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In this paper, we propose a methodology based on genetic programming to automatically generate 
data-flow based specifications for hardware designs of combinational digital circuits. We aim at 
allowing automatic generation of balanced hardware specifications for a given input/output behaviour. 
It minimises space while maintaining reasonable response time. We show that the evolved designs are 
efficient and creative. We compare them to circuits that were produced by human designers as well as 
to other evolutionary ones. 
Povzetek: Evolucijski algoritem je uporabljen za generacijo specifikacij digitalnih vezij. 

1 Introduction 

Designing a hardware that fulfils a given function 
consists of deriving from specific input/output behaviour, 
an architecture that is operational (i.e. produces all the 
expected outputs from the given inputs) within a 
specified set of constraints. Besides the input/output 
behaviour of the hardware, conventional designs are 
essentially based on knowledge and creativity. These are 
two human characteristics too hard to be automated. 
 The problem of interest consists of designing efficient 
and creative circuits that implement a given input/output 
behaviour without much designing effort. The obtained 
circuits are expected to be minimal both in terms of space 
and time requirements: The circuits must be compact i.e. 
use a reduced number of gates and efficient, i.e. produce 
the output in a short response time. The response time of 
a circuit depends on the number and the complexity of 
the gates forming the longest path in it. The complexity 
of a gate depends solely on the number of its inputs.  
Furthermore, the design should take advantage of the all 
the kind of gates available on reconfigurable chip of field 
programmable gate array (FPGAs). 
 The three most popular are minimisation techniques 
are: algebraic method, Karnaugh map [5] and Quine-
McCluskey procedure [3]. The algebraic method consists 
of applying some known algebraic theorems and 
postulates. This method depends heavily on the designer 
ability, as it does not offer general rules to assist her/him 
in recognising the theorem to apply. The Karnaugh map 
[5] is a matrix-based representation of logical functions 
and allows minimisation of up to 5-input functions. 
McCluskey procedure [3] is a tabular method and allows 
one to minimise functions of any number of inputs. Both 
Karnaugh map and McCluskey procedure produce a 
minimal sum of products. A combinational circuit based 
on this minimal form offers the shortest response time, 

but not at all the smallest size. However, in some cases, 
the designer great concern is the minimisation of the 
number of gates of the circuit as well as the signal 
propagation delay.  Moreover, the McCluskey procedure 
requires an execution time that grows exponentially with 
the number of input signals. Furthermore, Karnaugh map 
and McCluskey procedure produces design that only use 
AND, OR and NOT gates and ignores all the rest of gates. 
So the designer needs to perform further refinement on 
the circuit yield by these methods in order to introduce 
other kind of gates such as XOR gates [10]. 
  Evolutionary hardware [11] is a hardware that is 
yield using simulated evolution as an alternative to 
conventional-based electronic circuit design. Genetic 
evolution is a process that evolves a set of individuals, 
which constitutes the population, producing a new 
population. Here, individuals are hardware designs. The 
more the design obeys the constraints, the more it is used 
in the reproduction process. The design constraints could 
be expressed in terms of hardware area and/or response 
time requirements. The freshly produced population is 
yield using some genetic operators such as crossover and 
mutation that attempt to simulate the natural breeding 
process in the hope of generating new design that are 
fitter i.e. respect more the design constraints. Genetic 
evolution is usually implemented using genetic 
algorithms. 
 In this work, we design innovative and efficient 
evolutionary digital circuits. Circuit evaluation is based 
on their possible implementation using CMOS 
technology [4], [9]. The produced circuits are balanced 
i.e. use a reduced number of gate equivalent and 
propagate result signals in a reduced response time such 
that the factor area×performance is minimised. We do so 
using genetic programming. 

The remainder of this paper is divided in five 
sections. In Section 2, we describe the principles of 
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genetic programming. In Section 3, we describe the 
methodology we employ to evolve new compact and fast 
hardware for a given input/output behaviour. In Section 
4, we compare the discovered hardware against existing 
most popular ones. Finally, we draw some conclusions. 

