Threat Model and Risk Management for a Smart Home IoT System

Ahmed Redha Mahlous^{1*} ¹Prince Sultan University, KSA, Saudi Arabia Email: armahlous@psu.edu.sa ^{*}Corresponding Author

Keywords: STRIDE, DRED, smart homes, IoT, security risk assessment

Received: November 21, 2022

The emergence of smart homes, driven by the rapid growth and development of technology, has brought numerous benefits to human life, including convenience and improved wellbeing. However, the incorporation of IoT devices into smart homes and their connection to the Internet have created new security and privacy challenges that affect the confidentiality, integrity, and availability of data collected and exchanged by these devices. Such challenges have led to security threats that render IoT devices in smart homes vulnerable to various vector attacks. To provide a comprehensive picture of the security of smart homes, this paper applies the STRIDE [1] threat model to identify potential threats at different layers, namely the IoT device, communication, and application layers. Additionally, a risk-rating security threat model, DREAD, is used to assess the risks of these threats. Finally, this paper proposes a risk mitigation strategy to respond to the rated risks and improve the security of smart home IoT systems. The primary aim of this paper is to enhance the understanding of the various security threats insmart homes and provide a security baseline to enhance the security of smart home IoT systems.

Povzetek: V članku je predstavljena uporaba modela STRIDE na IoT napravah pametnega doma za prepoznavanje potencialnih groženj na različnih ravneh.

1 Introduction

Smart homes or home automation is a term used for homes that have certain devices that sense, control, and regulate the attributes of the house, this might include attributes such as temperature, power consumption, entertainment systems, and might include security features such as camera surveillance and door smart locking.

Smart home devices create a lot of convenience and more control features to homeowners that are extremely attractive to normal homeowners especially when they are at a very competitive price. Benefits include remote control over home features inside or outside the home itself, a decrease in power consumption which creates significant savings for the homeowner, having smart security monitoring which gives a sense of security and privacy for homeowners as well.

The market for smart home and home automation has been increasing dramatically due to the convenience it brings, ease of use and setup, and the decrease of its prices lately due to the huge competition. The global market of home automation is reaching a size of 100 Billion dollars, with more than 250 million homes that use such technologies which represent around 12% of homes worldwide [2].

The competitive nature of such a growing market has also created many flaws that together with many risks and technical issues that are growing as well. Issues and risks may include platform fragmentation [3] which is a term used when many devices with different incompatible software are connected. Lack of technical standards in many of these devices causes more risks that may affect the devices' security and privacy promises. Moreover, the usage of different communication standards also creates many complications when it comes to the security of the systems. And finally, the usage of insecure operating systems such as old versions of android due to the low technical requirement and ease of development imposes huge risks on the security of the systems, with studies that show that more than 80% of android devices that are running are not secure [4], and may have at least one critical vulnerability.

Smart home devices may have many security risks that include easier home intrusions which may happen if the home security system had weak security which allows hackers and thieves to break into the system and disable its feature, or moreover, open the door for them. Also, target targeted attack that targets the smart home device to find and collect data about the user which includes his name, phone number, main email account, password used if it was not encrypted, and maybe their credit cards detail as well. Moreover, a breach of privacy may happen if an attacker had access to previous or even live recordings of any internal camera/microphone which the attacker may use against the victim at any time he wishes as blackmails and more.

Smart home devices have so many kinds of risks due to the amount of point of attack that exists because of their nature, most of them use unprotected communication protocols that are mainly wireless, most of them use unprotected software that controls them, many of them use very weak security policies and controls, and many of them are IoT devices which are connected to the internet which is another point of attack with many kinds of attack as well. The motivation to write this paper is a rapid increase in smart home devices usage in recent years, and we wanted to explore the different potential threats that can be used against IoT systems in a smart home. The contribution of this study is the result of the risk assessment model which can be used to plan for successful strategy to mitigate risks and contribute to the development of a secure IoT devices for smart home. We believe that it is important to make users and designers of smart home become more aware about the security and privacy breach against such devices.

2 Literature review

Authors in [5] presented a review study of the different face detection approaches in the IoT domain and their application in smart home IoT systems. Authors in [6] surveyed the security of the smart home and the privacy of people living in. They analyzed the security and risks faced by smart home and identified a set of vulnerabilities that can be exploited to gain unauthorized access. The security problems related to the usage of smartphone in smart home was the study of [7]. They listed some problems such as power and Internet malfunction, Software failure, Confidential Data leakage and Eavesdropping attack.

