
Informatica 37 (2013) 123–130 123

An Evaluation Engine for Dynamic Ranking of Cloud Providers

Pawel Czarnul
Narutowicza 11/12, 80-233 Gdansk, Poland
E-mail: pczarnul@eti.pg.gda.pl and http://pczarnul.eti.pg.gda.pl

Keywords: cloud computing, ranking cloud providers

Received: December 13, 2012

The paper focuses on creation of an effective dynamic ranking service for IaaS, PaaS and SaaS cloud
providers. It considers building a quality model for this purpose along with definition of quality measure-
ment procedures. The paper discusses several techniques known from already existing price comparison
engines that could be modified and adopted for comparison of cloud providers. A technique for filtering
measured data is proposed, in particular to avoid vendor lock-in issues. The paper presents a design and
results from an engine for simulation of various ranking algorithms in response to streams of prices from
various providers. Examples with various streams of provider prices and resulting rankings are presented
that cope with the vendor lock-in issue as well as consider the impact of long or short-term price changes
on the ranking.

Povzetek: Članek se osredotoča na izdelavo učinkovite storitve za dinamično rangiranje ponudnikov
storitev tipa IaaS, PaaS in SaaS v oblaku.

1 Introduction

Cloud computing has become more and more widespread
and popular in today’s world with many offerings regard-
ing infrastructure, ready-to-use platforms and services [1].
These can be categorized as follows:

– IaaS – Infrastructure as a Service - making an in-
frastructure (computing, storage, operating system)
with a given configuration available to a client, ex-
amples: Google Compute Engine1, Amazon Elastic
Compute Cloud (EC22)2, RackSpace Cloud Servers3,
Rack Space Cloud Files4,

– PaaS – Platform as a Service - offering a complete
platform with particular software required by users;
examples include: Aneka [10], Google AppEngine5,
Windows Azure6, RedHat Openshift7, RackSpace
Cloud Sites8,

– SaaS – Software as a Service - particular software that
is managed by its provider and accessed by users from
any location. Examples include Google Apps9 and
Salesforce10.

1http://cloud.google.com/products/compute-engine.html
2http://aws.amazon.com/ec2/
3http://www.rackspace.com/cloud/cloud_hosting_products/servers/
4http://www.rackspace.com/cloud/cloud_hosting_products/files/
5https://developers.google.com/appengine/
6http://www.windowsazure.com
7https://openshift.redhat.com/app/
8http://www.rackspace.com/cloud/cloud_hosting_products/sites/
9http://www.google.com/Apps

10http://www.salesforce.com/eu/

Following search engines and price comparison tools
and engines for the traditional marketplaces, there have
emerged tools for comparison of cloud offers as well. For
instance, as of this writing a web search on “IaaS ranking”
returns several surveys on IaaS: either static analyses 11 12

13 or rankings that depend on actual parameters of the of-
fers (such as prices) that can change in time 14 15. Platforms
such as Cloudorado16 allow to preselect user requirements
such as required processor computing capabilities or stor-
age and return a ranking based on that. FindTheBest allows
to select a cloud provider based on its type (IaaS, PaaS) but
also the control interface, software license or subscription
type.

It seems, however, that many of these rankings use un-
structured quality comparison models, do not consider how
qualities have been changing over time for providers and
do not address issues such as vendor lock-in. It is a known
fact that some Internet providers or shops used to offer very
cheap prices to gain a market share (by being on top places
in comparison rankings) only to deceive some customers
later. The paper discusses a quality model for a dynamic
ranking of cloud providers that addresses these issues. This
work extends the concepts presented in [5] by proposing a
design and implementation of a simulation engine for run-
ning various provider ranking algorithms and presentation
of its results for various streams of input price offers from

11http://my-inner-voice.blogspot.com/2011/02/here-are-results.html
12http://insidehpc.com/2011/02/10/survey-results-on-cloud-iaas-

providers/
13http://www.opsource.net/Info-Tech-Cloud-IaaS-Vendor-Landscape
14http://www.cloudreviews.com/top-ten/cloud-hosting-services.html
15http://cloud-computing.findthebest.com/
16http://www.cloudorado.com/

124 Informatica 37 (2013) 123–130 P. Czarnul

various providers.
The structure of the paper is as follows. Section 2 dis-

cusses the problem of quality assessment of services of-
fered on the cloud. Next, Section 3 details the design and
implementation of a simulator for ranking input streams of
price offers from various providers. Experiments for vari-
ous input streams are presented in Section 4 which is fol-
lowed by a summary in Section 5.

