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Spider monkey optimization (SMO), developed based on the behavior of spider monkeys, is a recently 

added swarm intelligence algorithm. SMO is a stochastic population-based metaheuristic algorithm. 

Spider monkeys have a fission-fusion social structure. In addition to being an excellent tool for solving 

optimization problems, SMO provides good exploration and exploitation capabilities. In this work, we 

present a modified strategy for improving the performance of the basic SMO in two ways: (a) we use the 

good-point-set method instead of random initial population generation; and (b) by changing both the 

local leader and global leader phases, we modify the SMO position update approach to increase global 

convergence while avoiding local optima. We evaluate the proposed modified SMO algorithm on 20 

popular benchmark functions. The current findings prove that the proposed approach outperforms the 

standard SMO regarding result quality and convergence rate. 

Povzetek: Predstavljeni SMO, stohastičen algoritem, ki temelji na socialni strukturi pajkovih opic, 

izboljšuje osnovno različico z dvema pristopoma: metodo dobre točke in modificiranim posodabljanjem 

položaja za večjo globalno konvergenco. 

1 Introduction  
Nature has inspired many researchers and is therefore 

considered a rich source of inspiration. Nowadays, most 

algorithms are inspired by nature. These algorithms 

depend primarily on one of the successful properties of a 

biological system. Numerous natural phenomena have 

inspired academics to create population-based 

optimization (PBO) methods. Because these PBO 

methods evaluate fitness, the population of possible 

solutions is expected to gravitate toward the areas of the 

potential search spaces with the best fitness. In PBO 

algorithms, natural selection offers near-optimal 

solutions to complex optimization problems. 

In recent years, researchers have gained interest in swarm 

intelligence (SI). Studies have proven that algorithms 

based on SI have enormous potential for numerical 

optimization. The last few years have seen the 

development of many related algorithms. In this regard, 

there are several algorithms available, but not limited to 

particle swarm optimization (PSO) [1], ant colony 

optimization (ACO) [2], cuckoo search [3], bacteria 

foraging optimization (BFO) [4], bat algorithm [5], and 

artificial bee colony (ABC) [6]. 

Among the latest techniques to be developed is spider 

monkey optimization (SMO) [7], a newcomer to the class 

of SI algorithms. Spider monkey foraging behavior based  

on fission-fusion social structure (FFSS), which they use 

to find great food sources and mate, served as the model  

 

 

for this SMO algorithm. In the same way as any other 

PBO strategy, it includes the intrinsic population solution 

that denotes the spider monkey food source. 

While searching for the best solution, the SMO algorithm 

tries to find a suitable balance between exploration and 

exploitation. It ensures that the local optimal solution is 

traversed correctly during exploitation, and it explores 

the global search space to prevent the problem of 

entrapment in the local optimum during exploration. It 

has been discovered that SMO effectively explores local 

search [8]. 

As SMO is a relatively new algorithm, there is little 

literature available on it. The authors in [9] developed a 

modified position update in the SMO method, which 

includes two revisions to the basic SMO algorithm. The 

golden section search (GSS) technique was used to 

modify both the local leader phase (LLP) and the global 

leader phase (GLP). In [10], Kumar et al. proposed 

individual fitness as a new technique for updating the 

position of spider monkeys in the LLP, GLP, and local 

leader decision (LLD) phases. In [11], Kavita and Kusum 

proposed a modified version of SMO (TS-SMO), which 

uses tournament selection to increase the exploration 

capabilities of SMO and prevent premature convergence. 

Urvinder and Rohit [12] introduced a modified SMO 

(MSMO) method based on a dual-search technique for 

linear antenna array synthesis (LAA). Singh et al. [13] 

suggested a modified version of SMO (SMONM), which 

uses Nelder-Mead (NM) transformations to improve the 

ability of the LLP. The proposed SMONM approach has 
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the same number of phases as the conventional SMO, 

except for the LLP, which is modified using the NM 

reflection, expansion, and contraction transformations. If 

there is no improvement in the fitness function value 

after updating the solution with the original LLP, NM 

modifications are applied. 

