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In a computer supported cooperative work (CSCW), data consistency between collaborating users is a 

crucial issue. Based on the type of the application, ensuring data consistency can be a lengthy process 

that takes time and affects the system’s performance. In most 3D application, terrain data are massive 

due to its size. Exchanging this data may be expensive and may cause significant delay. In a real-time 

collaborative terrain editor, this issue becomes more significant due to terrain data exchange is 

consistently occurred between collaborating users. We present a solution to perform a conflict-free 

dynamic terrain data exchange in a real-time collaborative terrain editor. Our objective is to develop a 

method that able to ensure data consistency amongst collaborating peers in real-time manner. The main 

idea of our method is to split the terrain into smaller patches and synchronize the changes efficiently by 

only exchanging the modified patches. We applied our solution to a collaborative terrain editor 

application to test its performance in a real-time collaborative editing session. The tests were done in 

multiple scenarios, using different patch model, brush size (in the terrain editor), and connection setup 

between server and collaborating clients. The result shows that our protocol is capable to maintain data 

consistency between collaborating clients in a real-time terrain edition session. The delay is varied and 

highly depends on the data size and client-server environment setup. The overall test shows that it is 

possible to perform a collaborative terrain editing with an acceptable response time delay. In this paper, 

we present our proposed method, the implementation, and the result data from the test.  

Povzetek: V prispevku je opisana metoda za sprotno izmenjavo podatkov pri opisu dinamičnega terena. 

 

1 Introduction 

In modern industry, the use of information technology to 

support collaborative works has become a vital component 

to increase productivity [1], [2]. The concept of 

Collaborative Virtual Environment as a computer-based 

system where users are allowed to collaborate within 

computer-based context has been used extensively since 

the early 90s with the introductory of internet to the public 

[3]. However, the use of Computer Supported 

Collaborative Work (CSCW) may face several issues such 

as data consistency amongst collaborators [4]. 
In a Cloud-Based Collaborative Design [5], [6] data 

exchange can be a significant issue due to complexity of 

the data. Based on the application, there are various 

aspects that needs to be considered when performing data 

exchange amongst collaborators. In real-time 

collaboration scenario, data exchange requires additional 

time and may significantly affect the interactivity of the  

 

system. In 3-dimension (3D) design application, 

interactivity is a major issue since it may affect user’s 

performance. Delay between user’s input and system’s 

response must be minimized to avoid noticeable delay.  

 

 

Hence, it is necessary to minimize this issue by using an 

optimal protocol optimally designed for this task.  

In our previous research, we developed an application 

that allows multiple users to perform 3D terrain editing in 

real-time called Collaborative Terrain Editor [7], [8]. The 

application architecture requires terrain data transfer 

amongst collaborating users. We noticed an issue during 

the development that performing massive data exchange 

cause delay in response time and might raise an 

interactivity issue. Moreover, ensuring data validity 

amongst clients might also raise additional issue. In this 

paper, we propose a model to this issue by developing a 

method to exchange terrain data in a collaborative terrain 

editing application. Our model is specifically designed for 

a real-time collaborative application and is optimized for 

a specific type of 3D content, dynamic terrain. We 

implemented our solution in CTE to test its validity and 

performance.  

We proposed a network protocol that can efficiently 

transfer dynamic terrain data while ensuring data 

synchronization amongst collaborating users. Our solution 

is implemented as a communication protocol. To test the 

performance of the proposed solution, we implemented 

our protocol in a collaborative 3D terrain editor. The paper 

is structured as follows: we first describe the outline of the 

Collaborative Terrain Editor, the data representation and 
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communication, and the synchronization mechanism 

between users. The second part of this paper will describe 

the problem that occur during the synchronization process 

and propose a solution to tackle the problem. Finally, we 

will describe the method proposed in this paper and show 

how our method can decrease the problem. 

2 Related works 

2.1 Collaborative 3D modeling 

There are numerous works that has been conducted to 

study the concept collaborative 3D modeling. Ha et al. 

introduced Lets3D, a 3D editing tool that allows multiple 

users to collaborate in real-time [9]. Imae and Hayashibara 

developed ChainVoxel, a collaborative editing of voxel-

based 3D models [10]. Other works also provides a 

solution to perform a collaborative 3D modeling in a 

specific case and/or environment such as interior design 

[11], avatar (gesture and emotion) [12], virtual 

reality/spaces [13, p.], [14], [15], co-located collaborators 

using a tabletop system [16], and to support 

multidisciplinary 3D product CAD modeling [17]. 

