
 Informatica 29 (2005) 309–319 309

Multi-Objective CMOS-Targeted Evolutionary Hardware for
Combinational Digital Circuits
Nadia Nedjah and Luiza de Macedo Mourelle
Department of Systems Engineering and Computation, Faculty of Engineering,
State University of Rio de Janeiro, Rio de Janeiro, Brazil
E-mail: {nadia, ldmm}@eng.uerj.br
http://www.eng.uerj.br /~ldmm

Key words: Genetic programming, genetic algorithms, evolvable hardware

Received: December 4, 2003

In this paper, we propose a methodology based on genetic programming to automatically generate
data-flow based specifications for hardware designs of combinational digital circuits. We aim at
allowing automatic generation of balanced hardware specifications for a given input/output behaviour.
It minimises space while maintaining reasonable response time. We show that the evolved designs are
efficient and creative. We compare them to circuits that were produced by human designers as well as
to other evolutionary ones.
Povzetek: Evolucijski algoritem je uporabljen za generacijo specifikacij digitalnih vezij.

1 Introduction

Designing a hardware that fulfils a given function
consists of deriving from specific input/output behaviour,
an architecture that is operational (i.e. produces all the
expected outputs from the given inputs) within a
specified set of constraints. Besides the input/output
behaviour of the hardware, conventional designs are
essentially based on knowledge and creativity. These are
two human characteristics too hard to be automated.
 The problem of interest consists of designing efficient
and creative circuits that implement a given input/output
behaviour without much designing effort. The obtained
circuits are expected to be minimal both in terms of space
and time requirements: The circuits must be compact i.e.
use a reduced number of gates and efficient, i.e. produce
the output in a short response time. The response time of
a circuit depends on the number and the complexity of
the gates forming the longest path in it. The complexity
of a gate depends solely on the number of its inputs.
Furthermore, the design should take advantage of the all
the kind of gates available on reconfigurable chip of field
programmable gate array (FPGAs).
 The three most popular are minimisation techniques
are: algebraic method, Karnaugh map [5] and Quine-
McCluskey procedure [3]. The algebraic method consists
of applying some known algebraic theorems and
postulates. This method depends heavily on the designer
ability, as it does not offer general rules to assist her/him
in recognising the theorem to apply. The Karnaugh map
[5] is a matrix-based representation of logical functions
and allows minimisation of up to 5-input functions.
McCluskey procedure [3] is a tabular method and allows
one to minimise functions of any number of inputs. Both
Karnaugh map and McCluskey procedure produce a
minimal sum of products. A combinational circuit based
on this minimal form offers the shortest response time,

but not at all the smallest size. However, in some cases,
the designer great concern is the minimisation of the
number of gates of the circuit as well as the signal
propagation delay. Moreover, the McCluskey procedure
requires an execution time that grows exponentially with
the number of input signals. Furthermore, Karnaugh map
and McCluskey procedure produces design that only use
AND, OR and NOT gates and ignores all the rest of gates.
So the designer needs to perform further refinement on
the circuit yield by these methods in order to introduce
other kind of gates such as XOR gates [10].
 Evolutionary hardware [11] is a hardware that is
yield using simulated evolution as an alternative to
conventional-based electronic circuit design. Genetic
evolution is a process that evolves a set of individuals,
which constitutes the population, producing a new
population. Here, individuals are hardware designs. The
more the design obeys the constraints, the more it is used
in the reproduction process. The design constraints could
be expressed in terms of hardware area and/or response
time requirements. The freshly produced population is
yield using some genetic operators such as crossover and
mutation that attempt to simulate the natural breeding
process in the hope of generating new design that are
fitter i.e. respect more the design constraints. Genetic
evolution is usually implemented using genetic
algorithms.
 In this work, we design innovative and efficient
evolutionary digital circuits. Circuit evaluation is based
on their possible implementation using CMOS
technology [4], [9]. The produced circuits are balanced
i.e. use a reduced number of gate equivalent and
propagate result signals in a reduced response time such
that the factor area×performance is minimised. We do so
using genetic programming.