Many studies emphasized on the challenges, risk and difficulties that smart home's owners and designers face in securing their IoT systems [8]. Authors in [9] mentioned the example of the DDOS attack that happened in November 2016 in two buildings in Finland when most of the automated systems controlling thermostats were shutdown.

The data privacy drew the attention of authors in [10]. They highlighted the legal issues related to data privacy and storage in IoT systems in smart home. While authors in [11] tried to fil the gap related to the role of privacy in smart home and address the concerns related to what extend user's concerns for information privacy influenced the intended smart home usage. A multi-theoretical model using Smart PLS 3.2.8 was tested and the derived findings from empirical study emphasize the importance of addressing privacy concerns because they can influence on the intended usage of smart home.

Authors in [12] deducted that user assume that their privacy is protected while using IoT devices but are often unaware about of the potential leak of sensitive information. In another study [13], authors concluded that user's security risk perception has an effect of their intention to use smart home devices, while authors in [14] stated that users convey responsibilities of their privacy protection while using IoT devices to the manufacturers. Authors in [15] provided an overview of users' perception of security while using IoT devices. They developed a model and tested it with multiple linear regression. Using a survey, they concluded that users' awareness about many threats, have an effect on IoT security importance. In the other hand, most of the users do not check their security settings and feel safe while using IoT devices.

The rest of the paper is structured as follows: section 2 literature review, then section 3 presents a scenario and

requirements, section 4 reviews Security Objectives of the system. Section 5 presents the risk assessment approach and finally a conclusion is presented in section 6.

3 Scenario and requirements

To understand better the different assets and threats that night exist in a smart home system, we present the following scenario. The surface of the smart home is 200m2 and it consists of two stories building and an attic as shown in Figure 1.

Figure 1: Smart home

The house contains the smart devices (Camera and Smart Door) and some of the controlling devices (tablet), outside of the house, other controlling devices are there such as a Smartphone, all connected to the internet while having an API communicate between the device interface and the user interface.

The user of the smart home system is most of the time away and needs to have the safest house possible. We define the following requirements:

• The user of the smart home system wants to be able to access and monitor the following IoT systems remotely when he is away:

- o Climate control
- o Smoke / fire
- o Temperature issues out of the normal range
- o Door and window locks
- o Lawn watering

o Local alarm and emergency department messaging

• The user of the smart home system needs to have control over the system locally and through the cloud, which means he should be able to access the controller remotely using his smart phone or locally via a web browser.

• The sensors should send their collected data to the system and different actions should be taken upon the sensor's input. For instance, if the temperature goes above a certain threshold, it probably means that the AC is not working properly, and a notification should be sent to someone without any delay. Also, in case of the presence of a smoke, the smoke detector should sound, and an alert should be sent to the owner as well as to the fire brigade.

Informatica **47** (2023) 51–64 **53**

• The system should allow the user of the smart home system to change the threshold values that trigger different actuators and events as necessary, either locally or through the mobile app. The triggers and behaviors, data analytics, and remote-control access are all available through a home automation cloud application service that the system will interface with.

• The accounts used to access to the system should be protected by strong passwords.

4 The security objectives of the system

In the smart home we have many different IoT ranging from locks, cameras, and climate controllers to smoke and fire detector and lawn watering, each may have certain logs that store info about their activity or previous recordings. For example, cameras and microphones have previous recordings that are video and voice files. Climate controllers and door locks may have logs about previous activities. All stored info, recordings, and activity logs can be used to a hacker's advantage by doing reconnaissance and data analysis to find more info about the homeowner. All of these kinds of data shall have clear policies regarding their storage and access capabilities to eliminate such risks. Thus, it is imperative to for any system like this to define the associated security needs and objectives. Taking into account the requirements mentioned in section 3 above, we present in Table 1 below the categories, the risk of breaching them and their associated security needs.