2 Genetic Programming 

Genetic programming [6] is an extension of genetic 
algorithms. The chromosomes are computer programs 
and the genes are instructions. In general, genetic 
programming offers a mechanism to get a computer to 
provide a solution of problem without being told exactly 
how to do it. In short, it allows one to automatically 
create a program. It does so based on a high level 
statement of the constraints the yielded program should 
obey to. The input/output behaviour of the expected 
program is generally considered as an omnipresent 
constraint. Furthermore, the generated program should 
use a minimal number of instructions and have an 
optimal execution time.  

Starting form random set of computer programs, 
which is generally called initial population, genetic 
programming breeds a population of programs through a 
series of steps, called generations, using the Darwinian 
principle of natural selection, recombination also called 
crossover, and mutation. Individuals are selected based 
on how much they adhere to the specified constraints. 
Each program is assigned a value, generally called its 
fitness, which mirrors how good it is in solving the 
program. Genetic programming [6] proceeds by first, 
randomly creating an initial population of computer 
programs; then, iteratively performing a generation, 
which consists of going through two main steps, as far as 
the constraints are not met. The first step in a generation 
assigns for each computer program in the current 
population a fitness value that measures its adherence to 
the constraints while the second step creates a new 
population by applying the three genetic operators, which 
are reproduction, crossover and mutation to some 
selected individuals. Selection is done with on the basis 
of the individual fitness. The fitter the program is, the 
more probable it is selected to contribute to the formation 
of the new generation. Reproduction simply copies the 
selected individual from the current population to the 
new one. Crossover recombines two chosen computer 
programs to create two new programs using single-point 
crossover or two-point crossover as shown in Figure 1. 

Mutation yields a new individual by changing some 
randomly chosen instruction in the selected computer 
program. The number of genes to be mutated is called 
mutation degree and how many individuals should suffer 
mutation is called mutation rate. 

3 Evolving Hardware for 
    Combinational Digital Circuits 

There three main aspects in implementation of genetic 
programming [6], [7]: (i) program encoding; (ii) 
crossover and mutation of programs; (iii) program 
fitness. In this section, we explain how we treat these 
three aspects in our implementation.  

3.1 Circuit Specification Encoding 
Encoding of individuals is one of the implementation 
decisions one has to take in order to use evolutionary 
computation. It depends highly on the nature of the 
problem to be solved. There are several representations 
that have been used with success: binary encoding which 
is the most common mainly because it was used in the 
first works on genetic algorithms, represents an 
individual as a string of bits; permutation encoding 
mainly used in ordering problem, encodes an individual 
as a sequence of integer; value encoding represents an 
individual as a sequence of values that are some 
evaluation of some aspect of the problem; and tree 
encoding represents an individual as tree. Generally, the 
tree coincides with the concrete tree as opposed to 
abstract tree [1] of the computer program, considering 
the grammar of the programming language used.  

Here a design is specified using register transfer 
level equations. Each instruction in the specification is an 
output signal assignment. A signal is assigned the result 
of an expression wherein the operators are those that 
represent basic gates in CMOS technology of VLSI 
circuit implementation and the operands are the input 
signals of the design. The allowed operators are shown in 
Table 1. Note that all gates introduce a minimal 
propagation delay as the number of input signal is 
minimal, which is 2. A NOT gate inverts the input signal, 
an and-gate propagates a 1-signal when both input 
signals are 1 and 0-signal otherwise and an or-gate 
propagates a 0-signal when both input signals are 0 and 
1-signal otherwise. An AND gate inverts the signal 
propagated by a NAND gate while an OR gate inverts that 

        