The remainder of this paper is divided in five
sections. In Section 2, we describe the principles of

310 Informatica 29 (2005) 309–319 N. Nedjah et al.

genetic programming. In Section 3, we describe the
methodology we employ to evolve new compact and fast
hardware for a given input/output behaviour. In Section
4, we compare the discovered hardware against existing
most popular ones. Finally, we draw some conclusions.

2 Genetic Programming

Genetic programming [6] is an extension of genetic
algorithms. The chromosomes are computer programs
and the genes are instructions. In general, genetic
programming offers a mechanism to get a computer to
provide a solution of problem without being told exactly
how to do it. In short, it allows one to automatically
create a program. It does so based on a high level
statement of the constraints the yielded program should
obey to. The input/output behaviour of the expected
program is generally considered as an omnipresent
constraint. Furthermore, the generated program should
use a minimal number of instructions and have an
optimal execution time.

Starting form random set of computer programs,
which is generally called initial population, genetic
programming breeds a population of programs through a
series of steps, called generations, using the Darwinian
principle of natural selection, recombination also called
crossover, and mutation. Individuals are selected based
on how much they adhere to the specified constraints.
Each program is assigned a value, generally called its
fitness, which mirrors how good it is in solving the
program. Genetic programming [6] proceeds by first,
randomly creating an initial population of computer
programs; then, iteratively performing a generation,
which consists of going through two main steps, as far as
the constraints are not met. The first step in a generation
assigns for each computer program in the current
population a fitness value that measures its adherence to
the constraints while the second step creates a new
population by applying the three genetic operators, which
are reproduction, crossover and mutation to some
selected individuals. Selection is done with on the basis
of the individual fitness. The fitter the program is, the
more probable it is selected to contribute to the formation
of the new generation. Reproduction simply copies the
selected individual from the current population to the
new one. Crossover recombines two chosen computer
programs to create two new programs using single-point
crossover or two-point crossover as shown in Figure 1.

Mutation yields a new individual by changing some
randomly chosen instruction in the selected computer
program. The number of genes to be mutated is called
mutation degree and how many individuals should suffer
mutation is called mutation rate.

3 Evolving Hardware for
 Combinational Digital Circuits

There three main aspects in implementation of genetic
programming [6], [7]: (i) program encoding; (ii)
crossover and mutation of programs; (iii) program
fitness. In this section, we explain how we treat these
three aspects in our implementation.

3.1 Circuit Specification Encoding
Encoding of individuals is one of the implementation
decisions one has to take in order to use evolutionary
computation. It depends highly on the nature of the
problem to be solved. There are several representations
that have been used with success: binary encoding which
is the most common mainly because it was used in the
first works on genetic algorithms, represents an
individual as a string of bits; permutation encoding
mainly used in ordering problem, encodes an individual
as a sequence of integer; value encoding represents an
individual as a sequence of values that are some
evaluation of some aspect of the problem; and tree
encoding represents an individual as tree. Generally, the
tree coincides with the concrete tree as opposed to
abstract tree [1] of the computer program, considering
the grammar of the programming language used.

Here a design is specified using register transfer
level equations. Each instruction in the specification is an
output signal assignment. A signal is assigned the result
of an expression wherein the operators are those that
represent basic gates in CMOS technology of VLSI
circuit implementation and the operands are the input
signals of the design. The allowed operators are shown in
Table 1. Note that all gates introduce a minimal
propagation delay as the number of input signal is
minimal, which is 2. A NOT gate inverts the input signal,
an and-gate propagates a 1-signal when both input
signals are 1 and 0-signal otherwise and an or-gate
propagates a 0-signal when both input signals are 0 and
1-signal otherwise. An AND gate inverts the signal
propagated by a NAND gate while an OR gate inverts that

Figure 1: Single-point and double-point crossover techniques

MULTI-OBJECTIVE CMOS-TARGETED... Informatica 29 (2005) 309–319 311

propagated by a NOR gate. Note that, in CMOS
technology, an and-gate is a NAND gate coupled with a
NOT gate and an OR gate is a nor-gate followed by a not-
gate and not the inverse [4]. The XOR gate is a CMOS
basic gate that has the behaviour of sum of products

yxyx + wherein x and y are the input signals. However,

a XOR gate is not implemented using 2 AND gates, 2 NOT
gates and an OR gate. A 2to1-multipliexer MUX is also a
CMOS basic gate and implements the sum of products

yssx + wherein x and y are the first and the second input
signals and s is the control signal. It is clear that a XOR
and MUX gates are of the same complexity [4], [9].
 For instance, a 2-bit multiplier has 4-bit result signal
so an evolved register transfer level specification is as
follows, wherein the input operands are X =<x1x0> and Y
=<y1y0> and the output is the product P =<p3p2 p1p0>.

