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Among all cancers, pancreatic cancer has a very poor prognosis. Early diagnosis, as well as 

successful treatment, are difficult to achieve. As the death rate is increasing at a rapid rate (47,050 

out of 57650 cases), it is of utmost importance for medical experts to diagnose PC at earlier stages. 

The application of Deep Learning (DL) techniques in the medical field has revolutionized so much in 

this era of technological advancement. An analysis of clinical proteomic tumor data provided by the 

Clinical Proteome Tumor Analysis Consortium Pancreatic Ductal Adenocarcinoma (CPTAC-PDA) at 

the National Cancer Institute was used to demonstrate an innovative deep learning approach in this 

study. This includes a) collection of data b) preprocessed using CLAHE and BADF techniques for 

noise removal and image enhancement, c) segmentation using UNet++ for segmenting regions of 

interest of cancer. Followed by, d) feature extraction using HHO based on CNN and e) feature 

selection using HHO based on BOVW for extracting and selecting features from the images. Finally, 

these are subject to the f) classification stage for better analysis using the VGG16 network. 

Experimental results are carried out using various state-of-art models over various measures in 

which the proposed model outperforms with better accuracy:0.96, sensitivity:0.97, specificity:0.98, 

and detection rate:0.95. 

 

Povzetek: Opisana je metoda globokega učenja za napovedovanje raka na ledvicah. 

 

1 Introduction 
 

The death rate from pancreatic cancer (PC) in the 

United States is among the highest of all cancers. 

Despite aggressive treatment approaches and 

combination modalities, the 5-year survival rate 

remains 5%. According to 2017’s SEER data [1], 

Pancreatic ductal adenocarcinoma accounted for 

47,050 deaths and new cases of 57,600 were reported. 

In 2030, PDAC is expected to overtake cancer as the 

2nd largest cause of mortality [2]. Only 15 to 20% of 

sufferers are qualified for a potentially curative 

surgery because of non-specific indications and late 

discovery [3]. Whipple surgery left pancreatectomy 

and complete pancreatectomy+ are the three surgical 

options for pancreatic cancer treatment. By analyzing 

the resection tissues, it will be possible to determine 

whether or not lymph nodes are metastasizing from 

the tumor, as well as whether there is pre-invasive 

pancreatic intraepithelial neoplasia. Further 

therapeutic management will be based on pathological  

 

results [4]. It is important to identify neoplastic cells  

from benign or inflammatory cells to have a clear 

picture of the tumor. Because of the tremendous 

heterogeneity between and within tumors in growth 

pattern, cytology, and stroma (figure 1), this can be a 
daunting task. A fibrotic and inflammatory 

microenvironment contributes to the heterogeneity 

and complex growth pattern of tumors, with the latter 

constituting most of the tumor mass [5]. On 

microscopic examination, PDAC is primarily 

glandular, with extensive desmoplastic stroma 

formation. However, other structures can also be 

observed, including (micro-)papillae, solid nests, 

cribriform, or small, single-cell tumors [6]. There are 

several molecular factors associated with the 

development of non-glandular, histologically poorly 

differentiated tumor growth patterns, such as 

mesenchymal phenotypes, proteases, and neutrophil 

infiltrates [7,8]. PDAC grows in a dispersed pattern. It 

is in these cases that the tumor cells are not usually 

grouped, but are instead found in cellular clusters 

which encroach on the surrounding tissues, nerve 
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sheaths, and vascular networks [9]. A PanIN 

(Pancreatic Intraepithelial Neoplasia) is the precursor 

lesion of PDAC (Figure 2), and it is analogous to 

ductal epithelial carcinomas in colon cancers, in 

which ductal cells proliferate to become cancer-

invasive. 

 

 
Figure 1: Pancreatic Cancer: MRI image of risk patients. 

        A healthy pancreas and chronic pancreatitis have 

glandular and ductal features grouped in an organoid-

lobular configuration, while a malignant pancreas has 

tumor glands that are dispersed throughout the stroma, 

distorted, and display solitary cells [10,11]. Chronic 

pancreatitis is characterized by fibrosis, ductal tissue 

loss, and acinar thinning, all of which were linked to 

an increased risk of invasive carcinoma [12]. PDAC 

review time for slides with histological 

microarchitecture, distributed development, varied 

microclimates, preinvasive lesions, inflammatory 

tissue, and sealed anatomical tissue is predicted to be 

1 to 2 minutes per slide [13]. The time variable is 

significant for diagnosing, even if the accuracy of 

diagnosis is high, and it will become even more 

significant as the overall number of specialist 

pathologists’ declines, and as the general demand for 

information and specialization increases, as well as 

the number of patients [14,15]. 

Techniques which enable and promote 

morphological-based tissue slide evaluation and flag 

crucial regions for further study by professional 

pathologists are thus necessary. Digital pathology has 

evolved as a means for evaluating histopathology 

slides, supporting routine diagnostics and research, as 

well as ensuring quality control. Reproducible tissue 

categories are very important in spatial tissue studies. 

Deep learning methods have previously been 

demonstrated to be effective in determining lymph 

node metastases and classifying tumor subsets [16]. 

 

1.1   Research gap 
 

By identifying the onset period, pancreatic disease 

could be reduced from being the leading cause of 

death. One of the most difficult tasks completed by 

the radiologist up to this point has been identifying the 

nodules in the stomach wall. Nodules of the pancreas 

have diverse shapes and sizes, which makes it difficult  

to identify small nodules. While segmenting the tumor 

region, difficulties such as over-segmentation and 

under-segmentation can develop. While there are 

many imaging modalities available, using the more 

reliable and convenient modality is important for early 

tumor detection. To identify and characterize the 

tumor's location, scientists have recommended some 

procedures. The contrast of MRI for soft tissues is 

better than CT, and it can differentiate fat, water, 

muscles, and other soft tissues more easily than CT. 

Additionally, MRI has a higher sensitivity (33%) for 

detecting tumors than CT (11%). The primary goal of 

this research is to suggest a better framework that will 

detect and classify pancreatic cancer from MRI 

images to support radiologists in making diagnostic 

decisions. 

 

 

1.2 Key highlights 
 

This article aims to optimize methods and propose a 

framework for detecting and classifying pancreatic 

cancer using deep learning and image processing 

techniques. The primary objectives of this article are 

as follows: 

 •To suggest a framework based on MRI images to 

detect and classify pancreatic cancer. 