2 Quality evaluation of cloud offers
Before educated selection of services can be performed, it
is necessary to incorporate measurable quality assessment
of the given service. This comprises several aspects that
need to be addressed:

1. a quality model/ontology that defines metrics to be
measured,

2. quality measurement procedures – e.g. how fre-
quently the metrics should be measured – this may be
different for various metrics; for instance availability
may require more frequent monitoring than the price,

3. filters applied on top of the measured values – such
may be used to address several issues such as:

– preventing from short-term peaks in measured
values to affect output; possibly only longer last-
ing changes should do that,

– preventing from one or few providers to occupy
top places all the time by offering too good to be
true conditions,

– considering or not sudden changes in the history
of the provider which may affect user decisions
who might be afraid of similar changes in the
future – it may depend on the user whether he or
she wants to consider this aspect.

For metrics, it is recommended to adopt and extend the
already used techniques for marketplaces in the Internet.
Namely, evaluation of the providers using a numerical scale
such as [0,10] which is offered for almost any price com-
parison engine today along with physical location of a par-
ticular provider. In this case, a quality ontology is proposed
for quality service evaluation of particular IaaS, PaaS, SaaS
that will incorporate the following:

accessibility [11] – characterizes the network be-
tween the client in location and the service, several
entries of this type could be inserted,

availability [12, 13, 11, 2] – characterizes the avail-
ability of the service itself. It can be measured by e.g.
checking its availability vs availability of other ser-
vices/servers in a similar geographical/provider loca-
tion,

reputation [12] – reputation of the provider,

security [11] – offered by the provider,

fidelity [3] or conformance [11] – with standards,

cost-effectiveness – evaluated by clients,

reconfiguration ability – applicable to IaaS
and PaaS,

interface – how easy it is to access the infrastructure
and upload/download/execute applications.

As suggested in Section 3, various filters can be applied
on top of measured values. For instance, a one time peak in
measurements of a certain value might not change the over-
all score of the given metric. Only a longer lasting change
would initiate this. A simple average would work as a low-
pass filter. The regular average suffers from the historical
effect i.e. results from the past affect the final average in
the same way as the last input. It may depend on the client
whether to rely more just on recent measurements. This
could be further extended to a running score e.g. a running
average of 10 or 100 values. Alternatively, the history of
the provider might be important for the given client.

In order to avoid a situation when one provider wants to
dominate the given segment of the market by e.g. using
too good to be true prices it is possible to consider a cer-
tain number of best offers and rotation on the first ranking
places, provided that results returned for the services are
closer to each other than a predefined threshold. Even one
company could then try to use different providers for parts
of their businesses to avoid the lock-in problem.

3 Proposal of an evaluation engine
and visualization for ranking
algorithms

In a way, the proposed approach can be seen as a solution
aiding sky computing [8] as the proposed engine tries to
sort out available cloud options and offer best options at a
higher level of cloud integration.

As mentioned above, the goal of the engine is to be able
to:

1. monitor Quality of Service (QoS) dynamically which
refers to periodic measurements of quality metrics ap-
plicable to cloud services,

2. avoid potential vendor lock-in problem.