p3 ⇐ (x0 AND y0) AND (x1 AND y1)
p2 ⇐ (x0 NAND y0) AND (x1 AND y1)
p1 ⇐ (x1 NAND y0) XOR (x0 NAND y1)
p0 ⇐ (y0 AND x0) OR y0

 The schematic of the digital circuit implementing the
above specification is given in Figure 2.

Figure 2: Evolved 2-bit multiplier

We encode specifications using an array of concrete trees
corresponding to its signal assignments. The ith

. tree

represents the evaluation tree of the expression on the
left-hand side of the ith. signal assignment. Leaf nodes
are labelled with a literal representing a single bit of an
input signal while the others are labelled with an
operand. The individual corresponding to above
specification is shown in Figure 3.

Figure 3: Chromosome for the evolved 2-bit multiplier

3.2 Circuit Specification Reproduction
Crossover of circuit specification is implemented using a
double-point crossover as described in Figure 1. One of
the important and complicated operators for genetic
programming is the mutation. It consists of changing a
gene of a selected individual. The number of individuals
that should suffer mutation is defined by the mutation
rate while how many genes should be altered within a
chosen individual is given by the mutation degree.
 Here, a gene is the tree of the expression on the left
hand side of a signal assignment. Altering an expression
can be done in two different ways depending on the node
that was randomised and so must be mutated. A node
represents either an operand or operator. In the former
case, the operand, which is a literal representing a bit in
the input signal, is substituted with either a literal or
simple expression. The decision is random. In the case in
which the operand has to be changed by another operand,
the literal representing the bit of lesser significance in the
binary notation of the input signal or that representing its
most significant bit is used. This is performed as
indicated by function mutate1 below, wherein X =<xn−1x

n−2 … x1x0> is the signal obtained by the concatenation of
all input signals:

⎪
⎩

⎪
⎨

⎧ =
=

−

−

otherwise

0
)(

1

1

1

i

n

i

x

ix
xmutate

Name Symbol Name Symbol
NOT NAND
AND

NOR

OR XNOR
XOR MUX

Table 1: Node operators

312 Informatica 29 (2005) 309–319 N. Nedjah et al.

In the case of mutating an operand node to an operator
node, we proceed as follows: First let xi be the operand
being mutated. We choose randomly an operator among
those available. Let OP be this operator. Its first operand
is xi. So if the chosen operator is NOT then the operand
node is mutated to NOT xi. When the selected operator is
binary, a new literal is generated using mutate1(xi). Thus,
in this case, xi is mutated to either xi OP mutate(xi),
wherein OP is an available binary operator. If the chosen
operator is MUX, then a third operand is generated using
mutate1(mutate1(xi)). Last but not least, when the selected
operator is quaternary a fourth literal is generated in the
same way, i.e. using mutate1(mutate1(mutate1(xi))). This
mutation procedure is implemented by function mutate2
below wherein the notation)(][

1 xmutate i represents the i
times application of mutate1 and #OP represents the arity
of operator OP:
So far we explained how an operand node is mutated.
Now, we describe the mutation process of an operator
node. Let OP be the operator being changed. An operator
node can be mutated to another operator node or to an
operand node. In the latter case, a literal is randomised
and used to substitute the operator node. In the former
case, however, things become a little more complicated
depending on the relation between the arity OP and that
of the operator selected to substitute it, say OP′. So we
mutate OP to OP′. When #OP = #OP′ we leave the
operands unchanged. Note that this case happens only for
binary and quaternary operators. When #OP > #OP′, we
use only a random subset of OP’s operands. Finally, i.e.
when #OP < #OP′, we generate a random set of literals
using function mutate1 repetitively as in function mutate2
above. Note that, the last case can occur for NOT, MUX
and binary operators but not for quaternary operators.

