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Image de-speckling is one of the most challenging issues in multimedia imaging systems. All of the 

available speckle noise reduction filters are nearly noise reduction capable, but they fail to restore 

subtle features such as low grey level edges and fine details against a low contrast background. Non-

local mean filtering and anisotropic diffusion are two popular and effective methods for image de-

speckling while preserving detail. This paper presents a two-phase ultrasound image de-speckling 

framework by utilizing the capability of the non-local mean filtering method for de-speckling and edge 

preservation on anisotropic diffused images. The prior image smoothing along with edge preservation 

and contrast enhancement by anisotropic diffusion is carried out in the first phase, which is then 

followed by the non-local means method for de-speckling and edge sharpening in the next phase. The 

degree of speckle noise attenuation is measured on low-contrast standard and ultrasound images and 

compared to state-of-the-art and advanced anisotropic diffusion techniques and non-local means 

methods. The percentage improvement of PSNR over the existing methods is found to be in the range of 

2.06% to 46.68%. The experimental results show that the proposed method is capable of reducing noise 

and preserving edges better than existing speckle reduction filters.  

Povzetek: Predstavljen je dvofazni pristop za odstranjevanje šuma iz ultrazvočnih slik, ki se je v 

primerjavi z obstoječimi filtri za zmanjšanje šuma izkazal za boljšega v ohranjanju robov in 

zmanjševanju šuma. 

 

 

1 Introduction 
Today, in the world of computer vision and artificial 

intelligence, a massive number of images are now 

required to train a deep learning model. Database 

management in block-chain technologies is another 

emerging multimedia application that stores a large 

number of videos and images. However, the performance 

of all these technologies is mostly dependent on the 

quality and natural aspects of the images. These images 

are mainly degraded due to the defects that arise during 

the image sensing and acquisition processes. This ill-

posed problem affects ultrasound imaging and MRI in 

medical science, SAR images in remote sensing, and a 

variety of other scientific and industrial images [1] [40] 

[41]. Most of the methods available in the literature aim 

to remove these degradations from images, but doing so 

without disturbing the image's essential features has 

always been difficult. The effect of noise in ultrasound 

images with poor contrast is a serious issue that has been 

addressed in the proposed work. The most difficult type 

of noise in real world medical imaging is speckle noise 

[2][3] which is due to the multiplicative behaviour of 

unwanted pixels introduced into the images under poor 

illumination or environmental conditions. The 

multiplicative nature of the speckle tends to vary the  

 

 

mean value of pixels in a local area of the image, which 

degrades its visual information. 

A generalized model of speckle noise [2][3] is given as: 

 

𝑔𝑖,𝑗 = 𝐼𝑖,𝑗𝑛𝑖,𝑗                                                 (1) 

 

where 𝑔𝑖,𝑗 is the speckled noisy image, 𝐼𝑖,𝑗 is the original 

image at the pixel position (𝑖, 𝑗) that has been perturbed 

by speckle noise 𝑛𝑖,𝑗. This is mathematically represented 

as a white Gaussian noise of zero mean and variance at 

position (𝑖, 𝑗). Ultrasound imaging suffers from this 

multiplicative noise, which degrades its usefulness in 

medical diagnosis and modality. The major problem in 

such speckle reducing filters is inaccurate localization of 

edges under low contrast regions and thus the loss of 

image information during the filtering process, which is 

called "over-filtering" or "over-smoothing." Thus, it has 

always been observed that it is very difficult to de-

speckle such a low contrast image without disturbing the 

essential features like edges and boundaries. 

 Traditionally, the problem of image de-speckling had 

been tackled with the help of order statistic filtering like 

the mean, median, or Gaussian filter [4][5][6] for the 

reduction of Gaussian noise. Later on, some stochastic 

and wavelet-based methods are also developed for 
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effective Gaussian noise reduction [7][8][45][46][47]. 

However, the blurring of edges, lines, and boundaries 

degrades the image's perception quality. Classical de-

speckling filters [9][10][11][12] inhibit smoothing near 

edges by using adaptive filters that calculate coefficients 

of variation, but these filters do not possess directional 

properties, which creates the problem of poor 

reconstruction of edges and boundaries.  

  Recently, the use of partial differential equation 

based anisotropic diffusion has become a very 

convincing edge-preserving smoothing scheme since the 

earlier work of Perona and Malik [13][27][38]. The 

anisotropic diffusion is a non-linear and space-variant 

transformation of the original image that aims to smooth 

the noise adaptively. However, the performance of 

anisotropic diffusion in image de-noising is dependent on 

a more robust mathematical exploration of the diffusion 

equation, which deals with the image structures 

consisting of homogeneous as well as heterogeneous 

characteristics. 

  The Non-Local Means (NLM) method is another 

well-known and effective technique for de-speckling 

ultrasound images [28][36][37]. The NLM method 

reduces the impact of noise in an image by computing a 

weighted average of all the pixels in the non-local areas 

of the image. The mechanism of the NLM filter is to 

compute the weight based on the surrounding pixels of 

the test pixel in a local window along with the other 

windows of similar appearance in the same image. 

Consequently, the similar-looking patches or regions in 

an image would influence the weight assignment more 

for the test pixel as compared to the regions that are 

different from the test pixel. This filter, unlike local mean 

filtering, produces a better smoothed image and tends to 

recover the pixels representing edges. The major 

drawback of non-local mean filtering is the 

computational cost, which includes selecting the number 

and size of similar patches in the image. 

 The proposed work presented here is a hybrid 

framework for de-speckling ultrasound images along 

with sufficient recovery of edges and boundaries by 

utilizing the properties of anisotropic diffusion and non-

local mean filtering. As it has been observed, the two 

techniques have been independently applied for noise 

removal and edge preservation, but achieving both 

targets equally by either of the two methods is not 

satisfactory.  Therefore, the proposed method has been 

framed to adopt the properties of the two methods to 

achieve the goal of image enhancement along with 

sufficient speckle reduction. 

The contributions of the proposed method are as 

follows: 

• The proposed method is a two-phase process 

where anisotropic diffusion is used as a pre-

filtering step to enhance the contrast by 

reformulating the diffusion coefficient function, 

taking speckle noise characteristics into 

consideration. 