Figure 1: Single-point and double-point crossover techniques 
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propagated by a NOR gate. Note that, in CMOS 
technology, an and-gate is a NAND gate coupled with a 
NOT gate and an OR gate is a nor-gate followed by a not-
gate and not the inverse [4]. The XOR gate is a CMOS 
basic gate that has the behaviour of sum of products 

yxyx +  wherein x and y are the input signals. However, 

a XOR gate is not implemented using 2 AND gates, 2 NOT 
gates and an OR gate. A 2to1-multipliexer MUX is also a 
CMOS basic gate and implements the sum of products 

yssx +  wherein x and y are the first and the second input 
signals and s is the control signal. It is clear that a XOR 
and MUX gates are of the same complexity [4], [9]. 
 For instance, a 2-bit multiplier has 4-bit result signal 
so an evolved register transfer level specification is as 
follows, wherein the input operands are X =<x1x0> and Y 
=<y1y0> and the output is the product P =<p3p2 p1p0>.  
 
p3  ⇐  (x0 AND y0) AND (x1 AND y1) 
p2  ⇐  (x0 NAND y0) AND (x1 AND y1)  
p1  ⇐  (x1 NAND y0) XOR (x0 NAND y1) 
p0  ⇐  (y0 AND x0) OR y0 
 
 The schematic of the digital circuit implementing the 
above specification is given in Figure 2.  
  

 
Figure 2: Evolved 2-bit multiplier 

 
We encode specifications using an array of concrete trees 
corresponding to its signal assignments. The ith

. tree 

represents the evaluation tree of the expression on the 
left-hand side of the ith. signal assignment. Leaf nodes 
are labelled with a literal representing a single bit of an 
input signal while the others are labelled with an 
operand. The individual corresponding to above 
specification is shown in Figure 3. 
 

 
Figure 3: Chromosome for the evolved 2-bit multiplier 

3.2 Circuit Specification Reproduction 
Crossover of circuit specification is implemented using a 
double-point crossover as described in Figure 1. One of 
the important and complicated operators for genetic 
programming is the mutation. It consists of changing a 
gene of a selected individual. The number of individuals 
that should suffer mutation is defined by the mutation 
rate while how many genes should be altered within a 
chosen individual is given by the mutation degree. 
 Here, a gene is the tree of the expression on the left 
hand side of a signal assignment. Altering an expression 
can be done in two different ways depending on the node 
that was randomised and so must be mutated. A node 
represents either an operand or operator. In the former 
case, the operand, which is a literal representing a bit in 
the input signal, is substituted with either a literal or 
simple expression. The decision is random. In the case in 
which the operand has to be changed by another operand, 
the literal representing the bit of lesser significance in the 
binary notation of the input signal or that representing its 
most significant bit is used. This is performed as 
indicated by function mutate1 below, wherein X =<xn−1x 

n−2 … x1x0> is the signal obtained by the concatenation of 
all input signals: 
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Table 1: Node operators 
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In the case of mutating an operand node to an operator 
node, we proceed as follows: First let xi be the operand 
being mutated. We choose randomly an operator among 
those available. Let OP be this operator. Its first operand 
is xi. So if the chosen operator is NOT then the operand 
node is mutated to NOT xi. When the selected operator is 
binary, a new literal is generated using mutate1(xi). Thus, 
in this case, xi is mutated to either xi OP mutate(xi), 
wherein OP is an available binary operator. If the chosen 
operator is MUX, then a third operand is generated using 
mutate1(mutate1(xi)). Last but not least, when the selected 
operator is quaternary a fourth literal is generated in the 
same way, i.e. using mutate1(mutate1(mutate1(xi))). This 
mutation procedure is implemented by function mutate2 
below wherein the notation )(][

1 xmutate i  represents the i 
times application of mutate1 and #OP represents the arity 
of operator OP: 
So far we explained how an operand node is mutated. 
Now, we describe the mutation process of an operator 
node. Let OP be the operator being changed. An operator 
node can be mutated to another operator node or to an 
operand node. In the latter case, a literal is randomised 
and used to substitute the operator node. In the former 
case, however, things become a little more complicated 
depending on the relation between the arity OP and that 
of the operator selected to substitute it, say OP′. So we 
mutate OP to OP′. When #OP  = #OP′ we leave the 
operands unchanged. Note that this case happens only for 
binary and quaternary operators. When #OP > #OP′, we 
use only a random subset of OP’s operands. Finally, i.e. 
when  #OP < #OP′, we generate a random set of literals 
using function mutate1 repetitively as in function mutate2 
above. Note that, the last case can occur for NOT, MUX 
and binary operators but not for quaternary operators.   

