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We propose a benchmarking algorithm to determine the sequence of longest-living stable data gathering 
trees for wireless mobile sensor networks whose topology changes dynamically with time due to the 
random movement of the sensor nodes. Referred to as the Max.Stability-DG algorithm, the algorithm 
assumes the availability of complete knowledge of future topology changes and is based on the following 
greedy principle coupled with the idea of graph intersections: Whenever a new data gathering tree is 
required at time instant t corresponding to a round of data aggregation, choose the longest-living data 
gathering tree from time t. The above strategy is repeated for subsequent rounds over the duration of the 
lifetime of the sensor network to obtain the sequence of longest-living stable data gathering trees 
spanning all the live sensor nodes in the network such that the number of tree discoveries is the global 
minimum. Thus, the number of tree discoveries incurred with the Max.Stability-DG algorithm will serve 
as the lower bound for the number of discoveries for any network-wide communication topology (like 
spanning trees and connected dominating sets) determined through any other algorithm for data 
gathering in mobile sensor networks under identical operating conditions. In addition to theoretically 
proving the correctness of the Max.Stability-DG algorithm, we also conduct exhaustive simulations to 
evaluate the performance of the Max.Stability-DG trees and compare to that of the minimum-distance 
spanning tree based data gathering trees with respect to metrics such as tree lifetime, delay per round, 
node lifetime, network lifetime and coverage loss time, under both sufficient-energy and energy-
constrained scenarios.

Povzetek: Predstavljen je izvirni referenčni algoritem za iskanje najbolj obstojnih dreves v brezžičnih 
senzorskih omrežjih.

1 Introduction
A wireless sensor network is a network of several smart 
sensor nodes that can gather data about the ambient 
environment as well as intelligently process them before 
propagating to a control center called the sink, which is 
typically located far away from the field being monitored 
and used to remotely administer the sensor network. 
Even though widely used for data gathering in several 
real-time applications, wireless sensor networks are 
mostly deployed for static environments, wherein the 
mobility of the sensor nodes, the users and the monitored 
phenomenon are all totally ignored. A wireless mobile 
sensor network (WMSN) is the next logical evolutionary 
step for sensor networks in which mobility needs to be 
handled in all its forms. With the widespread growth of 
embedded systems and ubiquitous computing 
technologies, a mobile sensor network could be 
envisioned as a homogeneous or heterogeneous network 
of sensor-equipped computers, mobile phones and 

vehicles, generally referred to as nodes (having one or 
more sensors like a camera sensor, microphone, GPS 
sensor, etc) [10]. The nodes of a WMSN often move in 
an arbitrary fashion, independent of each other. Some of 
the applications [9] of WMSNs could be traffic 
monitoring, route planning, civil infrastructure 
monitoring (say, attaching vibration sensors to cars and 
monitoring the conditions of roads/pot holes), geo-
imaging, mobile target tracking [33] and etc. WMSNs 
can be used to monitor and collect data over a much 
larger geographical area with less number of sensor 
nodes compared to static sensor networks. With mobility, 
the entire area could be covered with fewer 
sensors/nodes over a period of time

Like their static counterparts, the mobile sensor 
nodes are likely to be constrained with limited battery 
charge, memory and processing capability as well as 
operate under a limited transmission range. Two sensor 
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nodes that are outside the transmission range of each 
other cannot communicate directly. The bandwidth of a 
WMSN is also expected to be as constrained as that of a 
static sensor network. Due to all of the above resource 
and operating constraints, it will not be a viable solution 
to require every sensor node to directly transmit their 
data to the sink over a longer distance. Also, if several 
signals are transmitted at the same time over a longer 
distance, it could lead to lot of interference and 
collisions. Thus, there is a need for employing energy-
efficient data gathering algorithms that can effectively 
combine the data collected at these sensor nodes and 
send only the aggregated data (that is a representative of 
the entire network) to the sink.

Over the past few years, the sensor network research 
community has proposed a number of data gathering 
algorithms to effectively combine the data collected at 
these sensor nodes through a properly constructed 
communication topology and send only the aggregated 
data (that is a representative of the entire network) to the 
sink. However, a majority of these data gathering 
algorithms are meant for static sensor networks (i.e., 
static sensor nodes) with either a static (e.g., [8][12]) or 
mobile (e.g., [26][29]) sink. Tree-based data gathering is 
considered to be the most energy-efficient [16] in terms 
of the number of link transmissions; however, almost all 
of the tree-based data gathering algorithms have been 
proposed for static sensor networks without taking the 
mobility of the sensor nodes into consideration. In the 
presence of node mobility, the network topology changes 
dynamically with time – leading to frequent tree 
reconfigurations. Thus, mobility brings in an extra 
dimension of constraint to a WMSN and we need 
algorithms that can determine stable long-living data 
gathering trees that do not require frequent 
reconfigurations. To the best of our knowledge, we have 
not come across any work on stable data gathering trees 
for mobile sensor networks.

In this research, we address the issue of finding a 
sequence of longest-living stable data gathering trees for 
mobile sensor networks such that the number of tree 
discoveries is the global minimum. We present a simple 
but powerful polynomial-time greedy algorithm, referred 
to as the Max.Stability-DG algorithm, to determine the 
sequence of longest-living stable data gathering trees. 
Given the complete knowledge of the future topology 
changes, the Max.Stability-DG algorithm operates based 
on the following greedy principle: Whenever a data 
gathering tree is required at time instant t, choose the 
longest-living data gathering tree from t. The above 
strategy is repeated over the duration of the data 
gathering session. The sequence of such longest-living 
data gathering trees is called the Stable-Mobile-DG-Tree. 
The worst-case run-time complexity of the 
Max.Stability-DG tree algorithm is O(n2Tlogn) and 
O(n3Tlogn) when operated under sufficient-energy and 
energy-constrained scenarios respectively, where n is the 
number of nodes in the network and T is the total number 
of rounds of data gathering; O(n2logn) is the worst-case 
run-time complexity of the minimum-weight spanning 
tree algorithm (we use Prim’s algorithm [5]) used to 

determine the underlying spanning trees from which the 
data gathering trees are derived.

The rest of the paper is organized as follows: Section 
2 presents the system model and the terminology used in 
this research as well as a high-level overview of the 
working of the proposed Max.Stability-DG algorithm 
and highlights its key contributions. Section 3 presents 
related work on data gathering in mobile sensor 
networks. Section 4 describes in detail the working of the 
Max.Stability-DG algorithm, analyzes its run-time 
complexity for both sufficient-energy and energy-
constrained scenarios, and provides a formal proof of 
correctness of the algorithm. We also present an 
algorithm to determine a minimum-distance spanning 
tree based data gathering (MST-DG) tree that has been 
observed (in previous research) to be the most energy-
efficient approach [16] for data gathering in static sensor 
networks.  We also present an example to illustrate the 
working of the Max.Stability-DG and MST-DG 
algorithms. Section 5 presents an exhaustive simulation 
study evaluating the performance of the Max.Stability-
DG trees under diverse conditions of network dynamicity 
(node mobility and number of static nodes), network 
density (transmission range) and energy level at the 
nodes (sufficient-energy and energy-constrained 
scenarios). The performance metrics evaluated are the 
tree lifetime, delay per round, energy lost per node, 
energy lost per round, fairness of node usage, node 
lifetime, network lifetime, coverage loss time and 
fraction of coverage loss. We compare the performance 
of the Max.Stability-DG trees with that of the MST-DG 
trees. Section 6 presents the conclusions along with a 
summary of the simulation results. Section 7 discusses 
future work. For the rest of the paper, the terms ‘node’ 
and ‘vertex’, ‘edge’ and ‘link’, ‘data aggregation’ and 
‘data gathering’ will be used interchangeably. They mean 
the same.

2 System model, terminology and 
overview

2.1 System model
The system model adopted in this research is as follows: 
(i) Each sensor node is assumed to operate with an 
identical and fixed transmission range. (ii) For the 
purpose of calculating the coverage loss, we also use the 
sensing range of a sensor node, considered in this 
research, as half the transmission range of the node. 
Basically, a sensor node can monitor and collect data at 
locations within the radius of its sensing range and 
transmit them to nodes within the radius of its 
transmission range. It has been proven in the literature 
[32] that the transmission range per node has to be at 
least twice the sensing range of the nodes to ensure that 
coverage implies connectivity. (iii) A data gathering tree 
is obtained by conducting a Breadth First Search (BFS) 
[5] of the spanning tree, starting from a root node that 
serves as the leader node for the tree. (iv) The leader 
node of a data gathering tree remains the same until the 
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tree exists and is randomly chosen each time a new tree 
needs to be determined. (v) Data gathering proceeds in 
rounds. During a round of data gathering, data gets 
aggregated starting from the leaf nodes of the tree and 
propagates all the way to the leader node. An 
intermediate node in the tree collects the aggregated data 
from its immediate child nodes and further aggregates 
with its own data before forwarding to its immediate 
parent node in the tree.

2.2 Terminology
We use the notions of static graphs and mobile graphs 
(adapted from [7]) to capture the sequence of topological 
changes in the network and determine a stable data 
gathering tree that spans over several time instants. A 
static graph is a snapshot of the network at any particular 
time instant and is modeled as a unit disk graph [11] 
wherein there exists a link between any two nodes if and 
only if the physical distance between the two end nodes 
of the link is less than or equal to the transmission range. 
The weight of an edge on a static graph is the Euclidean 
distance between the two end nodes of the edge. The 
Euclidean distance for a link i – j between two nodes i
and j, currently at (Xi, Yi) and (Xj, Yj) is given by: 
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A mobile graph G(i, j), where 1 ≤ i ≤ j ≤ T, where T 
is the total number of rounds of the data gathering 
session corresponding to the network lifetime, is defined 
as Gi Gi+1 … Gj. Thus, a mobile graph is a logical 
graph that captures the presence or absence of edges in 
the individual static graphs. In this research work, we 
sample the network topology periodically for every 
round of data gathering to obtain the sequence of static 
graphs. The weight of an edge in the mobile graph G(i, j) 
is the geometric mean of the weights of the edge in the 
individual static graphs spanning Gi, …, Gj. Since there 
exist an edge in a mobile graph if and only if the edge 
exists in the corresponding individual static graphs, the 
geometric mean of these Euclidean distances would also 
be within the transmission range of the two end nodes for 
the entire duration spanned by the mobile graph. Note 
that at any time, a mobile graph includes only live sensor 
nodes, nodes that have positive available energy.