Table 1: Categories, risk	and security needs.
---------------------------	---------------------

Category definition	Risk	Security needs
Identity:	Unauthor	Each person
access and	ized	who
authorization	access to	accesses the
controls	the IoT	smart home
should be in	system	should have
place to	from	a separate
document	stolen	Username
who is	credentia	and
accessing the	ls.	password.
IoT system.		All access
		events
		should be
		logged in
		the cloud

		and retained
		for a period
		of time.
		The
		actuators in
		smart home
		should be
		controlled
		by the cloud
		application,
		while the
		IoT systems
		should have
		the ability
		to load their
		read data to
		the cloud.
		In terms of
		machine to
		machine
		(M2M),
		only
		allowed
		machine
		access is
		permitted.
		1
Financial: A	Substanti	Document
financial loss	al cost	the
due to the	may	financial
system	incur due	losses that
failure should	to the	could occur
be	malfuncti	due to a
documented	on or	failure of
	system	the system,
	failure.	system
	For	components
	instance,	Ponents
	mstance,	

	if the climate control fail, the heating or cooling system run unnecess arily.		Privacy and Regulation: Identify any data that could cause privacy concerns for the owner of the smart home system.	Personal financial, health, and other informati on stored on devices on the network could be stolen	Document the impact of any privacy concerns as well as regulation requirement s for this system.
Reputation: Customer's reputation might be affected due to the system breach	In the event of security breach, confident ial financial informati on could be stolen such as credit	Document any possible impact on the customer's reputation if the IoT safety/secur ity system is attacked and	Availability Guarantees: the system should have maximum up time	If the system is down, negative impact to the life of people using the system and damage to the property itself will incur	No downtime is acceptable
	credit card number. Consequ ently, the customer 's reputatio n may be damaged.	and customer's financial information is stolen.	Safety: Ensure the safety of people using the smart home as well the safety of the property	Significant loss to the property and loss of life is the system is compromised.	Document the potential impacts to physical welfare of people and physical damage to equipment and facilities.

5 **Risk assessment approach**

There are many threats that are documented by known organizations that list vulnerabilities of such devices. Some of the vulnerabilities are reoccurring such as improper authentication techniques. Most vulnerabilities are threats to the confidentiality of the saved data of the smart home system which violates the confidentiality attribute of the CIA model. This attribute specifically is the most important due to the huge amount of privacy concerns and threats generated from such vulnerabilities in this domain.

Cyber attackers today, are becoming more and more clever in launching a cyberattacks against smart home IoT systems due to the existence of many kinds of vulnerabilities that exist in smart home devices, from authentication problems [16] to obtain admin account, insecure storage configuration which allows attackers to gain access [17], and some overflow bugs [18] to listening to open TCP ports to fetch admin passwords [19]. These vulnerabilities cause a potential threat to confidentiality which is the most important aspect of these systems and much more. Thus, it is imperative for smart home designers to be aware of the different threats that might target the smart homes IoT systems.

5.1 Threat model

In this paper we used the STRIDE framework to identify threats, prioritizing and mitigating them. STRIDE is an acronym for each of the threat categories it deals with: Spoofing, Tampering, Repudiation, Information disclosure, Denial of Service, and Elevation of privilege. It was created in 1999 by Microsoft [20].

We created a detailed threat model for the smart home system. For each layer of the attack surface (IoT device Layer, communication layer and application layer), we identified the assets type used in the smart home and the threats corresponding for each STRIDE's category as shown in Table 2, Table 3 and Table 4 respectively.

Table 2: Threat model at the device level.

Threat type	Asset type	Threats
(S)poofing – can	Sensors	Access to the
an attacker		wireless network
pretend to be		through password
someone he is		cracking
not, or falsify data?		Man in the middle attack can result in fake data to be injected using bogus devices False sensors can be added to the mart home IoT system
	Actuators	Spoofing the identity of the actuator, thus issuing false control action

