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Explosive amounts of biological and physiological data, including medical images, 

electroencephalograms, genomic information, and protein sequences, have been made available to us 

thanks to advances in biological and medical technologies. Understanding human health and disease is 

made easier by using this data for learning. Deep learning-based algorithms, which were developed from 

artificial neural networks, have significant potential for identifying patterns and extracting features from 

large amounts of complex data. However, these recent advancements involve blackbox models: algorithms 

that do not provide human-understandable explanations in support of their decisions. This limitation 

hampers the fairness, accountability and transparency of these models; the field of XAI tries to solve this 

problem providing human-understandable explanations for black-box models. This paper focuses on the 

requirement for XAI to be able to explain in detail the decisions made by an AI in a biomedical setting to 

the expert in the domain, e.g., the physician in the case of AI-based clinical decisions related to diagnosis, 

treatment, or prognosis of a disease. In this paper, we made use of the Indian Patient Liver Dataset (IPLD) 

collected from Andhra Pradesh region. The deep learning model with a 0.81 accuracy score (0.82 for the 

hyperparameter- tuned model) is built on Keras-Tensorflow and due to the imbalance in the target values, 

we integrated GANs as a means of oversampling the dataset. This study integrated the XAI concept of 

Shapley Values to shed light on the predictive results obtained by the liver disease detection model. 

Povzetek: Študija obravnava klasifikacijo jetrnih bolezni z uporabo razložljive umetne inteligence (XAI), 

ki omogoča razumevanje odločitev modelov globokega učenja z integracijo Shapley vrednosti za razlago 

prediktivnih rezultatov. 

 

1 Introduction 

For most of its history, medicine was practiced on artistic 

principles rather than according to modern definitions of 

science. In the past two centuries, the practice of 

medicine has been more closely aligned with scientific 

method principles, particularly in regards to 

comprehending the molecular causes of disease. 

Advances in anatomy, physiology, genetics, 

immunology, and other scientific sub-disciplines have 

helped to define and broaden the scope of contemporary 

medicine from the beginning of a research tradition in the 

modern era. 

Medical science benefits from biomedical science 

because it enables doctors to comprehend the crucial steps 

involved in infectious diseases brought on by bacteria, 

viruses, protozoa, and other microorganisms, the impact 

of body physiology and biochemistry on maintaining 

health, and the immune system's tolerance or rejection of 

transplanted tissues. It provides a framework for 

developing novel methods of maintaining health as well 

as for testing someone's blood, urine, or tissue for the 

presence of disease. 

The goal of biomedical science is to identify diseases 

using various techniques. Early diagnosis can save a  

 

person's life in many conditions, including cancer. Over 

the last decade, technologies have been driving the  

healthcare industry through various innovations in how we 

find, prevent, and cure diseases. This shouldn’t have 

happened without the massive growth of AI-driven 

technologies and digitization of healthcare workflows, as 

a response to more savage global conditions, as well as the 

rising demand on accessible and quality medical service. 

Those medical innovations have pushed the envelope of 

possibility and increased the well-being of millions. This 

year is no different. Doctors and researchers on the 

forefront of medicine and technology are enhancing 

patient care in a number of ways with technology 

spearheading the initiatives. Here are some medical 

innovations: bringing diseases to an end with CRISPR 

Technology, UAV technology for medical supply 

distribution, IoT for healthcare, and remote patient 

monitoring.  

Recent ML developments promise to significantly 

enhance the accuracy of diagnosis and the screening for 

retinal disorders. Systems created using these techniques 

have shown expert-level accuracy in the detection of a 

variety of eye disorders, including glaucoma, age-related 

macular degeneration (AMD), diabetic retinopathy, and 

other anomalies related to retinal diseases[1]–[3]. But it's 
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not entirely clear how these models affect clinical settings. 