3.3 Circuit Specification Evaluation 

Another important aspect of genetic programming is to 
provide a way to evaluate the adherence of evolved 
computer programs to the imposed constraints. In our 

case, these constraints are of three kinds. First of all, the 
evolved specification must obey the input/output 
behaviour, which is given in a tabular form of expected 
results given the inputs. This is the truth table of the 
expected circuit. Second, the circuit must have a reduced 
size. This constraint allows us to yield compact digital 
circuits. Thirdly, the circuit must also reduce the signal 
propagation delay. This allows us to reduce the response 
time and so discover efficient circuits. In order to take 
into account both area and response time, we evaluate 
circuits using the area×performance factor. We evolve 
balanced digital circuits that implement a given 
behaviour that require a reduced hardware area and 
produce the result in a reduced time such that 
area×performance factor is minimal. 
 We estimate the necessary area for a given circuit 
using the concept of gate equivalent. This is the basic 
unit of measure for digital circuit complexity [4], [9]. It 
is based upon the number of logic gates that should be 
interconnected to perform the same input/output 
behaviour. This measure is more accurate that the simple 
number of gates [4].  
 When the input to an electronic gate changes, there is 
a finite time delay before the change in input is seen at 
the output terminal. This is called the propagation delay 
of the gate and it differs from one gate to another. Of 
primary concern is the path from input to output with the 
highest total propagation delay. We estimate the 
performance of a given circuit using the worst-case delay 
path. The number of gate equivalent and an average 
propagation delay for each kind of gate are given in 
Table 2. The data were taken form [4]. 
 Let C be a digital circuit that uses a subset (or the 
complete set) of the gates given in Table 2. Let Gates(C) 
be a function that returns the set of all gates of circuit C 
and Levels(C) be a function that returns the set of all the 
gates of C grouped by level. For instance, applied to the 
circuit of Figure 2, it returns the set of sets {{AND, AND, 
NAND, NAND, NAND}, {AND, AND, XOR, OR}}. Notice that 
the number of levels of a circuit coincides with the 
cardinality of the set expected from function Levels. On 
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Name Gate 
equivalent 

Propagation 
delay (ns) Name Gate 

equivalent 
Propagation 

delay (ns) 
NOT 1 0.0625 NAND 1 0.13 

AND 2 0.209 NOR 1 0.156 

OR 2 0.216 XNOR 3 0.211 

XOR 3 0.212 MUX 3 0.212 
Table 2: Gate equivalent and propagation delays
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the other hand, let Value(T) be the Boolean value that the 
considered circuit C propagates for the input Boolean 
vector T assuming that the size of T coincides with the 
number of input signal required for circuit C. The fitness 
function, which allows us to determine how much an 
evolved circuit adheres to the specified constraints, is 

given as follows, wherein In represents the input values 
of the input signals while Out represents the expected 
output values of the output signals of circuit C, n denotes 
the number of output signals that circuit C has and 
function Delay returns the propagation delay of a given 
gate as shown in Table 2.  
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 For instance, consider the evolved circuit of Figure 4. 
It should propagate the output signals of Table 3 that 
appear first (i.e. before symbol /) but it actually 
propagates the output signals that appear last (i.e. those 
after symbol /). Observe that signals Z2 and Z1 are correct 
for every possible input combination of the input signals. 
However, signal Z0 is correct only for the combinations 
1010 and 1111 of the input signals and so for the 
remaining 14 combinations, Z0 has a wrong value and so 
the circuit should be penalised 14 times. Applying 
function Gates to this circuit should return 5 AND gates 
and 3 NAND gates while function Levels should return 
{{AND, AND, NAND, NAND, NAND}, {AND, AND, AND}}. 
If penalty is set to 10 then, function Fitness should return 
140 + (5×2+3×1) × (0.209+0.209). This fitness sums up 
to 145.434. 
 