A static spanning tree is a minimum-weight 
spanning tree determined on a static graph. Since we use 
the Euclidean distance between the constituent nodes of 
an edge as the link weight, the minimum-weight 
spanning tree determined on a static graph will be a 
minimum-distance spanning tree for which the sum of 
the edge weights will be the minimum. A static data 
gathering tree is a rooted form of its corresponding static 
spanning tree with the root node being the leader node 
chosen for the round corresponding to the time instant 
represented by the static spanning tree. A mobile 
spanning tree is a minimum-weight spanning tree 
determined on a mobile graph whose edge weights are 
the geometric mean of the corresponding edge weights in 
the constituent static graphs. A mobile data gathering 
tree is a rooted mobile spanning tree whose root node is 

the leader node chosen at the beginning time instant of 
the corresponding mobile graph. The leader node of a 
mobile data gathering tree remains the same until the 
mobile graph gets disconnected due to node mobility or a 
node failure occurs, whichever happens first.

2.3 Overview of the maximum stability 
based data gathering algorithm and 
key contributions

A high-level overview of the working of the 
Max.Stability-DG algorithm is as follows: To determine 
a stable data gathering at time instant ti (1 ≤ i ≤ T, the 
total number of rounds of the data gathering session), we 
determine the mobile graph G(i, j), where i ≤ j such that 
there exists a spanning tree of the sensor nodes in G(i, j) 
and not in G(i, j+1). We transform such a longest-living 
spanning tree existing in each of the static graphs of the 
mobile graph G(i, j) to a data gathering tree by simply 
running a breadth-first search (BFS) algorithm [5] 
starting from an arbitrarily chosen root node (also called 
the leader node). The data gathering tree rooted at the 
leader node is used for all the rounds from time instants ti

to tj, which is considered as the lifetime of the spanning 
tree. The above procedure is repeated until the end of the 
data gathering session or the network lifetime, as 
appropriate. Any spanning tree algorithm can be used to 
determine the spanning tree on the mobile graph. In this 
research, we use the Prim’s O(n2*logn) algorithm to 
determine a minimum-weight spanning tree on the 
mobile graph (of n nodes) whose edge weights are 
modeled as the geometric mean of the edges in the 
constituent static graphs. 

A key assumption in this research is that the entire 
sequence of network topology changes is known 
beforehand at the time of running the Max.Stability-DG 
algorithm. This is required to generate the mobile graph 
spanning several static graphs, each representing 
snapshots of the network topology at time instants 
corresponding to successive rounds of data gathering, on 
which a stable long-living data gathering tree will be 
determined. The above assumption may not be practical 
for distributed systems of sensor networks. However, 
note that our goal in this research is not to develop a 
distributed algorithm for data gathering; but, to develop a 
benchmarking algorithm that can give us the sequence 
of long-living data gathering trees (over the duration of 
the data gathering session) whose lifetime will be the 
upper bound for the data gathering trees obtained using 
any other algorithm developed for this problem in the 
area of mobile sensor networks. The sequence of such 
stable longest-living data gathering trees determined 
using the Max.Stability-DG algorithm will involve the 
minimum number of discoveries. Thus, the number of 
data gathering tree discoveries incurred with the 
Max.Stability-DG algorithm will form the lower bound 
for the number of data gathering tree discoveries 
incurred with any other algorithm for mobile sensor 
networks. 

The proposed algorithm is very generic in nature
and it can be used to determine a sequence of stable 



318 Informatica 37 (2013) 315–338 N. Meghanathan et al.

communication topologies of any type (for example, a 
connected dominating set [17], a chain [12], a cluster [8] 
etc) as long as there is an underlying algorithm to 
determine that communication topology on a given 
graph. In this research, we focus only on spanning tree as 
the communication topology for data gathering. 
Moreover, since the Max.Stability-DG trees are 
spanning-tree based and a spanning tree exists in a 
network if and only if the underlying network is 
connected, the stability of network-wide communication 
topologies (like a connected dominating set [17] that 
spans all the nodes) determined by any algorithm can be 
evaluated by comparing their lifetime with that obtained 
for the Max.Stability-DG trees under identical operating 
conditions. Henceforth, the relative stability of data 
gathering trees or any network-wide communication 
topology for mobile sensor networks, determined from 
any existing or newly proposed algorithm (very few of 
which is currently available in the literature, as reviewed 
in Section 3), either centralized or distributed, can be 
evaluated in comparison with the mobile data gathering 
trees obtained by running the Max.Stability-DG 
algorithm, developed in this research, under the same
conditions in which the existing or prospective data 
gathering algorithm is run.  

3 Related work on data gathering in 
wireless mobile sensor networks

The research on mobile sensor networks started with 
the deployment of mobile sink nodes on a network of 
static sensor nodes. A common approach of data 
gathering in such environments is to employ a mobile 
data collecting agent (e.g., [30][31][34]) that goes around 
the network in the shortest possible path towards the 
location from which the desired data is perceived to 
originate. In [35], the authors propose a distributed 
algorithm to optimize both coverage control and mobile 
collection using a Bayesian occupancy grid mapping 
technique that recursively updates the locations of 
potential data sources. In [18], the authors propose a 2-
layer architecture comprising of mobile sinks and static 
sensor nodes for large scale wireless sensor networks. 
The top layer is a mobile ad hoc network of resource-rich 
sink nodes while the bottom-layer is a network of static 
resource-constrained sensor nodes. Each sink node is 
assigned a particular region to monitor and collect data. 
A sink node moves to the vicinity of the sensor nodes 
(within a few hops) to collect data. The collected data is 
exchanged with peer mobile sinks. A prototype 
implementation of the same is available in [19].

Very few topology-based data gathering algorithms 
have been proposed for mobile sensor networks where 
the sensor nodes actually move. Among these, most of 
the work is focused around the use of clusters wherein 
researchers have tried to extend the classical LEACH 
(Low Energy Adaptive Clustering Hierarchy) [8] 
algorithm for dynamically changing network topologies. 
Variants of LEACH for WMSNs that have been 
proposed in the literature include those that take into 
consideration the available energy level [2] and the 

mobility-level [23] of the nodes to decide on the choice 
of cluster heads; stability of the links between a regular 
node and its cluster head [6]; as well as set up a panel of 
cluster heads to facilitate cluster reconfiguration in the 
presence of node mobility [24]. In [13], the authors 
propose a distributed cluster-head based algorithm in 
which cluster-heads are elected based on node IDs (0 to 
C-1, C to 2C-1 …, to operate with C clusters at a time) or 
node locations (nodes that are closest to certain 
landmarks with in a WMSN serve as the cluster-heads). 
In [15], the authors investigate the use of a directed 
acyclic graph as the underlying communication topology 
of a sensor network field, modeled according to the 
theory of thermal fields, to form propagation paths such 
that the temperature of the nodes on the path increases as 
data progresses towards the sink, which is considered to 
be the warmest.

The only tree-based data gathering algorithm we 
have come across for WMSNs is a shortest path-based 
spanning tree algorithm [25] wherein each sensor node is 
constrained to have at most a certain number of child 
nodes. Based on the results from the literature of mobile 
ad hoc networks (e.g., [20][21]), minimum hop shortest 
paths and trees in mobile network topologies are quite 
unstable and need to be frequently reconfigured. We 
could not find any other related work on tree-based data 
gathering for wireless mobile sensor networks. 

4 Data gathering algorithms based 
on maximum stability and 
minimum-distance spanning trees

4.1 Maximum stability spanning tree-
based data gathering (max.stability-
DG) algorithm

The Max.Stability-DG algorithm is based on a greedy 
look-ahead principle and the intersection strategy of 
static graphs. When a mobile data gathering tree is 
required at a sampling time instant ti, the strategy is to 
find a mobile graph G(i, j) = Gi Gi+1 … Gj such 
that there exists a spanning tree in G(i, j) and no 
spanning tree exists in G(i, j+1) = Gi Gi+1 … Gj

Gj+1. We find such an epoch ti, …, tj as follows: Once 
a mobile graph G(i, j) is constructed with the edges 
assigned the weights corresponding to the geometric 
mean of the weights in the constituent static graphs Gi, 
Gi+1, …, Gj, we run the Prim’s minimum-weight 
spanning tree algorithm on the mobile graph G(i, j). If 
G(i, j) is connected, we will be able to find a spanning 
tree in it. We repeat the above procedure until we reach a 
mobile graph G(i, j+1) in which no spanning tree exists 
and there existed a spanning tree in G(i, j). It implies that 
a spanning tree basically existed in each of the static 
graphs Gi, Gi+1, ..., Gj and we refer to it as the mobile 
spanning tree for the time instants ti, …, tj. To obtain the 
corresponding mobile data gathering tree, we choose an 
arbitrary root node for this mobile spanning tree and run 
the Breadth First Search (BFS) algorithm on it starting 
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from the root node. The direction of the edges in the 
spanning tree and the parent-child relationships are set as 
we traverse its vertices using BFS. The resulting mobile 
data gathering tree with the chosen root node (as the 
leader node) is used for every round of data gathering 
spanning time instants ti, …, tj. We then set i = j+1 and 
repeat the above procedure to find a mobile spanning tree 
and its corresponding mobile data gathering tree that 
exists for the maximum amount of time since tj+1. A 
sequence of such maximum lifetime (i.e., longest-living) 
mobile data gathering trees over the timescale T
corresponding to the number of rounds of a data 
gathering session is referred to as the Stable Mobile Data 
Gathering Tree. Figure 1 presents the pseudo code of the 
Max.Stability-DG algorithm that takes as input the 
sequence of static graphs spanning the entire duration of 
the data gathering session. 