Many difficulties have been encountered in the past when 

ML algorithms have been used in computer-assisted 

diagnosis settings, including over reliance (repeating 

model errors) and under reliance (ignoring accurate 

algorithm predictions) [4], [5]. If the computer assisted 

diagnosis system can explain its black box AI predictions, 

some of these problems might be avoided [6]). 

Explainable AI (XAI) aims at decoding the decision of AI 

(Deep learning/Machine learning) black box to the extent 

of human-interpretable level. As such we pose the 

following research questions: (RQ1). How has explainable 

AI been applied in the sphere of biomedical science? 

(RQ2) How can deep learning algorithms to classify Liver 

Disease from a set of patients’ records generate further 

interpretable justification for its prediction results?  (RQ3) 

Can the justification of explainable AI results for 

predicting the presence or absence of liver disease be 

visually presented? Our paper aims to contribute to the 

ongoing research on explainability in line with the desire 

for understanding of AI predictions in industry. 

The subsequent sections of the article are structured 

as follows, related works section where we delve into AI’s 

diffusion in biomedical science; followed by the next 

section which explores explainable AI (XAI); followed by 

the data and method section where we train neural network 

models and apply XAI algorithms on the results (revealed 

in the results section); finally, we conclude on the study 

and summarize our findings. 

 

2 Related works 
Many important problems in biomedical decision 

making can be expressed as binary classification 

problems. For example, one may wish to identify infants 

infected with hepatitis C virus from a sample of infants 

born to infected mothers [7], screen for prostate cancer 

using prostate-specific antigen [8], or predict which breast 

cancer patients will respond to treatment based on genetic 

characteristics [9].  

In order to address the methods, techniques and 

algorithms used for making decisions in biomedicine, let 

us take into account the following aspects of medical data 

processing: missing data imputation, diagnostics 

(classification and prediction), clustering and 

personalizing the treatment. A previous study predicted 

missing data, analyzed the nature of data gaps, and filled 

these gaps using decision tree-based computation 

techniques and regression approach [10]. Similar 

outcomes for associative rules mining in medical data 

were found by another study [11]. In addition, a study 

adopted Bayesian networks, ANN, and k-means 

algorithms to predict cardiac disease [12]. However, 

Bayesian networks are too sluggish for both online 

diagnostics and processing the vast amounts of data. Y. 

Tang created a method for paralleling Bayesian networks 

in response to this [13]. For multi-parameter, massive, and 

dynamic medical data flows, Bayesian networks should 

still be used in conjunction with other machine learning 

techniques, even in the presence of parallelism. Fuzzy 

logic-based artificial neural network technology is 

actively employed to analyze a variety of medical data. 

Thus, a system of quick medical diagnosis based on auto-

associative neuro-fuzzy memory was developed in the 

works [14]–[17]. To increase the accuracy of the 

classification problem's results, however, is still of 

uttermost priority. The use of existing techniques and 

computational intelligence tools to address such issues is 

further constrained by the issue of imbalanced input data 

as well as the tiny samples of data manually collected by 

medical professionals [18]. 

The cluster analysis is frequently used to identify 

outliers. In the medical field, outliers refer to variations 

from the ideal patient circumstances based on the regional 

protocol and unique traits. Partitioning techniques are 

among the simplest clustering algorithms. The K-means 

algorithm creates k clusters that are spread far apart from 

one another. The assumption (hypothesis) regarding the 

number of clusters and the variety of the instances in 

various clusters is the fundamental sort of problem that the 

k-means method solves. The results of prior research and 

theoretical considerations may be used to guide the 

selection of the k number [19]. 

The decisions made in the healthcare industry 

generally involve a variety of criteria, many options, 

flawed data, and varying stakeholder preferences. 

