
9.32 Fuzzy logic 4.74 

Defect 
3 

C-scan result 2.11  
10.34 Fuzzy logic  2.95 

Table 3: Experimental comparison of CNR & PSNR. 

From Table 3, it can be verified that the CNR of the 
fuzzy logic output is higher than C-scan result. The 
PSNR has the close value in sample A and B, indicating 
the quality of the fuzzy logic method is robust and 
reliable. Further, note that the PSNR value of fuzzy logic 
output has an average increase of 6.98 dB in sample A 
and 9.98 dB in sample B compared to C-scan results. 
Since the applied method provides good performance in 
both CNR and PSNR, it can be seen that the proposed 
super-resolution reconstruction method is effective in 
resolution enhancement. 

6 Conclusions 
Analysis of the raw C-scan result of composites may not 
provide the reliable classification of different regions 
(defect, non-defect). A fuzzy logic methodology is 
applied to classify the defect and non-defect areas in 
CFRP panels with simulated delamination defects. The 
experimental results obtained for these panels have 
demonstrated the effectiveness of the applied method. It 
can be used as preprocessing of defect segmentation to 
reduce the computation complexity and time. However, 
membership function and fuzzy rules need to be adjusted 
for different types of CFRP materials to achieve better 
performance. An automated classification of defect and 
non-defect areas in composites remains a challenging job 
which requires a considerable amount of research work 
to be carried out in future. In addition, the performance 
of the system can also be improved by studying the 
correlation between the damage mechanism and the data 
distribution, and by applying more sophisticated 
algorithms. Further, better performance can be achieved 
by constantly updating the knowledge and rules so that 
the systems can adapt to new kinds of problems. 
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