 •To improve the MRI image quality using Boosted 

Anisotropic Diffusion Filter (BADF) and contrasted 

limited adaptive histogram equalization (CLAHE) 

algorithms. 

 •To use the UNet++ architecture to create a 

Computer-Aided Detection method (CAD) for the 

early identification of pancreatic cancers. The 

pancreatic region associated with a lesion is precisely 

separated from the MRI image by segmentation using 

the UNet++.  

 •To extract the best subset of texture features to 

enhance classification accuracy and to create a 

classification system based on these texture features 

using HHO-based CNNs and HHO-based Bags of 

visual terms. 

 •To distinguish different levels of malignancy in an 

MRI image by developing a classifier based on the 

VGG 16 model. 

 •To perform quantitative analysis for various tumor 

classes and the accuracy of the proposed classifier is 

assessed against the state-of-the-art work’s 

performance. 

Organization of the paper: As we already came 

across the overview of PDAC and its respective areas 

in Section 1, part 2 discusses the literature review, 

third part illustrates the overall methodology adopted. 

The fourth part presents the performance analysis, and 

the fifth section summarizes the conclusion. 
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2 Literature review 

 

Tonozoko et al. (2021) [17] developed a Computer-

Aided Diagnostics (CAD) approach that used deep 

learning assessment of EUS pictures (EUS CAD) to 

distinguish between persons with chronic pancreatitis 

and those with Pancreatic Ductal Carcinoma (PDAC).  

Liu et al. (2020) [18] used a CNN to 

determine whether patches were carcinogenic. 

According to the fraction of patches designated as 

carcinogenic by the CNN and the trained and 

validation datasets, a criterion for identifying 

pancreatic cancer was created. Researchers utilized a 

localized test group (101 pancreatic cancer patients 

and 88 controls, local test group 2) in addition to data 

from the United States (281 pancreatic cancer patients 

and 82 controls). In this study, EM algorithms and 

Gaussian Mixture models were integrated to highlight 

the most necessary properties of the CT scan, and 

threshold values were used to determine the 

percentage of tumors present in the pancreas.  

Vaiyapuri et al. (2022) [19] introduce an 

intelligent deep-learning-enabled decision-making 

medical system for pancreatic tumor classification 

(IDLDMS-PTC) using CT images. The IDLDMS-

PTC model derives an emperor penguin optimizer 

(EPO) with multilevel thresholding (EPO-MLT) 

technique for pancreatic tumor segmentation. A 

MobileNet model is applied as a feature extractor with 

optimal autoencoder (AE) for pancreatic tumor 

classification. To optimally adjust the weight and bias 

values of the AE technique, the multileader 

optimization (MLO) technique was utilized. 

Abbas et al. (2021) [20] suggest a Computer 

Aided Diagnosis (CAD) system that uses Synergic 

Inception ResNet-V2, a deep convolutional neural 

network architecture, to identify PC cases from 

publicly available CT images. This system could 

extract PC graphical functionality to include clinical 

diagnosis before the pathogenic examination, freeing 

up valuable time for disease prevention. To 

demonstrate the relatively encouraging outcomes in 

terms of accuracy in recognizing BC-infected patients, 

simulation results using MATLAB are provided in the 

study. The suggested deep learning approach achieves 

an accuracy of 99.23%.  

Li et al. (2022) [21] offer a deep-learning 

segmentation technique for pancreatic cancer based on 

a dual meta-learning framework. This can combine 

generic tumor data from idle MRIs with prominent 

tumor information from Ct scan images to improve 

the discrimination of high-level features. To provide 

rich intermediate explanations for a meta-learning 

technique that would follow, the randomized 

intermediary modality between CTs and MRIs was 

originally developed to fill in visual gaps. 

 

 

 

 
Table 1: Summary of literature review. 

 
 

Author Algorithm Metrics Strength Weakness 

Tonozoko 

et al. 

(2021) [17] 

AlexNet AUROC – 0.924 

Sensitivity – 90.2 

Specificity – 74.9 

Higher-resolution EUS 

images are used. Higher 

sensitivity.  

Risks and feasibility of EUS 

imaging. 

Fu et al. 

(2021) [19] 

Inception 

V3 

Accuracy - 0.953 

 

Patch-level and WSI-level 

approach improves the 

overall classification 

accuracy 

The algorithm recognizes 

cancer cells mainly from 

nuclear features. Hence prone 

to false positive results. 

Liu et al. 

(2020) [18] 

VGG-16 Sensitivity - 0·973, 

Specificity - 1·000, 

and Accuracy - 

0·986 

Achieved an accuracy 

approaching 99% and 

missed fewer tumors 

compared with that of 

radiologists. 

Uses CT scans which show 

less tumor detection sensitivity 

of 11% compared to MRI 

(33%). 

Abbas et al. 

(2021) [20] 

ResNet Accuracy - 99.23 The isolateral filter 

enhances the quality of 

poor images during 

preprocessing. 

Uses CT scans which show 

less tumor detection sensitivity 

of 11% compared to MRI 

(33%). 

Li et al. 

(2022) [21] 

GoogleNet Dice score - 64.94 Dual meta-learning 

framework for pancreatic 

cancer using MRI as well 

as CT. Outperforms state-

of-the-art methods based 

on CT imaging. 

NA 
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3 Methodology 
 

This section outlines a novel approach for classifying 

pancreatic cancers based on the Pancreatic Ductal 

Adenocarcinoma cohort of the Clinical Proteomic 

Tumor Analysis Consortium (CPTAC-PDA) dataset. 

While there are various imaging techniques available, 

MRI demonstrates improved tumor detection 

sensitivity, which aids in discovering smaller tumors 

(Grade I). The novelty of this study is the application 

of image-enhancing methods and optimization 

strategies to MRI images to increase the classification 

accuracy when compared to the state-of-the-art 

research under discussion. The overall design of the 

proposed framework is shown in Figure 3, with the 

steps outlined below.  

