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In this paper we present a clustering based classification method and apply it in network anomaly detection.
A set of labeled training data consisting of normal and attack instances are divided into clusters which
are represented by their representative profiles consisting of attribute-value pairs for selected subset of
attributes. Each category of attack and normal instances are broken down into a set of clusters using a
training algorithm based on supervised classification algorithm. The cluster profiles together with their
class label form rules for labeling unseen test instances. Methods for clustering, training and prediction
are provided. The proposed method is evaluated using real life TUIDS Intrusion datasets. Evaluation
results on KDD 1999 datasets showed good performance in comparison to results produced by decision
tree counterparts. The method presented can be utilized for classification jobs in any other domain.

Povzetek: Predstavljena je metoda za identifikacijo anomalij v omrežju.

1 Introduction

A network intrusion can be any exploit of a network that
compromises its stability or the security of information
stored on computers connected to it. An intrusion detection
system gathers relevant data from computers or the network
and analyzes them for signs of intrusion. Different meth-
ods such as statistical, pattern matching, machine learning,
and data mining are used for intrusion detection. Some ap-
proaches are online, that is, they detect attacks in progress
in real time, while offline approaches such as data mining
provide after-the-fact clues about the attacks to help reduce
the possibilities of future attacks of the same type. In gen-
eral there are two types of approaches [1] for network in-
trusion detection: misuse detection and anomaly detection.
Misuse detection searches for specific signatures to match,
signaling previously known attacks without generating a
large number of false alarms. Such methods fail to de-
tect new types of attacks as their signatures are not known.
Anomaly detection builds models for normal behavior and
significant deviations from it are flagged as attack. Super-
vised or unsupervised learning can be used for anomaly de-
tection. In a supervised approach, the model is developed
based on labeled training data. Unsupervised approaches
work without any training data or they may use training
with unlabeled data. The main advantage of anomaly de-
tection is that it can detect previously unknown attacks if
their behavior is significantly different from what is con-
sidered to be normal. False alarm rates tend to be higher
for anomaly detection methods.

Data mining methods including classification, associ-
ation analysis, clustering and outlier detection are being
used in network intrusion detection. Anomaly detection

often tries to cluster test datasets into groups of similar in-
stances which may be either attacks or normal data. Intru-
sion detection problem is then reduced to the problem of
labeling the clusters as intrusive or normal traffic. When
doing unsupervised anomaly detection a model based on
clusters of data is trained using unlabeled data, normal as
well as attacks. Supervised anomaly detection methods
such as classification algorithms need to be presented with
both normal and known attack data for training.

In this paper we present a supervised classification
method and use it for network anomaly detection. Labeled
training dataset is broken down into clusters belonging to
normal and attack categories and the clusters are repre-
sented by their representative profiles, which together with
category labels form the classification rules. During de-
tection, the cluster profiles collect similar testing instances
which are then labeled as belonging to the same category
as the label of the profiles.

Rest of the paper is organized as follows. In Section 2,
some related work regarding supervised anomaly detection
methods are presented. The proposed classification algo-
rithm including a training method and a prediction method
is presented in Section 3. Application of the method to net-
work anomaly detection is presented in Section 4. Exper-
imental results for datasets TUIDS intrusion, KDD 1999,
and NSL-KDD datasets are reported in Section 5. Finally,
Section 6 concludes providing a few possible future exten-
sions.
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2 Related work

Classification is an important supervised learning method
that has been applied to anomaly detection. Lee and
Stolfo [1] proposed a systematic framework employing
data mining methods for intrusion detection. This frame-
work consists of classification, association rules and fre-
quent episodes algorithms that can be used to construct de-
tection models. The authors in [2] presented PNrule, for
multi-class classification problem. The key idea used in
PNrule is learning a rule-based model in two stages: first
find P-rules to predict presence of a class and then find N-
rules to predict absence of a class. The scoring mechanism
used in PNrule allows one to tune selectively the effect
of each N-rule on a given P-rule. ADWICE [3] uses ex-
tended BIRCH [4] clustering algorithm to implement a fast,
scalable and adaptive anomaly detection scheme. They
apply clustering as a method for training of the normal-
ity model. Several soft computing paradigms, viz., fuzzy
rule-based classifiers, support vector machines, linear ge-
netic programming and an ensemble method to model fast
and efficient intrusion detection systems were investigated
in [5]. Empirical results clearly show that soft comput-
ing approach could play a major role for intrusion detec-
tion. Yang et al. [6] present an anomaly detection ap-
proach based on clustering and classification for intrusion
detection. They perform clustering to group training data
points into clusters, from which they select some clusters
as normal and create known-attack profiles according to
certain criteria. The training data excluded from the pro-
file are used to build a specific classifier. During the test-
ing stage, they use an influence-based classification algo-
rithm to classify network behaviors. A comparative study
of several supervised probabilistic and predictive machine
learning methods for intrusion detection is reported in [7].
Two probabilistic methods, Naive Bayes and Gaussian and
two predictive methods, Decision Tree [8] and Random
Forests [9], are used. The ability of each method to detect
four attack categories (DoS, Probe, R2L and U2R) has been
compared. A new supervised intrusion detection method
based on TCM-KNN (Transductive Confidence Machine
for K-Nearest Neighbors) algorithm has been presented
in [10]. This algorithm works well even if sufficient at-
tack data are not available for training. A review of the
most well known anomaly-based intrusion detection meth-
ods is provided by [11, 12, 13]. Available platforms, sys-
tems under development and research projects in the area
are also presented. This paper also outlines the main chal-
lenges to be dealt with for the wide scale deployment of
anomaly-based intrusion detectors, with special emphasis
on assessment issues. Beghdad [14] presents a study of
the use of some supervised learning methods to predict in-
trusions. The performances of six machine learning algo-
rithms involving C4.5, ID3, Classification and Regression
Tree (CART), Multinomial Logistic Regression (MLR),
Bayesian Networks (BN), and CN2 rule-based algorithm
are investigated. KDD 1999 datasets were used to evaluate

the considered algorithms. An SVM-based intrusion de-
tection system is found in [15], one which combines a hi-
erarchical clustering algorithm (BIRCH [4]), a simple fea-
ture selection procedure, and the SVM (support vector ma-
chines) method. This method is also evaluated using on
the KDD 1999 datasets. For these evaluations, three cases
were considered: the whole attacks case, the five behav-
iors classes case, and the two behaviors classes case. The
performances of each method were compared.