Threat type	Asset type	Threats	Threat type	Asset type	Threats
(T) ampering – can an attacker successfully inject falsified data into the system?	Sensors	Open ports may lead to the access to the smart sensor shell. Theft of sensors. Disconnecting sensors from Power Buffer overflow Sensor stolen or damaged	(I)nformation Disclosure – can the device leak confidential data to unauthorized parties?	Sensors	Malware may create false firmware Credentials might be stolen if access to the terminal is achieved. Encryption key and credentials might be disclosed
		damaged.		Actuators	see above
	Actuators	Access code theft Theft of actuators. Disconnecting	(D)enial of Service – can the device be shut down or made unavailable	Sensors	power source can b disconnected, batteries run out theft or damage
		actuators from Power	maliciously?	Actuators	see above
		Buffer overflow Actuators stolen or damaged.	(E)scalation of Privilege – can users get access to privileged resources meant only for admins or superusers?	Sensors	theft of passwords or keys through access to firmware or binaries on the device
(R)epudiation – can a user pretend that a transaction did not happen?	Sensors	-		Actuators	see above
	Actuators	-			

	N 4	
Threat type	Network or Device	Threats
Spoofing	sensor-	man-in-the-middle
	actuator	attacks
	network	implementation of
		weak password in
		802.1.5.4 security
		suites
	Wi-Fi	Interception and
	Network	decoding of traffic
		by a False access
		point.
	cell phone	same as Wi-Fi
		using social
		engineering to trick
		users to give up
		passwords
	tablet	man-in-the-middle
		lost unsecured
		device allows
		strangers to access network
	IoT	weak or default
	Gateway	credentials allow
		access to logs,
		locally stored sensor
		data
Tampering	sensor-	fake device can join
	actuator	network and submit
	network	false data
		lack of message or
		payload
		authentication
		enables false data to
		be sent on the
	···· ···	network
	Wi-Fi	wireless protocol
	Network	security can be
		hacked, false user
		joins network and
	cell phone	injects false data
	tablet	-
	IoT	wireless protocol
	Gateway	security can be
		hacked, false user
		joins network and
		injects false data
Repudiation	sensor-	time stamping
	actuator	tampered with,
	an a farma alla	damages credibility
	network	
		of logging
	Wi-Fi Network	

Threat type	Network or Device	Threats
	cell phone	logs of cellular
		communication not
		available because of
	4 a la 1 a 4	privacy laws
	tablet	-
	IoT Cotoway	damage or destruction of any
	Gateway	logs on gateway
Denial of	sensor-	rogue device
Service	actuator	broadcasts on
2011100	network	network, keeps
		devices awake and
		depletes power
		wireless signal
		jamming
		replay attack ties up
		network resources or
		depletes sensor device battery power
	Wi-Fi	outdoor APs could
	Network	be damaged or
	Network	stolen
		storen
		hacker can use
		jamming attack
		which, causes
		legitimate users'
		packets to be
		dropped
	cell phone	-
	tablet	various IP and TCP DoS attacks
	T. T	
	IoT Cotoway	ICMP DoS ping attack from outside
	Gateway	IP network
		use of vulnerable
		UDP services
Escalation of	sensor-	interception of weak
Privilege	actuator	credentials gains
	network	unauthorized access
		to the network
	Wi-Fi	cracked password
	Network	allows user to gain
		access
		weak password on AP allows access to
		network information
		and control
	cell phone	weak password on
	Phone Phone	lost or stolen
		devices allows
		thieves access to
		device and
		configured
		credentials for other
		networks

Table 3: Threat model at the communication layer.

Threat type	Network or Device	Threats
	tablet	same as phone
	IoT	weak or default
	Gateway	passwords

5.2 Applications used in the application layer

Before we define the threats at the application layer, it is essential to know what applications are needed at this layer. The smart home contains a number of applications that help the user to understand what is happening in an IoT system using dashboards and send information about the system.

These applications are accessed through the internet via a web portal and usually are part of a cloud service. Control applications enable interaction with the system, either through direct control of actuators from the application interface, or through software which automates the operation of the system through code that reads sensor values and triggers actuators. We find also embedded applications in some IoT system that can be accessed over the network using HTTP interfaces. Figure 2 shows the applications, how they can be accessed and their purpose.

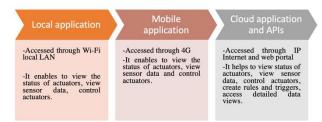


Figure 2: Applications used in smart home.