 
Figure 4: Evolved circuits for example 1 

 Note that for a correct circuit the first term in the 
definition of function Fitness is zero and so the value 
returned by this function is the factor area×performance 
of the evaluated circuit.  
 In order to speed up the computation of the evolved 
circuit fitness, we take advantage of the parallelism of 
the central processing unit. This technique was first used 
by Poli in [8]. Instead of obtaining the output signal 
values one by one, one can compute them i.e. for all 
possible input signal combinations, in parallel. For 
instance, to compute the values of output signal Z2 <= (X0 
AND Y0) AND (X1 AND Y1) considering the circuit of 

Figure 4 and the values of Table 3, we proceed as 
follows: 

X1 X0 Y1 Y0 Z2 Z1 Z0 

0 0 0 0 0/0 0/0 0/1 
0 0 0 1 0/0 0/0 0/1 
0 0 1 0 0/0 0/0 0/1 
0 0 1 1 0/0 0/0 0/1 
0 1 0 0 0/0 0/0 0/1 
0 1 0 1 0/0 0/0 0/1 
0 1 1 0 0/0 0/0 1/0 
0 1 1 1 0/0 0/0 1/0 
1 0 0 0 0/0 0/0 0/1 
1 0 0 1 0/0 0/0 1/0 
1 0 1 0 0/0 1/1 1/1 
1 0 1 1 0/0 1/1 1/0 
1 1 0 0 0/0 0/0 0/1 
1 1 0 1 0/0 0/0 1/0 
1 1 1 0 0/0 1/1 1/0 
1 1 1 1 1/1 0/0 0/0 

Table 3: Truth table of example 1 

 
  

1. Convert 0000111100001111, which is the content of 
column X0 to integer value 3855 and 
0101010101010101, which is the content of column 
Y0 to integer value 21845; 

2. Compute the bitwise operation 3855 & 21845 = 
1285;  

3. Convert 0000000011111111, which is the content of 
column X1 to integer value 255 and 
0011001100110011, which is the content of column 
Y1 to integer value 13107; 

4. Compute the bitwise operation 255 & 13107 = 51; 
5. Compute the bitwise operation 1285 & 51 = 1; 
6. Convert 1 to its 16-bit binary representation 

000000000000001, which is exactly the content of 
column Z2. 

 The use of this technique to compute the first term of 
fitness of an evolved circuit speeds up the process to an 
order of magnitude of 10. Note that for circuits of more 
than 6 input signals, the bitwise operations need to be 
split out in several 16, 32 or 64-bit operations depending 
on the size of the memory word. 
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4 Evolutionary vs. Conventional  
    Designs  

In this section, we compare the evolutionary circuits 
yield by our genetic programming based evolution to 
those designed by a human as well as to those evolved by 
Coelho’s genetic algorithm [2]. 
 The truth table of the first example is given in Table 
4. It has three-bit input signal X = <x2x1x0> and 
propagates a single-bit output signal Y.  
 
 

X2 X1 X0 Y 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 0 

Table 4: Truth table of example 1 
 
 For example 1, a human designer came with a digital 
circuit that uses 2 AND gates, 1 OR gate and 2 XOR gates. 
The output signal is computed as in signal assignment 
(1).  The Coelho’s genetic algorithm evolved the circuit 
specified in signal assignment (2). It uses 1 XOR gate less 
than the human designed circuit. 