During the pre-processing step, CLAHE and 

BADF are used to enhance the images obtained from 

the publically available MRI image collection CPTAC-

PDA. A source image is divided into non-overlapping 

contextual components known as sub-images, tiles, or 

blocks by the CLAHE method. To balance each 

contextual area, the CLAHE approach uses histogram 

equalization. The cropped pixels are then redistributed 

throughout the grey levels after the original histogram 

is cropped. While traditional histograms, redistributing 

histograms cap pixel intensities at a maximum value. 

By including a Partial Differential Equation (PDE) 

after it generates the diffuse image, the suggested 

BADF improves on the existing anisotropic diffusion 

filter. It's a sophisticated unsupervised machine 

learning-based image enhancement tool. It's also 

feasible to smooth details with a diffusion process 

that's weak at the edges and borders of the images and 

not only smooths out the image but also preserves 

important characteristics like edges and patterns. 

Excellent results were achieved when the number of 

iterations was set to 20 based on extensive testing. 

Once images are preprocessed, Segmentation is carried 

out which is a crucial part of an image classification 

method where the MRI image is segmented to isolate 

the nodules. In this work, the UNet++ architecture is 

used for the segmentation of MRI images. Once 

segmented regions are obtained, features are extracted 

and selected by using HHO-based CNN and HHO-

based BOVW. After segmentation and feature 

extraction, the segmented tumor is identified using 

texture features. Finally, the VGG-16 model is used to 

distinguish between normal and tumor grades from the 

MRI images. The Convolution Neural Network (CNN) 

architecture VGG-16 is one of the best models for 

image classification which allows transfer learning. 

Transfer learning is the process of applying the 

knowledge gained from one problem to another related 

problem for further improvement. 

 

 

 

 

 

3.1 Data collection 

 
A dataset of CPTAC-PDA pancreatic ductal 

adenocarcinomas from the National Cancer Institute is 

included here. Proteogenomic, a large-scale method of 

studying cancer genetics, is the goal of CPTAC [22]. 

 
 

 

 

 

 

 

 

 

 

 

 
Figure 2: The overall architecture of the proposed 

framework. 

The Cancer Imaging Archives is collecting radiology 

and pathology images from CPTAC patients to provide 

researchers with access to these images so they can 

investigate cancer phenotypes and correlate them with 

proteomic, genomic, and clinical findings. 

There is a TCIA Collection for each type of cancer, 

called CTAC- cancer type, which stores the images for 

each type. Radiology pictures are compiled from 

routine imaging conducted on patients immediately 

before pathology diagnoses, as well as follow-up scans 

where available. As a result, in terms of scanner 

modalities, vendors, and acquisition processes, 

radiology picture information sets are varied. The 

CPTAC (Figure 4) qualification method includes 

collecting pathology images. The National Cancer 

Institute's Clinical Proteomic Tumor Analysis 

Consortium Pancreatic Ductal Adenocarcinoma 

(CPTAC-PDA)1 contains 45786 pancreatic images 

from CPTAC third-phase patients. A total of 45 

radiology topics and 77 pathology topics [23] are 

included. This dataset includes samples from CT, CR, 

and MRI scans. The pictures are of various sizes, but 

they were shrunk to 128 in the current work. The 

flexibility of the answer produced by the diverse 

qualities of various imaging techniques is increased by 

using numerous modalities in the training step. 
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3.2 Preprocessing 

 
Preprocessing is carried out for removing noise and 

anomalies and also thereby enhancing the images for 

better prediction. So here we use both CLAHE and 

BADF. They will be compared in Table 1 over 

measures like PSNR, SSIM, and MSE for better 

preprocessing analysis over ADF, BADF, AHE, and 

CLAHE. From this, we get to know that, the higher the 

PSNR and SSIM, the lower the MSE will give many 

accurate results.   

 

 

Figure 4. Pathology confirmed pancreatic ductal 

adenocarcinoma in an elderly female patient. On fat-

suppressed LAVA T1-(A) and T2-(B) weighted 

imaging, C) MRI Cholangio-Pancreatography 

(MRCP), D) Gadolinium-enhanced images in arterial, 

E) Portal, F) dela 

3.2.1 CLAHE 

Because the pancreas is related to other organs such as 

the duodenum and gallbladder, the input volume was 

enhanced to make the pancreas more visible. To begin, 

we modified the MRI images by adding a window 

center (60) and window width (400) to make the 

abdomen visible. By boosting the contrast of the 

pancreatic region, the basic dataset was constructed by 

contrast-limited adaptive histogram equalization 

(CLAHE) [24-27]. By using the dynamic histogram 

equalization method, each pixel is mapped to its 

grayscale neighbors. Because the number of times the 

approach is used is equivalent to the number of pixels 

in the area, it consumes a lot of processing resources. 

CLAHE accomplishes this by establishing a criterion. 

If part of the picture's grey levels surpasses the 

threshold, the surplus is dispersed equally among all 

grey levels. The image will not be over-enhanced as a 

result of this processing, and the issue of noise 

amplification will be minimized. 

 

3.2.2 BADF 

 

The Perona-Malik Diffusion Process is another name 

for the anisotropic diffusion filter, and it is named after 

the people who devised it. It focuses primarily on 

eliminating noise while maintaining fine features in the 

image. In general, the filters employ the very same 

methodology as edge detection. Using multiple blurred 

pictures generated by the diffusion process, the 

anisotropic diffusion filtering process may be 

described. The proposed BADF improves on the 

previous anisotropic diffusion filter by adding a Partial 

Differential Equation (PDE) after creating the diffused 

image. Diffusion, which is absent at the edges and 

boundary, can be utilized to smooth the surface [28]. 

After that, four conduction operators obtained from 

Equations (20) and (21) are used to attenuate the high-

frequency elements in each direction. 

 

gN=
1

1+(
𝛻𝑁𝐼𝑖,𝑗

𝑘
)2

                 (1)                                                                                                                                                              

gS=
1

1+(
𝛻𝑠𝐼𝑖,𝑗

𝑘
)2

                                 (2)                                                                          

gE=
1

1+(
𝛻𝐸𝐼𝑖,𝑗

𝑘
)2

      (3)                   

gW=
1

1+(
𝛻𝑊𝐼𝑖,𝑗

𝑘
)2

           (4)             

K is a scalar that controls the level of smoothness, but 

it must satisfy (K > 1), because a higher value of K 

results in smoother outcomes. In a standard anisotropi 

diffusion filter, K is set to 7. Equation (24) [29] is used 

to automatically calculate variable K based on local 

Algorithm 1: CLAHE 
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statistics in this investigation. 
 

k=2*| 𝑚𝑒𝑎𝑛(𝑓𝑖,𝑗)

(0.75∗𝜎(𝑓𝑖,𝑗))
|          (5) 

 
Here, the standard deviation is denoted by σ. Using 

Equation (10), we can determine the variance by 

smoothing the visuals. 