However, the systemic assessment and the processing of 

pertinent information, a process that involves the flow of 

data between numerous components, frequently present 

problems for the decision-makers. Because of this, 

decision-makers' reliance on informal judgments or 

processes can result in poor choices in these situations 

[20]. The widespread availability of data has sparked a 

growing interest in methods for extracting useful facts and 

information from data and decision-making that is data-

driven. As a result, the data science field seeks to learn 

from data and frequently impact decisions to make them 

increasingly dependable. The Decision Support System 

(DSS) is a flexible framework used in the artificial 

intelligence (AI) industry for managing the formalization 

of human problem-solving and contemplation techniques. 

DSS can support the problem-solving process based 

on two principles, including knowledge and the capacity 

for reasoning. Overall, the consideration of AI is based on 

a variety of justifications, including an input and 

operational point of view, an output and behavioral 

viewpoint, an evaluation of its relevance, i.e., its ideal 

performance, and a comparison of its consistency and 

quality with human performance [21]. In order to 

represent the framework under consideration, distinct AI 

methodologies lead to different approaches, for instance, 

for the management of complex problems, such as the 

significantly complicated decision-making in the 

healthcare industry. Another important aspect that was 

emphasized is the idea of distributing processing power 

and intelligence among network systems. According to 

Urdea et al., combining patient statistical data with test 

results data generated at the point of care can result in a 

complete dataset that can be effectively used to 

concentrate fine-grained observation data about a variety 

of diseases using data analysis at both the individual and 
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population levels [22]. According to research, 

demographic databases combined with test results might 

be used to obtain a single dimension, which is equivalent 

to the population's overall health [23]. The large 

healthcare data may also be retrieved and applied in 

prediction-based tasks, which is of extreme significance to 

decision-making in healthcare. This is done by integrating 

the aforementioned datasets with mobility patterns, 

location data, and trends in disease pervasiveness. 

 

Table 1. ML and DL applications 

Detection Prediction Generation 

Image 

interpretation 

Classification Design 

Text & Speech Analysis Visual Art 

Abuse and Fraud Recommendations Text 

Human behavior 

& Identity 

Collective 

behavior 

Music 

 

In recent times, deep learning (DL) has been one of 

the fast-growing ML fields. It attempts to model 

abstraction from large-scale data by employing multi-

layered deep neural networks (DNNs), thus making sense 

of data such as images, sounds, and texts. Deep Learning 

helps provide intelligent answers to complex issues. The 

structure and operation of the human brain serve as its 

foundation. Artificial neural networks are used by deep 

learning to analyze data and make predictions. It has 

applications in practically every business industry.  

Deep Learning is used in a large number of 

applications that are used on a daily basis, such as the 

Google translator; in virtual assistants such as Yandex 

Alice, Apple’s Siri, Microsoft’s Cortana and Google 

Assistant, which use Deep Learning algorithms for voice 

recognition; classification of emails and even for security 

systems that make use of facial recognition. Another of the 

areas where Deep Learning is applied, is in something as 

complex as autonomous cars, which every day are closer 

to becoming a reality. 

In the case of factories, for example, it can be used to 

recognize new parts that have not been previously 

introduced into the system, since the Deep Learning 

algorithm has studied other previous photos in which it has 

been indicated what it is a piece and when a new part has 

been introduced into the system, it has been recognized as 

such without having to indicate it. 

Another very important application in factories is the 

intelligent recognition of defects. Once the system has 

been trained with different defects (shape, size, geometry, 

etc.), it is possible that the system could recognize new 

defects because it has learned what it is. It is a very 

interesting application because of the variability of defects 

it is common not to be able to categorize all at first. 

A flood of biological and medical data, including 

information about medical imaging, biological sequences, 

and protein structures, has been amassed in recent decades 

as a result of advancements in high-throughput 

technology. This section reviews some effective deep 

learning applications in the biomedical domains. 

• Medical image classification and segmentation 

Machine learning has long been a potent tool in the 

diagnosis or assessment of diseases using medical images. 

Traditionally, classification (identification of diseases or 

abnormalities) and segmentation of regions of interest 

(tissues and organs) in various medical applications rely 

on manually created discriminative characteristics. 