Threat type	Application	Threats
	local	Wi-Fi man in the
		middle, packet
		capture and
		decryption, false
		access point
		enables packet
Spoofing		capture
	mobile	stolen phone
	moone	allows attacker to
		impersonate
		legitimate user
		poorly built mobile
		apps could use
		insecure
		communications
		mobile apps could
		steal data or be
		vulnerable to
		malware
	cloud	password cracking
	cioud	at web login
	local	hardcoded
	local	credentials,
		encryption keys, and certificates can
		be stolen from
		decompiled firmware, can be
		used to submit
Tampering		false data
Tampering	mobile	
	mobile	unencrypted data
		may be stored by a mobile app, could
		be edited
	-11	
	cloud	unsecured
		messaging
		protocols (MQTT) could allow false
		data to be submitted into the
		system UPnP opens ports
		in firewall
	local	
	IOCal	no logging or transaction
Repudiation		tracking
Repudiation		
	mobile	insufficient or
		difficult to access
		logging of mobile
		app data
	1	

Threat type	Application	Threats
	cloud	insufficient
		logging, log file
		corruption or
		destruction,
		timestamp
		tampering
		logging not
		available or not
		configured
		unreliable logging
		mechanism
	local	unchanged default
	local	passwords enable
		making IoT
		devices into bots
Denial of		that work in DDoS
Service		attacks
Service	1 '1	
	mobile	multiple failed
		attempts to log on
		to device can result
		in lockout or
		destroy data
	cloud	repeated brute
		force attacks
		intentionally lock
		out legitimate users
		DoS attacks
		against web portal
		or cloud service
Escalation of	local	default user
Privilege		accounts and
-		passwords on
		embedded device
		apps allow
		successful logins
		by unknown users
	mobile	weak or default
		passwords can
		enable
		unauthorized users
		to access a lost or
		stolen phone and
		control the system
		use on unsecured
		public Wi-Fi
		networks may
		allow hackers to
		steal credentials
		and other
		information
		mormation

Threat type	Application	Threats
	cloud	SQL injection can
		provide access to
		user account
		information.
		Weak or default
		user credentials at
		web portal allow
		access to the app
		across the Internet

5.3 DREAD risk assessment model

The risk assessment model we adopted in our paper is the DREAD [20],[21]. Like the STRIDE model, it was created by Microsoft and it helps rating, comparing and prioritizing the severity of risk presented by each threat that was classified using STRIDE defined earlier in this paper.

DREAD is an acronym that represents the following risk factors: Damage, Reproducibility, Exploitability, Affected users and Discoverability. It averages the scores rated 0-10 for each of risk factor. The higher the number means more serious the risk is, and would be given a higher priority, thus it should be given attention first. Table 5 describes each of the DREAD factors.

Table 5: DREAD factors.

Factor	Definition	
Damage	Damage defines the level of	
	damage that could be done to	
	users and the organization if an	
	attack were to succeed.	
Reproducibility	Reproducibility is a measure of	
	how easy it is to reproduce a	
	particular attack. For instance, if	
	an attack can be reproduced	
	reliably, it would be rated higher	
	than the one that is statistically	
	unlikely to be exploited or one	
	that cannot be reproduced	
	consistently.	
Exploitability	The exploitability of a threat	
	describes how difficult it is to	
	exploit a vulnerability.	
Affected users	The affected users risk factor	
	represents percentage of users	
	that will be affected by a	
	particular threat. The greater the	
	number of users who may	
	potentially be affected, the higher	
	this risk factor should be rated.	
Discoverability	Discoverability signifies how	
	easy it is to learn about the	
	vulnerability.	

In this section, we consider risk metric for some of the relevant threats that have been identified previously. The following assumptions are made:

• All members of the family that live in the home will be affected by any exploit.

• The reproducibility and discoverability metrics always be rated as high (score of 3 for all types of vulnerabilities)

• The Reproducibility and Discoverability are always rated 3.

Table 6: DREAD fact	or-score
---------------------	----------

DREAD Factor	Score
Damage	1 = low impact, $3 =$ high
	impact
Reproducibility	always 3 - easy
Exploitability	1 = difficult, 3 = easy
Affected Users	1 = few, $3 = $ many
Discoverability	always 3 - easy

Based on the scoring described in Table 6, a grade is assigned to some of the previously discovered threats from each layer as shown in Table 7.