---------------------------------------------------------------------
Input: Sequence of static graphs G1, G2, … GT; Total 
number of rounds of the data gathering session – T
Output: Stable-Mobile-DG-Tree
Auxiliary Variables: i, j
Initialization: i =1; j=1; Stable-Mobile-DG-Tree = Φ

Begin Max.Stability-DG Algorithm

1    while (i ≤ T) do

2    Find a mobile graph G(i, j) = Gi  Gi+1  …  
Gj such that there exists at least one spanning 

            tree in G(i, j) and {no spanning tree exists in G(i,
j+1) or j = T}

3     Mobile-Spanning-Tree(i, j) = Prim’s Alg (G(i, j) )

4      Root(i, j) = Choose a node randomly in G(i, j)

5      Mobile-DG-Tree(i, j) = Breadth First Search ( 
Mobile-Spanning-Tree(i, j), Root(i, j) )

6      Stable-Mobile-DG-Tree = Stable-Mobile-DG-
Tree U { Mobile-DG-Tree(i, j) }

7      for each time instant tk {ti, ti+1, …, tj} do
                    Use the Mobile-DG-Tree(i, j) in tk  
8                   if node failure occurs at tk then
                          j = k – 1
                          break
                     end if 
            end for

9          i = j + 1     

10   end while

11   return Stable-Mobile-DG-Tree

End Max.Stability-DG Algorithm
---------------------------------------------------------------------
Figure 1: Pseudo Code for the Maximum Stability-based 
Data Gathering Tree Algorithm

While operating the algorithm under energy-
constrained scenarios, one or more sensor nodes may die 
due to exhaustion of battery charge even though the 
underlying spanning tree may topologically exist. For 

example, if we have determined a data gathering tree 
spanning across time instants ti to tj using the above 
approach, and we come across a time instant tk (i ≤ k ≤ j) 
at which a node in the tree fails, we simply restart the 
Max.Stability-DG algorithm starting from time instant tk

considering only the live sensor nodes (i.e., the sensor 
nodes that have positive available energy) and determine 
the longest-living data gathering tree that spans all the 
live sensor nodes since tk. The pseudo code of the 
Max.Stability-DG algorithm in Figure 1 handles node 
failures, when run under energy-constrained scenarios, 
through the if block segment in statement 8. If all nodes 
have sufficient-energy and there are no node failures, the 
algorithm does not execute statement 8.   

4.2 Run-time complexity Analysis af the 
max.stability-DG algorithm

To expand a mobile graph G(i, j) = Gi Gi+1 … Gj to 
G(i, j+1), all we had to do is to check whether each of the 
edges in the mobile graph G(i, j) existed at time instant 
tj+1. This can be done in O(n2) time on a mobile graph of 
n nodes, as there can be at most O(n2) edges on a graph 
of n vertices. The overall complexity of the 
Max.Stability-DG algorithm is the sum of the time 
complexity to construct the mobile graphs, the time 
complexity to run the spanning tree algorithm on these 
mobile graphs and the time complexity to transform 
these spanning trees to data gathering trees using BFS.

Sufficient-energy Scenarios: When the network 
operates under sufficient-energy scenarios (i.e., no node 
failures), for a data gathering session comprising of T 
rounds, we will have to construct T mobile graphs, 
resulting in a time complexity of O(n2T) to construct the 
mobile graphs. On each of these T mobile graphs, we 
will have to run a spanning tree algorithm. If we use the 
O(n2*logn) Prim’s algorithm to construct a spanning tree, 
the complexity to run the spanning tree algorithm on the 
T mobile graphs becomes O(n2*logn*T). A spanning tree 
on n vertices has n–1 edges. The time-complexity of 
running BFS on a spanning tree of n vertices with n–1 
edges is O(n) [5]. To run BFS on the O(T) spanning 
trees, we incur O(nT) time. Thus, the overall complexity 
of the Max.Stability-DG algorithm under sufficient-
energy scenarios is O(n2T) + O(n2Tlogn) + O(nT) = 
O(n2Tlogn).

Energy-Constrained Scenarios: There can be at 
most n–1 node failures (on an n node network) that 
trigger the execution of statement 8 in the pseudo code of 
Figure 1 for the Max.Stability-DG algorithm. A node 
failure occurring at time instant tk (i ≤ k ≤ j), while using 
a mobile data gathering tree that has been determined on 
a mobile graph for time instants ti, …, tj, would require 
us to construct a mobile graph starting from tk and the 
number of mobile graphs that we have to construct and 
run the spanning tree algorithm increases by j–k+1. At 
the worst case, if there are n–1 node failures, the number 
of mobile graphs that we have to construct and run the 
spanning tree algorithm increases by (T – 1) + (T – 2) + 
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(T – (n–1) ) = (n–1)T – [1 + 2 + … + (n–1)] = O(nT) + 
O(n2). Under the sufficient-energy scenarios, we had to 
construct T mobile graphs and run the spanning tree 
algorithm on each of them. In the energy-constrained 
scenarios, we will have to construct at most T + O(nT) + 
O(n2) mobile graphs and run the spanning tree algorithm 
on each of them. The number of rounds of data gathering 
is generally far greater than the number of nodes in the 
network. For example, in our simulations, we use a value 
of T = 4000 rounds (4 rounds per second, for 1000 
seconds) and n = 100 nodes. Thus, since n << T, we can 
say that n2 << nT. Therefore, a total of T + O(nT) + O(n2) 
= T + O(nT) = O(nT) mobile graphs are constructed. The 
time complexity to construct these mobile graphs is O(n2

* nT) = O(n3T). We run the O(n2logn) Prim’s spanning 
tree algorithm on the O(nT) mobile graphs, resulting in a 
time-complexity of O(n3Tlogn) to determine the 
spanning trees. The time-complexity of running the O(n)-
BFS algorithm on the O(nT) spanning trees is O(n2T). 
Thus, the overall time-complexity of the Max.Stability-
DG algorithm under the energy-constrained scenarios is 
O(n3T) + O(n3Tlogn) + O(n2T) = O(n3Tlogn).

4.3 Minimum-distance spanning tree 
based data gathering algorithm

In Section 5 (Simulations), we compare the performance 
of the Max.Stability-DG trees with that of the minimum-
distance spanning tree based data gathering (MST-DG) 
trees. The sequence of MST-DG trees for the duration of 
the data gathering session is generated as follows: If a 
MST-DG tree is not known for a particular round, we run 
the Prim’s minimum-weight spanning tree algorithm on 
the static graph representing the snapshot of the network 
topology generated at the time instant corresponding to 
the round. Since the weights of the edges in a static graph 
represent the physical Euclidean distance between the 
constituent end nodes of the edges, the Prim’s algorithm 
will return the minimum-distance spanning tree on the 
static graph. We then choose an arbitrary root node and 
run the Breadth First Search (BFS) algorithm starting 
from this node. The MST-DG tree is the rooted form of 
the minimum-distance spanning tree with the chosen root 
node as the leader node. We continue to use the MST-
DG tree as long as it exists. The leader node of the MST-
DG tree remains the same until the tree breaks due to 
node mobility or node failures. When the MST-DG tree 
ceases to exist for a round, we repeat the above 
procedure. This way, we generate a sequence of MST-
DG trees, referred to as the MST Mobile Data Gathering 
Tree. The MST-DG algorithm emulates the general 
strategy (referred to as Least Overhead Routing 
Approach, LORA [1]) of routing protocols and data 
gathering algorithms for ad hoc networks and sensor 
networks. That is, the algorithm chooses a data gathering 
tree that appears to be the best at the current time instant 
and continues to use it as long as it exists. In a recent 
work [16], the authors have observed the minimum-
distance spanning tree-based data gathering trees to be 
the most energy-efficient communication topology for 
data gathering in static sensor networks. 

To be fair to the Max.Stability-DG algorithm that is 
proposed and evaluated in this research, the MST-DG 
algorithm is also run in a centralized fashion with the 
assumption that the entire static graph information is 
available at the beginning of each round. The time-
complexity of generating the sequence of MST-DG trees 
on a network of n nodes for a total of T rounds for the 
data gathering session is O(n2Tlogn) for both the 
sufficient-energy and energy-constrained scenarios. The 
time-complexity of the MST-DG algorithm remains the 
same for both the sufficient-energy and energy-
constrained scenarios; because, we do not need to 
backtrack on the sequence of static graphs upon node 
failure and repeat the algorithm more than once on a 
static graph.

4.4 Example 
We run both the Max.Stability-DG and MST-DG 
algorithms on the same sequence of static graphs 
G1G2G3G4G5 (shown in the first part of Figures 2 and 3), 
generated by sampling the network topology for every 
second. For simplicity in the representation, we do not 
use weights for the edges. In both Figures 2 and 3, one 
could assume that the spanning trees determined on the 
static graphs and mobile graphs at different instances of 
execution of the algorithms are the minimum-weight 
spanning trees on the corresponding graphs. 

In Figure 2, we could find a connected mobile graph 
spanning G1, G2 and G3; and could not find a connected 
mobile graph from G1 through G4. A spanning tree exists 
for a graph if and only if the graph is connected. We 
determine a spanning tree on G1  G2  G3 and derive 
a data gathering tree rooted at an arbitrarily selected node 
(node 3). This stable data gathering tree is to be used for 
the rounds corresponding to time instants of the static 
graphs G1, G2 and G3. Similarly, we continue with the 
subsequent two static graphs and find a data gathering 
tree (with an arbitrary root node – node 6) that exists in 
both G4 and G5. Thus, we require two tree discoveries for 
the sequence of static graphs G1G2G3G4G5. 

We apply the MST-DG algorithm on the same 
sequence of static graphs G1G2G3G4G5 (Figure 3). Note 
that the MST-DG algorithm chooses a spanning tree that 
appears to be the best at the time of needing a new data 
gathering tree. With this locally optimal strategy, we 
observe that we need to use a total of four data gathering 
trees (one for G1 and G2; and one each for G3, G4 and 
G5); thus, requiring four tree discoveries for the sequence 
of static graphs G1G2G3G4G5. We observe similar trends 
on the lifetime of the MST-DG trees in the simulations. 
Such a behaviour is not just a characteristic of MST-DG 
trees. We conjecture that any non-stability based data 
gathering algorithm that does not take into consideration 
the mobility of the nodes and chooses a data gathering 
tree that appears to be locally optimal with respect to any 
other metric (like energy consumption, delay etc.) will 
end up determining data gathering trees that require to be 
frequently reconfigured in the presence of a dynamically 
changing topology, characteristic of mobile sensor 
networks.
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Figure 2: Example to Illustrate the Execution of the Maximum Stability Spanning Tree-based Data Gathering Tree 
Algorithm that uses the Globally Optimal Approach

Figure 3: Example to Illustrate the Execution of the Minimum-distance Spanning Tree based Data Gathering 
Algorithm that uses the Locally Optimal Approach

4.5 Proof of correctness of the maximum 
stability-based data gathering 
algorithm

In this section, we prove that the Max.Stability-DG 
algorithm does determine the sequence of long-living 
stable mobile data gathering trees such that the number 
of tree discoveries is the global minimum (i.e. optimum). 
We use the approach of Proof by Contradiction. Let m be 
the number of data gathering tree discoveries incurred 
using the Max.Stability-DG algorithm on a sequence of 
static graphs G1G2 … GT. Let there be another algorithm 

(a hypothetical algorithm) that returns a sequence of 
mobile data gathering trees for the same sequence of 
static graphs such that the number of tree discoveries is n
< m. If such an algorithm exists, then without loss of 
generality, there has to be one mobile data gathering tree, 
determined using this hypothetical algorithm, existing for 
the entire duration of a mobile graph G(p, s); whereas, 
the Max.Stability-DG algorithm had to have at least one 
data gathering tree transition in G(p, s). However, there 
cannot be such a data gathering tree that spanned through 
the entire mobile graph G(p, s) and was not discovered
by the Max.Stability-DG algorithm. Because, the 
Max.Stability-DG algorithm takes intersection of the 
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static graphs Gp Gp+1 … Gs and runs a spanning 
tree algorithm on the intersection graph G(p, s) – if at all 
a spanning tree existed in G(p, s), then G(p, s) would 
have to be connected. If the Max.Stability-DG algorithm 
could not determine a spanning tree/data gathering tree 
for the mobile graph G(p, s), it implies the mobile graph 
G(p, s) is not connected. It is not possible for any 
algorithm, including our hypothetical algorithm, to find a 
spanning tree/data gathering tree that covers all the 
vertices of a disconnected graph. Thus, the hypothetical 
algorithm would also had to have at least one tree 
transition in G(p, s). The above proof holds good for any 
value of static graph indices p and s, where 1 ≤ p ≤ s ≤ T, 
and T is the total number of rounds corresponding to the 
duration of the data gathering session. Thus, the number 
of data gathering tree discoveries incurred with using the 
Max.Stability-DG algorithm is the global minimum. 