In manufacturing industry, Cloud-Based 

Collaborative Design has been explored and commonly 

implemented in modern industry. This paradigm allows 

users to collaborate on a cloud-based system. One of the 

most common media to exchange the design data is to use 

Feature-Based Data Exchange (FBDE). The idea of FBDE 

is to share information regarding the modeling procedure 

such as history, constraints, parameters, and features [18] 

instead of the model. In a Cloud-Based Design and 

Manufacturing (CBDM) environment, the use of FBDE is 

common to allow multiple peers sharing Computer Aided 

Design (CAD) data [19], [20]. There are also various 

researches focus on extending the capability of FBDE 

such as security [21], collaboration [22], undo mechanism 

[23]. AR/VR/MR [24], and common 3D-information such 

as Buidling Information Modeling (BIM) technology [25], 

[26]. 

2.2 Terrain representation and streaming 

Most 3D applications contain massive and detailed 3D 

terrain. Hence, storing terrain data as a common 3D object 

with vertices in 3-dimensional space could be expensive. 

There are numerous methods invented to store 3D terrain 

efficiently. One of the most common method to represent 

terrain is using uniform grid called heightfield or 

heightmap. This method assumes terrain as a 2-

dimensional image with the position of each pixel 

represents the location and its color represents its height.  

While heightfield is simple and robust, it can be 

extremely redundant in a flat area due to the data contains 

multiple repetitive value. There are several methods to 

solve this issue, either by simplification or compression. 

Simplification methods focus on reducing the terrain data 

while preserving it shapes. One most notable method is to 

manage the Triangulated Irregular Network (TINs). 

Unlike regular grid which contains points sampled at 

equal distance, TINs allow the amount of data sampled in 

an area to adapt based on the complexity of the terrain. 

One interesting feature to consider in developing a terrain 

representation model is to apply a deformable terrain. This 

feature introduces a new challenge since deforming a 

terrain requires data manipulation which may be 

expensive in a real time system. There are various works 

that proposed a solution for real-time terrain 

deformation/modification [27], [28]. Additionally, there 

are also various works on terrain representation that focus 

on decreasing terrain data size [29] and increasing data 

streaming performance [30]. 

A more related subject to our work is the concept of 

streaming a dynamic terrain. As opposed to static terrain, 

dynamic terrain allows its data to be modified based on a 

certain event. Streaming a dynamic terrain may introduce 

a new issue, data synchronization. When multiple users 

are capable to modify the terrain data, there should be a 

protocol to ensure that each user holds the same terrain 

data. Elis et al. developed a multi-user 3D battle 

simulation with a deformable terrain [31]. In the 

simulation, users are capable to deform the terrain by 

performing a certain action. In their architecture, multiple 

computers are acted as servers. Clients will then connect 

to a specific server based on the configuration. Each action 

made by the client will be processed by the corresponding 

server. The server will then collaborate with other servers 

to synchronize the data. Another similar work to our 

research is proposed by Mendoza et al. [32] which 

proposed an architecture for collaborative terrain 

sketching with mobile device. However, the solution 

proposed by their work for data sharing is similar to the 

one proposed by Ellis et al.; instead of distributing the 

modified mesh data, the system distribute the state change 

or editing operation messages. 

2.3 Collaborative terrain editor 

Our system is built based on Collaborative Terrain Editor 

(CTE) [7], [8], a 3D terrain editor application that allows 

multiple users to perform real-time collaboration. The 

application is intended to allow multiple users to 

collaborate a terrain in real-time manner. Fig. 1 shows the 

basic interface of CTE. 

The client side of the system is for the user/editor. It 

lets users to perform basic terrain editing using a brush-

like tool that changes the elevation of the map in a certain 

area based the size and shape of the brush. Additionally, 

user also able to add noise feature that will add random 

details on the terrain. The server side of the system is a 

console-based application. Its role is to accept users’ input 

from connected clients, perform the changes to the terrain, 

and send the modified terrain data back to the client. 