3.3 Circuit Specification Evaluation

Another important aspect of genetic programming is to
provide a way to evaluate the adherence of evolved
computer programs to the imposed constraints. In our

case, these constraints are of three kinds. First of all, the
evolved specification must obey the input/output
behaviour, which is given in a tabular form of expected
results given the inputs. This is the truth table of the
expected circuit. Second, the circuit must have a reduced
size. This constraint allows us to yield compact digital
circuits. Thirdly, the circuit must also reduce the signal
propagation delay. This allows us to reduce the response
time and so discover efficient circuits. In order to take
into account both area and response time, we evaluate
circuits using the area×performance factor. We evolve
balanced digital circuits that implement a given
behaviour that require a reduced hardware area and
produce the result in a reduced time such that
area×performance factor is minimal.
 We estimate the necessary area for a given circuit
using the concept of gate equivalent. This is the basic
unit of measure for digital circuit complexity [4], [9]. It
is based upon the number of logic gates that should be
interconnected to perform the same input/output
behaviour. This measure is more accurate that the simple
number of gates [4].
 When the input to an electronic gate changes, there is
a finite time delay before the change in input is seen at
the output terminal. This is called the propagation delay
of the gate and it differs from one gate to another. Of
primary concern is the path from input to output with the
highest total propagation delay. We estimate the
performance of a given circuit using the worst-case delay
path. The number of gate equivalent and an average
propagation delay for each kind of gate are given in
Table 2. The data were taken form [4].
 Let C be a digital circuit that uses a subset (or the
complete set) of the gates given in Table 2. Let Gates(C)
be a function that returns the set of all gates of circuit C
and Levels(C) be a function that returns the set of all the
gates of C grouped by level. For instance, applied to the
circuit of Figure 2, it returns the set of sets {{AND, AND,
NAND, NAND, NAND}, {AND, AND, XOR, OR}}. Notice that
the number of levels of a circuit coincides with the
cardinality of the set expected from function Levels. On

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

=

=

=

=

4#)()()(

3#)()(

2#)(

1#

)(

]3[
1

]2[
1

]1[
1

]2[
1

]1[
1

]1[
1

2

OPxmutatexmutateOPxmutatex

OPxmutatexmutatexMUX

OPxmutateOPx

OPxNOT

xmutate

iiii

iii

ii

i

i

Name Gate
equivalent

Propagation
delay (ns) Name Gate

equivalent
Propagation

delay (ns)
NOT 1 0.0625 NAND 1 0.13

AND 2 0.209 NOR 1 0.156

OR 2 0.216 XNOR 3 0.211

XOR 3 0.212 MUX 3 0.212
Table 2: Gate equivalent and propagation delays

MULTI-OBJECTIVE CMOS-TARGETED... Informatica 29 (2005) 309–319 313

the other hand, let Value(T) be the Boolean value that the
considered circuit C propagates for the input Boolean
vector T assuming that the size of T coincides with the
number of input signal required for circuit C. The fitness
function, which allows us to determine how much an
evolved circuit adheres to the specified constraints, is

given as follows, wherein In represents the input values
of the input signals while Out represents the expected
output values of the output signals of circuit C, n denotes
the number of output signals that circuit C has and
function Delay returns the propagation delay of a given
gate as shown in Table 2.

∑∑∑ ∑
∈

∈
∈= ≠

×+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

)()(1],[])[(

)()()(
CLevelsL LgCGatesg

n

j jiOutiInValuei

gDelayMaxglentGateEquivaPenaltyCFitness

 For instance, consider the evolved circuit of Figure 4.
It should propagate the output signals of Table 3 that
appear first (i.e. before symbol /) but it actually
propagates the output signals that appear last (i.e. those
after symbol /). Observe that signals Z2 and Z1 are correct
for every possible input combination of the input signals.
However, signal Z0 is correct only for the combinations
1010 and 1111 of the input signals and so for the
remaining 14 combinations, Z0 has a wrong value and so
the circuit should be penalised 14 times. Applying
function Gates to this circuit should return 5 AND gates
and 3 NAND gates while function Levels should return
{{AND, AND, NAND, NAND, NAND}, {AND, AND, AND}}.
If penalty is set to 10 then, function Fitness should return
140 + (5×2+3×1) × (0.209+0.209). This fitness sums up
to 145.434.