3 Proposed supervised method
The proposed supervised method uses a training algorithm
to create a set of representative clusters from the available
labeled training objects. Unlabeled test objects are then
inserted in these representative clusters based on similar-
ity calculations and thus get labels of the clusters in which
they are inserted. We first present the basics of the cluster-
ing algorithm, and then present the training and prediction
algorithms.

3.1 Background
The dataset to be clustered contains n objects, each de-
scribed by d attributes A1, A2, · · · , Ad having finite dis-
crete valued domains D1, D2, · · · , Dd, respectively. A
data object can be represented as X = {x1, x2, · · · , xd}.
The j-th component of objectX is xj and it takes one of the
possible values defined in domain Dj of attribute Aj . Re-
ferring to each object by its serial number, the dataset can
be represented by the setN = {1, 2, · · · , n}. Similarly, the
attributes are represented by the set M = {1, 2, · · · , d}.

3.1.1 Similarity function between two objects

The similarity between two data objects X and Y is the
sum of per attribute similarity for all the attributes. It is
computed as sim(X,Y ),

sim(X, Y ) =

d∑
j=1

s(xj , yj), (1)

where s(xj , yj) is the similarity of the j-th attribute defined
as

s(xj , yj) =

{
1 if |xj − yj | ≤ δj
0 otherwise , (2)

where δj is the similarity threshold for the j-th attribute.
For categorical attributes δj=0 and for numeric attributes
δj ≥ 0.

3.1.2 Similarity between cluster and object

A subspace based incremental clustering method is used
here. A cluster is a set of objects which are similar
considering a subset of attributes only. The minimum
size of the subset of attributes required to form a clus-
ter is defined by the threshold MinAtt. Let the subset
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of defining attributes be represented by Dattributes =
{a1, a2, · · · , anoAttributes} such that Dattributes ⊆ M
and noAttributes is the size of Dattributes. A clus-
ter is represented by its profile, somewhat like an object.
All objects in a cluster are similar to the profile. The
cluster profile is defined by a set of values, V alues =
{v1 , v2, · · · , vnoAttributes} considering the attributes in
Dattributes. That is v1 ∈ Da1 is the value for attribute
a1 ∈ M , v2 ∈ Da2 is the value for attribute a2 ∈ M , and
so on. Thus, the cluster profile is defined by

Profile = {noAttributes, Dattributes, V alues}. (3)

Let Olist ⊆ N be the list of data objects in the cluster.
A clusterC is completely defined by its Profile andOlist

C = {Olist, Profile}. (4)

Our incremental clustering algorithm inserts an object
in any one of the clusters existing at a particular moment.
So, the similarity between a cluster and a data object needs
to be computed. Obviously, the cluster profile is used for
computing this similarity. As the similarity is computed
over the set of attributes in Dattributes only, the similar-
ity function between a cluster C and an object X becomes
sim(C,X)

sim(C, X) =

noAttributes∑
j=1

s(vj , xaj ), (5)

where s(vj , xaj ) is the similarity of the j-th attribute de-
fined as

s(vj , xaj ) =

{
1 if |vj − xaj | ≤ δaj
0 otherwise . (6)

Example: Consider a small dataset shown in Table 1 with
seven objects defined using five attributes A1, A2, A3, A4

and A5. The domains for the attributes are respectively,
D1 = {a1, a2, a3}, D2 = {b1, b2},
D3 = {c1, c2, c4},D4 = {d1, d2, d3} andD5 = {e1, e2}.

Clusters C1 and C2 can be identified in the dataset with
MinAtt = 3 and δaj = 0 for aj ∈ Dattributes:
C1 = {Olist = {1, 2, 4}, noAttributes = 3,

Dattributes = {2, 3, 5}, V alues = {b2, c4, e2}}, and
C2 = {Olist = {3, 5, 7}, noAttributes = 4,

Dattributes = {1, 2, 3, 5}, V alues = {a3, b1, c2, e1}}.

3.1.3 Our supervised clustering algorithm

The clustering algorithm starts with an initially empty set
of clusters. It reads each object Xi sequentially, inserts it
in an existing cluster based upon the similarity between Xi

and the clusters or a new cluster is created with Xi if it is
not similar enough, as defined by the threshold MinAtt
for insertion in an existing cluster. The search for a clus-
ter for inserting the present object is started with the last
cluster created and moves towards the first cluster until the

Table 1: A sample dataset

Serial no. A1 A2 A3 A4 A5

1 a3 b2 c4 d1 e2
2 a2 b2 c4 d3 e2
3 a3 b1 c2 d1 e1
4 a2 b2 c4 d1 e2
5 a3 b1 c2 d3 e1
6 a1 b2 c1 d2 e2
7 a3 b1 c2 d2 e1

Table 2: Algorithm Notations

Symbol Description

MinAtt threshold value for minimum attribute.

minSize minimum objects in a cluster threshold value.

sim(X,Y ) similarity value between two objects.

sim(C,X) similarity value between a cluster and an object.

Olist object list in a cluster.

Profile profile of a cluster.

noAttribtes total number of attributes in a cluster profile.

Dattributes distribution of attributes in a cluster profile.

V alues values of attributes in a cluster profile.

search is successful. If successful, the object is inserted in
the cluster found and the search is terminated. At the time
of inserting the object in the found cluster C, the number
of defining attributes of the cluster (C.noAttributes) is set
according to the computed similarity measure between the
cluster and the object and the sets of C.Dattributes along
with C.V alues are updated. If the search is not successful
a new cluster is created and the object itself made the repre-
sentative object of the cluster, i.e., the full set of attributes
becomes the Dattributes while full set of values of the
object becomes corresponding V alues of the new cluster
profile.

The classification method begins with a fixed number of
existing clusters (as defined by their profiles) with no ob-
jects present in them. Objects are incrementally inserted
in any of the clusters and no new clusters are created. The
description of notations used in the algorithm is given in
Table 2

3.2 Training method
Given a set of labeled training data, a combination of un-
supervised incremental clustering and supervised classifi-
cation methods are applied to create and refine a set of
clusters from which profiles are extracted for use in the
test object labeling process. The unsupervised clustering
algorithm decides cluster membership immediately as the
objects arrive sequentially without considering subsequent
objects that are yet to be seen. Therefore, refinement of
the created clusters is performed using a subsequent super-
vised classification step that allow possible realignment of
the data objects in the clusters.