• The resulting diffused image is further passed 

through the NLM filter in the next phase in 

order to de-speckle the image with sufficient 

edge preservation. 

• The use of the anisotropic diffusion process 

prior to applying the NLM filtering has been 

shown to be quite effective in synthetic and 

ultrasound images. 

 

 This two-phase hybrid algorithm maintains an optimal 

balance between speckle removal, fine details, and edge 

preservation, along with contrast improvement and less 

computational complexity. 

      The organization of the paper is followed by 

Section 2 which describes a brief understanding of 

ultrasound de-speckling with related anisotropic 

diffusion and NLM filtering methods. The proposed two-

phase method has been presented in Section 3. The 

experimental analysis and discussion are made in Section 

4. Finally, the paper is concluded in Section 5. 

2 Related ultrasound de-speckling 

methods 
 

Many efficient methods have been developed so far 

for ultrasound de-speckling. The two very popular 

methods, anisotropic diffusion and non-local mean 

filters, have been briefly explained in this section. 

2.1 Anisotropic diffusion 

 

The anisotropic diffusion [13][27][38] introduced by 

Perona and Malik, due to its directional smoothing 

properties is quite effective in the images affected by 

Gaussian noise and now it has become quite popular in 

medical imaging especially in the enhancement and de-

speckling of ultrasound images. Anisotropic diffusion 

model as suggested by Perona and Malik [13] is given 

by: 

 

𝜕𝑡𝐼 = div (𝐶(∇𝐼). ∇𝐼)                            (2) 

 

𝐶(∇𝐼) =
1

1 + (
|∇𝐼|

𝑘
)

2                              (3) 

 

where𝑡 is iteration, 𝐼 is input image, ∇I is image gradient, 

𝐶(∇𝐼) is diffusion coefficient function and 𝑘 is edge 

threshold parameter. The two equations (Eq. (2) and (3)) 

show that the diffusion process is controlled by 𝐶(∇𝐼) 

which is varied with respect to the gradient magnitude at 

each pixel of the image. The gradient magnitude 

specifies the direction of smoothing as per the image 

structures. The edge threshold parameter 𝑘 and no. of 

iterations 𝑡 are two important parameters which affects 

the performance of anisotropic diffusion. The values of 𝑘 

and 𝑡 are chosen depending on the particular image 
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application. If ∇𝐼 > 𝑘 at a pixel, then the smoothing 

stops and the pixels at higher gradient are preserved 

otherwise, if ∇𝐼 < 𝑘, then anisotropic diffusion become 

isotropic and behave like Gaussian smoothing. This 

concept of smoothing was first used in ultrasound de-

speckling by Yu and Acton [14] where non-

homogeneous diffusive heat phenomenon was utilized. 

This method has been named as “speckle reducing 

anisotropic diffusion” (SRAD) where the diffusion 

coefficient function has been modified as follows: 

 

𝑐(q)

=
1

1 + [𝑞2(𝑥, 𝑦, 𝑡) − 𝑞0
2(𝑡)]/[𝑞0

2(𝑡)(1 + 𝑞0
2(𝑡))]

  (4) 

 

or 

 

𝑐(𝑞)

= exp {−
[𝑞2(𝑥, 𝑦, 𝑡) − 𝑞0

2(𝑡)]

[𝑞0
2(𝑡)(1 + 𝑞0

2(𝑡))]
}                              (5) 

 

where, 𝑞(𝑥, 𝑦, 𝑡) is named as instantaneous coefficient of 

variation which is dependent on ∇𝐼 and is determined as: 

 

𝑞(𝑥, 𝑦, 𝑡)

= √
(

1

2
) (∇𝐼/𝐼)2 − (

1

4
) (∇2𝐼/𝐼)2

1 + (
1

4
) (∇2𝐼/𝐼)2

                                   (6) 

 

and 𝑞0(𝑡) is speckle scale function. The edge 

preservation sensitivity of this method was further 

examined [15] and presented as detail preserving 

anisotropic diffusion where the orientation of edges was 

made to stabilize while removing speckle noise as 

indicated in Eq (7). 

 

𝑞(𝑥, 𝑡)

=
|𝛼‖∇𝐼‖2 − 𝛽(∇2𝐼)2|1/2

[𝐼 + 𝛾∇2𝐼]
                                               (7) 

 

The 𝑞(𝑥, 𝑡) in Eq (7) denotes the edge stabilizing 

function with 𝛼, 𝛽 and 𝛾 are the regularization 

parameters. However, the improper selection of these 

regularization parameters in the diffusion equation 

suffers from over-filtering and blurring of edges. 

Fernandez and Carlos [16] provide the estimation of 

these parameters using local statistics of the image 

features for better anisotropic diffusion de-speckling. A 

fuzzy optimization algorithm as suggested by 

Puvanathasan and Bizheva [17] has been used to 

properly select the parameters in order to compute the 

edginess of a pixel, which is effective for optical 

coherence tomography images specifically. Wu and Tang 

[18] suggested a new selective degenerate diffusion 

model using fidelity and speed functions based upon ENI 

(edge, noise, interior pixels) for impulse noise reduction. 

A similar type of improved edge-enhancing diffusion 

approach was developed by Febrinni et al. [19] to 

minimize noise in homogeneous regions while keeping 

weak edges. The statistical properties of speckle noise 

have been investigated for proper selection of parameters 

in the diffusion equation by Ramos et al. [20]. A double 

degenerated nonlinear diffusion model [21] was 

developed by reframing the diffusion coefficient function 

as shown in Eq (8). 