Participation of skilled physicians is required in this. The 

widespread use of machine learning in the medical image 

domain has been hampered by the complexity and 

ambiguity of medical images, limited expertise in medical 

image interpretation, and the demand of vast amounts of 

annotated data. A number of computer vision tasks, 

including object detection, localization, and segmentation 

in natural images, have been successfully completed using 

deep learning techniques. 

For the qualitative and quantitative assessment of 

medical imaging, the segmentation of tissues and organs 

is essential. To accomplish precise brain tumor 

segmentation, Pereira et al. used data augmentation, tiny 

convolutional kernels, and a pre-processing stage [24]. In 

2013 and 2015, their CNN-based segmentation technique 

took first place and second place in the Brain Tumor 

Segmentation (BRATS) Challenge. Magnetic resonance 

images (MRI) and a two-phase training process was used 

by a study to. demonstrated brain tumor segmentation 

approach (fully automatic) which took the 2nd place in 

BRATS 2013 [25]. By using the INbreast and Digital 

Database for Screening Mammography (DDSM) datasets, 

their methodology outperformed SOTA techniques at the 

time in terms of model accuracy and effectiveness [26], 

[27]. Additionally, deep learning architecture in medical 

research have been shown to segment the heart's left 

ventricle from MR data [28], the pancreas from computed 

tomography [29], the prostate from MRI [30], the tibial 

cartilage from magnetic resonance imaging [31], and the 

hippocampus from MR brain images [32], [33].  Through 

semantic segmentation (the process of classifying or 

labeling each pixel of an image in order to distinguish 

various tissues or organs [34], [35]) based on a deep neural 

network architecture where organs, skeletal muscles, as 

well as fat in CT scans are vividly distinguished [36]. 

Also, accurate segmentation findings were achieved by 

semantic segmentation of MRIs [37], [38]. 

 

• Genomic sequencing and gene expression analysis 

Genomic sequencing, which establishes the precise 

arrangement of nucleotides within a DNA molecule, is 

increasingly essential for many applications, including 

fundamental biological study, medical diagnostics, 

biotechnology, forensic biology, virology, and biological 

systematics. Deep learning application in genomic 

sequencing is divided into two fields: learning the 

functional activity of DNA sequencing and DNA 

methylation.  

Three processes make up the biological process of 

gene expression: transcription, RNA processing, and 

translation. An RNA molecule called precursor messenger 

RNA (pre-mRNA), which is a copy of the DNA in the 

transcribed gene, is produced as a result of transcription. 

The pre-mRNA is then altered by RNA processing to 

create a new RNA molecule termed messenger RNA 
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(mRNA). Reading the three-letter (codes) in the mRNA 

sequence during translation results in the creation of a 

protein molecule (an amino acid chain) [39]. The 

alternative splicing field and the prediction of gene 

expression are the two directions in which deep learning 

techniques are utilized in the field of gene expression. 

3 Explainable AI (XAI) 
The goal of XAI is to improve the human 

understanding of the output of AI systems. The term was 

initially used in previous studies to indicate how well their 

system could account for the actions of AI-controlled 

characters in simulation games [40]. Since researchers 

began looking at explanation for expert systems in the 

middle of the 1970s, the explainability problem has been 

a challenge. The unstoppable spread of AI/ML across all 

spheres and its critical influence in decision-making 

processes, while not being able to deliver comprehensive 

details regarding the chain of reasoning leading to some 

decisions, predictions, recommendations or actions made 

by it, are directly responsible for the resurgence of this 

research topic. Therefore, new AI strategies that can make 

decisions comprehensible and explicable are required due 

to societal, ethical, and legal demands.  

Demystification of the black-box models is at the 

heart of XAI, which also implies responsible AI because 

it can aid in the creation of transparent models. This 

should take place without affecting the accuracy of the AI 

models; as a result, accuracy and interpretability must 

frequently be traded off in AI in general and in ML in 

particular. Accuracy is intimately related to the quality and 

amount of the training data, which naturally draws a 

connection to the data science discipline. 