In the beginning of the training algorithm, all objects are
marked unprocessed. Similarity thresholds minAtt (the
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minimum number of attributes) and minSize (the mini-
mum number of objects in a cluster) are set high and they
are gradually decreased in steps. In each iteration, the re-
maining unprocessed objects are clustered using a combi-
nation of supervised classification and unsupervised clus-
tering. If the supervised classification process fails to in-
sert an object in any of the preexisting (created in the pre-
vious iteration) clusters (SCs), then the unsupervised clus-
tering process inserts it in any of the unsupervised clusters
(UCs) created in the present iteration or a new unsuper-
vised cluster is created with the object. When the clus-
tering process ends in the present iteration, cluster profiles
are extracted from each of the SCs with at least minSize
objects in it and the objects in such a cluster are marked
processed. All SCs are then deleted. The UCs may also
include some insignificant clusters whose sizes are less
than minSize. Such clusters are deleted. Remaining UCs
are made SCs for next iteration after making them empty
by deleting their object lists. Then the threshold values
minSize and minAtt are reduced so that the next itera-
tion can create larger clusters instead of fragmented clus-
ters. Reducing the thresholds allows more generalization.
The algorithm iterates so long as there are unprocessed ob-
jects. To ensure termination of the algorithm minSize
is reduced to minSize/2 so that the ultimate value of
minSize becomes 1, beyond which no objects remain un-
processed. The threshold minAtt is loosened by setting
minAtt=minAtt − α, where α is a small integral con-
stant such as 1 or 2. Reduction of minAtt below a certain
level (MIN ) is not allowed, after which remains constant
atMIN . Generalization beyondMIN makes data objects
from two different classes indistinguishable. When train-
ing terminates, the set of profiles found in the profile file
becomes the final cluster profiles for use in the prediction
process. The training algorithm is given as Algorithm 2.

3.2.1 Effective profile searching

Two-dimensional link list (2-DLL) structure (as found in
[16]) is used to store the profiles in memory. It enables
to update the profile base dynamically. The 2-DLL struc-
ture updates row wise with insertion of new parameter in
a profile and column wise with the insertion of a new pro-
tocol type. It enables to search the profile base protocol
wise, viz., TCP, ICMP, UDP, "other" (which profiles are
not included the protocols viz., TCP, ICMP or UDP. Once
the respective protocol is identified in this 2-DLL structure,
further traversal is supported for other parameters matching
by following the link list structure.

3.3 Prediction method

Once the set of cluster profiles is ready, labeling test ob-
jects becomes simple. Supervised clustering is performed
with the objects. The label of the cluster profile becomes
the label of each object inserted in the cluster. The objects

Algorithm 1 Training algorithm
Input: Training Dataset;
Output: file1=TrainProfile;
1: read (n, d,minAtt,minSize) ;
2: for (i = 0; i < n; i = i+ 1) do
3: read (X[i], recordLabel[i]) ;
4: processed[i]=0 ;
5: end for
6: totalProfile = 0 ;
7: top = 0 ;
8: while (minSize > 0) do
9: for (i = 0; i < n; i = i+ 1) do

10: found = FALSE; //supervised clustering
11: for (j = 0; j < totTrain; j = j + 1) do
12: if (recordLabel[i] == clusterLabel[j]) then
13: if (sim(SC[j], X[i]) == SC[j].noAttributes) then
14: append(i, SC[j].oList) ;
15: found = TRUE ;
16: break ;
17: end if
18: end if
19: end for //end supervised clustering
20: if (found == TRUE) then
21: continue;
22: end if
23: for (j = top; j >= 0; j = j − 1) do
24: if (recordLabel[i] == clusterLabel[j]) then
25: if (sim(UC[j], X[i]) >= minAtt) then
26: found = TRUE ;
27: update(UC[j], i, X[i]) ;
28: break ;
29: end if
30: end if
31: end for
32: if (found == FALSE) then
33: top = top+ 1 ; //create new cluster
34: UC[top] =new cluster ;
35: append(i, UC[top].oList) ;
36: UC[top].noAttributes = d ;
37: for (j = 0; j < d; + + j) do
38: UC[top].a[j] = j ;
39: UC[top].v[j] = X[i][j] ;
40: end for
41: clusterLabel[top] = recordLabel[i] ;
42: end if
43: end for//end new cluster
44: for (i = 0; i < totTrain; i = i+ 1) do
45: m=sizeof(SC[i].oList)
46: if (m >= minSize) then
47: k = SC[i].noAttributes ;
48: for (j = 0; j < k; j = j + 1) do
49: write(file1, SC[i].a[j]) ;
50: end for
51: for (j = 0; j < k; j = j + 1) do
52: write(file1, SC[i].v[j]) ;
53: end for
54: p = SC[i].oList ;
55: for (j = 0; j < m; j = j + 1) do
56: k = p.getdata(j) ;
57: processed[k]=1 ;
58: p=p.next;
59: end for
60: delete SC[i] ;
61: end if
62: totTrain = 0 ;
63: for (i = 0; i < top; i = i+ 1) do
64: m=sizeof(UC[i].oList)
65: if (m >= minSize) then
66: SC[totTrain] = UC.[i] ;
67: delete UC[i].oList ;
68: UC[i].oList = NULL ;
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2 Training algorithm (continued)
69: totTrain = totTrain+ 1 ;
70: else
71: delete UC[i] ;
72: end if
73: end for
74: minSize = minSize/2 ;
75: MinAtt = minAtt− α ;
76: if (MinAtt < MIN ) then
77: minAtt = MIN ;
78: end if
79: end for
80: end while
81: int function sim(cluster C, object X)
82: int scount = 0 ;
83: k = C.noAttributes ;
84: for (j = 0; j < k; j = j + 1) do
85: l = C.a[j] ;
86: if (abs(C.v[j]− x[l]) <= δ[l]) then
87: scount = scount+ 1 ;
88: end if
89: end for
90: return scount ;
91: end function
92: function update(cluster C, int r, object X)
93: append(r, C.Olist) ;
94: int count = 1;
95: m = C.noAttributes;
96: for (j = 0; j < m; + + j) do
97: l = C.a[j] ;
98: if (abs(s(C.v[j]− x[l])) <= δ[l]) then
99: count = count+ 1 ;
100: C.v[count] = C.v[j] ;
101: C.a[count] = C.a[j] ;
102: end if
103: C.noAttributes = count ;
104: end for
105: end function

Algorithm 3 Prediction algorithm
Input: Dataset file1=TrainProfile, file2=DataFile;
Output: Object cluster label of file2 ;
1: read(file1, totTrain);
2: for i = 0; i < totTrain; i = i+ 1 do
3: read(file1, k);
4: C[i].noAttributes = k;
5: for (q = 0; q < k; q = q + 1) do
6: read(file1, C[i].a[q]);
7: for (j = 0; j < k; j = j + 1) do
8: read(file1, C[i].v[j]);
9: if count == C[j].noAttributes then

10: print(“Object" i “ is of category"
11: clusterLabel[j]);
12: found = 1; break;
13: else
14: if count > max then
15: max = count; position = j;
16: end if
17: end if
18: end for
19: if found == 0 then
20: print(“Object" i “is of category";
21: clusterLabel[position]);
22: end if
23: end for
24: end for

not inserted in any of the clusters defined by the profiles
need special attention. They may be flagged suspicious for
anomalies. Another method for dealing with such objects
is to insert such an object in a cluster which is most simi-
lar to the object and label accordingly. The algorithm for
prediction method is given as Algorithm 4.