Figure 4: Evolved circuits for example 1

 Note that for a correct circuit the first term in the
definition of function Fitness is zero and so the value
returned by this function is the factor area×performance
of the evaluated circuit.
 In order to speed up the computation of the evolved
circuit fitness, we take advantage of the parallelism of
the central processing unit. This technique was first used
by Poli in [8]. Instead of obtaining the output signal
values one by one, one can compute them i.e. for all
possible input signal combinations, in parallel. For
instance, to compute the values of output signal Z2 <= (X0
AND Y0) AND (X1 AND Y1) considering the circuit of

Figure 4 and the values of Table 3, we proceed as
follows:

X1 X0 Y1 Y0 Z2 Z1 Z0

0 0 0 0 0/0 0/0 0/1
0 0 0 1 0/0 0/0 0/1
0 0 1 0 0/0 0/0 0/1
0 0 1 1 0/0 0/0 0/1
0 1 0 0 0/0 0/0 0/1
0 1 0 1 0/0 0/0 0/1
0 1 1 0 0/0 0/0 1/0
0 1 1 1 0/0 0/0 1/0
1 0 0 0 0/0 0/0 0/1
1 0 0 1 0/0 0/0 1/0
1 0 1 0 0/0 1/1 1/1
1 0 1 1 0/0 1/1 1/0
1 1 0 0 0/0 0/0 0/1
1 1 0 1 0/0 0/0 1/0
1 1 1 0 0/0 1/1 1/0
1 1 1 1 1/1 0/0 0/0

Table 3: Truth table of example 1

1. Convert 0000111100001111, which is the content of
column X0 to integer value 3855 and
0101010101010101, which is the content of column
Y0 to integer value 21845;

2. Compute the bitwise operation 3855 & 21845 =
1285;

3. Convert 0000000011111111, which is the content of
column X1 to integer value 255 and
0011001100110011, which is the content of column
Y1 to integer value 13107;

4. Compute the bitwise operation 255 & 13107 = 51;
5. Compute the bitwise operation 1285 & 51 = 1;
6. Convert 1 to its 16-bit binary representation

000000000000001, which is exactly the content of
column Z2.

 The use of this technique to compute the first term of
fitness of an evolved circuit speeds up the process to an
order of magnitude of 10. Note that for circuits of more
than 6 input signals, the bitwise operations need to be
split out in several 16, 32 or 64-bit operations depending
on the size of the memory word.

314 Informatica 29 (2005) 309–319 N. Nedjah et al.

4 Evolutionary vs. Conventional
 Designs

In this section, we compare the evolutionary circuits
yield by our genetic programming based evolution to
those designed by a human as well as to those evolved by
Coelho’s genetic algorithm [2].
 The truth table of the first example is given in Table
4. It has three-bit input signal X = <x2x1x0> and
propagates a single-bit output signal Y.

X2 X1 X0 Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Table 4: Truth table of example 1

 For example 1, a human designer came with a digital
circuit that uses 2 AND gates, 1 OR gate and 2 XOR gates.
The output signal is computed as in signal assignment
(1). The Coelho’s genetic algorithm evolved the circuit
specified in signal assignment (2). It uses 1 XOR gate less
than the human designed circuit.

Y ⇐ x0 AND (x2 XOR x1) OR x1 AND (x2 XOR x0) (1)
Y ⇐ x0 AND (x2 OR x1) XOR (x2 AND x1) (2)

 Our genetic programming based evolutionary
computation yield two different circuits for example 1.
Both of them use 1 AND gate, 1 XOR gate and 1 MUX

gate. The specifications of theses two circuits are given
in signal assignment (3) and (4) respectively:

Y ⇐ MUX((x0 AND x1), (x0 XOR x1), x2) (3)
Y ⇐ MUX((x0 AND x2), (x0 XOR x2), x1) (4)

 The schematics of these two circuits are given in
Figure 5. The circuit, we evolved needs less hardware
area, propagates the output signal faster and so the factor
area×performance is minimised. The numerical figures
are given in Table 6.