Note that in the above proof, we have implicitly 
assumed that all the sensor nodes are alive for the entire 
duration of the data gathering session. In other words, we 
have proved that when operated under sufficient-energy 
scenarios, the Max.Stability-DG algorithm returns the 
stable sequence of data gathering trees such that the 
number of tree discoveries is the global minimum. It is 
not possible to theoretically prove the optimality of the 
Max.Stability-DG algorithm under energy-constrained 
scenarios. One can only validate the optimality of the 
lifetime of the Max.Stability-DG trees under energy-
constrained scenarios through simulations, as we do in 
Section 5, wherein we observe the Max.Stability-DG 
trees to yield a significantly longer lifetime compared to 
the MST-DG trees under energy-constrained scenarios. 

5 Simulations
In this section, we present an exhaustive simulation study 
on the performance of the Max.Stability-DG trees and 
compare them with that of the MST-DG trees under 
diverse conditions of network density and mobility. The 
simulations are conducted in a discrete-event simulator 
developed (in Java) by us exclusively for data gathering 
in mobile sensor networks. The MAC (medium access 
control) layer is assumed to be collision-free and 
considered an ideal channel without any interference. We 
opine that the use of any MAC-scheme proposed for 
energy-efficient and low-latency tree-based data 
gathering in sensor networks [14] can only be 
complementary to the performance of our benchmarking 
algorithm when implemented in a distributed context. 
Sensor nodes are assumed to be both TDMA (Time 
Division Multiple Access) and CDMA (Code Division 
Multiple Access)-enabled [28]. Every upstream node 
broadcasts a time schedule (for data gathering) to its 
immediate downstream nodes; a downstream node 
transmits its data to the upstream node according to this 
schedule. Such a TDMA-based communication between 
every upstream node and its immediate downstream child 
nodes can occur in parallel, with each upstream node 
using a unique CDMA code. 

The network dimension is 100m x 100m. The 
number of nodes in the network is 100 and initially, the 

nodes are uniform-randomly distributed throughout the 
network. The sink is located at (50, 300), outside the 
network field. For a given simulation run, the 
transmission range per sensor node is fixed and is the 
same across all nodes. The network density is varied by 
varying the transmission range per sensor node from 20m 
to 50m, in increments of 5m. For brevity, we only 
present results obtained for transmission ranges per node 
of 25m and 30m (representative of moderate density, 
with connectivity of 97% and above), and  for 40m 
(representative of high density, with 100% connectivity).

Simulations are conducted for two kinds of energy 
scenarios: One scenario wherein each node is provided 
with abundant supply of energy (50 J per node) and there 
are no node failures due to exhaustion of battery charge; 
the simulations in these sufficient-energy scenarios are 
conducted for 1000 seconds. The second scenario is an 
energy-constrained scenario in which each node is 
supplied with limited initial energy (2 J per node) and the 
simulations are conducted until the network of live 
sensor nodes gets disconnected due to the failures of one 
or more nodes. 

The energy consumption model used is a first order 
radio model [22] that has been also used in several of the 
well-known previous work (e.g., [8][12]) in the literature. 
According to this model, the energy expended by a radio 
to run the transmitter or receiver circuitry is Eelec = 50 

nJ/bit and amp = 100 pJ/bit/m2 for the transmitter 

amplifier. The radios are turned off when a node wants to 
avoid receiving unintended transmissions. The energy 
lost in transmitting a k-bit message over a distance d is 

given by: ETX (k, d) = Eelec* k +amp *k* d2. The energy 

lost to receive a k-bit message is: ERX (k) = Eelec* k. 
We conduct constant-bit rate data gathering at the 

rate of 4 rounds per second (one round for every 0.25 
seconds). The size of the data packet is 2000 bits; the 
size of the control messages used for tree discoveries is 
assumed to be 400 bits. We assume that a tree discovery 
requires network-wide flooding of the 400-bit control 
messages such that each sensor node will broadcast the 
message exactly once in its neighborhood. As a result, 
each sensor node will lose energy to transmit the 400-bit 
message over its entire transmission range and receive 
the message from each of its neighbor nodes. In high 
density networks, the energy lost due to receipt of the 
redundant copies of the tree discovery control messages 
dominates the energy lost at a node for tree discovery. 
All of these mimic the energy loss observed for flooding-
based tree discovery in ad hoc and sensor networks.

The node mobility model used is the well-known 
Random Waypoint mobility model [3] with the 
maximum node velocity being 3 m/s, 10 m/s and 20 m/s 
representing scenarios of low, moderate and high 
mobility respectively. According to this model, each 
node chooses a random target location to move with a 
velocity uniform-randomly chosen from [0,…, vmax], and 
after moving to the chosen destination location, the node 
continues to move by randomly choosing another new 
location and a new velocity. Each node continues to 
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move like this, independent of the other nodes and also 
independent of its mobility history, until the end of the 
simulation. For a given vmax value, we also vary the 
dynamicity of the network by conducting the simulations 
with a variable number of static nodes (out of the 100 
nodes) in the network. The values for the number of 
static nodes used are: 0 (all nodes are mobile), 20, 50 and 
80. 

5.1 Performance metrics
We generated 200 mobility profiles of the network for a 
total duration of 6000 seconds, for every combination of 
the maximum node velocity and the number of static 
nodes. Every data point in the results presented in 
Figures 5 through 25 is averaged over these 200 mobility 
profiles. The tree lifetime and delay per round are 
measured for both the sufficient-energy and energy-
constrained (appropriately prefixed as ‘EC’ next to the 
names of the data gathering trees) scenarios. The trio of 
the energy consumption metrics – energy lost per round, 
energy lost per node and fairness of node usage are all 
measured only for the sufficient-energy scenarios in 
order to accurately capture the impact of the topological 
structure, network dynamicity and the stability of the 
data gathering trees on energy consumption. The node 
and network lifetimes as well as the fraction of coverage 
loss and coverage loss time are measured only for the 
energy-constrained scenarios. 

The performance metrics measured in the simulations 
are: 

(i) Tree Lifetime – the duration for which a data 
gathering tree existed, averaged over the entire 
simulation time period.

(ii) Delay per Round – measured in terms of the 
number of time slots needed per round of data 
aggregation at the intermediate nodes, all the 
way to the leader node of the data gathering 
tree, averaged across all the rounds of the 
simulation. A brief description of the algorithm 
used to compute the delay per round is given in 
Section 5.2 along with an illustration in Figure 
4.

(iii) Energy Lost per Round – measured as the (sum 
of the energy lost due to the transmission and 
reception of data across all the links of a data 
gathering tree used for each round, the energy 
lost in transmitting the aggregated data from the 
leader node to the sink for each round plus the 
energy lost due to the network-wide flooding-
based discovery of all the data gathering trees) 
divided by (the number of rounds of data 
gathering conducted on the network).

(iv) Energy Lost per Node – measured as the (sum 
of the energy lost at each node in the network 
due to transmission and reception of the data 
packets depending on their position in the data 
gathering trees used for the different rounds plus 
the energy lost due to broadcast transmission 
and reception of control messages in the 

neighborhood) divided by (the number of nodes 
in the network).

(v) Fairness of Node Usage – measured as the 
standard deviation (SD) of energy lost per node. 
The SD of energy lost per node should be 
ideally zero for maximum fairness of node 
usage. However, due to the stochastic nature of 
the network, nodes are not equally used. The 
lower the value for the SD of energy lost per 
node, the larger the fairness of node usage, and 
vice-versa. 

(vi) Node Lifetime – measured as the time of first 
node failure due to exhaustion of battery charge.

(vii)Network Lifetime – measured as the time of 
disconnection of the network of live sensor 
nodes (i.e., the sensor nodes that have positive 
available battery charge), while the network 
would have stayed connected if all the nodes 
were alive at that time instant. So, before 
confirming whether an observed time instant is 
the network lifetime (at which the network of 
live sensor nodes is noticed to be disconnected), 
we test for connectivity of the underlying 
network if all the sensor nodes were alive.  

We obtain the distribution of node failures 
as follows: The probability for ‘x’ number of 
node failures (x from ranging from 1 to 100 as 
we have a total of 100 nodes in our network for 
all the simulations) for a given combination of 
the operating conditions (transmission range per 
node, maximum node velocity and number of 
static nodes) is measured as the number of 
mobility profile files that reported x number of 
node failures divided by 200, which is the total 
number of mobility profiles used for every 
combination of maximum node velocity and 
number of static nodes. Similarly, we keep track 
of the time at which ‘x’ (x ranging from 1 to 
100) number of node failures occurred in each 
of the 200 mobility profiles for a given 
combination of operating conditions and the 
values for the time of node failures reported in 
Figures 17, 18 and 19 are an average of these 
data collected over all the mobility profile files. 
We discuss the results for the distribution of the 
time and probability of node failures along with 
the discussion on node lifetime and network 
lifetime in Section 5.7. 