The rest of this paper is organized as follows: Section 2 

briefly explains the fundamental SMO algorithm. Section 

3 describes the primary concept of the proposed 

approach. Section 4 discusses the test functions, 

simulation results, and comparison outcomes. Section 5 

provides a comprehensive explanation. 

 

2 Spider monkey optimization 

(SMO) 
Bansal et al. [7] introduced the SMO algorithm, a nature-

inspired evolutionary algorithm. The fission-fusion social 

structure (FFSS) of spider monkeys (SMs) is modeled in 

SMO. SMs live in groups of forty to fifty monkeys and 

separate into subgroups to look for food to reduce 

competition. The group is led by the most senior female, 

who is responsible for finding food sources. If she cannot 

find enough food for the group, she divides it into small 

subgroups of three to eight individuals. The local leader 

(LL) leads the subgroups and plans their foraging paths 

each day. The members of this group are responsible for 

finding food sources and adjusting their location 

according to the distance to the food source. It is 

important for these group members to interact with each 

other to maintain social bonds, especially if they 

encounter a stalemate. 

 

2.1 The SMO algorithm's phases 

SMO consists of seven phases. Below is a detailed 

description of each phase of SMO. The steps of the SMO 

algorithm's phases are given in Algorithm 1. 

2.1.1 Initialization phase 

Initially, SMO produces N of SMs with uniform 

distribution. Each SMi = 1, .., N is a D-dimensional 

vector. The number D indicates how many variables are 

involved in the optimization problem, and SMi is the ith 

individual in the population. Each individual is generated 

using Eq. 1. 

𝑆𝑀𝑖 = 𝐿𝑏𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝑈𝑏𝑗 − 𝐿𝑏𝑗), ∀𝑗 ∈
{1, … , 𝐷}, ∀𝑖 = {1, … , 𝑁},                                                  (1) 

                                                                      

where rand(0,1) is a random number between 0 and 1, 

the lower bound of the solution location is given by Lbj, 

and the upper bound of the solution location is given by 

Ubj. 

2.1.2 Local leader phase (LLP) 

During LLP, SMs change their present positions 

depending on information from the LL's experience as 

well as the experience of local group members. The 

fitness value of the newly acquired location is computed. 

If the new position's fitness value exceeds the old 

position's, the SM replaces its position with the new one. 

In this phase, the position update equation for the ith SM 

(member of the kth local group) is calculated as follows: 

 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +

𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗),                                      (2) 

 

where LLkj stands for the jth dimension of the kth local 

group leader position, SMij stands for the jth dimension of 

the ith SM, and SMrj is the jth dimension of the kth SM that 

is selected at random within the kth group, such that (r≠i). 

2.1.3 Global leader phase (GLP)  

The GLP phase begins once the LLP is completed. 

During this phase, each SM updates its position using Eq. 

3, considering the experience of the global leader (GL) 

and local group members. 

 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐺𝐿𝑗 − 𝑆𝑀𝑖𝑗) +

𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑆𝑀𝑟𝑗 − 𝑆𝑀𝑖𝑗),                                      (3) 

 

where GLj is the jth dimension of the GL position and 𝑗 ∈
{1,2, … , 𝐷} is a randomly selected index. 

 

SMi's location is updated throughout this phase based on 

the probability probi that can be calculated using Eq. 4. 

 

𝑃𝑟𝑜𝑏𝑖 = 
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑁
𝑖=1

.                                                   (4) 

2.1.4 Global leader learning (GLL)  

A greedy selection is used to update the GL's position. 

Consequently, the GL's position is updated based on the 

SM's position that has the best fitness. In addition, the 

GlobalLimitCount (GLLimit) is increased by one if the 

GL's position has not been updated. 

2.1.5 Local leader learning (LLL) 

A greedy selection method is used to update the position 

of the LL in that group, i.e., to reflect the position of the 

new LL. Selection is made based on the position of the 

SM in the group with the best fitness. A comparison is 

then conducted between the new position of the LL and 

the earlier one, and LocalLimitCount (LLLimit) is 

increased by one if no changes are made. 