(a)

(b)

Figure 5: Evolved circuits for example 1

MULTI-OBJECTIVE CMOS-TARGETED... Informatica 29 (2005) 309–319 315

 Both examples 2 and 3 need a 4-bit input signal X =
<x3x2x1x0> and yield a single-bit output signal Y.
Examples 4 and 5 also requires a 4-bit input signal X but
the respective circuits must propagate a 4-bit and 3-bit
output signal respectively. The truth tables of four
examples are summarised in Table 5 below. Note that
example 4 is a simple 2-bit multiplier of X = <x3x2>
times Y = <x1x0> (notation for space sake).
 For the second example, a human designer came with
a circuit that requires 4 AND gates, 1 OR gate, 2 XOR gates
and 4 NOT gates. The specification of the signal
assignment (5) is as follows:

Y ⇐ ((3x AND x1) XOR (0x AND 2x)) OR ((1x AND x0)
AND (x3 XOR 2x)) (5)

 For example 2, the Coelho’s genetic algorithm
evolved the circuit specified in signal assignment (6). It
uses 1 AND gate, 3 OR gates, 3 XOR gates and 1 NOT gate.

Y ⇐ ((x3 XOR ((x2 XOR x0) OR (x1 AND x0)) XOR (NOT ((x3
OR (x1 OR x0))) (6)

 The schematics of the circuit we evolved are given in
Figure 6. It needs less hardware area, but propagates the
output signal a little bit slower than Coelho’s evolved
circuit. However, the factor area×performance is the
smallest. Again, the numerical figures are given in Table
6.

Figure 6: Evolved circuits for example 2

 For the third example, a human designer obtained a
circuit that requires a total of 20 gates equivalent: 5 AND
gates, 3 OR gates and 4 NOT gates. The specification of
the signal assignment (7) is as follows:

Y ⇐ ((3x AND 0x) OR (0x AND 2x)) OR ((x2 AND x1)
OR (x3 AND 1x AND x0)) (7)

Input Examples 2, 3 Example 4 Example 5
X3 X2 X1 X0 Y Y P3 P2 P1 P0 Y2 Y1 Y0
0 0 0 0 1 1 0 0 0 0 1 0 0
0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0 0 0 1 0
0 0 1 1 1 0 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 1 1 0 0
0 1 1 0 1 1 0 0 1 0 0 1 0
0 1 1 1 1 1 0 0 1 1 0 1 0
1 0 0 0 1 1 0 0 0 0 0 0 1
1 0 0 1 0 1 0 1 0 0 0 0 1
1 1 1 0 1 1 0 1 1 0 1 0 0
1 0 1 1 0 0 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 1
1 1 0 1 1 1 0 0 1 1 0 0 1
1 1 1 0 0 1 0 1 1 0 0 0 1
1 1 1 1 0 1 1 0 0 1 1 0 0

Table 5: Truth tables of example 2, example 3, example and example 5 respectively

316 Informatica 29 (2005) 309–319 N. Nedjah et al.

 For example 3, the Coelho’s genetic algorithm
evolved the circuit specified in signal assignment (8). It
requires 2 AND gates, 2 OR gates, 2 XOR gates and 1 NOT
gate.

Y ⇐ NOT(((x2 AND x1) XOR (x2 OR x0)) AND (x1 OR (x3
XOR x0))) (8)

The schematics of the circuit we evolved are given in
Figure 7. The circuit, we evolved needs less hardware
area, propagates the output signal faster than both circuits
i.e. Coelho’s and the one designed by the human, and so
the factor area×performance is minimised. Once more,
the numerical figures about gate equivalent, delay and
area×performance factor are shown in Table 6.

Figure 7: Evolved circuits for example 3

 Another circuit was obtained for example 3. Its
schematics are given in Figure 8 below. The circuit of
Figure 8 is less efficient than that shown in Figure 7.
However, it is more compact that the circuits obtained by
the human designer and that evolved by Coelho’s genetic
algorithm as it requires only 11 gates equivalent

compared to 20 for the circuit designed by the human
and 15 for Coelho’s evolved circuit. Moreover, the
circuit of Figure 8 has a smaller propagation delay of
0.853ns compared to the 0.912ns required by the human
designed circuit. The circuit presents a
area×performance factor of 9.383.