3.1 Proposed simulation engine
Within this paper, the author has developed a simulator im-
plemented in C along with visualization assisted by GNU
Plot. The goal of the simulator is to model cloud provider

An Evaluation Engine for Dynamic Ranking of. . . Informatica 37 (2013) 123–130 125

offers over time and simulate execution of a ranking algo-
rithm that would output certain scores for particular offers
at particular moments in time. From the cloud client’s point
of view that gives the preference in choosing “the best”
offer by selecting the top offer. If some particular needs
of the client are not considered in the ranking scheme, the
next best offer can be selected as well. However, from the
global point of view i.e. the population of clients, the rank-
ing algorithm is supposed to provide a solution that copes
well with the vendor lock-in issue. Namely, it does not to
allow selection of just one best provider at all times even
if its offer seems to be the best from the QoS perspective.
This is to prevent from dumping practices or similar over a
certain period of time just to gain market share.

Let us focus first on one quality metric such as price. The
following notation will be used:

– pi(t) – the price offered by provider i at time t,

– dpi(t) = |pi(t) − pi(t − 1)| – the price difference
between successive discrete points in time,

– dapai (t) =
∑t
x=a dpi(x) – the accumulated sum of

price differences offered by the particular provider;
the goal of this metric is to assess an accumulated rate
of price changes over period from a until t. The larger
t− a is the larger history has an impact on the current
value of dapai (t).

The flow of the data through the simulation engine is
shown in Figure 1. Several steps are performed includ-
ing: computing the above values, then computing values
vali(t) = f(pi(t), dpi(t), dap

a
i (t)) against which sorting

will be performed such that the lower the value of vali(t)
the better place in the ranking provider i will be assigned.

Furthermore, this scheme is extensible i.e. it allows
modeling of several behaviors of cloud providers as well
as easily extend the ranking algorithm with:

new metrics. This can be done by extending the struc-
ture that currently contains pi(t), dpi(t), dapi(t). For
instance, the metrics can include: reputation of the
provider ri(t), availability ai(t) etc. This leads to
consideration of dri(r), dari(t), dai(t), daai(t). The
final value of vali(t) would be a function of all these
metrics.

application of other digital filters in addition to dp and dap
to process the data of a particular cloud provider over
successive time steps and works for particular metrics.
For instance, depending on the needs and particular
metrics, either high or low pass filters can be used.

The whole system consists of the following programs
that pass data using standard inputs and outputs as well as
additional files:

1. datagenerator – generates input streams of data e.g.
price offers,

2. simulator – implementing the aforementioned evalua-
tion algorithm,

3. visualization tool – implemented using custom input
scripts and the GNU Plot tool.

3.2 A wider perspective on QoS evaluation

From the client point of view, it would be desirable to have
access to a comparison engine like Cloudorado with the
aforementioned features. First of all, the engine can con-
sider three categories of: IaaS, PaaS and SaaS. It can first
match available offers in terms of functions and then evalu-
ate based on the ranking discussed earlier. In order to make
search better, two solutions are feasible:

1. categorization of features such as hardware and soft-
ware parameters desired by the client:

– memory size,

– processor/core/GPU capabilities,

– storage,

– operating system,

– particular software,

– access interface.

This is especially suitable for IaaS and PaaS offerings.

2. full text search as in [6]. This allows formulation of
desired functions in the form of human readable text.
Useful mainly for SaaS as it would allow searching
and presentation of SaaS offers for a particular appli-
cation.

The full text search mechanism could also be applied to
any type of service when looking for comments of already
existing clients.

This would also naturally lead to creation of runtime reg-
istries of particular IaaS, PaaS and SaaS offers [9]. SaaS
options could then be categorized into various categories.
One possibility is to adopt the well know technique from
photo sharing sites i.e. augmenting descriptions with tags.
Then selection of particular tags would narrow search re-
sults.

4 Experiments
In this section a series of experiments is provided along
with graphs presenting:

1. input data from cloud providers i.e. prices offered
over time,

2. output ranking from the simulation algorithm using
various ranking algorithms.