Attack Surface and Threat	D	R	Е	Α	D	Total
physical device - firmware can be decompiled and file system and files inspected for credentials or keys	2	3	1	3	3	12
physical device - power source can be disconnected, batteries run out	3	3	3	3	3	15
physical device - data can be faked by bogus devices or injected by man in the middle attacks	1	2	1	2	2	11
	1	3	1	3	3	11

Table 7: Threat grade.

		-	-	-		
communications - lack of message or payload authentication enables false data to be sent on the network	1	3	1	3	3	11
communications - ICMP DoS ping attack from outside IP network	2	3	2	3	3	13
application - unchanged default passwords enables making IoT devices into bots that work in DDoS attacks	1	3	1	3	3	11
application - weak or default passwords can enable unauthorized users to access a lost or stolen phone and control the system	3	3	3	3	3	15

Once the scoring is defined, we put the risks in order by the highest to lowest DREAD metric and estimate the likelihood that the risk will occur. The score of the likelihood is given 1 for unlikely and 3 for very likely as shown in Table 8.

Table 8: Threat likelihood score.

Attack Surface and Threat	Total	Likelihood
physical device -		
power source can		
be disconnected,		
batteries run out		
	15	2
application -		
weak or default		
passwords can		
enable		
unauthorized		
users to access a		
lost or stolen		
phone and control		
the system	15	2

		1
communications - ICMP DoS ping attack from outside IP network	13	1
physical device - firmware can be decompiled and file system and files inspected for credentials or keys	12	1
	12	1
physical device - data can be faked by bogus devices or injected by man in the middle attacks		
	11	1
communications - lack of message or payload authentication enables false data to be sent on the network	11	1
application - unchanged default passwords enables making IoT devices into bots that work in DDoS attacks		
	11	3

5.4 Risk response for the rated risks

Once we have identified, categorized, and prioritized the threats to smart home, we provide approaches that document how we want to respond to the threat. As a response to a security risk, we can tolerate the risk, transfer the risk to another party, treat the risk, or terminate the risk as shown in the Figure 3. The detection of threats has value only if there are available responses. Plans for the responses to various attacks should be made in advance. Table 9 is the result of applying one of the responses to the identified threats.



Figure 3: Risk treatment

Table 9: Risk response

Threat	Risk Response
physical device - power source can	
be disconnected, batteries run out	Treat
application - weak or default	
passwords can enable unauthorized	
users to access a lost or stolen	
phone and control the system	Treat
communications - ICMP ping DoS	
attack from outside IP network	Tolerate
physical device - firmware can be	
decompiled and file system and	
files inspected for credentials or	
keys	Tolerate
physical device - data can be faked	
by bogus devices or injected by	
man in the middle attacks	Tolerate
communications - lack of message	
or payload authentication enables	
false data to be sent on the network	Tolerate
application - unchanged default	
passwords enables making IoT	
devices into bots that work in	
DDoS attacks	Treat

5.5 Risk mitigation strategies

Finally, any risks that have been identified with a "treat" response need to be mitigated. Table 10 shows a sample of mitigation strategy for the concerned threats.

Table 10:Mitigation strategy

	Risk	Mitigation
Threat	Response	Strategy
		because this is a
		home installation,
		everyone who lives
		in the home can be
		informed that the
		IoT devices should
		not be unplugged.
		For any devices
physical device -		that are on battery,
power source can		establish a regular
be disconnected,		day to replace the
batteries run out	The second se	batteries during the
	Treat	year.
		Use strong
		passwords. Inform
		anyone who has
		the controller
		phone app to use
		strong passwords
		to protect access to
· · · · 1 · · · (· · · · · · · 1		the phone to
application - weak or default		prevent someone
		from taking control of the actuators in
passwords can enable		the house or
unauthorized users		stealing other
to access a lost or		information if the
stolen phone and		phone has been
control the system	Treat	lost.
control the system	fieut	Change any weak
		or default
		passwords. In the
		design and
		implementation of
		this system, the
application -		company should
unchanged default		enforce a policy
passwords enable		that these
making IoT		passwords are
devices into bots		changed prior to
that work in		deployment at the
DDoS attacks	Treat	customer site.

6 Conclusion

Smart home devices are great, they give a sense of security to homeowners. Yet, they need constant enhancement to their security measures, many types of security threats exist nowadays from so many types of entry ports. These threats can be resolved with a more standardized way of building these devices and giving them well-designed software that was designed with security in mind. With the current devices in the market, we can see that smart home devices are the weakest link in the chain of devices, so more focus should be put into making them more secure.