Collaborating users must be connected to the server. All 

terrain data is kept on the server.  
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Figure 1: The Interface of Collaborative Terrain Editor 

 

The system is built with thin-client-server 

architecture; the terrain deformation calculation is 

performed by the server. This design is intended so the 

computational cost of modifying the terrain can be done 

by the server. However, this design requires server to 

distribute dynamic terrain data. We have compared similar 

research that propose the same idea. Ellis et al. [31] shares 

a similar solution for multi-user dynamic terrain 

distribution system. While the requirement is similar, the 

network architecture design is different. The system by 

Ellis et al. relies on clients to compute the terrain data 

changes. Thus, the server only requires to distribute user’s 

action instead of terrain data. Mendoza et al. [32] also 

develop a multi-user terrain editing system that relies on 

AR. Multiple users can interact by using mobile phones 

and tablet to edit and observe the same 3D terrain. Their 

protocol, however, is similar to Ellis et al. and relies on 

broadcasting user’s action to collaborating users. There is 

not terrain data transfer during the editing process. Several 

previous works on 3D terrain streaming are also not 

compatible with our system as they are dealing with static 

terrain data [30], [33], [34].  

3 Proposed method 
We develop our solution based on the architecture of CTE 

described in the previous section. The problem that we try 

to solve can be summarized in this description: how to 

perform data exchange that ensure the synchronization of 

terrain data while maintaining the interactivity of the 

system in a client-server based collaborative terrain 

editing session. Our proposed solution consists of two 

main parts: the representation of the terrain data that 

consist of terrain segmentation and compression, and the 

communication protocol.  

3.1 Terrain data representation 

Our terrain representation is using tiling system that is 

commonly used in large terrain representation to either 

optimize data in memory/storage or increase data transfer 

performance in a networked system. In our case, the latter 

is an important factor since data communication is crucial 

in collaborative system [35]. 

The tiling system divides the terrain into smaller 

uniform tiles (we will be using the term patch(es) instead). 

Each of these patches contains an identification value that 

defines the position of the patch. Additionally, we also 

perform data compression to decrease the terrain data in 

order to minimize the transfer delay. While we use 16-bit 

heightfield to render the terrain, we truncate the data into 

8-bit value during the transfer process. To minimize the 

error caused by the compression, the 8-bit data is 

quantized relative to the minimum and maximum value of 

each patch. We argue that values in each patch tends to 

have a similar or slightly varied, thus reducing it to 8-bit 

will not cause a significant error.  

Another issue that needs to be addressed is the data 

consistency amongst clients and server. In a real-time 

collaborative system, each peer must be capable to 

validate data consistency and perform data 

synchronization if required. These actions must be 

performed with minimum time frame to maintain user 

interactivity. To do this, we developed a method using a 

sequence number (seqNumber) which will be discussed 

in the next section.  

Based on the previous description, a patch in our 

model contains patchId (4 bytes integer), (4 bytes 

integer), minValue and maxValue (2 bytes 

integer/short each), followed by the compressed terrain 

data (16 bytes, 64 bytes, and 256 bytes char for 4×4, 8×8, 

and 16×16 respectively). Therefore, the total size of each 

patch, including the header and terrain data, in model 4×4, 

8×8, and 16×16 are 28 bytes, 76 bytes, and 268 bytes 

respectively. 

3.2 Protocol overview 

When multiple collaborating clients involved in a session, 

unsynchronized data can be an issue. Changes from one 

client may overlap with changes from others. Hence, we 

developed Patch Sequence Number Method to tackle this 

issue. Each patch in the terrain is embedded with a single 

unique integer value called sequence number 

(seqNumber). When a patch is modified by the server, it 

gets the maximum sequence number of the terrain 

increased by one. Hence, every patch has a unique value, 

and the last updated patch has the highest value. Server 

keeps the highest value to track with the latest update. 

Simultaneously, the client also keeps the highest value it 

has received during the data transfer. Therefore, it is 

guaranteed that if the values owned by client and server is 

different, data synchronization is required.  

Additionally, the client could use this sequence 

number to detect missing data/patches. When the client 

received the data from the server, it sorts the sequence 

number of the incoming patches. If the data is complete, 
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there should be no missing values between the smallest 

and the highest value. However, if there is a missing data, 

the client can simply find these missing values and request 

the corresponding patches from the server. 

The communication protocol is intended to distribute 

the terrain changes between server and multiple clients. It 

is built specifically for our terrain representation, relying 

on the sequence number on each patch to distribute the 

terrain data and, if necessary, perform data 

synchronization. The collaboration session started 

initialized the session. Clients then send a request to join 

the session. Upon entering the session, server send the 

current terrain data to the client in patches (including the 

terrain metadata). If the terrain data is valid (with no 

missing or invalid patches detected), the client will 

generate the terrain and render it on the screen for the user 

to interact. If otherwise, the client sends a resend request 

to the server. When the user performs an input to alter the 

terrain, the client sends the input data to the server. The 

server validates the input data (by making sure that the 

content received by the client is up to date), and if it is 

valid, the server will perform the changes according to the 

user’s input. These changes are then distributed to 

connected clients. The overview of CTE communication 

protocol is shown in Figure 2. 