Figure 8: Less efficient evolved circuits for example 3

 For the fourth example, a human designer obtained a
circuit that requires a total of 24 gates equivalent: 8 AND
gates, 2 OR gates, 1 XOR gate and 1 NOT gate. The
specification of the signal assignments is as follows,
wherein y1 = x3 and y0 = x2 when Table 5 is used.

p0 ⇐ (x0 AND y0)
p1 ⇐ (x1 OR x0) AND (y1 OR y0) AND ((x1 AND x0) XOR (y1
AND y0))

p2 ⇐ (x1 AND y1) AND NOT((x0 AND y0))
p3 ⇐ (x1 AND y1) AND (x0 AND y0)

 For example 4, the Coelho’s genetic algorithm
evolved the circuit specified in the following output
signal assignments. It requires an area of 16 gates
equivalent. That is 5 AND gates and 2 XOR gates.
p0 ⇐ (x0 AND y0)

MULTI-OBJECTIVE CMOS-TARGETED... Informatica 29 (2005) 309–319 317

p1 ⇐ (x0 AND y1) XOR (x1 AND y0)
p2 ⇐ (x1 AND y1) XOR ((x0 AND y0) AND (x1 AND y1))
p3 ⇐ (x1 AND y1) AND (x0 AND y0)

 The schematics of the circuit we evolved are given in
Figure 9. The circuit, we evolved needs the same

hardware area as Coelho’s evolved circuit but it
propagates the output signal faster than both circuits i.e.
Coelho’s and the one designed by the human, and so the
factor area×performance is minimised. The comparison
of the numerical figures such as gate equivalent numbers,
propagation delays and area×performance factors is
detailed in Table 6.

Figure 9: Evolved circuits for example 4

 Finally for the fifth example, a human designer
engineered a circuit that requires a total of 34 gates
equivalent, i.e. 7 AND gates, 4 OR gates, 2 XOR gate and 6
NOT gates. The specification of the signal assignments is
as follows, wherein y1 = x3 and y0 = x2 when Table 5 is
used.

y0 ⇐ NOT (x3 XOR x1) AND NOT (x2 XOR x0)
y1 ⇐ (2x AND x0) AND (3x OR x1) OR (3x AND x1)
y2 ⇐ (0x AND x2) AND (1x OR x3) OR (1x AND x3)

 For the same example, the Coelho’s genetic
algorithm evolved the circuit specified in the following
output signal assignments. It requires an area of 22 gates
equivalent, which consist of 2 AND gates, 3 OR gate, 3
XOR gates and 3 NOT gates.

y0 ⇐ NOT ((x3 XOR x1) AND (x2 XOR x0))
y1 ⇐ temp AND NOT (((x3 XOR x1) AND x3 XOR (x0 OR (x3
XOR x1))) OR temp)

y2 ⇐ NOT (((x3 XOR x1) AND x3 XOR ((x0 OR (x3 XOR x1))
OR NOT temp)
wherein temp = ((x2 XOR x0) OR (x3 XOR x1)).

 The schematics of the circuit that our genetic
algorithm evolved are given in Figure 10. This circuit
requires one gate equivalent more than Coelho’s evolved
circuit but our circuit propagates the output signal much
faster. Compared with the human designed circuit, our
circuit has the same response time but needs a much
smaller area. Furthermore, the factor area×performance
for our circuit is minimal compared with the other two.
The numerical figures such as gate equivalent numbers,
propagation delays and area×performance factors are
given in Table 6.
 The convergence graphs of our evolutionary process
for the examples are shown in Figure 11. The best
circuits for the 1st, 2nd, 3rd, 4th and 5th examples were
obtained in 100, 280, 320, 370 and 540 generations.

318 Informatica 29 (2005) 309–319 N. Nedjah et al.

Figure 10: Evolved circuits for example 5

0
20
40
60
80

100
120
140
160
180
200

0 50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

#generation

fitness

1st. Benchmark

2nd. Benchmark

3rd. Benchmark

4th. Benchmark

5th. Benchmark

Figure 11: Convergence graphs for the evolution of the circuits of the five examples

 In order to evolve the circuits for the proposed
behaviours (see Table 5) and for all of the examples we
used a population of 100 individuals. The double-point
crossover was used with mutation rate of 0.5 and a
mutation degree of 1.
 Table 6 shows a comparison between the fittest
circuits engineered by a human designer, Coelho’s

genetic algorithm and our genetic algorithm, which is
based on genetic programming. For each proposed
example, the required hardware area, the necessary
propagation delay and the product area×performance are
detailed. The graphical representation of these figures is
shown in the chart of Figure 12.