Explainability plays a fundamental role in the 

justification of AI-based predictions or classifications. It 

aids in prediction verification, model modification, and for 

unveiling insights into the problem at hand, thereby 

leading to more dependable AI systems. The need for 

explaining AI systems is purported to stem from four (4) 

reasons. In spite of the fact that the four (4) reasons may 

appear to overlap, it is believed to capture the core 

motivations of model explainability. These include: 

Explaining to Justify (the reason for the specific 

outcome(s)); Explaining to Control (gain insight into 

vulnerabilities or defects - debugging); Explaining to 

Improve (a comprehensible model makes improvement 

possible by focusing on desired constructs); and 

Explaining to Discover (revealing the unforeseen) [41]. 

As purported by research the goals of XAI have been 

summarized into the concepts evident in figure 1. 

Literature clearly distinguishes between models that can 

be understood using external XAI approaches and those 

that are interpretable by design. This distinction between 

transparent models and post-hoc explainability is more 

widely understood than the distinction between 

interpretable models and model interpretability 

methodologies. This same dichotomy can be seen in the 

paper discussed in a previous study, where the authors 

contrast the approaches used to address the transparent 

box design problem with those used to address the black-

box problem's explanation [43]. 

 

 

 
 

Figure 1: XAI goals [42] 

 

By using a variety of techniques to improve their 

interpretability, such as text explanations, visual 

explanations, local explanations, explanations by 

example, explanations by simplification, and explanations 

based on feature relevance, post-hoc explainability aims 

to target models that are not easily interpretable by design 

techniques. 

Here are some XAI methods that have been applied in 

some real-world tasks, such as autonomous driving and 

healthcare. These methods develop explainable 

algorithms to interpret results and improve their decisions 

or actions according to the task. Recent self-driving 

systems have adopted interpretation techniques to 

improve the actions of the autonomous driving system and 

reduce the risk of a crash. This is also important to increase 

the trust between humans and AI machines. 

 

• Explainable decisions for autonomous cars 

In [44], the authors suggested a novel, 

comprehensible self-driving system that was motivated by 

human drivers' responses and choices. The suggested 

solution uses a CNN to extract features from the input 

image, and a global module to create the scene context and 

offer information on where the items are in relation to each 

other. To create the actions and explanations, a local 

branch is used to pick the scene's most crucial elements 

and link them to the scene's context. Finally, explanations 

in visual form are created for the input image. Similar to 

[45], the authors suggested an architecture for autonomous 

driving that is aided and trained by humans. 

In order to separate the objects from the incoming 

video stream, the system uses a visual encoder. A vehicle 

controller is trained to speak commands, such as stopping 

the automobile when the traffic light turns red, verbally. 

The controller also creates attention maps to emphasize 

the key areas and justify their choices. An observation 

XAI 
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Transferability
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generator is used to aggregate video frames and provide 

general observations, which must be taken into account 

while driving, further enhancing the system's robustness. 

The vehicle controller also receives these observations to 

help it make better decisions. 

 

• Explainable medical systems 

AI-based systems have also been used in medical 

settings in the fields such as drug development and 

medical imaging, thus produced notable breakthroughs. 

To help medical professionals by offering helpful 

explanations so that any expert may grasp a system's 

predictions, researchers have recently concentrated on 

explainable medical systems. The authors of concentrated 

on coronavirus detection from x-ray images [46]. To 

extract information from the images and determine 

whether a patient has pneumonia or coronavirus, 

researchers suggested using a deep convolutional neural 

network. The infected areas from the x-ray are then 

highlighted and visual explanations are provided through 

Grad-CAM [44]. 