 
Figure 2: The flowchart of the proposed method 

 

Based on the protocol overview and the sequence 

number described earlier, we developed a communication 

protocol sequences diagram as shown in Figure 3 for 

unsynchronized (left) and synchronized client (right). In 

this protocol, each request and response are started by a 

two-digit character as keyword that defines the type of the 

data received. Both sequences started with a collaborating 

client sent editing data to the server. The client wraps the 

editing data and add the sequence number it currently 

holds. This value is the highest sequence number it holds 

and defines the last update that the client has received from 

the server. This data will then be transmitted with a 

keyword UE (User Edit). When the server received the 

packet, it will evaluate the validity of the request by 

examining the sequence number it received from the 

client. If the sequence sent by the client is different 

(smaller) than the value owned by the server, then the 

client is not synchronized. The server will then send a 

message EI (Edit Invalid) followed by the correct 

sequence number. Upon receiving this message, the client 

waits for the synchronization process. The server will then 

find all the patches with sequence number larger than the 

client’s number and initiate a synchronization process by 

sending a TS (Terrain Synchronization) message followed 

by the list of numbers in the patches that are going to be 

sent during this process. These patches are then sent to the 

client by using the keyword SD (Synchronizing Data). The 

last patch is sent using the keyword SF (Synchronization 

Finished). During this process, the client updates the 

sequence number using the highest value from the 

received patch. When this synchronization process is 

performed, the server applies the editing data received 

earlier and modify the terrain data accordingly. 

 

 
Figure 3: Network protocol diagram of the proposed 

method 

 

When both client and server are synchronized, the 

server will proceed to process the update sent earlier by 

the client. When the update has been implemented, the 

server will send the updated patches (with the updated 

sequence numbers) to the client. Prior to sending the 

update data, the server will send a notification to the client 

with a keyword TU (terrain update) followed by update 

metadata (total patches, author’s client ID, and update 

time). The client will then response with an OK 

notification and the server may proceed to send the 

updated patches with the keyword TD. 

During transmission, there is a possibility that the 

update data was not delivered successfully during the 

transmission (as shown as the red line in the sequence 

diagram). The client acknowledges this issue when there  
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are missing patches sequence number. Updated patches 

contain new sequence numbers, and these values are 

sequential. Hence, when the client receives the update, it 

can detect the missing patches by sorting them based on 

their sequence number. If the client detects a missing 

value, it can request a resend (with the keyword RR) 

followed by the missing number. The server will respond 

by sending the patch based on the request using the 

keyword RD (Resend Data). When all the updated data is  

delivered, sorted, and successfully implemented on the 

client side, the client will send a keyword TV (terrain 

valid) notifying the server that the data transmission has 

been successfully delivered. 

4 Result and discussion 
To test our proposed method, we attached it as part of the 

protocol in Collaborative Terrain Editor (CTE). We have 

successfully implemented our method in the application 

and ensure that the protocol able to support real-time 

collaborative terrain editing from multiple devices (in our 

tests, we use 3 clients connected to 1 server). Based on the 

test result, we noticed that our method is capable to ensure 

synchronized data amongst user. However, our objective 

is to measure the performance of the method. Hence, we 

performed various tests using our protocol. We also use a 

few different settings combinations to find the optimal 

settings. The first setting is the size of the terrain that 

needed to be transmitted. We simulate this by assigning 

inputs with various sizes, assuming that the server will 

responds by sending terrain update with the same size. The 

second setting is the size of each patch. In the test, we use 

three different sizes of patch: 4×4, 8×8, and 16×16. The 

third setting is the client-server environment. We use 

different server settings to measure how the system 

perform in various networking environment and how the 

server configuration may affect the system’s performance. 

To measure the performance of our proposed method, we 

use two parameters: the system’s response time (in 

milliseconds) and the size of transmitted data (in bytes). 

Additionally, since the size of patch may affect the error 

caused by the compression, we will also gather the error 

rate of each model. 