 

𝐼𝑖,𝑗 = 𝐼𝑖,𝑗 + 0.25[(𝑔𝑁 ∗ ∇𝑁𝐼𝑖,𝑗) + (𝑔𝑆 ∗ ∇𝑆𝐼𝑖,𝑗) +

(𝑔𝐸 ∗ ∇𝐸𝐼𝑖,𝑗) + (𝑔𝑊 ∗ ∇𝑊𝐼𝑖,𝑗)]    (6) 

 

where Ii, j is a smoothened image. 

 

Algorithm 2: BADF  

Step 1: Double the size of the input image. 

Step 2: Diff im is a PDE (partial differential equation) 

that needs to be initialized. 

Step 3: Set the pixel distances in the centre. 

                 dx = 1; 

                 dy = 1; 

Step 3: Identify four different 2D convolution masks 

(N,S,E,W). 

       hN = [0 1 0; 0 -1 0; 0 0 0] 

        hS = [0 0 0; 0 -1 0; 0 1 0]; 

        hE = [0 0 0; 0 -1 1; 0 0 0]; 

        hW = [0 0 0; 1 -1 0; 0 0 0]; 

Step 4: Before evaluating the diffusion function, 

identify the finite difference. 

 

Table 2. Overall analysis under PSNR, MSE and 

SSIM. 

Preprocessi

ng models 

PSN

R 

SSI

M 

MS

E 

Ima

ge 

AHE 23.5

6 

0.24 3.2

9 

 

ADF 22.8 0.33 4.7

1 

Imag

e 1 

CLAHE 43.9 0.72 8.4

4 

 

BADF 46.2 0.85 9.3

1 

 

     

AHE 23.5

9 

0.24

5 

3.3  

ADF 22.8

3 

0.33

3 

4.7

5 

 

CLAHE 43.9

5 

0.72

6 

8.4

9 

Imag

e 2 

BADF 46.2

7 

0.85

1 

9.3

6 

 

     

AHE 23.6 0.25 3.3

2 

 

ADF 22.9 0.34 4.7

9 

Imag

e 3 

CLAHE 44.1 0.73 8.5  

BADF 46.3 0.86 9.4  

     

AHE 23.6

2 

0.25

7 

3.3

7 

 

ADF 22.9

3 

0.34

5 

4.8 Imag

e 4 

CLAHE 44.1

2 

0.73

8 

8.5

3 

 

BADF 46.3

6 

0.86

2 

9.4

6 

 

     

AHE 23.6

8 

0.26 3.4  

ADF 23.2 0.35 4.8

3 

Imag

e 5 

CLAHE 44.1

8 

0.74 8.6  

BADF 46.4 0.87 9.5  

 

 

3.3 Segmentation 
 

The proposed design is depicted in Figure 5a from a 

high-level perspective. Unet++ is based on an encoder 

subnetwork, which will be followed by a decoding 

subnetwork. Therefore, skip paths (represented in 

green and blue) connecting the two subnetworks have 

been reconstructed, and deep supervision distinguishes 

UNet++ from U-Net [30,31]. This is shown in red. 

 
Figure 5: (a) An encoder and a decoder are linked via 

thick convolutional blocks in UNet++. Before fusion, 

UNet++ was primarily focused on bridging the 

semantic gap between encoders and decoders. On the 

original U-Net are black blocks with thick convolution 

blocks on skip routes in green and blue, and red deep 

supervision blocks.  (b) A thorough investigation of 

UNet++'s first skip path. (c) If UNet++ was trained 

with a lot of supervision, it can be pruned during 

inference. (Color image from the internet) [33] 

 

 

 

 

3.3.1 Redesigned skip pathways 

 

The communication between the encoder and decoder 

sub-networks has improved thanks to redesigned skip 

paths. The retrieved attributes from the encoder 

enhance gain in the decoder in U-Net; The UNet++ 
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method, however, uses dense convolution blocks, 

whose number is determined by the pyramid level. 

Convolution blocks X0, 0, and X1,3, for example, 

contain three convolution layers. Because it is 

concatenated, the result of each convolution layer is 

merged with the reduced dense block result. Through 

deep convolution, features extracted from the encoder 

are transformed into feature maps that the decoder can 

decode. The ideal is considered to have a simpler 

approach to achieving optimum control issues if the 

input encoder extracting properties and accompanying 

decoder feature maps are conceptually equivalent. 

A summary of the skip path is as follows: Let's 

call the result of node Xi, j xi, j while I is the encoder's 

down-sampling value and j is the dense block's 

convolution layer. The following is how to calculate 

the stack of extracted features denoted by xi,j: 

𝑥𝑖,𝑗 = {
𝐻(𝑥𝑖−1,𝑗)                                   𝑗 = 0

𝐻([[𝑥𝑖,𝑘]𝑘=0
𝑗−1

, 𝑢(𝑥𝑖+1,𝑗−1)]) , 𝑗 > 0
                 (7) 

A convolution with an activation function of H(.) and an 

upsampling layer of U(.). When a node at a level j > 1 is 

selected, it accepts j + 1 inputs, j inputs representing 

previous delete paths, and lastly, its output represents 

the upsampled results of the lesser skip paths. Level j = 

0 accepts only input from an encoder layer above it; 

level j = 1 accepts input from an encoder sub-network at 

a different stage, and level j > 1 accepts input from a 

lesser encoder sub-network. Because each skipping 

route employs a thick convolution block, all previously 

extracted characteristics blend and reaches the current 

node. Figure 5b illustrates how the characteristic 

mappings flow through UNet++'s top skip pathway, 

which better clarifies Eq. 1. 

 

3.3.2 Deep supervision 

 
Deep supervision is provided by UNet++ [30,31] so 

that the model can run in two modes: (1) accurate 

mode, where the categorized branches are averaged, 

and (2) fast mode, where one of the classification 

branches can be used as the categorization process 

map, depending on the amount of pruning in the model 

and the increase in the speed. In rapid mode, selecting 

a segment branch gives designs of variable complexity, 

as seen in Figure 5c.  