(viii) Fraction of Coverage Loss and 
Coverage Loss Time: If f is denoted as ‘Fraction 
of Coverage Loss’ (ranging from 0.01 to 1.0, 
measured in increments of 0.01), the coverage 
loss time is the time at which any f randomly 
chosen locations (X, Y co-ordinates) among 100 
locations in the network is not within the 
sensing range of any node (explained in more 
detail below). Since the number of node failures 
increases monotonically with time and network 
coverage depends on the number of live nodes, 
our assumption in the calculations for network 
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coverage loss is that the fraction of coverage 
loss increases monotonically with time. We 
keep track of the largest fraction of coverage 
loss the network has incurred so far, and at the 
beginning of each round we check whether the 
network has incurred the next largest fraction of 
coverage loss, referred to as the target fraction 
of coverage loss. The first time instant during 
which we observe the network to have incurred 
the target coverage loss is recorded as the 
coverage loss time for the particular fraction of 
coverage loss, and from then on, we increment 
the target coverage loss by 0.01 and keep testing 
for the first occurrence of the new target 
fraction of coverage loss in the subsequent 
rounds. We repeat the above procedure until the 
network lifetime is encountered for the 
simulation with the individual data gathering 
algorithm.  

At the beginning of each round, we check 
for network coverage as follows: We choose 
100 random locations in the network and find 
out whether each of these locations is within the 
sensing range of at least one sensor node. We 
count the number of locations that are not 
within the sensing range of any node. If the 
fraction of the number of locations (actual 
number of locations that are not covered / total 
number of locations considered, which is 100) 
not within the sensing range of any node equals 
the target fraction of coverage loss, we record 
the time instant for that particular round of data 
gathering as the coverage loss time 
corresponding to the target fraction of coverage 
loss. We then increment the target fraction of 
coverage loss by 0.01 and repeat the above 
procedure to determine the coverage loss time 
corresponding to the new incremented value of 
the target fraction of coverage loss.

Each coverage loss time data point reported 
for particular fractions of coverage loss in 
Figures 23, 24 and 25 are the average values of 
the coverage loss times observed when the 
individual data gathering tree algorithms are run 
with the mobility profile files corresponding to a 
particular condition of network dynamicity 
(max. node velocity and number of static nodes) 
and transmission range per node. The 
probability for a particular fraction of coverage 
loss is computed as the ratio of the number of 
mobility profile files in which the corresponding 
fraction of coverage loss was observed divided 
by the total number of mobility profile files 
(200 mobility profile files for each operating 
condition). 

5.2 Algorithm to compute the delay per 
round of data gathering

The delay incurred at a node is measured in terms of the 
number of time slots it takes to gather data from all of its 

immediate child nodes. The delay for the data gathering 
tree is one plus the delay incurred at the leader node (root 
node). We assume that it takes one time slot per child 
node to transfer data to its immediate predecessor node in 
the tree. However, a node cannot transfer the aggregated 
data to its parent node until it receives the data from its 
own child nodes. The delay calculations start from the 
bottom of the data gathering tree. The delay incurred at a 
leaf node is 0. To calculate the delay incurred at an 
intermediate node u, Delay(u), located at a particular 
level in the data gathering tree, we maintain a sorted list, 
Child-Nodes(u), of the delay associated with each of its 
immediate child nodes and use a temporary running 
variable Temp-Delay(u), initialized to zero, to explore the 
sorted list of the delays at the child nodes. For every 
child node v Child-Nodes(u), Temp-Delay(u) = 
Maximum [Temp-Delay(u) + 1, Delay(v) + 1)], as we 
assume it takes one time slot for a child node to transfer 
its aggregated data to its immediate predecessor node in 
the tree. The delay associated with an intermediate node 
u, Delay(u), is the final value of the Temp-Delay(u)
variable, after we iterate through the sorted list of the 
delays associated with the list Child-Nodes(u). The above 
procedure is repeated at all the intermediate nodes, from 
levels one less than the Height of the tree all the way to 
zero (i.e., the root node). We illustrate the working of the 
above explained procedure for delay computation on a 
data gathering tree through an example presented in 
Figure 4. The integer inside a circle indicates the node ID 
and the integer outside a circle indicates the delay for 
data aggregation at the node.

Figure 4: Example to Illustrate the Calculation of Delay 
per Round of Data Gathering.

5.3 Tree lifetime
Among the three key operating parameters (maximum 
node velocity, number of static nodes and transmission 
range per node) of the simulations, we observe the 
stability of the data gathering trees to be highly 
influenced by the maximum node velocity (vmax) of the 
nodes. When operated under sufficient-energy scenarios, 
for a fixed number of static nodes and transmission range 
per node, we observe the lifetime incurred for both the 
Max.Stability-DG trees and MST-DG trees to 
proportionally decrease with a corresponding increase in 
the vmax values from 3 m/s to 10 m/s and further to 20 
m/s. In the energy-constrained scenarios, even though a 
data gathering tree may topologically exist, the tree 
would require reconfiguration if one / more
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    Transmission Range = 25 m                 Transmission Range = 30 m                Transmission Range = 40 m

Figure 5: Average Tree Lifetime (Low Node Mobility: vmax = 3 m/s).

    Transmission Range = 25 m                Transmission Range = 30 m                  Transmission Range = 40 m

Figure 6: Average Tree Lifetime (Moderate Node Mobility: vmax = 10 m/s).

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 7: Average Tree Lifetime (High Node Mobility: vmax = 20 m/s).

nodes in the tree fail due to exhaustion of battery charge. 
Since a tree also needs to be reconfigured due to node 
mobility, the lifetime of the data gathering trees observed 
for energy-constrained scenarios is always less than or 
equal to that observed for sufficient-energy scenarios. In 
the case of both the Max.Stability-DG and MST-DG 
trees, for a fixed transmission range and # static nodes, 
we observe the largest difference between the tree 
lifetimes for the sufficient-energy scenarios vis-à-vis the 
energy-constrained scenarios to occur when the network 
is operated under low node mobility conditions (vmax = 3 
m/s). This could be attributed to the significantly longer 
lifetime observed for the data gathering trees at low node 
mobility conditions when operated with sufficient-energy 
for the nodes.

In low mobility scenarios (refer Figure 5), we also 
observe the difference in the tree lifetimes under 
sufficient-energy vs. energy-constrained scenarios to 
increase with increase in the transmission range per node. 
At higher transmission ranges, the links are more stable 
as nodes of a link have relatively higher freedom to move 
around (compared to operating at low and moderate 
transmission ranges) and still remain as neighbors. 
Hence, the data gathering trees are bound to be the most 
stable at low node mobility and larger transmission 
ranges per node. At these conditions – under sufficient-
energy scenarios, we observe the Max.Stability-DG trees 
to sustain a lifetime that is larger than that of the MST-
DG trees by a factor of about 3 to 4.5. However, under 
energy-constrained scenarios, when operated at low node 
velocity and larger transmission range per node, the 

Max.Stability-DG trees are only 50-75% more stable 
than that of the MST-DG Trees, even though the absolute 
magnitude of the tree lifetime incurred with both the 
trees is the maximum compared to the other operating 
conditions. On the contrary, larger differences between 
the lifetimes of the Max.Stability-DG trees and MST-DG 
trees under energy-constrained scenarios are observed 
when operated at moderate transmission ranges per node 
and the difference increases with increase in node 
mobility. This could be attributed to the significant 
energy savings sustained by the Max.Stability-DG 
algorithm with respect to tree discoveries under moderate 
and high node mobility levels (refer Figures 6 and 7). On 
the other hand, the MST-DG trees are quite unstable with 
increase in node mobility, resulting in frequent flooding-
based tree discoveries that consume significant node 
energy. As a result, nodes on a Max.Stability-DG tree 
exist for a relatively much longer time compared to that 
of the MST-DG trees, contributing to the increasing 
difference in the lifetime of the two data gathering trees 
in energy-constrained scenarios when operated under 
moderate and high levels of node mobility.

With regards to the impact of the transmission range 
per node, the difference in the lifetime of the 
Max.Stability-DG trees and the MST-DG trees increases 
with increase in the transmission range per node, for a 
given level of node mobility. For a fixed vmax value, the 
lifetime of the Max.Stability-DG trees increases by a 
factor of 3 and above as we increase the transmission 
range from 25m to 40m; whereas the lifetime of the 
MST-DG trees increases only at most by a factor of 2. 
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Figure 8: Average Delay per Round (Low Node Mobility: vmax = 3 m/s).

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 9: Average Delay per Round (Moderate Node Mobility: vmax = 10 m/s).

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 10: Average Delay per Round (High Node Mobility: vmax = 20 m/s).

This could be again attributed to the optimal usage of the 
availability of stable links (facilitated by the larger 
transmission ranges per node) by the Max.Stability-DG 
algorithm through its look-ahead and graph intersection 
approach. However, as is the bane of the algorithms 
based on the local optimum approach, the MST-DG trees 
are formed with relatively less stable links even when 
operated with higher transmission ranges per node.

With regards to the impact of the number of static 
nodes, we observe that for both the sufficient-energy and 
energy-constrained scenarios, the lifetime of both the 
Max.Stability-DG trees and the MST-DG trees increases 
by about 50% when the number of static nodes is 
increased from 0 to 80 nodes. There is not much of a 
significant increase (only at most about 10-15% increase) 
in the lifetime of both the data gathering trees when we 
run the network with 20 and 50 static nodes instead of 0 
nodes. This vindicates the impact of node mobility on the 
stability of the data gathering trees. Even if half of the 
nodes in the network are operated static, we observe the 
data gathering trees to have about the same vulnerability 
for a link failure vis-à-vis operating the network with all 
mobile nodes.

5.4 Delay per round
A minimum-distance based spanning tree tends to have 
relatively fewer leaf nodes, and as a result more nodes 
are likely to end up as intermediate nodes – leading to a 
much larger depth for the MST-DG trees. The MST-DG 
tree is also observed to be more unbalanced with respect 
to the distribution of the number of children per 

intermediate node as well as the distribution of the leaf 
nodes at different levels. Not all leaf nodes are located at 
the bottommost level of the tree. Due to all these 
structural complexities, the MST-DG trees have been 
observed to incur a much larger delay per round of data 
gathering. On the other hand, the Max.Stability-DG trees 
have been observed to be more shallow (i.e., lower 
depth) with more leaf nodes and the distribution of the 
number of child nodes per intermediate node is relatively 
more balanced. All of these factors contribute to a much 
lower delay per round of data gathering.

We observe the Max.Stability-DG trees to incur a 
lower delay per round of data gathering compared to that 
of the MST-DG trees under all operating conditions (the 
difference is as large as 25%). The delay per round is not 
much affected by the dynamicity of the network and is 
more impacted by the topological structure of the two 
spanning trees. We observe a relatively lower delay per 
round, especially for the MST-DG trees, at energy-
constrained scenarios vis-à-vis sufficient-energy 
scenarios due to the decrease in the number of nodes and 
slightly better distribution of nodes when fewer in 
number. The delay per round for the Max.Stability-DG 
trees is influenced more by the transmission range per 
node in energy-constrained scenarios and by the number 
of static nodes in sufficient-energy scenarios. For a given 
transmission range per node and # static nodes, variations 
in the value of the maximum node velocity have the least 
impact on the delay per round for both the data gathering 
trees. 
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Low Mobility (vmax = 3 m/s)           Moderate Mobility (vmax = 10 m/s)           High Mobility (vmax = 20 m/s)

Figure 11: Average Energy Lost per Node.