Y ⇐ x0 AND (x2 XOR x1) OR x1 AND (x2 XOR x0) (1) 
Y ⇐ x0 AND (x2 OR x1) XOR (x2 AND x1)  (2) 

 Our genetic programming based evolutionary 
computation yield two different circuits for example 1. 
Both of them use 1 AND gate, 1 XOR gate and 1 MUX 

gate. The specifications of theses two circuits are given 
in signal assignment (3) and (4) respectively: 

Y ⇐ MUX((x0 AND x1), (x0 XOR x1), x2)  (3) 
Y ⇐ MUX((x0 AND x2), (x0 XOR x2), x1)  (4) 

 The schematics of these two circuits are given in 
Figure 5. The circuit, we evolved needs less hardware 
area, propagates the output signal faster and so the factor 
area×performance is minimised. The numerical figures 
are given in Table 6.  

 

   
(a) 

 

 
(b) 

Figure 5: Evolved circuits for example 1 
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 Both examples 2 and 3 need a 4-bit input signal X = 
<x3x2x1x0> and yield a single-bit output signal Y.  
Examples 4 and 5 also requires a 4-bit input signal X but 
the respective circuits must propagate a 4-bit and 3-bit 
output signal respectively. The truth tables of four 
examples are summarised in Table 5 below. Note that 
example 4 is a simple 2-bit multiplier of X = <x3x2> 
times Y = <x1x0> (notation for space sake). 
 For the second example, a human designer came with 
a circuit that requires 4 AND gates, 1 OR gate, 2 XOR gates 
and 4 NOT gates. The specification of the signal 
assignment (5) is as follows: 

Y  ⇐  (( 3x AND x1) XOR ( 0x AND 2x )) OR (( 1x AND x0) 
AND (x3 XOR 2x ))             (5) 

 For example 2, the Coelho’s genetic algorithm 
evolved the circuit specified in signal assignment (6). It 
uses 1 AND gate, 3 OR gates, 3 XOR gates and 1 NOT gate. 

Y  ⇐  ((x3 XOR ((x2 XOR x0) OR (x1 AND x0)) XOR (NOT ((x3 
OR (x1 OR x0)))             (6) 

 The schematics of the circuit we evolved are given in 
Figure 6. It needs less hardware area, but propagates the 
output signal a little bit slower than Coelho’s evolved 
circuit. However, the factor area×performance is the 
smallest. Again, the numerical figures are given in Table 
6.  

 

 
Figure 6: Evolved circuits for example 2 

 
 

 For the third example, a human designer obtained a 
circuit that requires a total of 20 gates equivalent: 5 AND 
gates, 3 OR gates and 4 NOT gates. The specification of 
the signal assignment (7) is as follows: 

Y  ⇐  (( 3x AND 0x ) OR ( 0x AND 2x )) OR ((x2 AND x1) 
OR (x3 AND 1x  AND x0))           (7) 

Input Examples 2, 3 Example 4 Example 5 
X3 X2 X1 X0 Y Y P3 P2 P1 P0 Y2 Y1 Y0 
0 0 0 0 1 1 0 0 0 0 1 0 0 
0 0 0 1 1 0 0 0 0 0 0 1 0 
0 0 1 0 0 1 0 0 0 0 0 1 0 
0 0 1 1 1 0 0 0 0 0 0 1 0 
0 1 0 0 0 1 0 0 0 0 0 0 1 
0 1 0 1 0 0 0 0 0 1 1 0 0 
0 1 1 0 1 1 0 0 1 0 0 1 0 
0 1 1 1 1 1 0 0 1 1 0 1 0 
1 0 0 0 1 1 0 0 0 0 0 0 1 
1 0 0 1 0 1 0 1 0 0 0 0 1 
1 1 1 0 1 1 0 1 1 0 1 0 0 
1 0 1 1 0 0 0 1 1 0 0 1 0 
1 0 0 0 0 0 0 0 0 0 0 0 1 
1 1 0 1 1 1 0 0 1 1 0 0 1 
1 1 1 0 0 1 0 1 1 0 0 0 1 
1 1 1 1 0 1 1 0 0 1 1 0 0 

Table 5: Truth tables of example 2, example 3, example and example 5 respectively 
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 For example 3, the Coelho’s genetic algorithm 
evolved the circuit specified in signal assignment (8). It 
requires 2 AND gates, 2 OR gates, 2 XOR gates and 1 NOT 
gate. 