3.3.1 Complexity analysis

The clustering algorithms require one pass through the set
of training examples that currently remain unprocessed.
Each training example needs to be compared with exist-
ing clusters one after another until it gets inserted in one
of the clusters. The similarity computation involves a sub-
set of attributes. Therefore, the clustering process has a
complexity O(ncd), where n is the number of training ex-
amples, c is the number of clusters and d is the number of
attributes. Each of the created clusters needs to be visited
to extract its size and profile. Hence, maximum time com-
plexity of one iteration of the training algorithm becomes
O(ncd) + O(c). The algorithm performs at most k iter-
ations, where k = log2(minSize). As minSize is the
minimum number of objects for a cluster to be considered
significant, it is not large. Overall maximum time complex-
ity of the algorithm is O(kncd) +O(kc).

4 Classification of network
anomalies

In this section we apply our classification method to net-
work anomaly detection.

4.1 Dataset Description
The algorithm was evaluated with three real life TU-
IDS [17] intrusion datasets and two benchmark intrusion
datasets, viz., KDD Cup 1999 [18] and NSL-KDD [19]
datasets.

4.1.1 TUIDS dataset

The real life TUIDS Intrusion datasets consist of three
datasets Packet level, Flow level and Portscan where each
dataset consists of attributes (numerical/categorical) of
50(11/39), 24(9/15) and 23(9/14), respectively as given in
Table 3.

4.1.2 Benchmark intrusion datasets

The description of two benchmark intrusion datasets, KDD
Cup 1999 [18] and NSL-KDD [19] are given in Table 4
and Table 5, respectively. Each record of the datasets rep-
resents a connection between two network hosts according
to some well defined network protocol and is described by
41 attributes (38 continuous or discrete numerical attributes
and 3 categorical attributes). Each record is labeled as ei-
ther normal or one specific kind of attack. The attacks fall
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Table 3: TUIDS Intrusion Datasets

Data sets Connection
Type

Data set type

Training Testing

Packet Level
Normal 35043 27895

Attack 397832 138370

Total 432875 166265

Flow Level
Normal 36402 16770

Attack 363729 123955

Total 400131 140725

Portscan
Normal 2445 1300

Attack 39215 28615

Total 41660 29915

Table 4: KDD Cup 1999 datasets

Data sets DoS U2R R2L Probe Normal Total

Corrected
KDD

229853 70 16347 4166 60593 311029

10-percent
KDD

391458 52 1126 4107 97278 494021

Table 5: NSL-KDD datasets
Data sets DoS U2R R2L Probe Normal Total

KDDTrain+ 45927 52 995 11656 67343 125973

KDDTest+ 7458 67 2887 2422 9710 22544

in one of the four categories: User to Root (U2R), Remote
to local (R2L), Denial of Service (DoS) and Probe.

– Denial of Service(DoS): Attacker tries to prevent le-
gitimate users from using a service. For example,
SYN flood, smurf, teardrop etc.

– Remote to Local (R2L): Attackers try to gain access
to victim machine without having an account on it.
For example, guessing password.

– User to Root (U2R): Attackers have local access to
the victim machine and tries to gain super user privi-
lege. For example, buffer overflow attacks.

– Probe: Attacker tries to gain information about the
target host. For example, Port-scan, ping-sweep etc.

Number of samples of each category of attack in
Corrected KDD dataset and 10 percent KDD dataset
of KDD 1999 are shown in Table 4. The attack distribu-
tion in KDDTrain+ and KDDTest+ of NSL-KDD are
shown in Table 5.

4.2 Data preprocessing
We have discretized continuous valued attributes by taking
logarithm to the base 2 and then converting to integer. This
is done for each attribute value z using the computation:
if (z > 2) z = int(log2(z))+1. Before taking logarithm,

the attributes which take fractional values in the range [0, 1]
are multiplied by 100 so that they take values in the range
[0, 100]. Nominal valued attributes are mapped to discrete
numeric codes which are nothing but serial numbers begin-
ning with zero for the unique attribute values in the order
in which they appear in the dataset. The class label at-
tribute is removed from the dataset and stored separately in
a different file. The class labels are used for training and
evaluating the detection performance of the algorithm.

4.3 Feature selection
Information gain [20] is computed for each of the dis-
cretized attributes. Six attributes (attribute numbers 7,
9, 15, 18, 20 and 21 in KDD Cup 1999 and NSL-KDD
datasets) corresponding to very low information gain are
removed from the dataset. It reduces computation time.

4.4 Parameter selection
The training algorithm has 3 parameters to be given as
inputs: minAtt, minSize and MIN . The parameters
minAtt takes values in the range [1,d], where d is the num-
ber of attributes. Higher values of minAtt corresponds
to more specialization leading to a larger number of rules
and a lower value of minAtt corresponds to more gener-
alization leading to fewer number of rules. But over gen-
eralization can make normal and attack data indistinguish-
able resulting in more false positives or false negatives. So,
a lower limit for minAtt is specified using the parame-
ter MIN . Now, the possible range of values for minAtt
becomes [MIN ,d]. To determine the value of MIN , in-
formation gain [20] is calculated for each attribute in the
training dataset. Attributes with very low information gain
can be ignored and the number of remaining attributes is set
as the value forMIN . The parameterminSize is the min-
imum number of data elements received to form a cluster.
In some cases, at least one training example for an attack
should be considered significant. So, the minimum value
for minSize is 1. Its value should increase with increase
in minAtt value. The maximum value for minSize can
be set to be any multiple of log2(n), where n is the number
of training examples.