 area delay area×performance
 Our’s Coelho’s Human’s Our’s Coelho’s Human’s Our’s Coelho’s Human’s

1st 8 9 12 0.424 0.637 0.637 3.392 5.733 7.644

2nd 15 16 20 0.973 0.918 0.702 14.595 14.696 14.050

3rd 9 15 20 0.639 0.699 0.912 5.751 10.492 18.250

4th 16 16 24 0.425 0.842 0.853 6.800 13.472 20.472

5th 22 21 34 0.799 1.065 0.703 17.589 22.365 23.919

Table 6: Numerical comparison of the area×delay for the three methods

MULTI-OBJECTIVE CMOS-TARGETED... Informatica 29 (2005) 309–319 319

0

5.000

10.000

15.000

20.000

25.000

performance

1st 2nd 3rd 4th 5th

benchmark

Our’s

Coelho’s

Human’s

Figure 12: Graphical comparison of the area×delay factor

5 Conclusions

In this paper, we described an evolutionary technique to
engineer compact, efficient and creative digital
combinational circuit given the expected input/output
behaviour. We explored the use of genetic programming
and changing from the binary representation of circuits to
a tree representation. We showed how to improve the
evolution process by taking advantage of the central
processing unit parallelism. An advantage of using
genetic programming consists of the readability of the
evolved circuit for synthesis using one of the available
synthesis tools [12].
 Our evolutionary process is multi-objective as it
allows one to yield balanced i.e. compact and efficient
digital circuits. The proposed fitness function evaluates a
given circuit with respect to correctness, required
hardware area and necessary propagation delay of output
signals. It does so using the well-agreed-upon factor
area×performance as a measure to appreciate the
complexity of a digital circuit.
 We evolved a better circuit for every example used
by Coelho et al. [2] compared to both human designs and
evolved circuit that only consider the number of required
gates to evaluate an evolved solution. On one hand, this
proves that the fitness function we engineered is far more
realistic than that of used by Coelho et al. On the other
hand, it also proves that evolutionary hardware can offer
an alternative way to human design techniques to design
efficient digital circuit. We showed how the evaluation of
circuit fitness can be computed efficiently taking
advantage of the inherent parallelism of the central
processing units of the computers.

References
1. A.V. Aho, S. Ravi and J.D. Ullman, Compilers:

principles, techniques and tools, Addison-Wesley,
1986.

2. A.A.C. Coelho, A.D. Christiansen and A.H.
Aguirre, Towards Automated Evolutionary Design
of Combinational Circuits, Comput. Electr. Eng.,
27, pp. 1-28, 2001

3. E.J. McCluskey, Minimisation of Boolean
functions, Bell Systems Technical Journal,
35(5):1417-1444, November 1956.

4. M.D. Ercegovac, T. Lang and J.H. Moreno,
Introduction to digital systems, John Wiley, 1999.

5. M. Karnaugh, A map method for synthesis of
combinational logic circuits, Transactions of the
AIEE, Communications and Electronics, 72(I):593-
599, November 1953.

6. J. R. Koza, Genetic Programming. MIT Press,
1992.

7. J.F. Miller and D. Job, Principles in the
evolutionary design of digital circuits

8. R. Poli, Efficient evolution of parallel binary
multipliers and continuous symbolic regression
expressions with sub-machine code GP, Technical
Report CSRP-9819, University of Birmingham,
School of Computer Science, December 1998.

9. V.T. Rhyne, Fundamentals of digital systems
design, F.F. Kuo Ed. Prentice-Hall Electrical
Engineering Series, 1973.

10. B.C.H. Turton, Extending Quine-McCluskey for
exclusive-or logic synthesis, IEEE Transactions on
Education, 39(1):81-85, February 1996.

11. A. Thompson, P. Layzel and R.S. Zebelum,
Explorations in design space: unconventional
design through artificial evolution, IEEE
Transactions on Evolutionary Computations,
3(3):81-85, February 1996.

12. Xilinx, Inc. Foundation Series Software,
http://www.xilinx.com, 2002.