Low Mobility (vmax = 3 m/s)           Moderate Mobility (vmax = 10 m/s)           High Mobility (vmax = 20 m/s)

Figure 12: Average Energy Lost per Round.

With node failures, the number of nodes in the data 
gathering trees decreases and this has a positive impact 
on the delay per round of data gathering. The decrease in 
the delay per round under energy-constrained scenarios 
ranges from 10-40%, with the larger percentage decrease 
in delay observed when the data gathering algorithms are 
operated with transmission range per node of 40m 
(observed for all node mobility levels) under energy-
constrained scenarios compared to sufficient-energy 
scenarios. As a result, for a given energy scenario, the 
difference in the delay per round of the Max.Stability-
DG trees and the MST-DG trees decreases with increase 
in the transmission range per node for a given node 
mobility. 

For a given level of node mobility and transmission 
range per node, the delay per round for a data gathering 
tree, under both the sufficient-energy and energy-
constrained scenarios, increases with increase in the 
number of static nodes. The increase is more 
predominantly observed for the Max.Stability-DG trees 
when operated at 80 static nodes under sufficient-energy 
scenarios. The Max.Stability-DG trees incurred about 10-
25% lower delay than that of the MST-DG trees when all 
nodes are mobile. As the number of static nodes 
increases, the delay per round incurred with the 
Max.Stability-DG trees converges to that of the MST-
DG trees, especially when operated under sufficient-
energy scenarios. The relatively lower delay per round 
for the Max.Stability-DG trees under energy-constrained 
scenarios can be attributed to the decrease in the number 
of nodes coupled with the shallow topological structure 
of the data gathering tree. 

5.5 Energy consumption
The energy lost per node and energy lost per round for 
the Max.Stability-DG trees are lower than that of the 
MST-DG trees for all the operating conditions. In this 
section, we combine the discussion for energy lost per 
node and energy lost per round as similar trends are 
observed for the two performance metrics (see Figures 
11 and 12) with respect to the two data gathering trees 

under the different operating conditions. The maximum 
node velocity and the number of static nodes have been 
observed to have a significant impact on the energy lost 
per node and per round for the two data gathering trees. 
The lifetime of the MST-DG trees decreases significantly 
with increase in the maximum node velocity, requiring 
frequent network-wide flooding that consumes the 
energy level at the nodes. On the other hand, the 
Max.Stability-DG algorithm incurs significantly fewer 
tree discoveries and hence sustains a lower overall 
energy loss. The energy lost per node (and energy lost 
per round) for the MST-DG trees are about 10-20%, 15-
45% and 30-75% more than that incurred for the 
Max.Stability-DG trees at conditions of low, moderate 
and high node mobility respectively. For a fixed vmax and 
transmission range per node, the difference in the energy 
lost per node (and energy lost per round) for the two data 
gathering trees decreases with increase in the number of 
static nodes. This is attributed to the relatively lower 
number of tree discoveries needed in the presence of 
static nodes and overall, the nodes incur a lower energy 
loss for the duration of the data gathering session. The 
decrease in the energy lost per node (and energy lost per 
round) with increase in the number of static nodes is 
significantly observed as we increase the maximum node 
velocity (about 5-10% decrease at vmax = 3 m/s and about 
25%-35% decrease at vmax = 20 m/s). 

For a given level of node mobility and number of 
static nodes, we observe the Max.Stability-DG trees to 
sustain almost similar values for the energy lost per node 
(and energy lost per round) as we increase the 
transmission range per node from 25m to 40m. Even 
though one can imagine that the nodes will lose more 
energy when operated under higher transmission range, 
the potential energy savings (obtained due to the reduced 
number of flooding-based tree discoveries attributed at 
larger transmission ranges per node) equally 
compensates for the increase in the transmission energy 
loss. Even the MST-DG trees have been observed to 
incur only about 5-10% increase in the energy lost per 
node (and energy lost per round) when operated at range
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Low Mobility (vmax = 3 m/s)           Moderate Mobility (vmax = 10 m/s)           High Mobility (vmax = 20 m/s)

Figure 13: Fairness of Node Usage: Standard Deviation of Energy Lost per Node.

per node of 40m compared to 25m per node. Thus, 
among the three operating parameters – the transmission 
energy per node has the least impact on the energy lost 
per node and energy lost per round for the two data 
gathering trees.

5.6 Fairness of node usage
Ideally, all nodes are to be equally used. However, due to 
node mobility, node distribution and the varied roles for 
the nodes (leader node, intermediate node and leaf node) 
that change at different instants of the data gathering 
session depending on the topological stability of the data 
gathering tree used, the energy consumption across nodes 
is not uniform. As a result, certain nodes fail prematurely 
ahead of others. 

We observe the Max.Stability-DG trees to be unfair 
with respect to node usage. This could be attributed to 
the repeated use of certain nodes (the intermediate nodes 
and the leader node) of the stable data gathering tree for a 
longer time. This has a profound effect on the node 
lifetime (the time of first node failure) as observed in 
Section 5.7. However, the energy savings brought by 
reduced number of tree discoveries significantly 
compensates for the unfairness in node usage, leading to 
a larger network lifetime (the time the network of live 
nodes gets disconnected), as also observed in Section 5.7. 
Since the MST-DG trees are relatively more frequently 
reconfigured, we observe these data gathering trees to 
incur a lower standard deviation of energy lost per node 
under all simulation conditions. This plays a significant 
role in the MST-DG trees sustaining a relatively longer 
node lifetime (the time of first node failure). However, 
the relatively more equal, but higher energy lost per node 
for the MST-DG trees expedites node failures beyond the 
first node failure, eventually leading to a lower network 
lifetime than those incurred with the Max.Stability-DG 
trees.

For a given transmission range per node and number 
of static nodes, we observe the standard deviation of 
energy usage at the nodes to decrease with increase in 
maximum node velocity. Node mobility triggers more 
frequent tree reconfigurations and as a result, the chances 
of the role of the energy-consuming intermediate nodes 
and leader node gets rotated gets high, leading to 
increased fairness in node usage. On the other hand, the 
standard deviation of energy lost per node increases with 
increase in the transmission range per node (attributed to 
the increased stability at larger transmission ranges) as 
well as with increase in the number of static nodes (again 
attributed to the stability of the data gathering trees). 

5.7 Node lifetime and network lifetime
We observe a tradeoff between node lifetime and 
network lifetime for maximum stability vs. minimum-
distance spanning tree based data gathering in mobile 
sensor networks. The MST-DG trees incur larger node 
lifetimes (the time of first node failure) for all the 48 
operating combinations of maximum node velocity, 
number of static nodes and transmission range per node. 
The Max.Stability-DG trees incur larger network lifetime 
for most of the operating conditions. The lower node 
lifetime incurred with the Max.Stability-DG trees is 
attributed to the continued use of stable data gathering 
trees for a longer time and that too without changing the 
leader node. It would involve too much of message 
complexity and energy consumption to have the sensor 
nodes coordinate among themselves to choose a leader 
node for every round. Hence, we choose the leader node 
for a data gathering tree at the time of discovering it and 
let the leader node remain the same for the duration of 
the tree (i.e., until the tree fails). The same argument 
applies for the continued use of the intermediate nodes 
that receive aggregate data from one or more child nodes 
and transmit them to an upstream node in the tree. Due to 
the unfairness in node usage resulting from the overuse 
of certain nodes as intermediate nodes and leader node, 
the Max.Stability-DG trees have been observed to yield a 
lower node lifetime, especially under operating 
conditions (like low and moderate node mobility with 
moderate and larger transmission range per node) that 
facilitate greater stability. The node lifetime incurred 
with the Max.Stability-DG trees increases significantly 
with increase in the maximum node velocity, especially 
when operated in moderate transmission ranges per node.

The node lifetime incurred for the MST-DG trees 
can be larger than that of the Max.Stability-DG trees by 
as large as 400% at low and moderate levels of node
mobility and by as large as 135% at higher levels of node 
mobility. For a given level of node mobility, the 
difference in the node lifetimes incurred for the MST-DG 
trees and Max.Stability-DG trees increases with increase 
in the transmission range per node (for a fixed number of 
static nodes) and either remain the same or slightly 
increase with increase in the number of static nodes (for 
a fixed transmission range per node). The MST-DG trees 
too suffer a decrease in node lifetime with increase in 
transmission range per node; but, at a lower scale – due 
to the relative instability of the trees. At larger 
transmission ranges per node, the data gathering trees are 
bound to be more stable, and the negative impact of this 
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    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 14: Average Node and Network Lifetime (Low Node Mobility: vmax = 3 m/s).

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 15: Average Node and Network Lifetime (Moderate Node Mobility: vmax = 10 m/s).

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 16: Average Node and Network Lifetime (High Node Mobility: vmax = 20 m/s).

on node lifetime is significantly felt in the case of the 
Max.Stability-DG trees. For a given transmission range 
per node, the negative impact associated with the use of 
static nodes on node lifetime is increasingly observed at 
vmax values of 3 m/s and 10 m/s. At vmax = 20 m/s, since 
the network topology changes dynamically, even the use 
of 80 static nodes is not likely to overuse certain nodes 
and result in their premature failures. The node lifetime 
incurred with MST-DG trees is more impacted with the 
use of static nodes at low node mobility scenarios (Figure 
14) and the node lifetime incurred with the 
Max.Stability-DG trees is more impacted with the use of 
static nodes at moderate and higher node mobility 
scenarios (Figures 15 and 16).

The Max.Stability-DG trees compensate for the 
premature failures of certain nodes by incurring a lower 
energy loss per round and energy loss per node due to 
lower tree discoveries and shorter tree height with more 
even distribution of the number of child nodes per 
intermediate node. As the dynamicity of the network 
increases, the data gathering trees become less stable, 
and this helps to rotate the roles of the intermediate 
nodes and leader node among the nodes to increase the 
fairness of node usage. All of these save significantly 
more energy at the remaining nodes that withstand the 
initial set of failures. As a result, we observe the 
Max.Stability-DG trees to observe a significantly longer 
network lifetime compared to that of the MST-DG 
trees.The difference in the network lifetime incurred for 
the Max.Stability-DG trees and that of the MST-DG trees 
increases with increase in the maximum node velocity 
and transmission range per node. For a given vmax and 

transmission range per node, the number of static nodes 
does not make a significant impact on the difference in 
the network lifetime incurred with the two data gathering 
trees, especially at moderate transmission ranges per 
node of 25 and 30m.