In our experiments, MIN = 27. The value for MinAtt
is set to 33, which is gradually reduced to MIN = 27
in steps of -1. The starting value for MinSize is set to
2log2(n). The similarity thresholds for all attributes are set
to zero, δi = 0, i = 1, · · · , d.

4.5 Performance measures
Evaluation of performance of a classification model is
based on the counts of test records correctly and incorrectly
predicted by the model. These counts are tabulated in a
confusion matrix [21]. A confusion matrix that summarizes
the number of instances predicted correctly or incorrectly
by a classification model is shown in Table 6.
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Table 6: Confusion matrix for binary classification

Predicted Class
+ -

Actual + f++ (TP ) f+− (FN)
Class - f−+ (FP ) f−− (TN)

Recall and Precision are two widely used metrics
employed in applications where successful detection of
one of the classes is considered more significant than
detection of the other classes. A formal definition of the
metrics is given below.

Precision, p =
TP

TP + FP
(7)

Recall, r =
TP

TP + FN
(8)

Building a model that maximizes both precision and recall
is the key challenge for classification algorithms. An-
other measure of accuracy is PCC (percentage of correct
classification). A formal definition of PCC is given below.

PCC =
TP + TN

TP + FN + FP + TN
(9)

A high value of PCC ensures reasonably correct classifi-
cation.

5 Experimental results
The experiments were performed on a 3 GHz HP dc 7000
series desktop with 2 GB RAM, 250 GB HDD. C++ pro-
grams were used in a LINUX environment. We provide
the cross evaluation result performing training and test-
ing of the method with corresponding training and testing
datasets.

5.1 Results on TUIDS Intrusion Datasets
Two categories of experiments 2-class (normal and
attack) and all-attacks behaviors are carried out.

5.1.1 2-class prediction results

The confusion matrices for the 2-class behavioral cat-
egories on the Packet Level, Flow Level and Portscan
datasets are shown in Table 7. Classification rates
with PCC 99.72%, 99.70 and 98.31% for Packet Level,
Flow Level and Portscan datasets, respectively indicate
good performance for our method.

5.1.2 All-attacks prediction results

The confusion matrices for all-attacks categories on the
Packet level, Flow level andPortscan datasets are shown in
Table 8. Classification rates of PCC are 99.42%, 99.01%

Table 7: 2-class confusion matrix for TUIDS datasets

D
at

a
se

t

Actual
Class

Predicted Class

Normal Attack Sum Recall 1-Prc*

Pa
ck

et
le

ve
l

Normal 34790 253 35043 0.9928 0.0267
Attack 955 396877 397832 0.9976 0.0006
Sum 35745 397130 432875

Re-substitution error =0.0028 PCC=99.72%

Predicted Class

Normal Attack Sum Recall 1-Prc*

Fl
ow

le
ve

l Normal 36107 295 36402 0.9919 0.0246
Attack 910 362819 363729 0.9975 0.0008
Sum 37017 363114 400131

Re-substitution error =0.0030 PCC=99.70%

Predicted Class

Normal Attack Sum Recall 1-Prc*

Po
rt

sc
an Normal 2414 31 2445 0.9876 0.2175

Attack 671 38544 39215 0.9829 0.0009
Sum 3085 38575 41660

Re-substitution error =0.0169 PCC=98.31%

Note- *1-Precision

and 98.31% for Packet level, Flow level andPortscan
datasets, respectively. The average execution time of clas-
sification for Packet level, Flow level and Portscan datasets
are 0.39 minute, 0.17 minute and 0.14 minute, respectively.

5.2 Results on KDD Cup 1999 dataset
We perform three different experiments which are catego-
rized into 2-class (normal and attack), 5-class (normal,
R2L, DoS, Probe and U2R) and all-attacks behaviors.

5.2.1 2-class prediction results

The confusion matrix for the 2-class behavioral categories
on the Corrected KDD is shown in Table 9. Classifica-
tion model is trained with 10-percentKDD dataset. The
classification rate is PCC = 93.40%. The performance
degrades due to the fact that no examples are present in the
training set corresponding to the 15 categories of attacks
that are present in the testing set. Most of these attacks are
misclassified as normal by our algorithm.

5.2.2 5-class prediction results

The confusion matrix for the 5-class behavioral cate-
gories on the Corrected KDD datasets is shown in
Table 10. The classification model is trained with the
10-percentKDD dataset. In this case most of the unseen
attacks are misclassified as normal category and PCC re-
duced to 92.39%.

5.2.3 All-attacks prediction results

The confusion matrix for the all-attacks categories on the
Corrected KDD is shown in Table 11. The classifica-
tion model is trained with 10%KDD dataset that includes
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Table 10: 5-class confusion matrix results of Corrected KDD dataset training with 10%KDD dataset

Predicted Class

Normal R2L DoS Probe U2R Sum Recall 1-Prc*

A
ct

ua
lc

la
ss Normal 60211 21 73 284 4 60593 0.9937 0.7386

R2L 13868 1115 3 1356 5 16347 0.0682 0.9378
DoS 6360 42 223349 102 0 229853 0.9717 0.9977
Probe 1036 0 443 2687 0 4166 0.6450 0.6067
U2R 49 11 0 0 10 70 0.1429 0.5263
Sum 81524 1189 223868 4429 19 311029

Re-substitution error=0.0761 PCC=92.39%

Note- *1-Precision

22 attack classes. The testing dataset Corrected KDD
include 37 attack classes. Since no examples are present
in the training set, objects belonging to the 15 categories
of attacks cannot be classified correctly and hence we ex-
clude them (18729 objects) from the testing dataset. We see
from the results that DoS and Probe attacks are well de-
tected but R2L and U2R attacks are detected very poorly.
It is apparent from that there are very few examples in the
training set corresponding to attacks belonging to R2L and
U2R categories compared to DoS, Probe and normal cat-
egories. The average execution time of classification for
Corrected KDD dataset is 1 minute.

5.3 Results on NSL-KDD dataset
NSL-KDD [19] is a data set for network-based intrusion
detection systems. It is the new version of KDD Cup 1999
intrusion detection benchmark dataset. In the KDD Cup
dataset, there are huge number of redundant records, which
can cause the learning algorithms to be biased towards the
frequent records. To solve this issue, one copy of each
record is kept in the NSL-KDD data set. Though, this
dataset is not the perfect representative of real networks,
still, it can be applied as an effective benchmark dataset to
compare different intrusion detection methods. NSL-KDD
included two datasets KDDTrain+ and KDDTest+ are
shown in Table 5.