4.1 Data compression performance 

Figure 4: The heightfield images used in the Test 

 

The first test is to observe the error rate of our terrain 

representation caused by the compression. We perform the 

test by comparing the original 16-bit terrain (with value 

ranged from 0 to 65,536) with the compressed 8-bit terrain 

(with values ranged from 0 to 256). The comparison is 

performed on 6 different heightmap with different 

characteristics and features which can be seen in Figure 4 

(top: 1. island, 2. mountain range, 3. Hill; bottom: 4. Urban 

area, 5. riverbank, and 6. noise-generated terrain).  

We collected 3 variables to measure the error rate of 

each heightmap. We assume a heightmap with 𝑛 points 

where 𝑝𝑖  is the value of point with index 𝑖 in the original 

16-bit heightmap and 𝑝𝑖
′ is the value of the same point in 

the compressed 8-bit patch. The first variable is the 

average difference (AVGDIF). This variable represents 

the average difference of all the points in the map which 

can give us a thorough view on the overall error. The 

average difference can be calculated as follows. 

𝐴𝑉𝐺𝐷𝐼𝐹 =
∑ |𝑝𝑖

′ − 𝑝𝑖|
𝑛
𝑖=0

𝑛
 

The second variable is the average maximum 

(AVGMAX) which represents the average maximum 

difference of all patches. This variable gives a thorough 

observation regarding the maximum error among all 

patches caused by the compression. Given the maximum 

difference between original and compressed value in patch 

𝑗 is 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑗, hence, the average maximum of an 

heightfield that contains 𝑚 patches can be calculated as 

follows. 

𝐴𝑉𝐺𝑀𝐴𝑋 =
∑ 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑗
𝑚
𝑗=0

𝑚
 

The third variable is the maximum difference 

(MAXDIF) which represents the maximum difference 

between the original and the compressed point in the 

heightfield. The maximum difference can be calculated 

using this formula. 

𝑀𝐴𝑋𝐷𝐼𝐹 = 𝑚𝑎𝑥(|𝑝′ − 𝑝|)𝑖  
Table 1 shows the error rate collected during the 

compression test. The error-rate test result shows that error 

caused by the compression is minimum. In the first 4 

heightmaps, average difference is 1 to 2 units (from a 

range of 0 to 65.535) when using 4×4 and 8×8 model. The 

average maximum values are also relatively small 

compared to the value range. In terrain 5 and 6, however, 

the difference increased significantly due to the high 

frequency of the map. This pattern occurred throughout 

the test where the 4×4 model gives the least error values, 

followed by 8×8 and 16×16, and terrain with high 

frequency gives a worse result. While the value difference 

is minimal, it is important to notice that in most of the test, 

most of the points were changed (shown by a high 

percentage difference). Nevertheless, based on direct 

observation on the terrain, the pattern of the terrain persists 

after the compression. 

 

Table 1: Data compression performance result 
HF Model AVGDIFF AVGMAX MAXDIF 

1 
4×4 1.69 1,362 16 
8×8 1.93 3,857 31 

16×16 4.19 7,916 45 

2 
4×4 1.06 2,417 14 
8×8 2.53 5,234 21 

16×16 4.77 9,605 30 
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3 
4×4 1.02 1,084 11 
8×8 1.18 2,476 25 

16×16 2.47 5,007 42 

4 

4×4 1.13 1,717 21 

8×8 1.46 3,062 23 
16×16 2.22 4,504 24 

5 

4×4 4.02 8,974 66 

8×8 9.38 19,354 96 
16×16 16.54 33,509 107 

6 

4×4 4.09 9,191 29 

8×8 9.04 18,655 44 

16×16 16.11 32,505 66 

 

4.2 Response time 

In the second test, we collected the response time data of 

the system after applying our protocol. The response time 

is measured from the time the first data is sent from the 

client to the server until the last data is received and 

validated by the client. Since the data must be valid, the 

response time also includes the synchronization process 

during the transmission. 

The test was performed in 3 different cases based on 

the connection and distance between the client and server: 

local area network-based environment (LAN) and two 

internet-based networks with different server location, 

Singapore (SG) and United States (US). We also use a 

different server specification to observe whether the 

hardware affect the overall response time. Both SG2 and 

US2 has twice the CPU and memory specification 

compared to SG1 and US1. We also perform by using 

three kind of different brush sizes: small, medium, and 

large for brush with diameter of 5, 10, and 15 respectively. 

Additionally, we also test 3 different patch models to find 

the patch size with the best performance. We perform the 

test 10 times for each scenario and collected 2 response 

time data: average and maximum. 

In the first test, we connect 3 collaborating users to 

the server and one of the users performing terrain editing 

while the other two simply receiving the data. Table 2 

shows the result of our response time test of the first test. 