4 Data and method 
In this paper, we made use of the Indian Patient Liver 

Dataset (IPLD) collected from Andhra Pradesh region, a 

widely known dataset within the ML research community, 

which comprises observations with 416 liver patient 

records and 167 non liver patient records [47]. As 

highlighted in figure 2, the dataset was pre-processed, 

dropping four (4) unavailable observations, as well as 

normalization (Min-Max Scalar). The deep learning 

model is built on Keras-Tensorflow and due to the 

imbalance in the target values, we integrated Tabular 

GANs (Generative Adversarial Networks) as a means of 

oversampling the dataset due to the small sample size. 

 

 

 
Figure 2: Research workflow 

 

For model interpretability purposes, our study 

incorporated the SHAP package [48] which was 

developed as an offspring of research from the University 

of Washington, and Microsoft Research. Model 

interpretability is extremely important in AI and it 

produces end-user trust, delivers insight as to how a model 

may be improved, as well as supports understanding of the 

process being modelled [48]. Our study integrated the XAI 

concept of Shapley Values to shed light on the predictive 

results obtained by the liver disease detection model. The 

concept of Shapley Values hails from cooperative game 

theory and was introduced in 1953 [49]. It is defined as the 

sum (weighted) of the agents’ marginal contributions to 

coalitions [50]. The three theoretical properties of Shapley 

values are local accuracy, missingness, and consistency 

[48]. Marginal contribution is a central component to 

understanding Shapley values and is defined as the 

amount by which the evaluation of a submodel increases 

when a given feature is introduced to the submodel [49]. 

To formally represent Shapley values as marginal 

contribution, the formula below is indicated: 

 

𝜙𝑖(𝑁, 𝑣) = ∑
|𝑆|!(|𝑁|−|𝑆|−1)!

𝑁!𝑆⊆𝑁\{𝑖} [𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆)]

  

Where ϕi denotes the average marginal contribution 

for a player i; N denotes the number of players; v is the 

game; and S denotes the sets of different coalitions [51]. 

A Shapley value is representative of a unique quantity that 

is capable of constructing an explanatory model that 

locally linearly approximates the original model, given a 

specific input [52]. From an ML perspective, some studies 

have adopted Shapley values as a feature selection tool 

due to its appealing nature with regards to highlighting 

which features contribute to an obtained output, but in 

their study, Fryer et al. noted that, in general, the axioms 

(Efficiency, Null Player, Symmetry, Additivity, and 

Balanced Contributions) do not provide any guarantee that 

Shapley values are suitable for feature selection, and may 

most likely in some cases imply the opposite [49]. They 

also highlighted that the favorability of Shapley value 

axioms depends non-trivially on how the Shapley value is 

appropriated within a particular XAI application. 

Shapley values, when applied within a human-centric 

ML perspective, are capable of shifting the perspective 

and obtaining insights into client behaviour as well as 

desires, thereby creating relevant persona profiles which 

leads towards the trajectory of prescriptive analytics [53]. 

Shapley values have been applied by previous studies to 

interpret log anomaly detection systems; to understand 

client creditworthiness prediction; understand the 

propensity of clients to buy an insurance policy as well as 

the risk of churn with respect to an existing customer [52]–

[54]. The next section discusses the results of our study. 

5 Results 
As a means of explaining model predictions, our study 

utilised SHapley Additive exPlanations (SHAP) and 

visualises interpretations as SHAP summary plots and 

SHAP dependence plots. SHAP approximation techniques 

that exist include Kernel, Deep, and Tree SHAP which are 

used for kernel-based, deep neural network based, and 

tree-based models respectively.  In order to establish the 

relationship between features and target variable, initial 

results from the exploratory data analysis are highlighted 

in figure 3, via a correlation matrix plot. The following 

strong positive correlations were established: (1) 

"Direct_Bilirubin'' and "Total_Bilirubin"; (2) 

"Aspartate_Aminotransferase" and 

"Alamine_Aminotransferase"; (3) "Albumin" and 
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"Total_Proteins"; (4) "Albumin and Globulin Ratio" and 

"Albumin". A negative correlation between the target 

variable and three features (1) "Total Proteins'', (2) 

"Albumin", and (3) "Albumin and Globulin Ratio", while 

having a weak positive correlation with the other 8 

features. 