 

𝑐(∇𝐼)

=
2|𝐼|𝛼

𝑀𝛼 + |𝐼|𝛼(1 + |∇𝐼|2)(1−𝛽)/2
                              (8) 

 

The above diffusion coefficient function is calibrated 

by taking 𝛼 > 0, 0 < 𝛽 < 1 and 𝑀 indicates the 

maximum intensity range of the image. This work was 

extended by introducing a gray level indicator [22] in the 

diffusion coefficient function as given below: 

 

𝐶(∇𝐼)

=
∇𝐼

1 + (
|∇𝐼|

𝑘
)

𝑔(𝐼)
                                                             (9) 

 

where 𝑔(𝐼) is defined as (2 − (2𝐼𝛼

𝑀𝛼 + |𝐼|𝛼⁄ )). This 

promotes the de-noising process with gray level 

extraction of the image. K-means clustering has also 

been used to filter out the noisy pixels from the image 

during the diffusion process [23]. In this method, the 

cluster-based speckle scale function and the 

homogeneous sample region are recursively chosen 

based on the previous clustering results. In order to 

control the diffusion process separately along the edges 

and across the edges, Mishra et al. [24] use the 

probability density function of edge and pixel relativity 

information, which is quite effective in ultrasound 

speckle filtering. Gao et al. [25] decompose the 

divergence term of the diffusion equation and modify the 

iteration stopping criteria to meet the requirements of 

speckle filtering along with edge preservation. This 

method diffuses erroneous pixels that appear in a 

uniform background. This method, however, is 

ineffective in low-contrast ultrasound images. Xu et al. 

[26] suggested Gabor-based anisotropic diffusion, 

supporting the advantages of the Gabor edge detector on 

edge preservation and the advantages of the Lattice 

Boltzmann method on rapid parallel implementation of 

the diffusion equation. Very recently, a fuzzy based 

approximated anisotropic diffusion [38] has been 

presented, which is quite effective for impulse noise 

removal from standard scientific and medical images. A 

detailed overview of various anisotropic diffusion 

techniques [48][49][50][51][52][53] used for image 

enhancement and de-noising is provided in [39]. In all 

the above anisotropic diffusion filters, the smoothing 

results in ultrasound images are effective but fail to 

restore fine details. In addition to this, the low contrast of 

the ultrasound image after diffusion produces false 
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artifacts that lead to wrong medical diagnoses. The 

reason for this problem is that the presence of speckled, 

noisy pixels in the image exhibits high gradient 

magnitudes, which get restored at the output image due 

to the slow diffusion process. Therefore, there is a need 

for a more robust physical and mathematical 

interpretation of the anisotropic diffusion equation to 

deal with speckled, noisy images. 

 

2.2   Non-local mean filtering 
 

The non-local mean (NLM) [28][32][33] filter utilizes 

the pattern redundancy in the image content by analyzing 

large pixel data and collecting information from the 

whole image, looking for similar features. NLM filters 

are successful in filtering the noise and preserving edges, 

but their performance degrades at higher noise levels.    

Basically, the NLM algorithm [28] estimates a new value 

for a pixel in a given noisy image. The computation 

estimates the new value for a test pixel based on the 

surrounding pixels of the test pixel in a local window as 

well as other windows of similar appearance. 

Mathematically, the new estimated value 𝑓𝑁𝐿𝑀(𝑖) at a 

pixel 𝑖 can be computed as the weighted average of all 

the pixel values of the image 𝐼 or some predefined region 

of the image space as given below: 

 

𝑓𝑁𝐿𝑀(𝑖)

= ∑ 𝑤(𝑖, 𝑗)𝑓(𝑗)

𝑗∈𝑓

                                                          (10) 

 

where, 𝑤(𝑖, 𝑗) is the weight which corresponds to the 

similarity between the neighborhoods around the pixel 𝑖 
and the pixel 𝑗 located at some similar patch of the 

image. The weight 𝑤(𝑖, 𝑗) is computed as: 

 

𝑤(𝑖, 𝑗)

=
1

𝑧(𝑖)
𝑒𝑥𝑝 (−

‖𝑁(𝑖) − 𝑁(𝑗)‖2,𝜎
2

ℎ2
)                           (11) 

 

The above calculation of the weight is exponentially 

decreasing function of weighted Euclidean distance 

‖𝑁(𝑖) − 𝑁(𝑗)‖2,𝜎
2  where 𝑁(𝑖) and 𝑁(𝑗)are the fixed size 

neighborhoods centered at pixel 𝑖 and  𝑗 respectively. 𝜎 is 

the standard deviation of Gaussian kernel. The weight 

obtained through above calculation indicates the 

similarity between the pixels 𝑖 and  𝑗 which must satisfy 

the following conditions: 

 

0 ≤ 𝑤(𝑖, 𝑗) ≤ 1; ∑ 𝑤(𝑖, 𝑗) = 1

𝑗

 

 

The term 𝑧(𝑖) defined in Eq (11) is a normalizing 

constant which is stated as: 

 

𝑧(𝑖) = ∑ 𝑒𝑥𝑝 (−
‖𝑁(𝑖) − 𝑁(𝑗)‖2,𝜎

2

ℎ2
)                (12)

𝑗

 

 

The weights calculated are a decaying exponential 

function of Euclidean distances. This decay in the 

exponential function is controlled by a parameter ℎ in Eq 

(12), which is termed as smoothing parameter of the 

filtering operation. A small value of ℎ leads to inefficient 

noise filtering, whereas a high value tends to smooth the 

entire image. Thus, the proper tuning is required to 

preserve the image details while filtering the noise. 

Coupe et al. [29] adapted this NLM algorithm for 

ultrasound de-speckling by using a Bayesian framework 

(OBNLM), where a block-wise approach for weight 

computation was used. This method computes the 

weighted average of patches instead of the weighted 

average of all the pixels in the image. This tends to 

reduce the computational complexity, but the 

preservation of low contrast edges is not satisfactory. A 

shape-adaptive patch in NLM was developed using 

Stein’s unbiased risk estimate [30] to further decrease the 

computational burden. 

Recently, the KS-NLM filter [31] has become very 

popular in NLM filtering because it is based on the 

evaluation of Kolmogorov-Smirnov distance between the 

image pixels instead of Euclidean distance. This tends to 

compute the filtered value from the pixels of the patches, 

which are very similar to the target pixel, and the results 

are completely free from the ghost effect that has been 

observed in Euclidean distance-based NLM approaches. 