All data is presented in millisecond.   

 

Table 2: Response time from the first test result 

 Small Medium Large 

 Avg. Max Avg. Max Avg. Max 

LAN 
4×4 6 8 6 9 10 12 

8×8 4 8 5 10 8 15 
16×16 5 8 5 9 8 14 

SG1 
4×4 94 167 108 152 139 140 

8×8 73 177 103 144 102 142 
16×16 71 125 95 154 90 108 

SG2 
4×4 65 78 70 83 99 129 

8×8 51 79 53 82 67 104 
16×16 50 80 58 98 65 111 

US1 

4×4 362 391 372 501 426 372 

8×8 320 380 334 622 380 426 
16×16 293 319 356 541 382 495 

US2 

4×4 322 385 314 336 401 311 

8×8 289 345 288 362 363 532 
16×16 255 319 267 284 326 505 

The result shows that server’s round-trip time is the main 

contribution to the delay. Internet-based test significantly 

higher than LAN-based test and the US-based server gave 

the highest response time compared to the other test. The 

overall result from LAN-based test produced less than 10 

milliseconds response time. In result, the users did not 

notice any delay during the editing and responded 

positively. The first internet-based test using server 

located in Singapore gave a significant delay increase up 

to 130 milliseconds. While the delay is increased 

significantly, the application itself is still usable and the 

user were able to perform editing normally. The US-based 

test however, affected the user’s capability due to the high 

response time. Most of the users argue that this delay 

makes the editor feels unresponsive.  

In the second test, we asked 2 connected users to perform 

terrain editing concurrently and continuously. This test is 

aimed to observe how concurrent data input might affect 

the performance. Table 3 shows the results of the second 

test.  

 

Table 3: Response time from the second test result 

 Small Medium Large 

 Avg. Max Avg. Max Avg. Max 

LAN 
4×4 8 11 8 11 11 13 
8×8 8 10 9 11 10 15 

16×16 9 11 9 11 10 15 

SG1 
4×4 102 191 120 167 164 201 
8×8 89 190 142 171 175 193 

16×16 100 195 123 177 145 190 

SG2 
4×4 85 102 82 112 132 153 
8×8 78 101 79 128 126 147 

16×16 91 112 81 125 132 149 

US1 

4×4 521 555 601 821 701 951 
8×8 495 581 590 794 658 857 

16×16 455 572 611 801 700 1016 

US2 

4×4 501 591 511 599 561 912 
8×8 477 568 498 581 551 786 

16×16 481 601 407 600 583 1112 

 

As expected, there was a significant increase in 

response time especially on the internet-based test when 

multiple users concurrently perform terrain editing. The 

increase is varied based on the behaviour of the editing 

process. While the LAN-based setup still has a relatively 

low delay time, the internet-based setup becomes 

significantly noticeable and affected the application 

interactivity.  We also noticed that in some cases when the 

users editing the same area continuously, the delay 

reached 1 seconds and the users responds negatively to 

this delay. However, the data also shows that hardware 

boost were able to reduce the response time better than the 

previous test. The SG2 and US2 on the second test able to 

reduce the delay time up to 50% compared to SG1 and 

US1.  
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5 Conclusion and future works 
In this paper, we proposed a solution to perform dynamic 

data exchange in a client-server environment. The 

protocol guarantees that the data is synchronized amongst 

peers. Moreover, the protocol is optimized so the data 

transfer and synchronization process can be performed 

efficiently to reduce the data and time required to transfer 

the terrain data.  

We tested the validity and performance of our 

protocol by attaching it to a real-time collaborative terrain 

editing system, CTE. Based on our test, the protocol is 

capable in maintaining data synchronization between 

connected peers. The performance test also shows that the 

proposed method able to perform terrain data distribution 

efficiently based on the response time tests in multiple 

scenarios depending on the amount of data and the 

connection between client and server.  

While our current solution works as expected, it still 

opens for further optimization and expansion. Our current 

focus is to increase the compression performance 

considering there are numerous previous research focused 

on heightfield compression. Our main issues to implement 

a better compression are the complexity of dynamic 

terrain data and the real time requirement of the system. 

Additionally, we would also like to expand the possibility 

in using the proposed method in other application that 

require dynamic terrain data synchronization. We are 

confident that our method, with slight modification, is 

applicable to different cases that face similar issues. We 

are interested in testing our protocol in other application 

such as game engine, battle simulation, or GIS. 
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