With UNet++ one can stack skipping paths 

with full-resolution attributes on multiple semantic 

levels, including x0, j, j1, 2, 3, and 4 while being 

deeply supervised. Each semantic phase is assigned a 

loss function based on binary cross-entropy and dice 

coefficient: 

𝐿(𝑌, �̂�) = −
1

𝑁
∑ (

1

2
. 𝑌𝑏 . 𝑙𝑜𝑔�̂�𝑏 +𝑁

𝑏=1

2.𝑌𝑏.�̂�𝑏

𝑌𝑏+�̂�𝑏
)                                                                (8) 

N is the batch size, and �̂�𝑏   and Yb is the flattened 

projected probability and ground truth of the bth 

image, respectively. The difference between UNet++ 

and U-Net is shown in Figure 5a which includes: In 

terms of jump routes, (1) Convolution layers (green) 

improve gradient flow; (2) Closely packed skip 

connections on delete routes (blue); and (3) Deep 

supervision (red) which prevents pruning and, in the 

worst-case scenario, is similar to the performance of 

using one loss layer in model 3.3. 

 

3.4 Feature extraction 

 
The HHO algorithm, a new metaheuristic stochastic 

approach proposed by Harris hawks’ behaviors, is a 

mathematical proposal. Harris hawks' behavior is 

defined by their ability to track, encircle, and approach 

potential prey (usually rabbits) and then attack them 

with excellent synchronization. Surprise pounce is a 

smart escape technique used in hunting. The HHO 

technique, like earlier meta-heuristic algorithms [34, 

35], includes exploratory and exploitative steps. 

During the exploration phase, Harris hawks will pursue 

prey randomly, according to the equation: 

 

X(t+1)=

{

𝑋𝑟𝑎𝑛𝑑(𝑡) − 𝑟1|𝑋𝑟𝑎𝑛𝑑(𝑡) − 2𝑟2𝑋(𝑡)|𝑞 ≥ 0.5

(𝑋𝑟𝑎𝑏𝑏𝑖𝑡(𝑡) − 𝑋𝑚(𝑡)) − 𝑟3(𝐿𝐵 +
𝑟4(𝑈𝐵 − 𝐿𝐵))𝑞 < 0.5

}                                                                                

 

                                                                    (9) 
 

 

The hawks are placed at X(t + 1), the rabbit (victim) at 

Xrabbit (t), r1 to r4, and q are sequentially labeled 

from 0 to 1, Xrand (t) signifies a random selection 

hawk at a random location, and Xm denotes the current 

hawk population's average location, as computed by 

Equation (29): 

 

Xm(t)=
1

𝑁
∑ 𝑋𝑖(𝑡)𝑁

𝑖=1                                    (10) 

 
Xi(t) is the place of each hawk in iteration t, and N is 

the total number of hawks. When the knowledge step 

is finished, a duration occurs between the discovery 

and exploitation periods. The rabbit's energy should be 

shaped according to Equation (30) throughout this 

moment of transition: 

 

E=2E0(1-
𝑡

𝑇
)                                                   (11)                                                      

where E represents the rabbit's escaping energy, E0 

represents its initial energy state, and T represents the 

maximum number of iterations. According to the 

victim's physical condition, the E0 number could vary 

from -1 to 1. When E0 approaches -1, the patient loses 

energy and vice versa. The Harris hawks suddenly 

approach their victim during the last stages of the 

algorithm's processing. There are four attack strategies 

available. r is a probability of escaping in this case. 

Harris's hawks use a delicate besiege strategy to slowly 
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encircle the target when E ≥ 0.5 and r ≥ 0.5. The model 

for mathematical analysis is as follows: 

 

𝑋𝑖
𝑡+1 = ∆𝑋𝑖

𝑡 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑖
𝑡|, ∆𝑋𝑖

𝑡 = 𝑋𝑝𝑟𝑒𝑦 −

𝑋𝑖
𝑡                                                                (12) 

 

J represents the strength of the prey's bouncing during 

the escape, which takes a random value between 0 and 

2, and individuals present in the presence of prey are 

separated by a distance of Xi(t + I). The prey can't 

escape when E 0.5, r 0.5, due to insufficient escaping 

energy, and the Harris hawks' location is written as: 

 

𝑋𝑖
𝑡+1 = 𝑋𝑝𝑟𝑒𝑦 − 𝐸|∆𝑋𝑖

𝑡|                       (13) 

 

That is E ≥ 0.5, r < 0.5 when Harris hawks soft besiege 

with escalating quick dive tactics to confuse prey when 

the prey has the necessary power to effectively flee. It 

can be expressed in the following way: 

𝑋𝑖
𝑡+1 =

{
𝑌 = 𝑋𝑝𝑟𝑒𝑦𝐸|𝐽𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑖

𝑡|, 𝑖𝑓 𝑓(𝑌) < 𝑓(𝑋𝑖
𝑡)

𝑍 = 𝑌 + 𝑆 × 𝐿𝑒𝑣𝑦(𝑑), 𝑖𝑓(𝑍) < 𝑓(𝑋𝑖
𝑡)

}                                 

 

                                                                (14) 

 
S is a 1 D random vector, where d is the problem 

dimension. When E < 0.5, r < 0.5, the prey has 

insufficient escape energy, according to the Lévy 

Flight function. This prey will be attacked by the 

Harris hawks in the following ways: 

 

𝑋𝑖
𝑡+1 =

{
𝑋𝑝𝑟𝑒𝑦 − 𝐸|𝐽𝑋𝑝𝑟𝑒𝑦 − 𝑋𝑚

𝑡 |, 𝑖𝑓 𝑓(𝑌) < 𝑓(𝑋𝑖
𝑡)

𝑍 = 𝑌 + 𝑆 × 𝐿𝑒𝑣𝑦(𝑑), 𝑖𝑓(𝑍) < 𝑓(𝑋𝑖
𝑡)

}                                    

 

                                                                  (15) 
 

After using HHO (Figure 6) for extraction, CNN is 

added at the end. We believe that the huge original 

picture lxh is specified as x in the convolutional layer. 