A three-stage hybrid algorithm (HSR) for de-speckling 

ultrasound images was recently introduced by Singh et 

al. [32], where the NLM filter is used in conjunction with 

guided filtering and bilateral filtering. A maximum 

likelihood-based method [33] and a fuzzy logic-based 

computational model (FSR) [34] have also been 

developed to attain the same goal. However, maintaining 

the balance between noise removal and contrast 

improvement with low computational cost is still a 

challenging issue in NLM filtering. 

Speckle noise's multiplicative nature has a 

significant impact on SAR image signals, which intercept 

information retrieval from SAR imaging systems. During 

the monitoring and investigation of target elements, the 

backscattered echo captured by the system produces 

interference because of sunlight and different weather 

conditions, resulting in speckles in the images. These 

speckles introduce a granular appearance in images, 

which intercepts the information retrieval from SAR 

systems. The use of NLM filtering in SAR image de-

speckling is extremely effective [42][43][44]. A recent 

study of implementing the NLM filter for SAR images 

was presented by Penna et al. [42], where stochastic 

distances have been embedded in the NLM filter in place 

of Euclidean distance in the wavelet domain. The method 

works well in homogeneous portions of real SAR 

images, but fails to restore the fine details and yields a 

slower computation time. Various Deep Learning (DL) 

and Convolutional Neural Network (CNN) based 

methods have also been utilized in computer vision tasks 
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for achieving fast computation. Many of them are used to 

deal with SAR image de-speckling. Recently, a CNN-

based self-supervised SAR image de-noising method was 

developed [43], with the restored images exhibiting poor 

contrast and loss of low grey level edges and fine details 

due to the unknown speckle distribution. Mullissa et al. 

[44] provide a DL based image de-speckling model that 

estimates the de-speckling behaviour in accordance with 

the speckle noise distribution. This method is effective in 

speckle noise removal, but the major issue is its non-

adaptability to different regions of SAR images. In 

addition to this, the computational requirements for 

estimating and evaluating the unknown de-speckling 

parameters make this method not convincing. 

3 Proposed method 
 

The proposed two-phase hybrid algorithm applies 

the anisotropic diffusion process in the first phase for 

contrast improvement of the image. The NLM filtering is 

then applied in the next phase for de-speckling and edge 

preservation. The functional block diagram of the 

proposed filtering method is given in Fig. 1. The two 

phases of the proposed hybrid algorithm are explained 

below. 

3.1 Phase I: Pre-processing by anisotropic 

diffusion 

 

Most of the ultrasound images used in medical 

diagnosis are of low contrast, where all the gray level 

intensities are scattered towards the darker side of the 

histogram. This makes distinguishing speckle defects and 

low grey level edges in ultrasound images extremely 

difficult. In the first phase of the proposed approach, a 

modified anisotropic diffusion is used to improve the 

contrast of the ultrasound image, along with low gray 

level edge preservation. This is achieved by employing 

gray level variance to control the diffusion process. The 

diffusion coefficient function has been updated so that it 

will vary in accordance with the gradient magnitude as 

 
Figure 1: Block diagram of the proposed two-phase 

method. 

 

well as the gray level variance of image pixels. 

    Let 𝑟 be the gray level of a pixel of an image whose 

gray levels are varying in the range 𝑙 which is 0 to (𝐿 −
1) and 𝑝(𝑟𝑙) be an estimated histogram component 

corresponding to the gray level𝑟𝑙. The mean of the gray 

levels is then calculated as: 

 

𝑚𝑔 = ∑ 𝑟𝑙𝑝(𝑟𝑙)

𝐿−1

𝑙=0

                                                 (13) 

 

The 𝑛𝑡ℎ moment of 𝑟 about 𝑚𝑔 can be written as: 

 

𝜇𝑛(𝑟) = ∑(𝑟𝑙 − 𝑚𝑔)
𝑛

𝑝(𝑟𝑙)                          (14)

𝐿−1

𝑙=0

 

 

In particular, the second moment of 𝑟 as computed 

using Eq (14) can be considered as gray level variance of 

the image denoted by 𝜎𝑔
2 which can be defined as: 

 

𝜎𝑔
2 = 𝜇2(𝑟) = ∑(𝑟𝑙 − 𝑚𝑔)

2
𝑝(𝑟𝑙)              (15)

𝐿−1

𝑙=0

 

 

The mean 𝑚𝑔 and the variance 𝜎𝑔
2 as calculated 

through Eq. (13) and Eq. (15) respectively are termed as 

global gray level mean and global gray level variance of 

the entire image. The 𝑚𝑔 and 𝜎𝑔
2 of a pixel at any point 

can also be calculated directly from the discrete image of 

size 𝑀 × 𝑁 as given in Eq (16) and Eq (17) respectively. 

 

𝑚𝑔 =
1

𝑀𝑁
∑ ∑ 𝐼(𝑖, 𝑗)                                     (16)

𝑁−1

𝑗=0

𝑀−1

𝑖=0
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𝜎𝑔
2 =

1

𝑀𝑁
∑ ∑[𝐼(𝑖, 𝑗) − 𝑚𝑔]2

𝑁−1

𝑗=0

𝑀−1

𝑖=0

                    (17) 

 

The assumption made here is that the pixel (𝑖, 𝑗) in the 

image needs to be enhanced if gray level variance of that 

pixel in its neighborhood (sub-image) is comparatively 

lower than the gray level variance of the entire image. 

For this, we computed local gray level variances 𝜎𝑊
2 at 

each pixel in their neighborhood 𝑊 and measured their 

differences with the global gray level variance 𝜎𝑔
2 of the 

entire image. The local gray level variance 𝜎𝑊
2 of a pixel 

at location (𝑖, 𝑗) at a neighborhood 𝑊 of size 𝑚 × 𝑛 is 

calculated as: 

 

𝜎𝑊
2 =

1

𝑚𝑛
∑ ∑[𝐼(𝑖, 𝑗) − 𝑚𝑊]2                           (18)

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 

 

where 𝑚𝑊 is the mean of the pixels in 𝑊 and the size 

𝑚 × 𝑛 of 𝑊 is very small as compared to that used in 

Eq.(17) for calculation of 𝜎𝑔
2. The difference between 

the two variances 𝜎𝑔
2 and 𝜎𝑊

2 at a pixel of the image 

indicates about the contrast information of that particular 

pixel area. It has been assumed here that at a pixel 

location(𝑖, 𝑗), if𝜎𝑊
2 ≪ 𝜎𝑔

2, then that particular pixel 

needs to get preserved in the output image. The overall 

contrast of the image also gets enhanced if all such pixels 

get preserved. This assumption is utilized in the proposed 

approach to enhance the low gray level inter-region 

edges with overall contrast enhancement.   