2.1.6 Local leader decision (LLD) 

As long as no LL position has changed above a 

LocalLeaderLimit threshold, whether it is random or 

using Eq. 5, all group members are updated. This is 

determined by the perturbation rate (pr), which specifies 

how much perturbation is in the current position. 

 

If   rand(0,1) >= pr  then 

     Using Eq. 1. 

Else 
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𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐺𝐿𝑗 − 𝑆𝑀𝑖𝑗) +

𝑟𝑎𝑛𝑑(0,1) ∗ (𝑆𝑀𝑖𝑗 − 𝐿𝐿𝑘𝑗).                                         (5) 

 

2.1.7 Global leader decision (GLD) 

After a certain number of iterations, the global leader's 

(GL's) position is observed. If it is not changed, the GL 

divides the population into subgroups. Initially, two 

groups are separated from the population, and the 

number of groups is increased until it reaches the 

maximum number of groups (MG). 

 

The pseudocode for the SMO algorithm is presented in 

Algorithm 1 [7]. 

 
Algorithm 1: SMO algorithm  

1: Initialize the population, the Local Leader Limit (LLlimit), 
the Global Leader Limit (GLlimit), and the perturbation 
rate (pr).       

2:  Calculate fitness  
3: Choose leaders (both global and local) through greedy 

selection. 
4: While (termination criteria is not) do 
5: Create new locations for all group members based on 

your own experience, local leader experience, and group 
member experience. Using Eq. (2) 

6: Use the greedy selection process to choose between an 
existing location and a newly generated location based 
on fitness, and then choose the better one.   

7: Using Eq. (4), compute the probability pi for each group 
member. 

8: Create new locations for all group members based on 
pi's selection, using self-experience, global leader 
experience, and group member experiences. Using Eq. 
(3). 

9:  By applying the greedy selection process to all groups, 
you can update the position of local and global leaders. 

10: If a Local group leader does not update her position 
after a set number of times (LLLimit), the algorithm will 
re-direct all members of that group to foraging. 

11:   If the Global Leader does not update her position for a 
set number of times (GLLimit), she divides the group into 
smaller groups using the steps below. 

12: End while      

 

3 The current work 

In the current work, two modifications have been made 

to make the basic SMO algorithm work better. The first 

modification is that we used the good-point-set method 

to generate a suitable initial population for the SMO 

algorithm. Then, we modified both LLP and GLP of the 

basic SMO algorithm. 

3.1 Modification of the initial population 

Initializing the population is one of the most crucial steps 

in metaheuristic optimization. A successful initial 

population can generate reasonable solutions faster and 

accelerate convergence. The basic SMO algorithm 

randomly generates the initial population using the 

stochastic method. However, the initial solutions do not 

cover the entire search space in quality and may be good 

or bad. To address these challenges, we used the good-

point-set (GPS) method [14] to generate the initial 

population of the SMO algorithm. GPS is generally used 

to create several individuals with uniform distributions to 

preserve the population's diversity. The GPS pseudocode 

is presented in Algorithm 2 [15, 16,17,18]. 

Algorithm 2: Pseudocode of the GPS method 

P is the lower prime number with P ≥ 2*D +3. 
 

1: For i=0 to N do 
2:     For j=0 to D do  
3:           𝑥 = 2 ∗ 𝑛 + 3, 
4:          While P ≠ x do 
5:                Set individual counter k = 2 
6:                For k = 2 to x – 1 do 
7:                       If mod(x , i) == 0 then 
8:                            x = x + 1 
9:                       Else  
10:                          P = x 
11:                     End if 
12:              End for 
13:          End while 

14:          𝐺𝑃𝑆𝑖,𝑗 = i ∗ 2 ∗ cos (2 ∗ 𝜋 ∗
𝑗

𝑃
)      

15:          𝑋𝑖𝑗 = 𝐿𝑏𝑗 + 𝐺𝑃𝑆𝑖,𝑗 ∗ (𝑈𝑏𝑗 − 𝐿𝑏𝑗)    

16:    End for 
17: End for               

3.2 Modification of the position update in 

SMO  

Maintaining diversity in the LLP and GLP of SMO can 

balance exploring the entire search space and exploiting 

the best solutions found nearby. To achieve this balance, 

the proposed algorithm modifies both LLP and GLP of 

the basic SMO algorithm using the modified Eqs. 6 and 

7, respectively. 