With respect the impact of the operating parameters 
on the absolute magnitude of the network lifetime, we 
observe the network lifetime incurred with the two data 
gathering trees increases with increase in the number of 
static nodes for a given value of vmax and transmission 
range per node. For a given level of node mobility, the 
network lifetime increases with increase in transmission 
range per node; however, for the MST-DG trees, the rate 
of increase decreases with increase in the maximum node 
velocity. This could be attributed to the relative 
instability of the MST-DG trees at high node mobility 
levels, requiring frequent tree reconfigurations. During a 
network-wide flooding, all nodes in the network tend to 
lose energy, almost equally. The Max.Stability-DG trees 
maintain a steady increase in the network lifetime with 
increase in transmission range per node for all levels of 
node mobility. For a given transmission range per node 
and number of static nodes, the network lifetime incurred 
for the two data gathering trees decreases with increase 
in the maximum node velocity, especially for the MST-
DG trees due to their instability. This could be attributed 
to the energy loss incurred due to frequent tree 
discoveries. 

For a given transmission range per node, with the 
absolute values of the node lifetime increasing with 
increase in the maximum node velocity and the network 
lifetime decreasing with increase in the maximum node
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       Transmission Range: 25 m, 0 static nodes                             Transmission Range: 25 m, 80 static nodes

         
    Transmission Range: 30 m, 0 static nodes                            Transmission Range: 30 m, 80 static nodes

      
    Transmission Range: 40 m, 0 static nodes                            Transmission Range: 40 m, 80 static nodes

Figure 17: Distribution of Node Failure Times and Probability of Node Failures [vmax = 3 m/s].

        
    Transmission Range: 25 m, 0 static nodes                             Transmission Range: 25 m, 80 static nodes

         
    Transmission Range: 30 m, 0 static nodes                            Transmission Range: 30 m, 80 static nodes

        
    Transmission Range: 40 m, 0 static nodes                            Transmission Range: 40 m, 80 static nodes

Figure 18: Distribution of Node Failure Times and Probability of Node Failures [vmax = 10 m/s].
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       Transmission Range: 25 m, 0 static nodes                     Transmission Range: 25 m, 80 static nodes

      
       Transmission Range: 30 m, 0 static nodes                     Transmission Range: 30 m, 80 static nodes

      
       Transmission Range: 40 m, 0 static nodes                     Transmission Range: 40 m, 80 static nodes

Figure 19: Distribution of Node Failure Times and Probability of Node Failures [vmax = 20 m/s].

velocity, we observe the maximum increase in the 
absolute time of node failures to occur at low node 
mobility. This vindicates the impact of network-wide 
flooding based tree discoveries on energy consumption at 
the nodes. Since all nodes are likely to lose the same 
amount of energy with flooding, the more we conduct 
flooding, the larger is the network-wide energy 
consumption. As a result, node failures tend to occur 
more frequently when we conduct frequent flooding. 
Thus, even though operating the network at moderate and 
high levels of node mobility helps us to extend the time 
of first node failure, the subsequent node failures occur 
too soon after the first node failure. This could be 
justified with the observation of flat curves for the MST-
DG trees with respect to the distribution of node failure 
times (in Figures 17, 18 and 19). The distribution of node 
failure times is relatively steeper for the Max.Stability-
DG trees. The unfair usage of nodes in the initial stages 
does help the Max.Stability-DG trees to prolong the 
network lifetime. Aided with node mobility, it is possible 
for certain energy-rich nodes (that might have been leaf 
nodes in an earlier data gathering tree) to keep the 
network connected for a longer time by serving as 
intermediate nodes, and the energy-deficient nodes serve 
as leaf nodes during the later rounds of data gathering. 

The impact of mobility in prolonging node failure 
lifetimes could also be explained by the lower probability 
of node failure observed for the Max.Stability-DG trees 
in comparison to the MST-DG trees when there are 0 

static nodes (the plots to the left in Figures 17, 18 and 
19). At 80 static nodes, the probability of node failures 
for the two data gathering trees is about the same and is 
higher than that observed when all nodes are mobile. 
This could be attributed to the repeated overuse of certain 
nodes as intermediate nodes and leader node on 
relatively more stable data gathering trees. Thus, with the 
use of static nodes, even though the absolute magnitude 
of the network lifetime can be marginally increased (by 
about 10-70%; the increase is larger at moderate 
transmission range per node and larger values of vmax), 
the probability of node failures to occur also increases.

In terms of the percentage difference in the values 
for the network lifetime and node lifetime incurred with 
the two data gathering trees, we observe the 
Max.Stability-DG trees to incur a significantly prolonged 
network lifetime, beyond the time of first node failure. 
For a given transmission range per node and maximum 
node velocity, we observe the difference between the 
node lifetime and network lifetime for the Max.Stability-
DG trees to increase significantly with increase in the 
number of static nodes. This could be attributed to the 
reduction in the number of flooding-based tree 
discoveries. For a given level of node mobility, we 
observe the difference in the node lifetime and network 
lifetime for the Max.Stability-DG trees to increase with 
increase in the transmission range per node. This could 
be again attributed to the decrease in the number of 
network-wide flooding based tree discoveries when used
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    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 20: Fraction of Coverage Loss and Associated Probability (Low Node Mobility: vmax = 3 m/s)

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 21: Fraction of Coverage Loss and Associated Probability (Moderate Node Mobility: vmax=10 m/s)

    Transmission Range = 25 m              Transmission Range = 30 m               Transmission Range = 40 m

Figure 22: Fraction of Coverage Loss and Associated Probability (High Node Mobility: vmax = 20 m/s).

      
       Transmission Range: 25 m, 0 static nodes                Transmission Range: 25 m, 80 static nodes

      
       Transmission Range: 30 m, 0 static nodes                Transmission Range: 30 m, 80 static nodes

    
       Transmission Range: 40 m, 0 static nodes                Transmission Range: 40 m, 80 static nodes

Figure 23: Coverage Loss Time and the Probability of Coverage Loss [Low Mobility: vmax = 3 m/s].
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at larger transmission ranges per node. Relatively, the 
MST-DG trees incur a very minimal increase in the 
network lifetime compared to the node lifetime, 
especially when operated at higher levels of node 
mobility.

One can also observe from Figures 17, 18 and 19 
that the number of node failures that require for the node 
failure time incurred with the Max.Stability-DG trees to 
exceed that of the node failure time incurred with the 
MST-DG trees decreases with increase in maximum 
node mobility. This could be attributed to the premature 
very early node failure occurring for the Max.Stability-
DG trees when operated under low node mobility 
scenarios, with the time of first node failure for the MST-
DG tree being as large as 400% more than the time of 
first node failure for the Max.Stability-DG tree. On the 
other hand, at high levels of node mobility, the time of 
first node failure incurred with the MST-DG trees is at 
most 100% larger than that of the Max.Stability-DG 
trees. Hence, the node failure times incurred with the 
Max.Stability-DG trees could quickly exceed that of the 
MST-DG trees at higher levels of node mobility. At the 
same time, the probability for node failures to occur (that 
was relatively low at moderate transmission ranges per 
node, low and moderate levels of node mobility) with the 
Max.Stability-DG trees converges to that of the MST-
DG trees when operated at higher levels of node mobility 
as well as with larger transmission ranges per node. For a 
given vmax value and transmission range per node, we 
also observe that the number of node failures required for 
the failure times incurred with the Max.Stability-DG 
trees to exceed that of the MST-DG trees increases with 
increase in the number of static nodes.

5.8 Coverage loss at a common timeline
In this section, we compare the loss of coverage incurred 
with both the Max.Stability-DG and MST-DG trees with 
respect to a common timeline, chosen to be the minimum 
of the network lifetime obtained for the two data 
gathering trees under every operating condition of 
transmission range per node, maximum node velocity 
and the number of static nodes. Given the nature of the 
results obtained for the network lifetime under different 
operating conditions, the minimum of the network 
lifetime for the two data gathering trees ended up mostly 
being the network lifetime observed for the MST-DG 
trees. For this value of network lifetime, we measured the 
fraction of coverage loss in the network incurred for each 
of the two data gathering trees, as well as measured the 
probability with which the corresponding fraction of 
coverage loss is observed.

Under the above measurement model, we observe 
the Max.Stability-DG trees incur lower values of the 
fractions of coverage loss at the minimum of the network 
lifetime incurred for the two data gathering trees for most 
of all the 48 combinations of the operating conditions of 
maximum node velocity, number of static nodes and 
transmission range per node (see Figures 20, 21 and 22). 
However, the fraction of coverage loss observed for the 

Max.Stability-DG trees is bound to occur with a higher 
probability than that of the coverage loss to be incurred 
by using the MST-DG trees. The difference in the 
fraction of coverage loss incurred for the Max.Stability-
DG trees vis-à-vis could be as large as 0.18-0.21, 
observed at transmission range per node of 40m and 80 
static nodes, under all levels of node mobility. The only 
three combinations of operating conditions for which the 
Max.Stability-DG trees sustain a larger value for the 
fraction of coverage loss (that too, only by 0.02) are at a 
transmission range per node of 25m - vmax = 3 m/s, 0 and 
20 static nodes; and vmax = 10 m/s, 0 static nodes.

In the case of the Max.Stability-DG trees, for a fixed 
vmax value, we observe the fraction of loss of coverage to 
decrease with increase in transmission range per node 
from 25m to 40m, of course with a higher probability. 
The significant decrease in the loss of coverage (as low 
as 0.05) at higher transmission range per node of 40m 
could also be attributed to the increase in the network 
lifetime, and also due to the reason that we measure the 
loss of coverage at a time value (corresponding to the 
network lifetime of the MST-DG trees), which is lower 
than the network lifetime of the Max.Stability-DG trees. 
For fixed vmax and transmission range, as we increase the 
number of static nodes, the fraction of coverage loss 
decreases significantly for Max.Stability-DG trees by 
about 0.05 to 0.1; whereas, the fraction of coverage loss 
for the MST-DG trees suffers a very minimal decrease or 
remains the same. For a fixed # static nodes and 
transmission range per node, node velocity has minimal 
impact on coverage loss for the MST-DG trees. 

