
Informatica 37 (2013) 245–251 245

Influence of CNF Encodings of AtMost-1 Constraints on UNSAT-based
PMSAT Solvers

Mohamed El Bachir Menai
Department of Computer Science, College of Computer and Information Sciences
King Saud University, P.O.Box 51178, Riyadh 11543, Saudi Arabia
E-mail: menai@ksu.edu.sa
http://faculty.ksu.edu.sa/menai

Tasniem Nasser Al-Yahya
Department of Computer Science, College of Computer and Information Sciences
King Saud University, P.O.Box 51178, Riyadh 11543, Saudi Arabia
E-mail: talyahya@ccis.imamu.edu.sa

Keywords: artificial intelligence, satisfiability problems, constraint satisfaction, boolean cardinality constraint, CNF
encoding, AtMost-1 constraints

Received: July 7, 2012

Partial maximum Boolean satisfiability (Partial MaxSAT or PMSAT) is an optimization variant of Boolean
Satisability (SAT). It asks to find a variable assignment that satisfies all hard clauses and the maximum
number of soft clauses in a Boolean formula. Several exact PMSAT solvers have been developed since
the introduction of the MaxSAT evaluations in 2006, based mainly on the Davis- Putnam-Logemann-
Loveland (DPLL) procedure and branch and bound (B&B) algorithms. One recent approach that provides
an alternative to B&B algorithms is based on unsatisfiable (UNSAT) core identification. All PMSAT
algorithms based on UNSAT identification are dependent on two essential external components: (1) a
cardinality constraint encoder for encoding AtMost-1 constraints into conjunctive normal form (CNF);
and (2) a SAT solver. Ensuring the effectiveness of both components directly affects the performance of
the PMSAT solver. Whereas great advances have been made in PMSAT algorithms based on UNSAT core
identification, only a few research work has been conducted to understand the influence of CNF encoding
methods on the performance of PMSAT solvers. In this paper, we investigate the influence of three CNF
encoding methods for AtMost-1 constraints on an UNSAT-based PMSAT solver. We implement the solver
using the pairwise, parallel, and sequential encodings, and evaluate its performance on industrial instances.
The experimental results show the impact of the CNF encoding method on the performance of the PMSAT
solver. Overall, the best results were obtained with the sequential encoding.

Povzetek: Predstavljena je nova metoda PMSAT, t.j. optimirane variante izpolnjivosti Boolovih enačb
(SAT).

1 Introduction

The Boolean satisfiability (SAT) problem is the core of
computationally intractable NP-complete problems [7]. In-
formally, SAT asks if a Boolean expression can be made
True by assigning Boolean values to its variables. The
maximum satisfiability (MaxSAT) [12] problem is an opti-
mization version of SAT, which consists in finding an as-
signment that maximizes the number of clauses that are
True in a CNF formula. In recent years there has been an
increasing interest in designing and implementing MaxSAT
solvers. Indeed, state-of-the-art MaxSAT solvers are able
to solve large number of instances that were beyond the
reach of solvers developed just few years ago.

The partial maximum satisfiability (PMSAT) [5, 22] is a
problem between SAT and MaxSAT that is better suited for
modeling and solving over constrained problems such as

packing, planning, and scheduling. PMSAT instances can
be solved using either an exact or stochastic local search
method. Exact methods are complete, but are limited to
small problem instances. Many exact methods for PMSAT
have been introduced in the 2007-2011 SAT conferences,
e.g. [10, 14, 15]. Stochastic local search methods for PM-
SAT can handle very large problem instances, but do not
guarantee that an optimal solution will be provided, espe-
cially as the instance grows in size [5, 21].