We begin by training sparse coding to extract the tiny 

size image from the giant picture. It is necessary to 

compute the f=(wxs+b) property by computing the 

activation function and the weights and variances 

between the explicit and visual layer units. We acquire 

the matching value f' = (wxs'+ b') for each small 

picture, as well as the convolution values of these fs' 

and the matrix of convolution of the properties, for 

each small image. These qualities must next be 

categorized after they have been obtained by 

convolution. 

 

3.5 Feature selection 

 
In four steps, the BoW model is explained. To begin, 

each image of the given image collection is sampled 

for patches represented by local descriptors. Second, a 

clustering algorithm generates a visual vocabulary, 

with each cluster center corresponding to a visual 

word. Third, a new image's local characteristics can be 

quantified using the visual vocabulary gathered earlier. 

Lastly, a BoW histogram is produced for image 

representation [36,37,38] by collecting the frequency 

of each bag of visuals in the frame. 

 

 
 

Figure 6: HHO-based flowchart for feature extraction. 

 

 

As explained in the image, a set of elements from each 

pixel is moved to a fresh feature space with k 

characteristics, where k is the number of k-means 

centroids. Hard-assignment coding was employed to 

encode the features in this study. The following is an 

example of a BoW image representation: Provided the 

visual words BoW in a vocabulary, 

 

𝑋(𝑊𝑖) =
1

𝑛
∑ {

1 𝑖𝑓 𝑖 = 𝑎𝑟𝑔𝑗𝑚𝑖𝑛||𝑊𝑗 − 𝑃𝑐||

0                            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
𝑛
𝑐=1                                                                 

 

                                                                       (16) 
 

n stands for the number of patches in the image, while 

pc stands for patch c. Following that, a pictorial 

representation is constructed using the BoW paradigm 

and viewed as a "bag" of visual words. 

At the start, strength profiles are employed to collect 

the tumor's and the surrounding area's intensity 

difference. An intensity profile is a vector of picture 

intensity values calculated by analyzing the brightness 
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of pixels along the cancer border. The pixels were 

taken from the center of the tumor to the border of the 

cancerous area. As seen below, the intensity profile is 

created. Gaussian kernels smooth the spots at the 

tumor border to prevent them from being affected by 

noise, which may cause the boundary normal to shift. 

The Gaussian kernel is explained as follows in one 

dimension: 

 

𝐺1𝐷(𝑋; 𝜎) =
1

√2𝛱𝜎
𝑒

−𝑋2

2𝜎2⁄
             (17)     

                                     
To convex with the points on the cancer boundary, the 

first derivative of GiD (X,) is employed. The standard 

deviation is σ  . In a picture, L(x,y) represents the 

coordinates of the tumor boundary. Convolution 

results in the points' coordinates 

 

𝐵(𝑋1, 𝑌1) = 𝑏(𝑥, 𝑦)∗𝐺1𝐷(𝑋; 𝜎)′
         (18) 

                                                                                                                      

The border normal's angles are calculated using 

𝜃 = arctan (
𝑦′

𝑥′)                                                  (19)                                                                                                                                                

For all the locations correlated with an intensity 

profile, the angle θ is used as the coordinate. 

𝑋𝑖 = 𝑥𝑖 + 𝑙 × 𝑐𝑜𝑠𝜃𝑖,  
𝑌𝑖 = 𝑦𝑖 + 𝑙 × 𝑠𝑖𝑛𝜃𝑖                                             (20)                                                                                                                 
There is a distance l between normal and border sites 

along the tumor boundary. This is the distance between 

the location on the border and the normal sites along 

the tumor boundary. Therefore, the picture's 

parameters (x1,y1) may not be exact pixel dimensions. 

Pixels in the picture are located using linear 

interpolation. Two crucial steps in building a BoW 

model are patch sampling and local descriptors. To 

simplify the subsequent computation for each raw 

patch, the one-dimensional feature vector is created. 

SIFT descriptors, which are scale and rotation 

invariant, are a better alternative to raw patches. Two 

visual vocabularies are created using precompiled 

patches from cancer and cancer margin regions, 

accordingly. As a result of this process, the 

vocabularies formed grow more locally unique. 

Another way to put it is that visual representation 

based on a region-specific language is more 

meaningful than representation based on a universal  

 

vocabulary that uses all of the image's data. 

Patches collected in the margin zone together with the 

four subregions are mapped to the margin region's 

vocabulary to generate the image representation in the 

margin zone. The BoW representation for the margin 

region is constructed by integrating the BoW 

histograms for each area. If the vocabulary of the 

margin sector contains k1 words, the BoW description 

of the margin area is a vector with 5*k1 dimensions. 

As a result, the picture now has two BoW histograms: 

one for the cancer zone and one for the cancer margin. 

Finally, the recommended region-specific BoW 

characterization for the malignancy on a pancreatic 

cancer image is created by joining these two BoW 

histograms together. 

3.6 Classification 

 
CNNs are learned in a feed-forward method, with error 

back-propagation from the classification layer to the 

first convolutional layer, from the very first input layer 

to the final classification stage. The following is an 

example of a forward pass: layer l's neuron I receive 

input from layer l-1's neuron j: 

𝑙𝑛𝑖
𝑙 = ∑ 𝑊𝑖𝑗

𝑙 𝑥𝑗 + 𝑏𝑖
𝑛
𝑗=1                                     (21)                                                                                                                                  

Non-linearity ReLu functions are used to calculate the 

output: 

𝑜𝑢𝑡𝑖
𝑡 = max (0, 𝑙𝑛𝑖

𝑡)                                           (22)                                                                                                                                             
Every neuron in the convolutional and fully connected 

layers uses equations (2) and (3) to analyze the input 

and receive the output in the form of nonlinear 

activation. The pooling layer moves a K x K square 

window across the N x N feature map and calculates 

the highest or average value of each variable. As a 

result, the feature map's spatial size shrinks from N×N 

to 𝑁/𝐾× 𝑁/𝐾. 