The edge threshold parameter 𝑘 in Eq (3) of Perona - 

Malik anisotropic diffusion has been reformulated in this 

work so as to smooth the ultrasound image in accordance 

with gradient as well as gray level variance of each pixel.  

The 𝑘 in Perona - Malik anisotropic diffusion is replaced 

by edge threshold function 𝑘(𝜎2) in the proposed 

approach which is defined as follows: 

 

𝑘(𝜎2) =
1

1 + (
𝜎𝑊

2

𝜎0𝜎𝑔
2)

𝑞                                  (19) 

 

The above edge threshold function 𝑘(𝜎2) controls the 

diffusion process in accordance with the ratio 
𝜎𝑊

2

𝜎0𝜎𝑔
2  

where 𝜎0 is a scale factor with values 𝜎0 ≤ 1 for low 

contrast areas whereas 𝜎0 > 1 for high contrast areas.  If 

at any pixel position,
𝜎𝑊

2

𝜎0𝜎𝑔
2 > 1, then 𝑘(𝜎2) goes down 

which tends to stop the diffusion and preserves the low 

gray level inter-region edges. In reverse manner if,  
𝜎𝑊

2

𝜎0𝜎𝑔
2 < 1, then 𝑘(𝜎2) rises to increase the diffusion. 

This variation of controlling function in anisotropic 

diffusion is summarized as follows: 

 

𝑘(𝜎2) = {

𝑙𝑜𝑤𝜎𝑊
2 > 𝜎0𝜎𝑔

2

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝜎𝑊
2 =  𝜎0𝜎𝑔

2 

ℎ𝑖𝑔ℎ𝜎𝑊
2 < 𝜎0𝜎𝑔

2

         (20) 

 

The parameter 𝑞(1 < 𝑞 < 5)  has been tuned here 

through experiments for best result. The revised diffusion 

coefficient function by substituting  𝑘(𝜎2) in place of 𝑘 

in Eq. (3) is now expressed as: 

 

𝐶(|∇𝐼|, 𝜎2)

=

1

(1+(
𝜎𝑊

2

𝜎0𝜎𝑔2)

𝑞

)

2

1

(1+(
𝜎𝑊

2

𝜎0𝜎𝑔2)

𝑞

)

2 + |∇𝐼|2
                             (21) 

 

The above diffusion coefficient function varies in 

accordance with the combined effect of |∇𝐼|and𝑘(𝜎2). 

The following four cases have been observed: 

 

1) Case 1: If at a pixel position,|∇𝐼| > 𝑘(𝜎2) and 

𝜎𝑊
2 > 𝜎0𝜎𝑔

2, then the high value of |∇𝐼| and 

low value of 𝑘(𝜎2)tends to stop the diffusion 

and preserve the low gray level inter-region 

edges. 

2) Case 2: If at a pixel position, |∇𝐼| > 𝑘(𝜎2) and 

𝜎𝑊
2 < 𝜎0𝜎𝑔

2, then both the|∇𝐼| and 𝑘(𝜎2) are 

high and diffusion undergoes as per the 

gradient magnitude and preserve the high 

gradient edges. 

3) Case 3: If at a pixel position, |∇𝐼| < 𝑘(𝜎2) and 

𝜎𝑊
2 > 𝜎0𝜎𝑔

2, then both the |∇𝐼|and 𝑘(𝜎2)are 

low and diffusion takes place with respect to 

variations in 𝑘(𝜎2). This tends to recover the 

low gradient and low gray level inert-region 

edges. 

4) Case 4: If at a pixel position, |∇𝐼| < 𝑘(𝜎2) and 

𝜎𝑊
2 < 𝜎0𝜎𝑔

2, then |∇𝐼| is low but 𝑘(𝜎2) 

becomes high which makes the diffusion faster 

to smooth out the entire homogeneous area. 

 

    The variation of diffusion coefficient function as per 

the above four cases controls the performance of 

smoothing and preserving low gradient as well as low 

gray level edges in low contrast ultrasound images. 

3.2 Phase II: post-processing by non-local 

mean filter 

      In this phase, the image obtained from phase I 

undergoes NLM filtering. As discussed in Section 2(B), 

the performance of NLM filtering is mostly dependent on 

the estimation of weight function which in turn depends 

on the measurement of patch similarity. The image 

obtained from Phase I of the proposed method is contrast 

enhanced image along with edge preservation. The 

purpose of NLM filtering as a post processing phase is to 
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recover the original de-specked image with reduced 

ghost effects and well-located fine details. This has been 

attained by utilizing well popular “Kolmogorov – 

Smirnov” (KS) distance [31] in comparing the similar 

patches in search window. Unlike the conventional NLM 

filtering where the distance between similar patches have 

been measured, the proposed method measures the 

distances between the similar pixels. For this, the 

cumulative distribution functions (CDFs) are estimated 

for each pixel and the distances between their curves are 

calculated. The pixels which are very similar to the test 

pixel are merged to calculate the weight for the test pixel. 

The estimation of CDF of a pixel is probability based 

statistical measurement where we consider 𝑝𝑓(𝑟) asa 

probability of occurrence of a pixel of gray level 𝑟 in a 

discrete image 𝑓 and is defined as: 

 

𝑝𝑓(𝑟) = 𝑝(𝑓 = 𝑟) =
𝑛𝑟

𝑛
                                   (22) 

This is an estimated histogram component of 

𝑓corresponding to gray level 𝑟 in the range 0 to 𝐿 − 1. 