In 2007, the MaxSAT evaluation devoted a special track
for exact PMSAT solvers. Most PMSAT solvers submit-
ted to past MaxSAT evaluations are based on B&B meth-
ods, e.g. IncWMaxSatz [14, 15] and WMaxSatz+ [13], or
DPLL methods, e.g. QMaxSAT and PM2 [1]. The 2007-
2011 MaxSAT evaluations show that PMSAT solvers based
on B&B methods are superior in the random category,
while PMSAT solvers based on DPLL are the best in the



246 Informatica 37 (2013) 245–251 M.B. Menai et al.

industrial category. DPLL-based solvers for PMSAT are
built on top of powerful DPLL-based SAT solvers. Many
take advantage of the improvements to DPLL-based SAT
solvers, including unsatisfiable (UNSAT) core generation.
All PMSAT algorithms based on UNSAT core generation
are dependent upon two essential external components: (1)
a CNF encoder for Boolean cardinality constraints, which
expresses constraints in CNF representation; and (2) a SAT
solver, which checks the satisfiability state of the SAT in-
stance and extracts UNSAT cores.

This paper studies the influence of three CNF encoding
methods for AtMost-1 constraints on UNSAT-based PM-
SAT solvers and gives experimental evidence of their im-
pact on the performance of the PMSAT solvers. The rest
of the paper is structured as follows. Brief overview of the
topics addressed in the paper, namely the CNF encoding
problem and PMSAT algorithms using UNSAT core gen-
eration are given in Section 2. Related work to CNF en-
coding methods for AtMost-k constraints on SAT solvers
is presented in Section 3. The proposed method and the
design of a PMSAT solver with three different encodings
for the AtMost-1 constraint are explained in Section 4. Ex-
perimental results are presented and analyzed in Section 5.
The paper is concluded in Section 6.

2 Background

Boolean cardinality constraints state that at most one
Boolean variable (AtMost-1) is allowed to be True). Many
problems are expressed by CNF clauses and AtMost-1 con-
straints, such as mixed Horn formulas, planning, and PM-
SAT [2]. Because it was generally believed that solv-
ing such problems through pure CNF encoding is ineffi-
cient, many authors have proposed specialized algorithms:
Pseudo-Boolean solvers. However, it has been shown [3]
that an appropriate CNF encoding method and a robust SAT
solver can provide a competitive approach, thus allowing
modern SAT techniques, e.g. clause learning, restarts, etc.,
to be fully functional without the necessity of adapting PM-
SAT solvers within a mixed ad-hoc solver.

PMSAT was first defined in 1996 by Miyazaki et al. [22],
in the context of the optimization of database queries. A
PMSAT instance is a CNF formula in which some clauses
are soft and the rest are hard. Solving a PMSAT instance
consists in finding an assignment that satisfies all the hard
clauses and the maximum number of soft clauses.

The following sub-sections discuss the properties of
a CNF encoding method and give a quick overview on
UNSAT-based PMSAT methods.

2.1 CNF encoding problem

The goal of the CNF encoding problem is the correct and
efficient translation of a Boolean cardinality constraint over
a set of Boolean variables into a CNF formula. Although
there is no general definition of a good encoding technique,

such encodings are generally judged in terms of their cor-
rectness, consistency enforcing level, and encoding size.

2.1.1 Correctness

Correctness is an essential property that must be preserved
in CNF encoding methods. It is formally presented in Def-
inition 1.

Definition 1. Given a CNF formula F over X =
{x1, x2, ..., xn}, F is said to encode a Boolean cardinality
constraint, e.g. (x1, x2, ..., xn) ≤ k, correctly if and only
if, for any complete truth assignment I on X , I satisfies F
if and only if I satisfies (x1, x2, ..., xn) ≤ k.