 

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐿𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +

𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑆𝑀𝑟1𝑗 − 𝑆𝑀𝑟2𝑗).                                  (6) 

                                

𝑆𝑀𝑛𝑒𝑤𝑖𝑗 = 𝑆𝑀𝑖𝑗 + 𝑟𝑎𝑛𝑑(0,1) ∗ (𝐺𝐿𝑘𝑗 − 𝑆𝑀𝑖𝑗) +

𝑟𝑎𝑛𝑑(−1,1) ∗ (𝑆𝑀𝑟1𝑗 − 𝑆𝑀𝑟2𝑗).                                  (7) 

 

Where 𝑟1 ∈ {1,2, … , 𝑁} is a different index from i that 

was chosen at random from the population, and 𝑟2 ∈
{1,2, … , 𝑁} is a different index from i, where r1≠r2. 
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4 Experiments 

4.1 Test functions  

The improved SMO algorithm is evaluated using 20 

well-known benchmark optimization functions, f1-f20, as 

shown in Table 1. These continuous optimization 

problems cover a range of difficulties, search spaces, and 

multimodality. 

 

 

Table 1: The current 20 benchmark optimization functions for testing 

 

NO Function type 
 Search 
Range 

optimal value Formulation 

f1 Rosenbrock UN [-50,50] 0 
𝑓1(𝑥) = ∑ 100 (𝑥𝑖+1 

𝐷−1

𝑖=1

− 𝑥𝑖
2) 2

+ (𝑥𝑖 − 1)2 

f2 sphere US [-100,100] 0 𝑓2(𝑥) =  ∑𝑥𝑖
2

𝐷

𝑖=1

 

f3 Elliptic UN [-100,100] 0 𝑓3(𝑥) = ∑(106)(𝑖−1)/(𝐷−1)𝑥𝑖
2

𝐷

𝑖=1

 

f4 Sum Squares US [-10,10] 0 𝑓4(𝑥) = ∑𝑖 𝑥𝑖
2

𝐷

𝑖=1

 

f5 Quartic US [-1.28,1.28] 0 𝑓5(𝑥) = ∑𝑖 𝑥𝑖
4

𝐷

𝑖=1

 

f6 kowalik MS [-5,5] 0.0003075 𝑓6(𝑥) = ∑[𝑎𝑖 −
𝑥1(𝑏𝑖

2 + 𝑏𝑖𝑥2)

𝑏𝑖
2 + 𝑏𝑖𝑥3 + 𝑥4

]

211

𝑖=1

 

f7 Scaffer’s F6 MN [-100,100] 0 

𝑓7(𝑥)

= 0.5 + 

 𝑠𝑖𝑛2  (√∑ 𝑥𝑖
2𝐷

𝑖=1 ) − 0.5

( 1 + 0.001 (√∑ 𝑥𝑖
2𝐷

𝑖=1 ))2

 

f8 Rastrigin MS [-5.12,5.12] 0 𝑓8(𝑥) = ∑(𝑥𝑖
2 − 10 cos (2𝜋𝑥𝑖)

𝐷

𝑖=1

+ 10) 

f9 Griewank MN [-600,600] 0 
𝑓9(𝑥) =

1

4000
∑𝑥𝑖

2

𝐷

𝑖=1

− ∏cos (
𝑥𝑖

√𝑖
)

𝐷

𝑖=1

 

+ 1 

f10 Ackley MN 
[-

32.768,32.7
68] 

0 

𝑓10(𝑥)

= 20 + 𝑒 − 20𝑒𝑥𝑝

[
 
 
 