Acknowledgment

The author would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication.

References

- https://learn.microsoft.com/en-us/previousversions/commerce server/ee823878(v=cs.20)?redirectedfrom=MS DN
- [2] https://www.statista.com/topics/2430/smarthomes/#dossierKeyfigures
- [3] https://www.mobileworldlive.com/mwc16articles/iot-experts-fret-over-fragmentation/
- [4] https://www.zdnet.com/article/android-securitya-market-for-lemons-that-leaves-87-percentinsecure/
- [5] Fatima, Saman & Aslam, Naila & Tariq, Iqra & Ali, Nouman. (2020). Home Security and Automation Based on Internet of Things: A Comprehensive Review. IOP Conference Series: Materials Science and Engineering. 899. 012011. https://doi.org/10.1088/1757899X/899/1/01201 1
- [6] Mada Albany, Enas Alsahafi, Itidal Alruwili, Salim Elkhediri, A review: Secure Internet of thing System for Smart Houses, Procedia Computer Science, Volume 201, 2022, Pages 437-444, ISSN 1877-0509, https://doi.org/10.1016/j.procs.2022.03.057.
- [7] Karimi, Khaoula, and Salahddine Krit. "Smart Home-Smartphone Systems: Threats, Security Requirements and Open Research Challenges." 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), July 2019. https://doi.org/10.1109/iccsre.2019.8807756.
- [8] Arabo, Abdullahi, Ian Brown, and Fadi El-Moussa. "Privacy in the Age of Mobility and Smart Devices in Smart Homes." 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Conference on Social Computing, September 2012.

https://doi.org/10.1109/socialcompassat.2012.108.

- [9] Huraj, Ladislav, Marek Šimon, and Tibor Horák.
 "Resistance of IoT Sensors against DDoS Attack in Smart Home Environment." Sensors 20, no. 18 (September 16, 2020): 5298. https://doi.org/10.3390/s20185298.
- [10] Sanchez, Veralia, Carlos Pfeiffer, and Nils-Olav Skeie. "A Review of Smart House Analysis Methods for Assisting Older People Living Alone." Journal of Sensor and Actuator Networks 6, no. 3 (July 21, 2017): 11. https://doi.org/10.3390/jsan6030011.

- [11] Guhr, Nadine, Oliver Werth, Philip Peter Hermann Blacha, and Michael H. Breitner. "Privacy Concerns in the Smart Home Context." SN Applied Sciences 2, no. 2 (January 21, 2020). https://doi.org/10.1007/s42452-020-2025-8.
- [12] Zheng, Serena, Noah Apthorpe, Marshini Chetty, and Nick Feamster. "User Perceptions of Smart Home IoT Privacy." Proceedings of the ACM on Human-Computer Interaction 2, no. CSCW (November 2018): 1–20. https://doi.org/10.1145/3274469.
- [13] Klobas, Jane E., Tanya McGill, and Xuequn Wang. "How Perceived Security Risk Affects Intention to Use Smart Home Devices: A Reasoned Action Explanation." Computers & amp; Security 87 (November 2019): 101571. https://doi.org/10.1016/j.cose.2019.101571.
- [14] Haney, J.; Acar, Y.; Furman, S. "It's the Company, the Government, You and I": User Perceptions of Responsibility for Smart Home Privacy and Security. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Online, 11–13 August 2021
- [15] Nemec Zlatolas, Lili, Nataša Feher, and Marko Hölbl. "Security Perception of IoT Devices in Smart Homes." Journal of Cybersecurity and Privacy 2, no. 1 (February 14, 2022): 65–74. https://doi.org/10.3390/jcp2010005.
- [16] https://www.cvedetails.com/cve/CVE-2018-9162/
- [17] https://www.cvedetails.com/cve/CVE-2018-15123/
- [18] https://www.cvedetails.com/cve/CVE-2018-20299/
- [19] https://www.cvedetails.com/cve/CVE-2017-11634/
- [20] https://www.microsoft.com/enus/securityengineering/sdl/threatmodeling
- [21] https://learn.microsoft.com/en-us/windowshardware/drivers/driversecurity/threatmodeling-for-drivers.