2.1.2 Consistency enforcing level

Consistency enforcing methods appeared in the context of
constraint satisfaction problems (CSPs) as inference meth-
ods to assist searching. It has been shown that applying
consistency enforcing methods to CSP instances defined
with constraints only in extension, i.e., Boolean cardinal-
ity constraints, is equivalent to applying unit propagation to
a polynomial SAT encoding of the constraints [11]. Con-
sistency enforcing methods that infer constraints based on
pairs of variables are referred to as arc consistency (AC)
algorithms. AC ensures that any legal value in the domain
of a single variable has a legal match in the domain of
any other selected variable. The strength of consistency
achieved by the unit propagation rule is reflected in the
DPLL performance in many problems. However, achiev-
ing stronger consistency is not always beneficial, because
of the additional time and space overheads. Thus, there is
a trade-off between the effort spent on consistency and that
spent on subsequent DPLL search. To date, according to
the present research, AC and AC+ are the only consistency
enforcing methods incorporated into CNF encoding meth-
ods. The AC property is defined below:

Definition 2. Given a CNF formula F over X =
{x1, x2, ..., xn}, F is said to preserve the AC prop-
erty when encoding a Boolean cardinality constraint, e.g.
(x1, x2, ..., xn) ≤ k if and only if, for any partial truth
assignment I on X , unit propagation restores AC for
(x1, x2, ..., xn) ≤ k, specifically:

1. Unit propagation produces an empty clause when
more than k variables in X are assigned to be True.

2. Unit propagation assigns to False all other variables
in X when k variables in X are assigned to be True.

3. Unit propagation assigns to True all other variables
in X when n − k variables in X are assigned to be
False.

The definition of the AC+ property is given below:

Definition 3. Given a CNF formula F over X =
{x1, x2, ..., xn}, F is said to preserve the AC+ prop-
erty when encoding a Boolean cardinality constraint, e.g.



Influence of CNF encodings of AtMost-1 constraints . . . Informatica 37 (2013) 245–251 247

(x1, x2, ..., xn) ≤ k, if and only if, for any complete
truth assignment I on X , applying unit propagation on
F assigns the same variables of X as restoring AC+ for
(x1, x2, ..., xn) ≤ k, specifically:

1. Whenever an empty clause is not generated, and

2. All the variables of X are assigned.

Table 1: Summary of CNF encoding methods. The table
entry n indicates: Number of variables to be encoded. The
columns "Auxiliary variables" and "Auxiliary clauses" in-
dicate the number of new variables and clauses introduced
by the encoding, respectively. The "AC/AC+" column
shows whether unit propagation for the encoding enforces
AC, AC+, both, or neither.

CNF encoding
method

Auxiliary
variables

Auxiliary
clauses

AC /AC+

Pairwise none n(n−1)
2

Both
Sequential n− 1 2n+ n− 4 Both

Parallel 2n− 1
≤ 7n−
3 blognc − 6

none

2.1.3 Encoding size

In practice, reducing the size, i.e., the number of literals
or variables, of the resultant CNF formula in an encod-
ing does not guarantee enhanced performance, regardless
of how this is measured. Nevertheless, small encoding size
is worth aiming for; because computational results can be
unpredictable, all else being equal, a smaller encoding is
preferable.

The three CNF encoding methods of AtMost-1 cardi-
nality constraints considered in this paper are: pairwise,
parallel counter, and sequential counter encoding methods
[24]. Table 1 summarizes these methods and their proper-
ties. The encodings are presented in the order in which they
were introduced.

2.2 UNSAT-based PMSAT solvers
UNSAT-based methods consist in using iteratively SAT
solvers to identify and relax UNSAT formulas in PMSAT
instances. Any UNSAT subset of clauses in an UNSAT
formula is called an UNSAT core. Fu and Malik [10] pro-
posed the first UNSAT-based solver for PMSAT, that con-
sists of the following steps: (1) Identification of UNSAT
sub-formulas; (2) Relaxation of each clause in each UN-
SAT sub-formula by adding a relaxation variable to each
clause in an UNSAT sub-formula; and (3) Addition of new
Equals-1 constraint indicating that exactly one of these re-
laxation variables can be assigned the value True.