−0.2 √
1

𝐷
∑𝑥𝑖

2

𝐷

𝑖=1
]
 
 
 

− 𝑒𝑥𝑝 [
1

𝐷
∑cos(2𝜋 𝑥𝑖

𝐷

𝑖=1

)] 
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f11 Himmelblau MS [-5,5] 78.3323 f11(x) =
1

D
∑(xi

4

D

i=1

− 16 xi
2 + 5 xi 

f12 Step US [-100,100] 0 

 

f12(x) = ∑(⌊xi + 0.5⌋i)
2

D

i=1

 

f13 Beale UN [- 4.5,4.5] 0 

 
𝑓13(𝑥) = [1.5 − (1 − 𝑥2)]

2

+ [2.25 − 𝑥1(1
− 𝑥2

2)]2

+ [2.625 − 𝑥1(1
− 𝑥2

3)]2 

f14 Easom UN [-100,100] -1 

𝑓14(𝑥)

= −cos𝑥1  cos 𝑥2  𝑒((−(𝑥1−𝜋)2(−(𝑥2−𝜋)2) 
 

f15 Schwefel MS [-500,500] 0 

f15(x) = 418.9829 ∗ D

− ∑xi sin (√|xi|)

D

i=1

 

f16 Levy N.13 MN [-10,10] 0 

f16(x) = sin2(3πx1)

+ (x1 − 1)2(1

+ sin2(3πx2))

+ (x2 − 1)2(1

+ sin2(2πx2)) 
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f17 
Goldstein-

Price 
MN [-2,2] 3 

𝑓17(𝑥) = [1 + (𝑥1 + 𝑥2 + 1)2 (19
− 14𝑥1 + 13𝑥1

2

− 14𝑥2 + 6𝑥1𝑥2

+ 3𝑥2
2)] ∗ [30

+ (2𝑥1 − 3𝑥2)
2 (18

− 32𝑥1 + 12𝑥1
2

− 48𝑥2 − 36𝑥1𝑥2

+ 27𝑥2
2) 

f18 Colville MN [-10,10] 0 

𝑓18(𝑥) = [100(𝑥1
2 − 𝑥2)

2 + (𝑥1 − 1)2

+ (𝑥3 − 1)2

+ 90(𝑥3
2 −  𝑥4)

2

+ 10.1((𝑥2 − 1)2

+ (𝑥4 − 1)2)
+ 19.8(𝑥2 − 1)(𝑥4

− 1)] 
 

f19 Booth UN [-10,10] 2 

 

f20 
Dekkers and 

Aarts 
MN [-20,20] 2 

f20(x) =  105 + x1
2 + x2

2 − (x1
2 + x2

2)2

+ 10−5(x1
2 + x2

2)4 

 

4.2 Parameter setting 

The present work and the basic SMO share the following 

primary control parameters: 
 

• The Swarm size (N) = 80, 

• The Minimum Group (MG) = 5, 

• LocalLeaderLimit = N 

• GlobalLeaderLimit = D * N, 

• Pr grows linearly over iterations by Eq. 8, where 

initial pr ∈ [0.1, 0.4], 

 

𝑝𝑟 = 𝑝𝑟 + (0.4/𝑖𝑡𝑒𝑟).                                          (8)                                                       

4.3 Experimental results 

To evaluate the proposed approach, we compared it to 

the basic SMO algorithm on 20 popular benchmark 

functions. Table 2 shows the mean and standard 

deviation (SD) of the solutions obtained by each 

algorithm based on 15 runs. The best outcomes 

highlighted in bold typeface. 

 

 

As shown in Table 2, the proposed approach outperforms 

the basic SMO algorithm in most cases in terms of 

convergence rate, convergence speed, and global 

optimization capability. 

5 Conclusions 
This work proposes two modifications to address the 

shortcomings of the basic SMO algorithm. The first 

modification improves the distribution of the initial 

population using the GPS method during the 

initialization phase. The second modification modifies 

the LLP and GLP phases to account for the intensified 

and diversified breathing space for local searches. We 

evaluated the proposed algorithm on 20 standard 

benchmark functions. The simulation results show that 

the proposed algorithm outperforms the basic SMO 

algorithm and provides accurate and robust solutions. 