Finally, each cancer type's classification probability is 

calculated using the Softmax function: 

𝑜𝑢𝑡𝑖
𝑡 =

𝑒𝑙𝑛𝑖
𝑡

∑ 𝑒𝑜𝑢𝑡𝑘
𝑡

𝑖

                                                  (23)                                                                                                                                            

The back-propagation algorithm is used to train a CNN 

by minimizing the following cost function regarding 

undetermined weights W: 

𝑐 = −
1

𝑚
∑ ln (𝑝(𝑦𝑖|𝑥𝑖))𝑚

𝑖                        (24)                                                                                                                  

The 𝑖𝑡ℎ sample in the training set with the label yi is 

𝑋𝑖, and the real categorization probability is ((yi|Xi). 

The mini-batch cost is used to estimate the 

development costs, and stochastic gradient descent is 

used to lower the cost function 𝐶 over 𝑁 mini-batches. 

The weights are then modified in the next iteration as 

follows, with 𝑊𝑙𝑡 denoting the weights at iteration t 

for convolutional layer 𝑙 and 𝐶 ̂ denoting the mini-batch 

cost: 

𝛾𝑡 = 𝛾[𝑡𝑁
𝑚⁄ ]

  

𝑉𝑙
𝑡+1 = 𝜇𝑉𝑙

𝑡 − 𝛾𝑡 ∝1
𝜕∁

𝜕𝑊𝑙
                                                                                                                                                                           

 𝑊𝑙
𝑡+1

=𝑊𝑙
𝑡 + 𝑉𝑙

𝑡+1
                                            (25) 

Where   is the layer l learning rate, 𝛾 is the scheduled 

rate that decreases the initial training rate   𝛼 after a 

certain number of epochs, and   𝜇 is the momentum 

that determines the effects of earlier modified weights 

in the most recent edition. 

Every iteration of training updates the weights of the 

CNN layers using equation (6). There are 16 layers and 

138 million weights that can be learned using the 

VGG16 framework. Overfitting in the training and 

development of such deep networks can be caused by 

the enormous local minima in equation (5). As a result, 

we needed to use the pre-trained VGG16 dataset to 

create the weights. For limited datasets, however, 

determining the right local minima for the cost 
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function in equation (5) is particularly challenging, 

resulting in the overfitting of the network. In this case, 

weights were pre-trained on the VGG16 model 

[39,40]. 

VGG16 was fine-tuned on the PDAC dataset after the 

weights were transferred. This design is discussed in 

Figure 7, which illustrates the VGG16's thirteen 

convolutional layers and three fully linked layers. If 

we use the layer-by-layer fine-tuning technique, 

adding one layer at a time will result in nineteen 

layers. It will be essential to use 95 VGG16 designs to 

fine-tune five-fold cross-validation. If the training 

duration for each structure is roughly thirty minutes, 

fine-tuning the VGG16 layer-by-layer will take more 

than a week. Determining the appropriate parameters 

for layer-wise fine-tuning will take a similar length of 

time. The findings were slightly improved with a 

layer-by-layer fine-tuning method. 

 

Figure 7: VGG16 network trainable parameters 

 

Based on the pooling layers, the VGG16 architecture 

can be divided into six blocks. Figure 7 illustrates this 

approach. The block-wise layout of the VGG16 is 

depicted in Figure 8. The final fully connected layer of 

VGG16 generally consists of 1000 neurons that relate 

to ImageNet classes. According to the classes in the 

PDAC dataset, the final fully connected layer of this 

model is made up of three neurons. 

                

 
Figure 8: VGG16 architecture and its respective 

blocks. 

 

4   Performance analysis 
 

The proposed model has trained over 70% of the 

dataset and 30% for testing under an epoch of 10 and a 

learning rate of 0.09. The model is implemented using 

hardware specifications like Ryzen 5/7 series CPU, 

NV GPU, 1 TB HDD, and Windows 10 OS and 

software specifications like PyTorch, an open-source 

python library for developing deep learning models, 

and Google Collaboratory, an open-source Google 

environment for building the model. Experimental 

evaluation is carried over models like Alexnet, 

Googlenet, Inception v3, VGG19, and Resnet50 over 

measures like accuracy, sensitivity, specificity, recall, 

precision, F1-score, detection rate, TPR, FPR, and 

computation time. Table 2 depicts the overall analysis 

of various models over 5 image instances under 

accuracy, sensitivity, and specificity. Figure 9 depicts 

the graphical representation of various models over the 

accuracy, sensitivity, and specificity.  

 

Table 3: Overall analysis under accuracy, sensitivity, 

specificity. 
Models  Accura

cy 

Sensitiv

ity 

Specific

ity 

Imag

es  

Alexnet 81 85 87  

Google
net 

84 89 91  

Inceptio

n v3 

88 91 93 Imag

e 1 

VGG19 87 92 95  

Resnet 

50 

76 81 84  

VGG16 96 97 98  

     

Alexnet 81.3 85.4 87.1  

Google

net 

84.6 89.1 91.4 Imag

e 2 

Inceptio

n v3 

88.2 91.4 93.3  

VGG19 87.4 92.5 95.2  

Resnet5

0 

76.2 81.4 84.4  

VGG16 96.3 97.2 98.2  

     

Alexnet 81.5 85.7 87.3  

Google

net 

84.7 89.4 91.5  

Inceptio
n v3 

88.4 91.7 93.6 Imag
e 3 

VGG19 87.6 92.7 95.4  

Resnet5

0 

76.4 81.8 84.7  

VGG16 96.5 97.5 98.5  

     

Alexnet 81.8 85.8 87.6  

Google

net 

84.8 89.6 91.7  

Inceptio

n v3 

88.6 91.8 93.8 Imag

e 4 

VGG19 87.7 92.9 95.6  

Resnet5
0 

76.7 81.9 84.8  

VGG16 96.7 97.7 98.7  

     

Alexnet 82 86 87.8  

Google
net 

85 90 92  

Inceptio

n v3 

89 92 94 Imag

e 5 

VGG19 87.9 93 95.7  

Resnet5 76.8 82 84.9  
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0 

VGG16 96.9 97.8 98.8  

 

Figure 9: Models vs Measures overall analysis under 

accuracy, sensitivity and specificity 

 

 

Table 2 depicts the overall analysis of various models 

under precision, recall, and F1-score. Figure 10 illustrates 

a graphical representation of various models.  