The 2008-2011 MaxSAT evaluations have seen many
competitive PMSAT solvers based on the Fu&Malik

method, including MSU1.2 [18, 19], MSU4.0 [18], MSUn-
Core [16, 18-20], PM2 [1], and WPM1 [1].

3 Related work

This section provides some insights into works that com-
pare the performance of various CNF encoding methods
for AtMost-k constraints, for different MaxSAT instances.

In [18, 19], sequential counters [24], sorter networks, bi-
nary decision diagram (BDD), and bitwise encodings [9]
are proposed as alternative encodings to the pairwise en-
coding used in the Fu&Malik algorithm. The experiments
conducted on some selected MaxSAT instances show that
the best results were obtained with BDD and bitwise en-
codings. According to the study in [18], one may con-
clude that the bitwise encoding is the most appropriate for
AtMost-1 constraints.

Marques-Silva and Planes [20], compare BDD and sort-
ing network encoding, in terms of CPU time. Their results
show that sorting network encoding is less time consuming
than BDD encoding, with a few outliers.

The pairwise, bitwise [9], and sequential counters [24]
encodings are tested on a wide range of industrial MaxSAT
instances [23]. The results indicate that bitwise encoding is
the best one, as already suggested in [18], whereas the per-
formance of the sequential counters is considered as quite
good.

4 Proposed method

All UNSAT-based PMSAT solvers are built on top of
powerful SAT solvers. Thus, the studies in [6, 8, 17]
have motivated the investigation of CNF encoding meth-
ods of Boolean cardinality constraints on the performance
of UNSAT-based PMSAT solvers. The most appropriate
combination of: (1) Boolean cardinality constraint type; (2)
CNF encoding method; and (3) SAT solver; are based on
the arguments below.

Marques-Silva and Planes [19] have shown that clauses
introduced by Equals-1 constraint used in the original
Fu&Malik algorithm [10] can be reduced by replacing it
with an AtMost-1 constraint, while maintaining the cor-
rectness of the algorithm. In order to quantify the impact
of CNF encoding methods on the performance of UNSAT-
based PMSAT solvers, we implement and test a PMSAT
solver based on the following CNF encoding methods for
AtMost-1 constraint: pairwise, parallel, and sequential en-
codings [24]. In the literature only few competitive SAT
solvers generating UNSAT cores are described. Research
and discussions with some developers of SAT solvers led to
the selection of PicoSAT-936 [4] as the SAT/UNSAT solver
that will be used to extract UNSAT cores for our PMSAT
solver. PicoSAT-936 [4] is a state-of-the-art conflict-driven
clause learning (CDCL) SAT solver that comes with the
PicoMUS utility to compute minimal UNSAT cores.



248 Informatica 37 (2013) 245–251 M.B. Menai et al.

1 Fu&Malik‘(α)
Input : α is PMSAT instance
Output:

if α satisfiable then
Number of soft clauses falsified in α

else
∞

2 Optimal = 0
3 while True do
4 (αSAT ) = PMSATtoSAT(α) (call PMSATtoSAT to convert PMSAT instance α to SAT instance αSAT )
5 State = PicoSAT-936(αSAT ) (call PicoSAT-936 solver & return True if α satisfiable, otherwise False)
6 if State == True then
7 return Optimal
8 αUNSAT = PicoMUS(αSAT ) (call PicoMUS utility & return minimal UNSAT cores αUNSAT )
9 β = ∅

10 foreach soft_clause ∈ αUNSAT do
11 β = β ∪ anew (anew is a new auxiliary variable)
12 α = (α\soft_clause) ∪ (soft_clause ∨ anew)
13 if β == ∅ then
14 return∞
15 CNF = Encode_AtMost− 1(

∑
a∈β a ≤ 1) (encode AtMost-1 cardinality constraint to CNF clauses using: Pairwise, parallel, or

sequentail encoding)
16 α = α ∪ CNF (add AtMost-1 cardinality constraint)
17 Optimal = Optimal + 1