5.3.1 2-class prediction results

The confusion matrix for the 2-class behavior category on
the KDDTest+ datasets is shown in Table 12. The classi-
fication model is trained withKDDTrain+ dataset. Clas-
sification rate of PCC = 98.34% in Table 12 indicate
good performance for our method. The performance for
the datasets is better compared to the KDD Cup dataset for
2-class classification.

5.3.2 5-class prediction results

The confusion matrix for the 5-class behavioral category of
KDDTest+ dataset is shown in Table 16. The classifica-
tion model is trained with KDDTrain+ dataset. Classifi-
cation rate of PCC = 98.39% in Table 16 indicate good
performance for our method datasets.

5.3.3 All-attacks prediction results

The confusion matrix for the all-attacks categories on
KDDTest+ dataset is shown in Table 13. Here, the clas-
sification model is trained withKDDTrain+ dataset. The
testing dataset KDDTest+ includes 37 attack classes and
training dataset KDDTtrain+ includes 15 attack classes.
Objects belonging to the 15 categories of attacks cannot
be classified correctly since no examples are present in the
training set and hence they are excluded (3751 objects)
from the testing dataset. Classification rate of PCC =
98.94% in Table 13 indicates good performance for our
method. The classification rates still remain better com-
pared to the KDD Cup dataset. The average execution time
of classification for KDDTest+ dataset is 0.07 minute.

5.3.4 Performance comparisons

The algorithms C4.5 [22], CART [23],
BayesianNetwork(BN) [24] and CN2 [25] rule-
based algorithm are executed for TUIDS dataset using
Weka [26]. Their results are compared with method as
given in Table 17 for TUIDS datasets. The performance
results of our method outperforms the other methods.

The performance results of our method for Corrected
KDD dataset is compared with the experiment results pro-
vided in [14] for methods C4.5 [14, 22], CART [14, 23],
BayesianNetwork(BN) [14, 24] andCN2 [14, 25] rule-
based algorithm as given in Tables 18-20. We see that in
terms of PCC our algorithm performs better than these al-
gorithms in most of the cases.

The performance rates of SVM-based IDS [15], a com-
bined method of hierarchical clustering and SVM method,
are shown in Tables 14 and 15 using Corrected KDD
dataset. The evaluation result using the Corrected KDD
dataset, shows that our algorithm performance rates are dis-
tinctly higher in the 5-class attack behavior and in new at-
tack detection. The accuracy rate of detection for DoS at-
tacks is 99.99% as shown in Table 14. In the detection of
snmpgetattack and snmpguess attacks, our method de-
tects 6457 and 2360 records respectively, whereas the other
method detected 0 and 1 record respectively as shown in
Table 15.
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Table 16: 5-class confusion matrix of KDDTest+ dataset trined with KDDTrain+ dataset

Predicted Class

Normal R2L DoS Probe U2R Sum Recall 1-Prc*

A
ct

ua
lc

la
ss Normal 9556 125 5 24 0 9710 0.9841 0.0195

R2L 157 2727 0 0 3 2887 0.9446 0.0482
DoS 14 1 7443 0 0 7458 0.9980 0.0009
Probe 16 5 2 2399 0 2422 0.9905 0.0099
U2R 3 7 0 0 57 67 0.8507 0.0500
Sum 9746 2865 7450 2423 60 22544

Re-substitution error=0.0161 PCC=98.39%

Note- *1-Precision

Table 17: Comparison among CART, C4.5, CN2, BN for all Attacks of TUIDS datasets

D
at

a
se

t

Attack
values

CART C4.5 CN2 BN Our Algorithm
Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc*

Pa
ck

et
le

ve
l

normal 0.9430 0.0540 0.9436 0.0507 0.9822 0.1442 0.7855 0.0215 0.9928 0.0014
smurf 0.6360 0.3862 0.6384 0.3828 0.0026 0.0000 0.9503 0.6135 0.9981 0.0403
1234 0.7289 0.1721 0.2353 0.5000 0.7900 0.2410 0.8400 0.2510 0.9883 0.0550
bonk 0.8600 0.3156 0.7500 0.2100 0.8300 1.0000 0.8950 0.2400 0.5714 0.2000
fraggle 1.0000 0.0000 1.0000 0.0000 1.0000 0.0011 0.9995 0.0012 1.0000 0.0000
jolt 0.9641 0.0199 0.9902 0.0000 0.9248 0.0752 0.9739 0.2905 0.9998 0.0424
nestea 0.7694 0.2310 0.0556 0.0000 6830 0.3100 0.8450 0.2010 0.9993 0.0027
newtear 0.6829 0.2390 0.6300 0.2190 0.5910 0.2110 0.9300 0.3400 0.9900 0.0000
oshare 0.7590 0.3270 0.8200 0.1040 0.6703 0.1401 0.8700 0.1031 1.0000 0.0000
saihyousen 0.8900 0.1590 0.2353 0.5000 0.7810 0.2110 0.8505 0.2030 0.9500 0.0952
syndrop 0.5910 0.3410 0.4550 0.1060 0.6900 0.1030 0.5450 0.1300 1.0000 0.0331
syn 1.0000 0.0000 1.0000 0.0000 1.0000 0.0011 0.9995 0.0012 0.9931 0.0014
teardrop 0.9641 0.0199 0.9902 0.0000 0.9248 0.0752 0.9739 0.2905 0.9759 0.0714
window 0.7910 0.3200 0.0556 0.0000 0.7500 0.2100 0.7480 0.2041 0.9881 0.2727
winnuke 0.6830 0.1520 0.5800 0.2170 0.5950 0.2140 0.6200 0.2100 1.0000 0.0000
xmas 0.7420 0.1320 0.7300 0.2380 0.6350 0.2100 0.7900 0.2100 0.9911 0.0632