Y  ⇐  NOT(((x2 AND x1) XOR (x2 OR x0)) AND (x1 OR (x3 
XOR x0)))                (8) 

  

The schematics of the circuit we evolved are given in 
Figure 7. The circuit, we evolved needs less hardware 
area, propagates the output signal faster than both circuits 
i.e. Coelho’s and the one designed by the human, and so 
the factor area×performance is minimised. Once more, 
the numerical figures about gate equivalent, delay and 
area×performance factor are shown in Table 6. 

 

 
Figure 7: Evolved circuits for example 3 

 
 Another circuit was obtained for example 3. Its 
schematics are given in Figure 8 below. The circuit of 
Figure 8 is less efficient than that shown in Figure 7. 
However, it is more compact that the circuits obtained by 
the human designer and that evolved by Coelho’s genetic 
algorithm as it requires only 11 gates equivalent 
 

compared to 20 for the circuit designed by the human 
and 15 for Coelho’s evolved circuit. Moreover, the 
circuit of Figure 8 has a smaller propagation delay of 
0.853ns compared to the 0.912ns required by the human 
designed circuit. The circuit presents a 
area×performance factor of 9.383. 

 

 
Figure 8: Less efficient evolved circuits for example 3 

 

 For the fourth example, a human designer obtained a 
circuit that requires a total of 24 gates equivalent: 8 AND 
gates, 2 OR gates, 1 XOR gate and 1 NOT gate. The 
specification of the signal assignments is as follows, 
wherein y1 = x3 and y0 = x2 when Table 5 is used. 

p0  ⇐  (x0 AND y0) 
p1  ⇐  (x1 OR x0) AND (y1 OR y0) AND ((x1 AND x0) XOR (y1 
AND y0))  

p2  ⇐  (x1 AND y1) AND NOT( (x0 AND y0)) 
p3  ⇐  (x1 AND y1) AND (x0 AND y0) 

 For example 4, the Coelho’s genetic algorithm 
evolved the circuit specified in the following output 
signal assignments. It requires an area of 16 gates 
equivalent. That is 5 AND gates and 2 XOR gates. 
p0  ⇐  (x0 AND y0) 
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p1  ⇐  (x0 AND y1) XOR (x1 AND y0) 
p2  ⇐  (x1 AND y1) XOR ((x0 AND y0) AND (x1 AND y1)) 
p3  ⇐  (x1 AND y1) AND (x0 AND y0) 

 The schematics of the circuit we evolved are given in 
Figure 9. The circuit, we evolved needs the same 

hardware area as Coelho’s evolved circuit but it 
propagates the output signal faster than both circuits i.e. 
Coelho’s and the one designed by the human, and so the 
factor area×performance is minimised. The comparison 
of the numerical figures such as gate equivalent numbers, 
propagation delays and area×performance factors is 
detailed in Table 6. 

 
Figure 9: Evolved circuits for example 4

 
 Finally for the fifth example, a human designer 
engineered a circuit that requires a total of 34 gates 
equivalent, i.e. 7 AND gates, 4 OR gates, 2 XOR gate and 6 
NOT gates. The specification of the signal assignments is 
as follows, wherein y1 = x3 and y0 = x2 when Table 5 is 
used. 

y0  ⇐  NOT (x3 XOR x1) AND NOT (x2 XOR x0) 
y1  ⇐  ( 2x AND x0) AND ( 3x OR x1) OR ( 3x AND x1)  
y2  ⇐  ( 0x AND x2) AND ( 1x OR x3) OR ( 1x AND x3) 

 For the same example, the Coelho’s genetic 
algorithm evolved the circuit specified in the following 
output signal assignments. It requires an area of 22 gates 
equivalent, which consist of 2 AND gates, 3 OR gate, 3 
XOR gates and 3 NOT gates. 

y0  ⇐  NOT ((x3 XOR x1) AND (x2 XOR x0)) 
y1  ⇐  temp AND NOT (((x3 XOR x1) AND x3 XOR (x0 OR (x3 
XOR x1))) OR temp) 

y2  ⇐  NOT (((x3 XOR x1) AND x3 XOR ((x0 OR (x3 XOR x1)) 
OR NOT temp) 
wherein temp = ((x2 XOR x0) OR (x3 XOR x1)). 
 