Figure 1: General procedure for proposed method

Algorithm 1 shows the general steps of the proposed
UNSAT-based PMSAT solver. The algorithm consists in
iteratively calling PicoSAT-936 on a converted PMSAT to
SAT instance. PicoSAT-936 determines whether the for-
mula is satisfiable or not, and in case the instance is un-
satisfiable, it gives an unsatisfiable core by calling the Pi-
coMUS utility. At this point, the algorithm produces new
variables, relaxation variables, one for each soft clause in
the unsatisfiable core. The new working instance consists
in adding the new variables to the soft clause in the unsat-
isfiable core, adding a cardinality constraint saying that at
most one of the new variables should be True using: pair-
wise, parallel, or sequential encoding [24]. This procedure
is applied until PicoSAT-936 returns satisfiable.

5 Empirical evaluation

This section presents an experimental evaluation of the
performance of the UNSAT-based PMSAT solver using
the three encodings. The main goal is to assess the ef-
fect of the CNF encoding methods, i.e., pairwise, par-
allel, and sequential. Three versions of our UNSAT-
based PMSAT solver, related to CNF encoding meth-
ods, were tested: PMSAT_UNSAT/PW (pairwise encod-
ing), PMSAT_UNSAT/PC (parallel encoding), and PM-
SAT_UNSAT/SC (sequential encoding).

Moreover, the performance of the solver under the three
encodings is compared with that of another well-known
UNSAT-based solver for PMSAT described in the litera-
ture. The solver selected for the comparison is MSUnCore
[16, 18-20], introduced in the 2009 MaxSAT evaluation
and ranked in 5th place. The evaluation is based on CPU
time, i.e., the time spent executing user code and system

functions. Experiments were performed on an Intel core
2/Linux machine running at 2.50GHz with 4GB of mem-
ory. The time limit for the experiments with each instance
of each data set was set to 30 minutes. Benchmarks drawn
from the 2010 MaxSAT evaluation were chosen. Challeng-
ing industrial instance sets were carefully selected (see Ta-
ble 2).

PMSAT_UNSAT/PW
PMSAT_UNSAT/SC
PMSAT_UNSAT/PC

10 20 30 40 50 60 70 80 90 100 110 120 130

30

60

90

120

150

180

210

240

270

300

Instances

CPU time

Figure 2: Run time results for selected 2010 industrial in-
stances. The y axis represents the CPU time in seconds.

Figure 1 plots cumulative run time distributions for the
solver under the three encodings, for industrial bench-
mark category. It can be seen that the performance dif-
ference of the three encodings considered differs signifi-
cantly. Figure 1 also shows that PMSAT_UNSAT/PW ex-
hibits a sharp transition in its behavior. Up to a certain
point, PMSAT_UNSAT/PW is competitive with the other
two encodings. However, as the instances become more
complex, the number of clauses added by the pairwise en-
coding increases quadratically. This produces larger UN-
SAT cores and increases the computational cost of the pro-



Influence of CNF encodings of AtMost-1 constraints . . . Informatica 37 (2013) 245–251 249

Table 2: Summary of selected industrial instance sets for 2010 benchmarks.

Set Name
No. of
instances

Min. nb. of variables - Max.
nb. of variables

Min. nb. of clauses - Max. nb.
of clauses

Haplotype-Assembly/ 6 11642-19918 37730-59200
bcp-fir/ 59 54-203287 112-583176
bcp-hipp-yRa1/SU/ 38 5352-8334 81318-209643
bcp-hipp-yRa1/simp/ 17 166-4477 431-51775
pbo-routing/ 15 996-4028 2755-11763