PCC 98.30% 98.65% 95.67% 94.15% 99.42%

Fl
ow

le
ve

l

normal 0.9500 0.2310 0.8850 0.2200 0.8350 0.2101 0.7950 0.0067 0.9918 0.0018
smurf 0.8507 0.2030 0.7900 0.1220 0.8900 0.2020 0.8105 0.0821 0.6000 0.0103
1234 0.9863 0.0137 0.9944 0.0293 0.8546 0.1428 0.9850 0.4125 0.9999 0.0150
bonk 0.9800 0.1040 0.8700 0.0098 0.9300 0.2055 0.8600 0.0025 0.9961 0.0340
fraggle 0.9724 0.2917 0.8598 0.0628 0.8898 0.1113 0.8677 0.1160 0.9987 0.0029
jolt 0.8500 0.2010 0.2308 0.0000 0.8250 0.0712 0.9100 0.1090 0.8486 0.0474
land 0.9706 0.0404 0.8927 0.0389 0.8965 0.0268 0.9924 0.0905 0.9998 0.0000
nestea 0.9750 0.0250 0.9789 0.0000 0.8762 0.1086 0.9657 0.0639 0.5217 0.0021
newtear 0.7809 0.3105 0.8700 0.2110 0.9700 0.2510 0.6950 0.0910 0.7956 0.0062
saihyousen 0.8510 0.1700 0.9881 0.3197 1.0000 0.0000 1.0000 0.6147 0.7817 0.0059
syndrop 0.9205 0.1850 0.9769 0.0000 0.8900 0.0072 0.6900 0.2900 0.6515 0.0371
syn 0.9990 0.0016 0.9978 0.0011 0.9994 0.0011 0.9923 0.0000 0.9775 0.0214
teardrop 0.4500 0.0230 0.5000 0.0000 0.4900 0.0087 0.7800 0.0426 0.5769 0.0314
window 0.8950 0.0089 0.9400 0.2330 0.7800 0.2600 0.8100 0.1100 0.9832 0.3728
winnuke 1.0000 0.4583 0.9545 0.0132 0.7951 0.1164 0.9791 0.0835 0.9740 0.0000
xmas 0.7025 0.5088 0.8038 0.3553 0.8987 0.1744 0.9494 0.4700 0.9720 0.0538

PCC 98.69% 97.19% 95.26% 95.15% 99.01%

Po
rt

sc
an

Normal 0.9342 0.3527 0.5000 0.0078 0.7263 0.4219 0.8621 0.0069 0.9876 0.0024
SY N 0.8458 0.3910 0.8600 0.7610 0.6500 0.4510 0.5500 0.3290 0.9859 0.0040
ACK 1.0000 0.4583 0.9545 0.0132 0.8252 0.1164 0.9791 0.0835 0.9930 0.0252
FIN 0.7536 0.5088 0.8038 0.3553 0.9393 0.1744 0.9494 0.4700 0.9766 0.0153
xmas 0.8813 0.4510 0.6800 0.24100 0.7502 0.3160 0.6578 0.2715 0.9761 0.0143

PCC 87.45% 82.37% 78.76% 78.99% 98.31%

Note- *1-Precision
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Table 18: Comparison among CART, C4.5, CN2, BN for two-class on Corrected KDD dataset

CART C4.5 CN2 BN Our Algorithm
Values Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc*

Normal 0.9297 0.0511 0.9297 0.0511 0.8917 0.0640 0.9869 0.1835 0.9001 0.0269
Attack 0.9879 0.0169 0.9879 0.0145 0.9852 0.0259 0.9463 0.0033 0.9940 0.0237

PCC 97.65% 97.85% 96.69% 95.42% 97.57%

Note- *1-Precision

Table 19: Comparison among CART, C4.5, CN2, BN for five-class on Corrected KDD dataset
CART C4.5 CN2 BN Our Algorithm

Values Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc*

Normal 0.9379 0.0526 0.9442 0.0526 0.8708 0.0490 0.7946 0.0624 0.9007 0.0273
R2L 0.7813 0.1919 0.8153 0.1927 0.8451 0.3561 0.8871 0.4554 0.9110 0.2873
DoS 0.9984 0.0027 0.9997 0.0011 0.9993 0.0015 0.9811 0.0022 0.9999 0.0001
Probe 0.9081 0.2525 0.9482 0.0403 0.9585 0.0230 0.8778 0.3036 0.9875 0.0044
U2R 0.5526 0.4545 0.6711 0.0192 0.6754 0.12 0.7281 0.9195 0.7857 0.0517

PCC 97.37% 97.83% 96.54% 93.83% 97.57%

Note- *1-Precision

Table 20: Comparison among CART, C4.5, CN2, BN for all Attacks on Corrected KDD dataset

Attack values CART C4.5 CN2 BN Our Algorithm
Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc* Recall 1-Prc*

normal 0.9430 0.0540 0.9436 0.0507 0.9822 0.1442 0.7855 0.0215 0.9016 0.0257
snmpgetattack 0.6360 0.3862 0.6384 0.3828 0.0026 0.0000 0.9503 0.6135 0.8341 0.4792
named 0.0000 1.0000 0.2353 0.5000 0.0000 1.0000 0.0000 1.0000 0.8824 0.3750
xlock 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.8889 0.1111
smurf 1.0000 0.0000 1.0000 0.0000 1.0000 0.0011 0.9995 0.0012 1.0000 0.0000
ipsweep 0.9641 0.0199 0.9902 0.0000 0.9248 0.0752 0.9739 0.2905 0.9869 0.0033
multihop 0.0000 1.0000 0.0556 0.0000 0.0000 1.0000 0.0000 1.0000 0.7222 0.0714
xsnoop 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.7500 0.0000
sendmail 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.9412 0.2000
guess_passwd 0.9968 0.0566 0.9863 0.0242 0.9725 0.0270 0.9679 0.0404 0.9979 0.0002
saint 0.1236 0.0000 0.8302 0.2382 0.8003 0.2209 0.7024 0.3277 0.9402 0.6121
buffer_overflow 0.0000 1.0000 0.4545 0.4118 0.0000 1.0000 0.0000 1.0000 0.9545 0.0455
portsweep 0.8362 0.1111 0.9463 0.1604 0.7260 0.1376 0.9915 0.2252 0.9746 0.0000
pod 0.8391 0.0000 1.0000 0.4082 0.8391 0.0000 0.7701 0.4071 0.9655 0.0118
apache2 0.0000 1.0000 0.9937 0.1841 0.8476 0.0399 0.9786 0.0152 0.9987 0.0000
phf 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
udpstorm 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
warezmaster 0.9863 0.0137 0.9944 0.0293 0.8546 0.1428 0.9850 0.4125 0.9744 0.0013
perl 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
satan 0.9724 0.2917 0.8598 0.0628 0.8898 0.1113 0.8677 0.1160 0.3270 0.0582
xterm 0.0000 1.0000 0.2308 0.0000 0.0000 1.0000 0.0000 1.0000 0.7692 0.0000
mscan 0.9706 0.0404 0.8927 0.0389 0.8965 0.0268 0.9924 0.0905 1.0000 0.0000
processtable 0.9750 0.0250 0.9789 0.0000 0.8762 0.1086 0.9657 0.0639 1.0000 0.0000
ps 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.8125 0.0000
nmap 0.0000 1.0000 0.9881 0.3197 1.0000 0.0000 1.0000 0.6147 1.0000 0.0000
rootkit 0.0000 1.0000 0.0769 0.0000 0.0000 1.0000 0.0000 1.0000 0.6923 0.1818
neptune 0.9990 0.0016 0.9978 0.0011 0.9994 0.0011 0.9923 0.0000 1.0000 0.0000
loadmodule 0.0000 1.0000 0.5000 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
imap 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
back 1.0000 0.4583 0.9545 0.0132 0.7951 0.1164 0.9791 0.0835 1.0000 0.0000
httptunnel 0.7025 0.5088 0.8038 0.3553 0.8987 0.1744 0.9494 0.4700 0.9873 0.0000
worm 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
mailbomb 0.9516 0.0000 0.9982 0.0062 0.9998 0.0161 0.9992 0.0046 0.9998 0.0000
ftp_write 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
teardrop 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.4167 0.1667
land 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
sqlattack 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 1.0000 0.0000
snmpguess 0.9909 0.0004 0.9983 0.0144 0.3603 0.3812 0.3624 0.4718 0.9809 0.0000