 The schematics of the circuit that our genetic 
algorithm evolved are given in Figure 10. This circuit 
requires one gate equivalent more than Coelho’s evolved 
circuit but our circuit propagates the output signal much 
faster. Compared with the human designed circuit, our 
circuit has the same response time but needs a much 
smaller area. Furthermore, the factor area×performance 
for our circuit is minimal compared with the other two. 
The numerical figures such as gate equivalent numbers, 
propagation delays and area×performance factors are 
given in Table 6. 
 The convergence graphs of our evolutionary process 
for the examples are shown in Figure 11. The best 
circuits for the 1st, 2nd, 3rd, 4th and 5th examples were 
obtained in 100, 280, 320, 370 and 540 generations. 
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Figure 10: Evolved circuits for example 5 
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Figure 11: Convergence graphs for the evolution of the circuits of the five examples 

 
 In order to evolve the circuits for the proposed 
behaviours (see Table 5) and for all of the examples we 
used a population of 100 individuals. The double-point 
crossover was used with mutation rate of 0.5 and a 
mutation degree of 1. 
 Table 6 shows a comparison between the fittest 
circuits engineered by a human designer, Coelho’s 

genetic algorithm and our genetic algorithm, which is 
based on genetic programming. For each proposed 
example, the required hardware area, the necessary 
propagation delay and the product area×performance are 
detailed. The graphical representation of these figures is 
shown in the chart of Figure 12.  
 

 area delay area×performance 
 Our’s Coelho’s Human’s Our’s Coelho’s Human’s Our’s Coelho’s Human’s 

1st 8 9 12 0.424 0.637 0.637 3.392 5.733 7.644 

2nd 15 16 20 0.973 0.918 0.702 14.595 14.696 14.050 

3rd 9 15 20 0.639 0.699 0.912 5.751 10.492 18.250 

4th 16 16 24 0.425 0.842 0.853 6.800 13.472 20.472 

5th 22 21 34 0.799 1.065 0.703 17.589 22.365 23.919 

Table 6: Numerical comparison of the area×delay for the three methods 
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Figure 12: Graphical comparison of the area×delay factor 

5 Conclusions 

In this paper, we described an evolutionary technique to 
engineer compact, efficient and creative digital 
combinational circuit given the expected input/output 
behaviour. We explored the use of genetic programming 
and changing from the binary representation of circuits to 
a tree representation. We showed how to improve the 
evolution process by taking advantage of the central 
processing unit parallelism. An advantage of using 
genetic programming consists of the readability of the 
evolved circuit for synthesis using one of the available 
synthesis tools [12]. 
 Our evolutionary process is multi-objective as it 
allows one to yield balanced i.e. compact and efficient 
digital circuits. The proposed fitness function evaluates a 
given circuit with respect to correctness, required 
hardware area and necessary propagation delay of output 
signals. It does so using the well-agreed-upon factor 
area×performance as a measure to appreciate the 
complexity of a digital circuit. 
 We evolved a better circuit for every example used 
by Coelho et al. [2] compared to both human designs and 
evolved circuit that only consider the number of required 
gates to evaluate an evolved solution. On one hand, this 
proves that the fitness function we engineered is far more 
realistic than that of used by Coelho et al. On the other 
hand, it also proves that evolutionary hardware can offer 
an alternative way to human design techniques to design 
efficient digital circuit. We showed how the evaluation of 
circuit fitness can be computed efficiently taking 
advantage of the inherent parallelism of the central 
processing units of the computers. 
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