We aim to improve the performance of the modified 

SMO algorithm in a number of ways using powerful soft 

computing tools. By using soft computing tools, we can 

control the parameters of the SMO algorithm, guide the 
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search process, and develop hybrid algorithms to create 

algorithms that are more efficient and effective than the  

basic SMO algorithm. 

 

 

Table 2: Comparison of test problem results

 

 

 

References 
 

[1] M. Clerc, Particle swarm optimization. John Wiley 

& Sons, 2010. 

[2] M. Dorigo and T. Stützle, "Ant colony 

optimization: overview and recent advances," 

Handbook of metaheuristics, pp. 311-351, 2019. 

[3] M. Shehab, A. T. Khader, and M. A. Al-Betar, "A 

survey on applications and variants of the cuckoo 

search algorithm," Applied Soft Computing, vol. 

61, pp. 1041-1059, 2017. 

         https://doi.org/10.1016/j.asoc.2017.02.034 

[4] C. Guo, H. Tang, B. Niu, and C. B. P. Lee, "A 

survey of bacterial foraging optimization," 

Neurocomputing, vol. 452, pp. 728-746, 2021. 

         https://doi.org/10.1016/j.neucom.2020.06.142 

[5] X.-S. Yang and X. He, "Bat algorithm: literature 

review and applications," International Journal of 

Bio-inspired computation, vol. 5, no. 3, pp. 141-

149, 2013. 

         https://doi.org/10.1504/IJBIC.2013.055093 

[6] D. Karaboga, "An idea based on honey bee swarm 

for numerical optimization," TECHNICAL 

REPORT-TR06 2005. 

[7] J. C. Bansal, H. Sharma, S. S. Jadon, and M. Clerc, 

"Spider monkey optimization algorithm for 

numerical optimization," Memetic computing, vol. 

6, no. 1, pp. 31-47, 2014. 

[8]  K. Gupta, K. Deep, and J. C. J. C. I. Bansal, 

"Improving the local search ability of spider 

monkey optimization algorithm using quadratic 

approximation for unconstrained optimization," vol. 

33, no. 2, pp. 210-240, 2017. 