Here𝑛𝑟 and 𝑛  are the number of occurrences of 𝑟𝑡ℎ gray 

level and total number of pixels in 𝑓 respectively. The 

CDF corresponding to 𝑝𝑓(𝑟)can be defined as: 

 

𝐶𝐷𝐹𝑓(𝑟) = ∑ (𝑝𝑓(𝑓 = 𝑠))                           (23)

𝑟

𝑠=0

 

 

The above Eq. (23) is also termed as image’s 

accumulated normalized histogram where 𝑠 denotes 

another gray level with less probability of occurrence 

compared to 𝑟. The CDF of any random variable 

represents a monotonically increasing curve. The KS test 

provides the vertical difference between the CDF curves 

of two pixel’s gray levels lying at different locations 

of  𝑓. In the proposed case, the KS test for distance 

measurement can be taken as: 

 

𝐷(𝑟(𝑖1,𝑗1),𝑠(𝑖2,𝑗2)) = 𝑀𝐴𝑋|𝐶𝐷𝐹(𝑖1,𝑗1)(𝑟)

− 𝐶𝐷𝐹(𝑖2,𝑗2)(𝑠)|                  (24) 

 

where, 𝑟and 𝑠 are two gray levels at position (𝑖1, 𝑗1) and 

(𝑖2, 𝑗2) respectively. Based on the distance 𝐷 measured 

in Eq (24) with the help of CDFs estimated at each point, 

the points closer to the test pixel are merged to calculate 

the corresponding weight. The weight calculation process 

is same as given in Eq. (11) and (12) except the weights 

computed are decaying exponential function of the 

distance measured based on CDFs as per the Eq (24). 

4 Experimental results and analysis 
 

The proposed two-phase method was run in MATLAB 

R2015a on a Windows 7 computer with 4 GB of RAM 

and a 2.50 GHz Intel(R) Core (TM) i5-3210 processor. 

We tested the proposed method on varieties of ultrasound 

images taken from internet resources. However, for the 

purposes of this paper's demonstration, three real and one 

synthetic ultrasound images of 8 − 𝑏𝑖𝑡 length and of size 

256 × 256 were used. All the test images have been 

corrupted by additive noise of variance 𝜎2 varying from 

0.2 to 0.8. Through experiments, the optimal parameters 

of the two phases of the proposed method were selected 

and, accordingly, the performance was evaluated. The 

criteria for parameter selection are explained in the 

following section.  

4.1 Selection of parameters 

 

  In Phase I of the proposed method, explained in 

Section 3.1, it has been observed that the performance of 

the proposed method is dependent on two parameters 𝜎0 

and 𝑞 of the diffusion coefficient function defined in Eq. 

(21). The two parameters have been tuned to a particular 

value based on the image under test. As per the 

assumptions made in Eq, (21) explained in Section 3.1,  

𝜎0 ≤ 1 and 1 < 𝑞 < 5 are taken for initial 

experimentations. Initially, the value of 𝜎0 has been kept 

fixed and the different values of 𝑞have been varied in 

between 1 and 5.  The results have been compared in 

terms of two well-known quality assessment parameters 

PSNRs and SSIMs at varying noise densities of 𝜎2 =
0.2 to 0.8 respectively. In the similar fashion, the value 

of 𝑞 has been kept fixed and different values of  𝜎0 

varying between 0 and 1 are used and again the results 

are compared with respect to PSNRsand SSIMs at the 

noise densities𝜎2 = 0.2 to 0.8 respectively. The 

experiments shows that the best result is obtained at 𝜎0 =
0.8and𝑞 = 2. Therefore, we kept 𝜎0 = 0.8 and 𝑞 = 2 in 

Eq. (21) of the proposed diffusion coefficient function 

for all the other test images used in this experimentation. 

The size of the neighborhood 𝑊 for calculation of local 

gray level variance 𝜎𝑊
2 as used in Eq. (18) and the no. of 

diffusion iterations are other important parameters which 

affects the result of the proposed method. We compared 

the three smallest standard local window sizes 3 × 3, 5 ×
5 and 7 × 7 in terms of PSNRs and SSIMs and the best 

results are obtained at 𝑊 = 3 × 3which has been taken 

in the entire experimentation. Similarly, the results are 

compared at iterations 30, 50,70 and 100 where the best 

performance was achieved at 50 iterations. 

In Phase II of the proposed method explained in 

Section 3.2, the parameters in NLM filtering which need 

to be set for optimal performance are the patch size 𝑁(𝑖) 

for a pixel 𝑖 and the smoothing parameter ℎ during 

weight assignment. Through experimentations, the patch 

size 𝑁(𝑖) for a pixel 𝑖 is decided by using all the standard 

sizes. However, the best results are obtained when the 

image is divided in to patches of size 3 × 3 and as per 

KS-NLM algorithm [31], the CDFs are estimated for 

each point of the 3 × 3window and their KS-distance is 

measured as given in Eq. (24). Similarly, during the 

weight assignment in Eq. (11) and (12), we have chosen 

the range of ℎ to be between 4 to 10. At ℎ = 5, the result 
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is quite acceptable but if we increase the value of ℎ 

towards 10, then restored image become over-smoothed. 

Therefore, finally we decided to keep ℎ = 5 in weight 

calculation of NLM filtering for the entire 

experimentations. 

  All the optimal parameters chosen in the proposed 

method are tabulated in Table 1. 

4.2 Simulation results  

 

The performance of the proposed two-phase hybrid 

method has been tested on varieties of real and synthetic 

ultrasound images. However, for the sake of 

demonstration in this paper, the two real ultrasound 

images of 8 − 𝑏𝑖𝑡 length and of size 256 × 256 have 

been used. The two original images are shown in Fig. 2 

where the first image is Skull Osteoma ultrasound image 

and second one is Thyroid Lesion ultrasound image 

showing hypo-plastic left thyroid lobe and a benign 

cystic nodule in the right lobe. The two original images 

have been corrupted by additive noise of variance 𝜎2 =
0.2, 0.4 and 0.6 which are shown in the left   

 

Table 1:  Optimal Parameters 

 

Phase I (Anisotropic 

Diffusion) 

Phase II (NLM 

Filtering) 

Parameters 
Optimal 

Value 
Parameter 

Optimal 

Value 

Constants 𝝈𝟎 0.8 
Patch size 

𝑁(𝑖) 
3 × 3 

Constant  𝒒 2 
Smoothing 

Parameter ℎ 
5 

Local 

Neighborhood 

𝑾 

3 × 3 

 

Diffusion 

Iterations 
50 

 

   
 

Figure 2: Skull osteoma ultra-sound image (left); thyroid 

lesion ultrasound image (right). 