cess. As a result, the performance of PMSAT_UNSAT/PW
declines and the computation usually aborts due to exces-
sive memory requirements. As shown in Figure 1, PM-
SAT_UNSAT/PC and PMSAT_UNSAT/SC exhibit simi-
lar behavior, i.e. both have the same transition shape. It
can be seen that with the exception of a few outliers, PM-
SAT_UNSAT/SC outperforms PMSAT_UNSAT/PC, how-
ever the differences are essentially negligible. This is
explained by the fact that although PMSAT_UNSAT/SC
makes use of a sequential, unary counter that requires
more clauses for encoding than is the case with PM-
SAT_UNSAT/PC, PMSAT_UNSAT/SC enforces AC/AC+

properties. Thus, in contrast to PMSAT_UNSAT/PC, a so-
lution can be found faster, and no search is required to
check whether or not the constraint is fulfilled.

A summary of the number of solved instances is pre-
sented in Table 3. For the industrial category, PM-
SAT_UNSAT/SC solved two more instances than PM-
SAT_UNSAT/PC (84 as opposed to 82) and, as ex-
pected, both solved significantly more instances than PM-
SAT_UNSAT/PW. The previous results demonstrate that
UNSAT-based solvers for PMSAT are effective in solving
problem instances obtained from industrial settings.

Figures 2, 3, and 4 compare MSUnCore with the solver
under the three encodings, for the industrial category. The
close up of Figure 2 shows that PMSAT_UNSAT/PW out-
performed MSUnCore for some instances. But overall,
MSUnCore performance was better. Figure 3 shows that
MSUnCore outperformed PMSAT_UNSAT/PC for almost
all problem instances. Figure 4 shows that the perfor-
mances of MSUnCore and PMSAT_UNSAT/SC are com-
parable, although MSUnCore is an improved variant of the
Fu&Malik [10] procedure that is implemented with the lat-
est techniques for handling hardware requirements. Fi-
nally, these results provide experimental evidence of the
influence of CNF encodings of AtMost-1 constraints on
UNSAT-based PMSAT solvers.

6 Conclusions and future work
This paper has presented an empirical study of the influ-
ence of the three CNF encoding methods for AtMost-1 con-
straints on UNSAT-based PMSAT solver: pairwise, paral-
lel, and sequential, with regard to the original Fu&Malik

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

100

200
300

400

500
600

700

800
900

1000
1100

1200

1300
1400

MSUnCORE

PMSAT_UNSAT/PW

1 2 3

1

2

MSUnCORE

PMSAT_UNSAT/PW

Figure 3: Scatter plots for selected industrial instances:
PMSAT_UNSAT/PW versus MSUnCore. x and y axis rep-
resent the CPU time in seconds.

[10] algorithm. An PMSAT solver based on these CNF
encoding methods has been implemented and compared to
MSUnCore. Overall, empirical results on selected PMSAT
instances drawn from the 2010 MaxSAT evaluation have
shown that the sequential encoding is the most competitive
encoding method among the three, while it was shown to
present an unstable behavior on SAT instances [6, 8, 17].

In a future work, we intend to include more CNF en-
coding methods for AtMost-1 constraints, such as bitwise
encoding, binary decision diagram, commander, and sort-
ing network methods. Moreover, we plan to study the ef-
fect of different Boolean cardinality constraint types, such
as AtLeast-1, Equals-1, and AtMost-k, on UNSAT-based
solvers for PMSAT.

Acknowledgement
We thank the anonymous referees for their helpful com-
ments on the manuscript.



250 Informatica 37 (2013) 245–251 M.B. Menai et al.

Table 3: Performance results on 2010 industrial benchmark. The table’s entry of the form x/y(z) corresponds
to:x :Number of solved instances, y :Total number of instances, and z : Total CPU time in seconds to solve x instances.
Some instances could not be solved for memory issues: 6 instances(*), 4 instances(**), and 1 instance(***).