126 Informatica 37 (2013) 123–130 P. Czarnul

read streams of price offers
from providers from standard input

for each stream from each provider
update: val_i(t)=f(p_i(*),dap_i^a(*))

for each time step t
sort the offers from providers by val_i(t)

for each t return ranking(t)

for each stream from each provider
update: dp_i

for each time step i
perform additional filters

(e.g. rotation of best offers)

[YES] [NO]

if (consider derivatives)

for each stream from each provider
update: dap_i

for each stream from each provider
update: val_i(t)=g(p_i(*))

Figure 1: Steps for filtering input providers’ offers

The basic assumptions for the following tests are as fol-
lows. There are 10 cloud providers that offer a service of a
particular type (PaaS, IaaS or SaaS) and adjust their prices
in successive time steps by introducing small variations to
their base prices as shown in the following figures. For
each of the input data streams outputs that denote ranking
of particular providers are shown. For the end client, the
provider that occupies the top spot at the particular moment
should be selected. For each test case, several figures are
shown: input streams of unmodified cloud offers, ranking
by values that result from functions of the observed orig-
inal prices and the latter modified by rotation of the best
offers in the ranking.

4.1 Stable prices with reasonably small
variations over time and elimination of
vendor lock-in

For the input shown in Figure 2, the prices from various
providers are close to each other which results in slight
changes of the ranking by sorting just by vali(t) = pi(t).
The ranking that resulted from sorting by the current price
only is shown in Figure 3. It can be seen that although
there are changes in the ranking as the price ranges of some
providers overlap, some offers result in the provider occu-
pying one spot at all times. This may result in vendor lock-
in if clients would choose the best offer at all times. Figure
4, on the other hand, shows ranking after additional mixing
of the three best offers to get rid of this potential problem,
as the prices of these providers do not differ by a large mar-
gin in absolute terms.

An Evaluation Engine for Dynamic Ranking of. . . Informatica 37 (2013) 123–130 127

Figure 2: Offers from cloud providers in successive time steps

Figure 3: Ranking of cloud providers by vali(t) = pi(t)

Figure 4: Ranking of cloud providers by vali(t) = pi(t) and rotation of the best offers

128 Informatica 37 (2013) 123–130 P. Czarnul

Figure 5: Offers from cloud providers in successive time steps

Figure 6: Ranking of cloud providers by vali(t) = pi(t) + dap0i (t)

Figure 7: Ranking of cloud providers by vali(t) = pi(t) + dap0i (t) and rotation of the best offers

An Evaluation Engine for Dynamic Ranking of. . . Informatica 37 (2013) 123–130 129

Figure 8: Offers from cloud providers in successive time steps

Figure 9: Ranking of cloud providers by vali(t) = pi(t) + dapt−4i (t)

Figure 10: Ranking of cloud providers by vali(t) = pi(t) + dapt−4i (t) and rotation of the best offers

130 Informatica 37 (2013) 123–130 P. Czarnul

4.2 Considering derivatives in ranking

In the following tests, considerable changes of prices of
selected cloud providers were simulated in the first 10 time
steps of the simulation. This is shown in both considered
inputs in Figures 5 and 8.

Two different solutions were proposed here:

1. dpi(t)s are computed for each time step i.e. abso-
lute values of differences in prices between succes-
sive time steps. Then the accumulated sum of dap0i (t)
is computed. As shown in Figure 6, ranking by
vali(t) = pi(t) + dap0i (t) considers the whole past
history of price changes of a particular provider. The
larger the derivatives, the smaller chance the provider
will occupy top spots of the ranking. It can be clearly
seen that even though two providers offer the best cur-
rent prices in later time steps as shown in Figure 5, the
history of larger changes has put them back into fur-
ther places in the ranking. Figure 7 shows additional
mixing of the top three spots.

2. As shown in Figure 9, ranking by vali(t) = pi(t) +
dapt−4i (t) considers only the recent history of price
changes of a particular provider. It can be seen
very clearly that the provider offering the best current
prices in the initial time steps falls down in the rank-
ing but then recovers to the top spot. Figure 10 shows
additional mixing of the top three spots.

Obviously, additional filters and combination of various
QoS metrics can be obtained and programmed analogously
just by adding additional processing functions to the flow
proposed in Section 3. Depending on the client needs, a
ranking is then created that allows to select the best offer
at any time. For instance, it can also consider the providers
that the client has already been using.