 

 
Figure 3: Correlation plot of features and output 

 

Figures 4 and 5 highlight the deep neural network 

architectures built on Keras-Tensorflow. In order to obtain 

the best possible training hyperparameters (learning rate, 

dropout rate, bias vector, neurons, and activation 

functions), we utilised the RandomSearch feature of the 

Keras Tuner package (5 and 10 max trials respectively for 

Models 1 and 2). Figure 3 illustrates the DNN architecture 

of model 1 and figure 4 highlights that of the 

hyperparameter tuned model (model 2). The parameter 

spaces for the hyperparameter tuning process were as 

follows: 

a. Number of Layers – 4 

b. Number of Units (Neurons) – value domain = [16 – 

512]; step = 16 

 d. Activation Function – value domain = [ReLU, 

tanh]; choice step 

e. Learning Rate – value domain = [1e-2, 1e-3, 1e-4] 

– choice step 

The binary cross entropy loss as well as the mean 

absolute error and accuracy metrics were utilized within 

the Adam optimizer. 

 
Figure 4: Model 1 - deep neural network architecture 

 

 
Figure 5: Deep neural network architecture 

(hyperparameter tuned) 

 

Table 2. Classification model evaluation results 

Model Accuracy Precision Recall F-Measure 

1 0.81 0.74 0.89 0.81 

2 0.82 0.72 0.81 0.76 

 

Table 2 highlights the model evaluation results of the 

deep learning models for classifying liver disease patients. 

Based on Accuracy Model 2 had a slightly higher accuracy 

but lower precision, recall, and f-measure.  

The utilized metrics are calculated as follows (where 

TP denotes True Positive; TN = True Negative; FP = False 

Positive; FN = False Negative: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 +  𝐹𝑁
 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

𝐹 − 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

 

Table 3. Sampled data for XAI analysis 

Age Category Gender Age Status 

Young 

F 26 
1 

M 18 

F 29 
0 

M 25 

Old 

F 58 
1 

M 51 

F 48 
0 

M 64 

 

Table 3 highlights the sampled (using purposive 

sampling), we selected four (4) of the youngest males (2) 

and female (2) patients, as well as four (4) of the oldest 

males (2) and females (2) – with one (1) of each sex being 

an individual with liver disease and the others with no liver 

disease. The aim of this was to describe the application of 

SHAP to deep learning models and inferring from the 

results based on observations within the dataset. In 

summary, why the model predicted what it predicted. 
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Figure 6: SHAP plots - deep neural network model (best 

model) - beeswarm plot 

 

 
Figure 7: SHAP plots - deep neural network model 

(best model) - bar plot 

 

In our study we utilized the DeepSHAP functionality 

due to the fact that it is tailor-made for deep learning 

models just like ours. Figures 6 and 7 highlight a 

Beeswarm plot and Bar plot respectively indicating the 

influence of predictors on the best deep learning model. 

The results from our selected sample (from table 4) 

are presented in figures 8, and 9 for old as well as 10, and 

11 for young individuals respectively. The results reveal 

the impact of certain features on the overall prediction for 

each selected sample observation; red indicative of the 

positive contribution and blue indicative of none or 

negative contribution to the overall outcome. Such results 

can aid medical staff in understanding how each 

individual patient’s body may react to certain dosage of 

treatment, thus creating space for personalized treatment. 