Set Name PMSAT_ UNSAT/PW PMSAT_ UNSAT/PC PMSAT_ UNSAT/SC MSUnCore
bcp-hipp-yRa1/simp/ 8/17 (3.77) 8/17 (4.09) 8/17 (3.97) 8/17 (5.39)
bcp-hipp-yRa1/SU/ 9/38 (93.54) 13/38 (140.68) 12/38 (136.01) 12/38 (3190.4)
bcp-fir/ 36/59 (79.0)* 41/59 (87.9)** 44/59 (96.3)*** 51/59 (4470.9)
Haplotype-Assembly/ 5/6 (61.1) 5/6 (68.4) 5/6 (65.6) 5/6 (72.8)
pbo-routing/ 15/15 (10.8) 15/15 (11.4) 15/15 (11.4) 15/15 (4.6)
Total 73/135 (248.21) 82/135 (312.47) 84/135 (318.68) 91/135 (7744.09)

-100 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

MSUnCORE

PMSAT_UNSAT/PC

0.03 0.06 0.09 0.12 0.15 0.18

0.03

0.06

0.09

0.12

0.15

0.18

MSUnCORE

PMSAT_UNSAT/PC

Figure 4: Scatter plots for selected industrial instances:
PMSAT_UNSAT/PC versus MSUnCore. x and y axis rep-
resent the CPU time in seconds.

References
[1] C. Ansótegui, M. L. Bonet, and J. Levy (2009). Solv-

ing (Weighted) Partial MaxSAT through satisfiability
testing. In Proceedings of the 12th International Con-
ference on Theory and Applications of Satisfiability
Testing, SAT’09, LNCS 5584, pages 427–440.

[2] J. Argelich, A. Cabiscol, I. Lynce, and F. Manyà
(2009). Sequential encodings from Max-CSP into
Partial Max-SAT. In Proceedings of the 12th Interna-
tional Conference on Theory and Applications of Sat-
isfiability Testing, SAT’09, LNCS 5584, pages 161–
166.

[3] O. Bailleux and Y. Boufkhad (2003). Efficient
CNF encoding of boolean cardinality constraints. In

-100 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

MSUnCORE

PMSAT_UNSAT/SC

1 2 3

1

2

MSUnCORE

PMSAT_UNSAT/SC

Figure 5: Scatter plots for selected industrial instances:
PMSAT_UNSAT/SC versus MSUnCore. x and y axis rep-
resent the CPU time in seconds.

Francesca Rossi, editor, Principles and Practice of
Constraint Programming - CP 2003, LNCS 2833,
pages 108–122.

[4] A. Biere (2008). PicoSAT essentials. Journal on Sat-
isfiability, Boolean Modeling, and Computation, 4(2-
4):75–97.

[5] B. Cha, K. Iwama, Y. Kambayashi, and S. Miyazaki
(1997). Local search algorithms for Partial MAXSAT.
In Proceedings of the 14th National Conference
on Artificial Intelligence and 9th Conference on
Innovative applications of Artificial Intelligence,
AAAI’97/IAAI’97, pages 263–268.

[6] J.-C. Chen (2010). A new SAT encoding of the At-
Most-One constraint. In Proceedings of the 10th



Influence of CNF encodings of AtMost-1 constraints . . . Informatica 37 (2013) 245–251 251

Workshop of Constraint Modelling and Reformula-
tion.

[7] S. A. Cook (1971). The complexity of theorem-
proving procedures. In Proceedings of the 3rd Annual
ACM symposium on Theory of computing, STOC’71,
pages 151–158, New York, NY, USA.

[8] A. Frisch and P. Giannaros (2010). SAT encoding of
boolean cardinality, some old, some new, some fast,
some slow. Manuscript, pages 195–201.

[9] A. Frisch, T. Peugniez, A. Doggett, and P. Nightingale
(2005). Solving non-boolean satisfiability problems
with stochastic local search: A study of encodings.
Journal of Automated Reasoning, 35:143–179.