 

columns of Fig. 3 and Fig. 4 respectively. The middle 

column is showing the results of phase I where as the 

corresponding restored images obtained by phase II of 

the proposed two-phase hybrid method are demonstrated 

in the right columns of Fig. 3 and Fig. 4 respectively. 

         As seen in the restored images in Figs. 3 and 4, 

noise has been easily reduced while low gradient edges 

and fine details have been preserved. The behaviour of 

the proposed method in contrast enhancement can also be 

observed through the experimental results. The Skull 

Osteoma image (Fig. 2 (left)) is of quite low contrast, 

which then shows improvement in overall contrast after 

processing by the proposed method as shown in the right 

column of Fig. 3. The contrast of the Thyroid Lesion 

image (Fig. 2 (right)) is slightly better than that of the 

other test image, and the results obtained using the 

proposed method show significant contrast improvement, 

noise reduction, and detail preservation, as shown in Fig. 

4.  

      In order to evaluate the performance of the proposed 

method more robustly, the two well-known image quality 

assessment parameters, PSNR and SSIM [35] of the 

restored images have been computed. Table 2 

demonstrates the values of PSNRs and SSIMs of the two 

noisy test images as well as the corresponding two  

restored images shown in Fig. 3 and 4 respectively at 

noise densities of 0.2, 0.4 and 0.6. 

 

 
 

 
 

 
 

Figure 3: (left column: from top to bottom respectively) 

skull osteoma ultrasound noisy image with noise 

variance 𝜎2 = 0.2, 0.4 and 0.6; (middle column; from 

top to bottom respectively) intermediate results of phase 

i; (right column; from top to bottom respectively) 

restored skull images by proposed method (phase ii). 

 

It can be observed from Table 2 that there is a 

considerable amount of increment in the values of 

PSNRs and SSIMs of the restored images as compared to 

the noisy images and the intermediate results obtained by 

phase I of the proposed method.  
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4.3 Performance comparison 

 

    The proposed method has been validated by 

comparing its performance with the existing state-of-the-

art ultrasound de-speckling methods as well as some 

recently developed methods available in the literature. In 

the demonstration of comparison analysis, we used one 

synthetic and one real ultrasound image of 8 − 𝑏𝑖𝑡 length 

and of size 256 × 256 each. The synthetic image 

includes oval, cardioid, line, triangle and a rectangle 

whereas the real ultrasound image is a kidney ultrasonic 

image generated by linear acoustic program [32][34][36]. 

The two original images are shown in Fig. 5 and both are 

contaminated with different levels of speckle noise 

ranging from variance 𝜎2 = 0.2 to 0.8. The restored 

images are compared perceptually as well as 

quantitatively with existing techniques: SRAD [14], 

OBNLM [29], FSR [34] and INLM [36]. Fig. 6 

demonstrates the results obtained by the above four 

existing methods and the proposed method when applied 

to the synthetic image corrupted by speckle noise of 

variance 𝜎2 = 0.6. 

 

Table 2: Quantitative results of the proposed method  

 

 

Table 3 and Table 4 respectively shows the average 

values of PSNRs and SSIMs of the restored synthetic and 

ultrasound images obtained by the all the five 

comparative methods. It can be seen from Fig 6 that the 

proposed method has shown the significant improvement 

in contrast of the input image in addition to the de-

speckling as compared to other existing methods. 

 

 

 

 

 

 

 

 

 
 

 
 

 
 

Figure 4: Thyroid Lesion ultrasound noisy image with 

noise variance 𝜎2 = 0.2, 0.4 and 0.6 (left column: from 

top to bottom respectively); (middle column; from top to 

bottom respectively) Intermediate results of Phase I; 

(right column; from top to bottom respectively) Restored 

images by proposed method (Phase II). 

 

Moreover, Table 3 indicates that the PSNR values of the 

proposed method are much better than SRAD [14], 

OBNLM [29] and FSR [34]. However, if we compare the 

values with INLM [36], the PSNR obtained by the 

proposed method at higher noise variances are larger 

than that of the INLM [36] which shows that average 

improvement of PSNR at increasing noise densities is 

more in the proposed method as compared to INLM [36] 

and even other methods.  

 

 
 

Figure 5: Synthetic ultrasound image (left); Real 

ultrasound image (right). 

 

 

 

 

 

 

 

Skull Osteoma Ultrasound Image 

Noise 

Variance 

(𝝈𝟐) 

Noisy Image Phase I 

Phase II-

Restored 

Image 

PSNR SSIM PSNR SSIM PSNR SSIM 

0.2 20.60 0.4763 21.21 0.5234 22.26 0.7256 

0.4 18.04 0.3899 20.54 0.4763 21.52 0.6846 

0.6 16.77 0.3578 19.55 0.4554 20.56 0.5965 

Thyroid Lesion Ultrasound Image 

Noise 

Variance 

(𝝈𝟐) 

Noisy Image Phase I 

Phase II-

Restored 

Image 

PSNR SSIM PSNR SSIM PSNR SSIM 

0.2 16.11 0.4680 19.21 0.5667 20.35 0.6899 

0.4 13.54 0.3639 17.63 0.4552 19.73 0.6394 

0.6 12.56 0.3262 16.97 0.4112 19.40 0.6121 
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     The similar observation can be seen in Table 4 where 

the SSIM values of all the comparative methods have 

been represented at different noise variances, which 

again validates that the proposed method has 

outperformed the existing methods at higher noise levels. 

Figure 7 depicts the restored results of the kidney 

ultrasonic image that had been corrupted by speckle 

noise of variance 𝜎2 = 0.6. This indicates, however, that 

while the PSNR and SSIM values obtained on the real 

ultrasound image are lower than those obtained on the 

synthetic ultrasound image, the values obtained by the 

proposed method are still better than those obtained by 

the existing methods. The average PSNR and SSIM 

values of the proposed method in comparison to the 

existing methods at varying noise densities on the two 

images are graphically represented in Figs. 8 and 9, 

which validate the effectiveness of the proposed method's 

de-speckling capability.  