 

 
(a) Old male (status = liver disease) 

 

 
(b) Old Male (Status = No Liver Disease) 

Figure 8. Comparative analysis of SHAP plots for two 

old males (a – with disease and b – no disease) 

 

 

 
(a) Old female (status = liver disease) 

 

 
(b) Old Female (Status = No Liver Disease) 

Figure 9: Comparative analysis of SHAP plots for two 

old females (a – with disease and b – no disease) 

 

 
(a) Young male (status = liver disease) 

(b)  
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(b) Young male (status = no liver disease) 

Figure 10: Comparative analysis of SHAP plots for two 

young males (a – with disease and b – no disease) 

 

 

 
(a) Young Female (Status = Liver Disease) 

 
(b) Young female  (status = no liver disease) 

Figure 11: Comparative analysis of SHAP plots for 

two young females 

 

It can be observed that SHAP plots (from figures 8 

and 9, as well as 10 and 11) vary by individual and this 

gives a more nuanced perspective to model prediction 

outcomes due to the ability to interpret each predicted 

outcome and provide personalized solutions to each 

patient (be it dietary, lifestyle or medical). 

In more recent times, with the gradual growth in XAI, 

there has been some pushback (especially high-stakes 

decision making) [55]. These conversations will continue 

as AI research further develops. From our perspective, we 

conclude that, XAI can be used as a decision support tool 

provided the model is tested and meets robust real-world 

and ethical requirements of whichever industry it is 

needed for. Our research does not claim to propose XAI 

as the optimal decision support system within healthcare 

where models play high-stake roles because, in simple 

terms, XAI is not the remedy for a low performance model 

within the real world. As such, we recommend end-to-end 

machine learning which follows current MLOps industry 

guidelines such as: (a) Efficient Pipelines, Model Re-

Training, and Monitoring (Symeonidis et al., 2022); (b) 

MLOps Maturity Model proposed by John et al. which 

encompasses Automated Data Collection, Automated 

Model Deployment, Semi-automated Model Monitoring, 

Fully-automated Model Monitoring, and as well 

incorporates governance and security protocols; (c) 

Responsible AI - Openness to Learning and Changing the 

Culture, Model Development Preparation, Selection of the 

Right Tools, Automating the Pipelines, and Monitoring 

[56], [57]. In summary, the power eXplainable Artificial 

Intelligence can be experienced, when intrinsically end-to-

end AI implementation is done following appropriate 

MLOps guidelines. 

6 Conclusion 
As AI continues to gain ubiquity, Explainable AI’s 

relevance is now more than ever essential in all spheres. 

Primarily in safety-critical domains such as healthcare, the 

need to interpret AI model predictions will go a long way 

to support medical treatment as well as personalized 

medicine. 

This study sought to present the applicability of 

explainability within deep learning models, which have 

been known as black-box models within the AI sphere. We 

conducted a research summary on the applications of 

explainable AI (XAI) in biomedical research and utilized 

the Indian Liver Patient Dataset as a case study. 

Furthermore, making use of data-preprocessing, feature 

selection, data augmentation (with Generative Adversarial 

Network techniques for Tabular Data), and 

hyperparameter optimization, we developed deep learning 

classification models to classify liver disease. In addition, 

we integrated SHAP (Shapley Values) in interpreting the 

models, thus establishing model explainability. Finally, 

we discussed XAI and its implications and made 

recommendations. 

With respect to theoretical implications, our work 

contributes to the extant literature and conversations on 

the explainable and interpretable AI paradigm primarily 

within the healthcare research sphere, i.e. adopting SHAP 

values. In like manner, our study serves as a contribution 

to research on data augmentation in the face of inadequate 

observations for deep learning models. It must be noted 

that, our research provides practical implications for 

researchers and health workers to adopt explainable 

models in supporting decision making process of medical 

diagnostics and prescription. Practically, our work is 

relevant to healthcare in deprived areas where trusted AI 

models (with explainable features) can be deployed on the 

edge to aid in affordable and mobile healthcare provision.  

We recommend future research to reproduce our 

study within other medical contexts, as well as explore 

alternative explainable approaches to biomedical 

healthcare deep learning models. In addition, we 

recommend future research to delve into developing XAI 

frameworks or guideliness for healthcare implementation. 
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