[10] Z. Fu and S. Malik (2006). On solving the Partial
MAX-SAT problem. In Proceedings of the 9th In-
ternational Conference on Theory and Applications
of Satisfiability Testing, SAT’06, LNCS 4121, pages
252–265.

[11] I. P. Gent. Arc consistency in SAT (2002). In Frank
van Harmelen, editor, Proceedings of the 15th Eureo-
pean Conference on Artificial Intelligence, Eureopean
Conference on Artificial Intelligence, pages 121–125,
Lyon, France.

[12] D. S. Johnson (1974). Approximation algorithms for
combinatorial problems. Journal of Computer and
System Sciences, 9:256–278.

[13] C.-M. Li, F. Manyà, N. Mohamedou, and J. Planes
(2009). Exploiting cycle structures in Max-SAT.
In Proceedings of the 12th International Conference
on Theory and Applications of Satisfiability Testing,
SAT’09, LNCS 5584, pages 467–480.

[14] H. Lin and K. Su (2007). Exploiting inference rules
to compute lower bounds for MAX-SAT solving. In
Proceedings of the 20th International joint Confer-
ence on Artificial Intelligence, pages 2334–2339, San
Francisco, CA, USA.

[15] H. Lin, K. Su, and C.-M. Li (2008). Within-problem
learning for efficient lower bound computation in
Max-SAT solving. In Proceedings of the 23rd Na-
tional Conference on Artificial Intelligence, volume 1,
pages 351–356.

[16] V. Manquinho, J. Marques-Silva, and J. Planes
(2009). Algorithms for weighted boolean optimiza-
tion. In Proceedings of the 12th International Con-
ference on Theory and Applications of Satisfiability
Testing, SAT’09, LNCS 5584, pages 495–508.

[17] J. Marques-Silva and I. Lynce (2007). Towards robust
CNF encodings of cardinality constraints. In Interna-
tional Conference on Principles and Practice of Con-
straint Programming, CP 2007, LNCS 4741, pages
483–497.

[18] J. Marques-Silva and V. Manquinho (2008). Towards
more effective unsatisfiability-based maximum satis-
fiability algorithms. In Proceedings of the 11th in-
ternational conference on Theory and applications of
satisfiability testing, SAT’08, LNCS 4996, pages 225–
230.

[19] J. Marques-Silva and J. Planes (2007). On using
unsatisfiability for solving maximum satisfiability.
Computing Research Repository, abs/0712.1097.

[20] J. Marques-Silva and J. Planes (2008). Algorithms for
maximum satisfiability using unsatisfiable cores. In
Proceedings of the Conference on Design, Automa-
tion and Test in Europe, DATE’08, pages 408–413,
New York, NY, USA.

[21] M. B. Menai (2005). A two-phase backbone-based
search heuristic for Partial MAX-SAT: An initial in-
vestigation. In M. Ali and F. Esposito, editors, In-
novations in Applied Artificial Intelligence, 18th In-
ternational Conference on Industrial and Engineer-
ing Applications of Artificial Intelligence and Expert
Systems, IEA/AIE 2005, Bari, Italy, June 22-24, 2005,
LNAI 3533, pages 681–684.

[22] S. Miyazaki, K. Iwama, and Y. Kambayashi (1996).
Database queries as combinatorial optimization prob-
lems. In Proceeding of 1st International Symposium
on Cooperative Database Systems for Advanced Ap-
plications, pages 477–483.

[23] F. Morgado and J. Marques-Silva (2011). The MSUn-
Core MAXSAT solver. Pragmatics of SAT 2011,
Workshop of the SAT’11 conference, Ann Arbor,
USA.

[24] C. Sinz (2005). Towards an optimal CNF encoding of
boolean cardinality constraints. In Peter van Beek, ed-
itor, Principles and Practice of Constraint Program-
ming - CP 2005, LNCS 3709, pages 827–831.



252 Informatica 37 (2013) 245–251 M.B. Menai et al.