 

Table 4: Overall analysis under precision, recall, F1-

score. 
Models  Precisio

n 

Recal

l 

F1-

score 

Images  

Alexnet 83 74 83  

Googlenet 82 78 86  

Inception 
v3 

87 82 81 Image 
1 

VGG19 85 84 87  

Resnet 50 79 68 71  

VGG16 93 86 89  

     

Alexnet 83.4 74.2 83.4  

Googlenet 82.5 78.5 86.1 Image 

2 

Inception 
v3 

87.2 82.1 81.4  

VGG19 85.3 84.3 87.5  

Resnet50 79.1 68.2 71.4  

VGG16 93.3 86.3 89.2  

     

Alexnet 83.6 74.4 83.6  

Googlenet 82.7 78.7 86.4  

Inception 

v3 

87.5 82.6 81.6 Image 

3 

VGG19 85.5 84.4 87.7  

Resnet50 79.3 68.5 71.5  

VGG16 93.6 86.7 89.5  

     

Alexnet 83.7 74.7 83.7  

Googlenet 82.8 78.8 86.6  

Inception 
v3 

87.8 82.8 81.7 Image 
4 

VGG19 85.7 84.7 87.8  

Resnet50 79.7 68.7 71.7  

VGG16 93.7 86.8 89.8  

Alexnet 84 75 84  

Googlenet 83 79 87  

Inception 

v3 

87.9 83 82 Image 

5 

VGG19 86 85 88  

Resnet50 80 69 72  

VGG16 94 87 90  

 

 
 

Figure 10: Models vs Measures. Overall analysis under 

precision, recall and F1-score. 

 

Table 3 depicts the overall analysis of various models 

under detection rate, TPR and FPR. Figure 11 depicts a 

graphical representation of various models in which 

the proposed model outperforms at a greater rate. 

Figure 12 depicts a graphical representation of various 

models over computation time which will be obtained 

during the training period. Figure 13 depicts the output 

instances of segmentation.  

 

Table 5: Overall analysis under detection rate, TPR, 

FPR. 

 

Models Detection 

rate 

TPR FPR 

Alexnet 85 82 18 

Googlenet 83 81 19 

Inception 

v3 

90 87 13 

VGG19 86 83 17 

Resnet50 78 73 27 

VGG16  95 92 8 

 

 

 
 

Figure 11: Models vs Measures. Overall analysis under 

detection rate, TPR and FPR 
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Figure 12: Models vs Computation time during the 

training period. 

 

                                 (a)

 
                                 (b)

 
                                 (c)

 
                                 (d)

 
                                 (e)

 
                                  (f)

 
 

Figure 13. Segmentation output where (a,b,c) depict 

unhealthy output and (d,e,f) depicts the healthy output 

using UNET++. 

 

5   Discussion 
 

The purpose of this study is to demonstrate the 

effectiveness of MRI image analysis using the VGG-

16 model with the Harris hawk’s optimization (HHO) 

algorithm in segmentation and feature selection for 

pancreatic cancer classification from MRIs. Because 

MRI provides better contrast between fat, water, 

muscle, and other soft tissues than CT, it generally has 

a good spatial resolution compared to other modalities. 

Conventional MRI has shown a high degree of 

sensitivity and specificity for the detection of 

pancreatic tumors based on reviews of previous studies 

[41] with awareness of the presence of the tumor. The 

sensitivity of our proposed framework for the detection 

of pancreatic cancer was 96.34 on the test data set, as 

well as precision, recall, and F1 score that were 

considered as high compared to other approaches in 

the literature discussed in table 2. As a result, our 
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framework is comparable to the ability of humans to 

recognize images. In an analysis of 225 asymptomatic 

patients with a high risk of pancreatic cancer, Canto et 

al. (2017) [42] found that EUS (Endoscopic 

Ultrasound Scan) had the highest rates of tumor 

detection (42%) as compared to CT (11%), and MRI 

(33%). For tumor detection, Tonozoko et al. (2021) 

[17] used EUC imaging, which yields a higher 

sensitivity and can detect smaller tumors (Grade I). 

However, due to the risks and convenience issues 

associated with EUS, the MRI appears to be a better 

method. Hence in our model, we use MRI images for 

the detection of pancreatic cancer. The classification 

accuracy of the proposed method is 93.52 as compared 

to the image classification model of VGG-19 [18] 

which shows an accuracy of 87.52. According to Fu et 

al. (2021) [19], the inception model uses nuclear 

features that lead to false positive results that can be 

avoided by optimizing the selection of features. In our 

proposed model we utilized a VGG-16 framework 

with HHO-based CNNs and HHO-based Bags of 

visual terms for feature extraction and selection to 

improve the accuracy even with a smaller number of 

convolutional layers as compared to the VGG-19 

model [18].  

In general, unlike computers, the human brain does not 

perform at its best when fatigued, stressed, or limited 

in experience, which results in misdiagnosis or 

overlooking a lesion during an MRI. Artificial 

intelligence, on the other hand, can consistently 

provide reliable performance within a very short 

period, thereby compensating for the limitations of 

human capability and preventing human errors in 

clinical practice. As a result, our framework can be 

useful for both beginners learning MRI, as well as 

fatigued experts or carelessness caused by individuals 

who have accumulated a large number of screenings. 

Additionally, the data set for this study included a 

variety of images, including those with hazy borders 

and unclear images, which are frequently seen in 

clinical exams. These images were then enhanced 

using the Boosted Anisotropic Diffusion Filter 

(BADF) and Contrasted Limited Adaptive Histogram 

Equalization (CLAHE) algorithms to improve the 

image quality for better accuracy. Therefore, we 

believe that our system can detect diverse tumors by 

learning the images and through the utilization of 

better image-enhancing techniques and optimal feature 

selection strategies. 

 

6   Conclusion 
 

This paper brings an effective yet novel approach for 

pancreatic cancer detection at an earlier stage using 

deep learning. For this, initially, MRI data are 

collected from the popular repository CTAC-PDAC 

and with the help of CLAHE and BADF, 

preprocessing is done and then proceeded to segment 

cancer regions using UNet++. Further, for extracting 

quintessential features along with selection, the use of 

both HHO-based CNN and BOVW is done. Finally for 

effective use of transfer learning VGG16 is performed 

for detection. The proposed model outperforms better 

with 0.96% accuracy over state-of-the-art models 

under various measures. This paper will be helpful for 

another research specialist to dig deep and get to 

understand the stages and come up with better 

integrated and advanced models.  
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