         https://doi.org/10.1111/coin.12081 

Function D 
Basic SMO Modified SMO 

Mean SD Mean SD 

Rosenbrock 
10 967.95828 2311.63421 7.93559 0.34621 

30 28.66994 1.93780 27.33593 0.36470 

sphere 
30 2.24285e-13 8.39023e-13 2.89926e-17 8.26299e-18 

60 7.85583e-17 7.66269e-18 2.63342e-17 7.62556e-18 

Elliptic 
30 5.75254e-17 9.29459e-17 2.78168e-17 7.55754e-18 

60 7.63723e-17 7.43771e-18 3.06328e-17 4.73009e-18 

Sum Squares 
30 7.62003e-10 2.85115e-09 3.04396e-17 7.97876e-18 

60 7.02444e-17 1.20772e-17 3.74735e-17 6.21793e-18 

Quartic 
30 1.16326e-23 4.03573e-23 1.49493e-23 4.31037e-23 

60 2.04903e-23 4.45292e-23 1.15639e-22 1.99527e-22 

Kowalik 4 0.00105094 0.0006879576 0.00032137 6.26241e-05 

Schaffer's F6 
10 0.03602 0.01491 0.00906 0.00242 

30 0.03327 0.00898 0.00972 1.03182e-09 

Rastrigin 
30 114.81071 19.08043 0 0 

60 103.08621 67.12331 0 0 

Griewank 
30 1.39276e-06 4.74962e-06 0 0 

60 9.75133e-11 2.09656e-10 0 0 

Ackley 
30 9.37203e-12 3.50519e-11 3.28626e-15 1.42108e-15 

60 4.23365e-15 8.86203e-16 3.99681e-15 0 

Himmelblau 100 - 78.3323 9.07 ×10 -12 - 78.3323 3.48 × 10 -14 

Step 30 0 0 0 0 

Beale 2 1.33 × 10 -13 4.00 × 10 -16 4.91 × 10 -8 2.36 × 10 -8 

Easom 2 -1 0 -1 9.05 ×10 -13 

Schwefel 30 3.82 × 10 -4 7.28 × 10 -13 3.82 ×10 -4 6.78 ×10 -13 

Levy N.13 2 9.03 × 10 -20 7.79 × 10 -20 1.97 ×10 -20 1.72 ×10 -20 

Goldstein-Price 2 3 4.81 × 10 -8 3 1.1 ×10 -15 

Colville 4 5.18 × 10 -2 5.59 × 10 -2 8.24 ×10 -3 1.83 ×10 -2 

Booth 2 1.75 ×10 -18 1.92 ×10 -12 1.33 ×10 -18 1.15 ×10 -18 

Dekkers and Aarts 2 -24776.52 7.27 ×10 -12 -24776.52 7.28 ×10 -12 



576 Informatica 47 (2023) 569–576 S.F. Raheem et al. 

[9] S. Kumar and R. Kumari, "Modified position 

update in spider monkey optimization algorithm," 

in International Journal of Emerging Technologies 

in Computational and Applied Sciences (IJETCAS, 

2014: Citeseer. 

[10] S. Kumar, R. Kumari, and V. K. Sharma, "Fitness 

based position update in spider monkey 

optimization algorithm," Procedia Computer 

Science, vol. 62, pp. 442-449, 2015. 

           https://doi.org/10.1016/j.procs.2015.08.504 

[11] K. Gupta and K. Deep, "Tournament selection 

based probability scheme in spider monkey 

optimization algorithm," in Harmony Search 

Algorithm: Springer, 2016, pp. 239-250. 

         DOI: 10.1007/978-3-662-47926-1_23 

[12] U. Singh and R. Salgotra, "Optimal synthesis of 

linear antenna arrays using modified spider monkey 

optimization," Arabian Journal for Science and 

Engineering, vol. 41, no. 8, pp. 2957-2973, 2016. 

[13] P. R. Singh, M. Abd Elaziz, and S. Xiong, 

"Modified Spider Monkey Optimization based on 

Nelder–Mead method for global optimization," 

Expert Systems with Applications, vol. 110, pp. 

264-289, 2018. 

         https://doi.org/10.1016/j.eswa.2018.05.040 

[14] H. Liu, Z. Cai, and Y. Wang, "A new constrained 

optimization evolutionary algorithm by using good 

point set," in 2007 IEEE Congress on Evolutionary 

Computation, 2007, pp. 1247-1254: IEEE.  

         DOI: 10.1109/CEC.2007.4424613 

[15] S. F. Raheem and M. Alabbas, "Dynamic Artificial 

Bee Colony Algorithm with Hybrid Initialization 

Method," Informatica, vol. 45, no. 6, 2021. 

         https://doi.org/10.31449/inf.v45i6.3652 

[16] M. Tang, W. Long, H. Wu, K. Zhang, and Y. A. W. 

Shardt, "Self-Adaptive Artificial Bee Colony for 

Function Optimization," Journal of Control Science 

and Engineering, vol. 2017, p. 13 pages, 2017. 

https://doi.org/10.1155/2017/4851493 

[17] Athraa Qays Obaid, Maytham Alabbas, “Hybrid    

Variable-Length Spider Monkey Optimization with 

GoodPoint Set Initialization for Data Clustering”, 

Informatica 47 (2023) 67–78, 

https://doi.org/10.31449/inf.v47i8.4872. 

[18]  S. F. Raheem and M. Alabbas, "Optimal k-means  

clustering using artificial bee colony algorithm with 

variable food sources length," International Journal 

of Electrical Computer Engineering,vol. 12, no. 5, 

2022. DOI: 10.11591/ijece.v12i5.pp5435-5443. 

  

 

 

 

 

 

 

 

https://doi.org/10.31449/inf.v47i8.4872