5 Summary and future work
The paper presented an idea, design and implementation
of a simulator for ranking incoming streams of provider
offers that may be applicable for real world cloud offers.
The simulator allows to test various algorithms for ranking
providers with easy changing to other algorithms or even
filters within the algorithms. Practical applications include
incorporation of the idea into Internet price comparison en-
gines, cloud service search engines as well as integrated
systems for workflow management where services need to
be found for workflow subtasks.

Further work will focus on extension of the simulator
with new filters and development of an integrated evalua-
tion method for various QoS metrics. Additionally the en-
gine will be deployed in the BeesyCluster middleware for
assessment of its services and then used in discovering and
incorporation of such services into workflow applications
on grids [4]. Such workflows can also be run on clouds [7].

References
[1] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal,

James Broberg, and Ivona Brandic. Cloud computing and
emerging it platforms: Vision, hype, and reality for deliv-
ering computing as the 5th utility. Future Gener. Comput.
Syst., 25(6):599–616, June 2009.

[2] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani.
A Lightweight Approach for QoS-Aware Service Compo-
sition, 2004. ICSOC forum paper, IBM Technical Report
Draft.

[3] Jorge Cardoso, Amit Sheth, and John Miller. Workflow
quality of service. Technical report, LSDIS Lab, Depart-
ment of Computer Science, University of Georgia, Athens,
GA 30602, USA, March 2002.

[4] Pawel Czarnul. Modeling, run-time optimization and ex-
ecution of distributed workflow applications in the jee-
based beesycluster environment. The Journal of Super-
computing, pages 1–26, 2010. 10.1007/s11227-010-0499-7,
http://dx.doi.org/10.1007/s11227-010-0499-7.

[5] Pawel Czarnul. Dynamic ranking of cloud providers. In
Proceedings of the 4th International Workshop on Software
Services – WoSS 2012, pages 6–8. Univerza v Ljubljani,
2012. ISBN 978-961-6884-06-8, Eds.: Vlado Stankovski
and Dana Petcu.

[6] Pawel Czarnul and Jakub Kurylowicz. Automatic conver-
sion of legacy applications into services in beesycluster.
In Proceedings of 2nd International IEEE Conference on
Information Technology ICIT’2010, pages 21–24, Gdansk,
Poland.

[7] G. Juve and E. Deelman. Grids, Clouds and Virtualization,
chapter Scientific Workflows in the Cloud, pages 71–91.
Springer, 2010.

[8] Katarzyna Keahey, Mauricio Tsugawa, Andrea Matsunaga,
and Jose Fortes. Sky computing. IEEE Internet Computing,
13:43–51, 2009.

[9] S. Pandey, D. Karunamoorthy, and R. Buyya. Cloud Com-
puting: Principles and Paradigms, chapter Workflow En-
gine for Clouds. Wiley Press, New York, USA, 2011. ISBN-
13: 978-0470887998.

[10] Suraj Pandey, Dileban Karunamoorthy, and Rajkumar
Buyya. Cloud Computing: Principles and Paradigms, chap-
ter Workflow Engine for Clouds, pages 321–344. Wiley
Press, New York, USA, February 2011. ISBN-13: 978-
0470887998.

[11] Chintan Patel, Kaustubh Supekar, and Yugyung Lee. A QoS
Oriented Framework for Adaptive Management of Web Ser-
vice based Workflows. In Proceedings of the 14th Interna-
tional Database and Expert Systems Applications Confer-
ence (DEXA 2003), LNCS, pages 826–835, Prague, Czech
Republic, September 2003.

[12] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and
Q. Sheng. Quality driven web services composition. In Pro-
ceedings of WWW 2003, Budapest, Hungary, May 2003.

[13] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu,
Marlon Dumas, Jayant Kalagnanam, and Henry Chang.
Qos-aware middleware for web services composition. IEEE
Trans. Softw. Eng., 30(5):311–327, 2004.