4.4 Computational complexity 

    The computational complexity of the proposed method 

depends upon two individual phases. In the Phase I of 

the proposed method, the computational complexity 

depends on the computation of gradient and local gray 

level variance of the image. If image is of size 𝑁 × 𝑁, 

then the complexity of calculating gradient in four main 

directions of the test pixel is 𝑂(𝑁2) whereas the 

calculation of local gray level variance in the 

neighborhood size 𝑤 × 𝑤 yields the complexity of 

 𝑂(𝑤2). Accordingly, the overall computational 

complexity of the first phase of the proposed method is 

𝑂(𝑁2𝑤2). The NLM filter in Phase II of the proposed 

method has computational complexity of 𝑂(𝑁2𝑀2𝐿2)for 

image of size 𝑁 × 𝑁, search area 𝑀 × 𝑀 and local 

window size is 𝐿 × 𝐿. The proposed algorithm has been 

implemented in the system with Intel (R) Core (TM) i5 – 

3210M processor of speed 2.50 GHz and 4 GB RAM. 

The overall average computation time of the proposed 

algorithm on an image of size 256 × 256 is found to be  

 

 

 

Method 
Noise Variance 

𝟎. 𝟐 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟖 

Noisy Image 0.57 0.31 0.22 0.15 

SRAD [14] 0.95 0.88 0.46 0.26 

OBNLM [29] 0.94 0.92 0.85 0.80 

FSR [34] 0.97 0.94 0.88 0.85 

INLM[36] 0.96 0.92 0.88 0.75 

Proposed Method 0.96 0.94 0.90 0.88 

 

  
 

  
 

  
 

Figure 6: Noisy synthetic ultrasound image with 𝜎2 =
0.6, results of obnlm [29] and inlm [36] (left column: 

from top to bottom); results of srad[14], fsr [34] and 

proposed method (right column: from top tobottom) 

 

 

 

 

 

 

36.13 seconds that is comparatively better than the 

existing methods.  

      The key feature of the proposed method is to de-

speckle the low-contrast ultrasound image along with 

edge and fine detail preservation, which makes the 

proposed method different from the existing comparable  

methods, as can be observed from the above 

experimental analysis. There are, however, numerous 

opportunities to investigate the properties of anisotropic 

diffusion and non-local mean filtering in order to deal 

with high density speckle noise in edge-abundant 

images. as can be observed from the above experimental 

analysis.  

 

 

 

 

Method 
Noise Variance 

𝟎. 𝟐 𝟎. 𝟒 𝟎. 𝟔 𝟎. 𝟖 

Noisy Image 18.54 16.02 14.96 14.13 

SRAD [14] 28.10 21.90 13.10 08.90 

OBNLM [29] 28.10 21.90 19.40 17.10 

FSR [34] 29.60 24.10 20.80 18.20 

INLM[36] 27.32 23.34 20.88 17.75 

Proposed Method 29.30 26.65 23.85 22.80 

Table 3: Comparison of average PSNR 

 

Table 4: Comparison of SSIM 
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Figure 7:  Noisy real ultrasound image with 𝜎2 = 0.6, 

results of obnlm [29] and inlm [36] (left column: from 

top to bottom); results of srad[14], fsr [34] and proposed 

method(right column: from top to bottom). 

 

 
 

Figure 8: Graphical representation of PSNRs shown in 

table 3 

 

 

4.5 Discussions 

    The performance analysis of the proposed two-phase 

method shown above demonstrates the effectiveness of 

ultrasound de-speckling in terms of better noise removal, 

acceptable edge preservation, easy implementation, and 

affordable computation requirements under the speckle 

noise variance level of 0.8. The proposed method does 

not require tuning of control parameters as used in 

existing anisotropic diffusion and NLM filtering. 

Because of this computational advantage, the proposed 

method is simple to implement and has a shorter 

execution time. However, the proposed method has a 

great deal of future scope. The main research issue in this 

work is to explore the properties of diffusion equations 

available widely in the literature to deal with discrete 

non-negative real image vector spaces for enhancing low 

gray level image pixels. The behaviour of the NLM filter 

can also be examined by the use of stochastic distances 

for a particular distribution in place of Euclidean 

distances. 

The optimized mechanism of weight estimation in 

accordance with non-local self-similarity for a particular 

pixel requires parameter tuning through exhaustive 

experiments. This needs to be explored with the help of 

some optimization techniques for better performance. 

The real noisy images, like ultrasound and scenes from 

real SAR systems, need effective speckle reduction along 

with adequate information preservation, where this 

proposed method can be used as a better noise limiting 

tool. However, the selection of the sizes of the local 

patch and search area in the NLM filter and the 

properties of anisotropic diffusion need to be explored in 

future work for better compactness with a variety of 

images. 

5 Conclusion 
In this work, a hybrid framework for de-speckling 

low-contrast ultrasound images is presented. The 

anisotropic diffusion technique is used in conjunction 

with the KS distance-based non-local mean filtering 

mechanism. The proposed method is a two-phase method 

where prior contrast improvement of the ultrasound 

image is done by modified anisotropic diffusion, which is 

then followed by non-local mean filtering for de-

speckling. The experiments are conducted on varieties of 

synthetic and real ultrasound images. The results show 

that the proposed method not only significantly reduces 

speckle noise but also preserves fine details and low grey 

level edges in the image, as well as an overall 

improvement in contrast. The above features of the 

proposed method make it useful in real-time medical 

applications to assist medical experts in the analysis and 

interpretation of ultrasonic images. 

The proposed method can be further improved by 

investigating parameter optimization for better edge 

preservation and removal of high-level speckle noise in 

more complex ultrasound images. The exploration of the 

properties of anisotropic diffusion and researching the Figure 9: Graphical representation of SSIMs shown in 

table 4 
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mechanism of non-local mean filtering are possible 

research issues in this work. 
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