5.9 Distribution of coverage loss
In Figures 23, 24 and 25, we illustrate the distribution of 
the time (referred to as the coverage loss time) at which 
particular fractions of coverage loss occurs in the 
network when run with the Max.Stability-DG and MST-
DG trees (until the network lifetime of the individual 
data gathering tree). The Max.Stability-DG trees incur 
larger values of coverage loss time for moderate and 
higher values of the fractions of coverage loss (generally 
above 0.15 or 0.2), under most of the combinations of the 
operating conditions of maximum node velocity, 0 and 
80 static nodes and transmission range per node. For 
quantitative comparison purposes, we base our 
discussion in this section on the coverage loss time 
observed when the fraction of coverage loss is 0.3. For 
most of the combinations of operating conditions, we 
observe the coverage loss times incurred with the 
Max.Stability-DG and MST-DG trees to flatten out (i.e., 
not appreciably increase) starting from this fraction of 
coverage loss. 

In terms of the percentage difference in the coverage 
loss time incurred at a fraction of coverage loss of 0.3, 
we observe the coverage loss time incurred with the 
Max.Stability-DG trees to be about 15-40%, 15-45% and 
30-70% greater than the coverage loss time incurred with 
the MST-DG trees at low, moderate and high levels of 
node mobility respectively. For fixed transmission range
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       Transmission Range: 25 m, 0 static nodes                        Transmission Range: 25 m, 80 static nodes

      
       Transmission Range: 30 m, 0 static nodes                       Transmission Range: 30 m, 80 static nodes

    
       Transmission Range: 40 m, 0 static nodes                       Transmission Range: 40 m, 80 static nodes

Figure 24: Coverage Loss Time and the Probability of Coverage Loss [Moderate Mobility: vmax = 10 m/s].

      
     Transmission Range: 25 m, 0 static nodes                        Transmission Range: 25 m, 80 static nodes

      
    Transmission Range: 30 m, 0 static nodes                        Transmission Range: 30 m, 80 static nodes

    
   Transmission Range: 40 m, 0 static nodes                        Transmission Range: 40 m, 80 static nodes

Figure 25: Coverage Loss Time and the Probability of Coverage Loss [High Mobility: vmax = 20 m/s].
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per node and number of static nodes, the absolute 
magnitude for the coverage loss time incurred for both 
the data gathering trees decreases with increase in the 
vmax value. 

For a given level of node mobility, the coverage loss 
time incurred with the Max.Stability-DG trees almost 
doubles, if not more, as we increase the transmission 
range per node from 25m to 40m and the number of 
static nodes from 0 to 80. This could be attributed to the 
significant energy savings obtained as a result of the need 
for very few network-wide flooding tree discoveries with 
the use of the Max.Stability-DG algorithm when 
operated at larger transmission ranges per node and/or 
more static nodes. We observe significant gains in the 
coverage loss time when the number of static nodes is 
also simultaneously increased with increase in the 
transmission range per node. In fact, at moderate and 
high levels of node mobility, the coverage loss time 
incurred when we run the network at transmission range 
per node of 25m and increase the number of static nodes 
from 0 to 80 is greater than or equal to the coverage loss 
time incurred when we run the network with 0 static 
nodes and increase the transmission range per node from 
25m to 40m. In the case of MST-DG trees, the 
percentage increase in the coverage loss time with 
increase in the number of static nodes vis-à-vis increase 
in the transmission range per node is more obvious. 

For both the data gathering trees, especially in the 
case of MST-DG trees, the potential energy savings 
obtained with respect to reduction in the number of 
network-wide flooding discoveries is much more when 
we operate at a moderate transmission range per node 
and increase the number of static nodes from 0 to 80 
rather than operating at a larger transmission range per 
node with 0 static nodes. It is to be noted that larger the 
transmission range, the larger is the energy lost in 
transmission, and also larger is the energy lost due to 
receipt of the control messages from a larger number of 
neighbor nodes. For both the data gathering trees, we 
observe the increase in coverage loss time with the use of 
more static nodes vis-à-vis a larger transmission range 
per node to occur with a relatively lower probability of 
coverage loss.

6 Conclusions
The high-level contribution of this research is the design 
and development of a benchmarking algorithm 
(Max.Stability-DG algorithm) to obtain the upper bounds 
for the maximum lifetime that can be incurred with data 
gathering trees for mobile sensor networks. Given the 
entire sequence of topology changes over the duration of 
the data gathering session as input, the Max.Stability-DG 
algorithm returns the sequence of longest-living stable 
data gathering trees such that the number of tree 
discoveries is the global minimum. The run-time 
complexity of the algorithm has been observed to be 
O(n2Tlogn) and O(n3Tlogn) when operated under 
sufficient-energy and energy-constrained scenarios 
respectively, where n is the number of nodes in the 
network and T is the duration of the data gathering 

session. Since the Max.Stability-DG trees are spanning 
tree-based and a spanning tree exists in a network if and 
only if the network is connected, the stability of a 
spanning tree or any network-wide communication 
topology (like a connected dominating set) discovered by 
an existing or prospective data gathering algorithm can 
be evaluated by comparing its lifetime with that obtained 
for the Max.Stability-DG trees. With a polynomial-time 
complexity and a much broader scope of application, as 
described above, the Max.Stability-DG algorithm has all 
the characteristics to become a global standard for 
evaluating the stability of communication topologies for 
data gathering in mobile sensor networks. 

We have shown that under sufficient-energy 
scenarios, the number of spanning tree discoveries 
incurred with the Max.Stability-DG algorithm is the 
theoretical minimum for any network-wide 
communication topology used for data gathering. In 
addition to the theoretical evaluation and proof of 
correctness, we have also shown through extensive 
simulations that the Max.Stability-DG trees are 
significantly more stable than the MST-DG trees under 
both sufficient-energy and energy-constrained scenarios. 
We evaluate the performance of the data gathering trees 
obtained with the Max.Stability-DG algorithm under 
diverse conditions of network dynamicity (varied by 
changing the maximum node velocity and number of 
static nodes) and network density (varied by changing 
the transmission range per node). Due to its nature to use 
a long-living data gathering tree as long as it exists, we 
observe the Max.Stability-DG algorithm to incur a lower 
time for the first node failure. However, the tradeoff 
between stability and fairness of node usage ceases to 
exist beyond the first few node failures; the reduced 
number of network-wide flooding discoveries coupled 
with the shallow structure and even distribution of nodes 
across the intermediate nodes (which also contribute to a 
lower delay per round) contribute to a longer lifetime for 
the remaining nodes in the network and significantly 
prolong the network lifetime as well as the coverage loss 
time. On the contrary, the MST-DG trees that incur a 
larger time for the first node failure are observed to incur 
a significantly lower network lifetime and lower 
coverage loss time for a given fraction of loss of 
coverage (and correspondingly incur a larger fraction of 
coverage loss at any time), owing to frequent network-
wide flooding-based tree discoveries that expedite the 
node failures after the first node failure. We did not come 
across such a comprehensive analysis for node failure 
times, network lifetime, coverage loss times and fraction 
of coverage loss in any prior work in the literature.

Table 1 summarizes the overall performance gains 
obtained with the Max.Stability-DG tree vis-à-vis the 
MST-DG trees under both the sufficient-energy and 
energy-constrained scenarios, as applicable. Table 2 
ranks the three operating parameters in the decreasing 
order of influence on the performance of the two data 
gathering trees. As can be seen from Table 2, the nature 
of influence of the operating parameters on the 
performance of the two data gathering trees is more or 
less the same.
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Performance Metric
Better Data Gathering 

Tree

Range of Performance Gain Compared to the 
other Data Gathering Tree

Sufficient-Energy 
Scenario

Energy-Constrained 
Scenario

Tree Lifetime Max.Stability-DG tree 150% to 360% larger 40% to 200% larger
Delay per Round Max.Stability-DG tree 4% to 25% lower 7% to 18% lower
Energy Lost per Node Max.Stability-DG tree 7% to 45% lower Not applicable
Energy Lost per Round Max.Stability-DG tree 7% to 45% lower Not applicable
Fairness of Node Usage MST-DG tree 10% to 50% better Not applicable
Node Lifetime MST-DG tree Not applicable 10% to 420% larger
Network Lifetime Max.Stability-DG tree Not applicable 5% to 60% larger
Coverage Loss Time Max.Stability-DG tree Not applicable 15% to 70% larger
Fraction of Coverage Loss Max.Stability-DG tree Not applicable 2% to 25% lower

Table 1: Overall Performance Gains for the Maximum Stability Spanning Tree based Data Gathering (Max.Stability-
DG) Tree and Minimum-distance Spanning Tree based Data Gathering (MST-DG) Tree.

Performance Metric

Ranking of the Operating Parameters in the Order of Influence 
[1-Highest Influence]

Max. Stability-based Data Gathering Min. distance-based Data Gathering
Node 
Velocity

Static 
Nodes

Transmission 
Range/ Node

Node 
Velocity

Static 
Nodes

Transmission 
Range/ Node

Tree Lifetime 1 3 2 1 3 2
Delay per Round 3 2 1 3 2 1
Energy Lost / Node 1 2 3 1 2 3
Energy Lost / Round 1 2 3 1 2 3
Fairness of Node Use 1 3 2 1 3 2
Node Lifetime 1 3 2 1 3 2
Network Lifetime 1 2 3 1 2 3
Coverage Loss Time 1 2 3 1 2 3
Frac. Coverage Loss 3 2 1 2 3 1

Table 2: Influence of the Operating Parameters on the Performance of the Data Gathering Trees.

7 Future work
As part of future work, we plan to do the following: 

(i) We will develop a distributed stability-based 
data gathering algorithm for mobile sensor 
networks based on the notion of the predicted 
link expiration time (LET) [27] – a link model 
successfully proposed for stable path routing in 
mobile ad hoc networks. From the lessons learnt 
in this research, we conjecture that a simple 
LET-based data gathering algorithm would 
discover stable trees at the cost of premature 
node failures (at least the first few node failures 
would occur much earlier, like we observed for 
the Max.Stability-DG trees). Hence, we plan to 
model the edge weight as a function of both the 
LET and the residual energy (available energy) 
of the end nodes of the link, so that we can 
balance the tradeoff between stability and 
unfairness in node usage. We can then compare 
the stability-node lifetime tradeoff of the LET-
energy-DG trees with that of the Max.Stability-
DG trees. 

(ii) As stable data gathering trees are likely to be 
used for a longer time, the trustworthiness of the 
data aggregated at the intermediate nodes needs 
to be validated and maintained through proper 
trust-evaluation schemes. We plan to develop 
and integrate a trust-evaluation model as part of 
stable data aggregation in mobile sensor 
networks. 

(iii) We plan to compare the stability of the 
Max.Stability-DG trees under several different 
node mobility models [4] vis-à-vis the Random 
waypoint model, the mobility model used in our 
simulations that has been widely used in the ad 
hoc network literature. 
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