PCC 97.25% 97.69% 96.16% 94.75% 97.25%

Note- *1-Precision
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Table 8: All-attacks confusion matrix for TUIDS datasets

D
at

a
se

t

Actual
Class

Predicted Class

Detected Present Recall 1-Prc*

Pa
ck

et
le

ve
l

normal 34790 35043 0.9928 0.0014
smurf 38652 38726 0.9981 0.0403
1234 19679 19902 0.9883 0.0550
bonk 387 678 0.5714 0.2000
fraggle 8622 8624 1.0000 0.0000
jolt 27659 27661 0.9998 0.0424
nestea 23758 23775 0.9993 0.0027
newtear 23537 23775 0.9900 0.0000
oshare 20000 20000 1.0000 0.0000
saihyousen 4338 4567 0.9500 0.0952
syndrop 53623 53627 1.0000 0.0331
syn 20230 20371 0.9931 0.0014
teardrop 8171 8373 0.9759 0.0714
window 39908 40386 0.9881 0.2727
winnuke 68248 68249 1.0000 0.0000
xmas 38771 39118 0.9911 0.0632
Sum 430373 432875

Re-substitution error=0.0058 PCC=99.42%

Actual
Class

Predicted Class

Detected Present Recall 1-Prc*

Fl
ow

le
ve

l

normal 36103 36402 0.9918 0.0018
smurf 18 30 0.6000 0.0103
1234 163408 163412 0.9999 0.0150
bonk 27196 27303 0.9961 0.0340
fraggle 38238 38288 0.9987 0.0029
jolt 1183 1394 0.8486 0.0474
land 2 2 0.9998 0.0000
nestea 48 92 0.5217 0.0021
newtear 109 137 0.7956 0.0062
saihyousen 197 252 0.7817 0.0059
syndrop 43 66 0.6515 0.0371
syn 20330 20797 0.9775 0.0214
teardrop 75 130 0.5769 0.0314
window 40947 41646 0.9832 0.3728
winnuke 29915 30714 0.9740 0.0000
xmas 38361 39465 0.9720 0.0538
Sum 396173 400131

Re-substitution error=0.0099 PCC=99.01%

Actual
Class

Predicted Class

Detected Present Recall 1-Prc*

Po
rt

sc
an

Normal 2414 2445 0.9876 0.0024
SY N 9612 9750 0.9859 0.0040
ACK 9875 9945 0.9930 0.0252
FIN 9551 9780 0.9766 0.0153
xmas 9505 9740 0.9761 0.0143
Sum 40957 41660

Re-substitution error=0.0169 PCC=98.31%

Note- *1-Precision

Table 9: 2-class Confusion matrix of Corrected KDD
with training 10%KDD dataset

Predicted Class

Normal Attack Sum Recall 1-Prc*

Actual Normal 60215 378 60593 0.9938 0.2508
class Attack 20155 230281 250436 0.9195 0.0016

Sum 80370 230659 311029

Re-substitution error=0.0660 PCC=93.40%

Note- *1-Precision

Table 11: All-attacks confusion matrix results of
Corrected KDD dataset training with 10%KDD

Predicted Class

Detected Present Recall 1-Prc*

A
ct

ua
lc

la
ss

normal 60207 60593 0.9936 0.0790
smurf 164089 164091 1.0000 0.0002
ipsweep 298 306 0.9739 0.0418
multihop 0 18 0.0000 1.0000
guess_passwd 3 4367 0.0007 0.2500
buffer_overflow 2 22 0.0909 0.5000
portsweep 340 354 0.9605 0.2075
pod 82 87 0.9425 0.1546
phf 1 2 0.5000 0.0000
warezmaster 2 1602 0.0012 0.0000
perl 0 2 0.0000 1.0000
satan 1280 1633 0.7838 0.1551
nmap 84 84 1.0000 0.0455
rootkit 2 13 0.1538 0.9962
neptune 57971 58001 0.9995 0.0004
loadmodule 0 2 0.0000 1.0000
imap 0 1 0.0000 1.0000
back 1068 1098 0.9727 0.0000
ftp_write 0 3 0.0000 1.0000
teardrop 12 12 1.0000 0.7857
land 6 9 1.6667 0.6667
warezclient 0 0 0.0000 1.0000
spy 0 0 0.0000 1.0000
Sum 285447 292300

Re-substitution error=0.0234 PCC=97.66%

Note- *1-Precision

Table 12: 2-class confusion matrix of KDDTest+ dataset
training with KDDTrain+

Predicted Class

Normal Attack Sum Recall 1-Prc*

Actual Normal 9531 179 9710 0.9816 0.0200
class Attack 195 12639 12834 0.9848 0.0140

Sum 9726 12818 22544

Re-substitution error =0.0166 PCC=98.34%

Note- *1-Precision
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Table 13: All attacks confusion matrix of KDDTest+

dataset

Predicted Class

Detected Present Recall 1-Prc*

A
ct

ua
lc

la
ss

normal 9609 9710 0.9895 0.0125
smurf 605 665 0.9098 0.0529
ipsweep 136 141 0.9845 0.0178
multihop 17 18 0.9444 0.2273
guess_passwd 1130 1231 0.9180 0.0238
buffer_overflow 20 20 1.0000 0.0000
portsweep 149 157 0.9490 0.0688
pod 39 41 0.9512 0.0000
phf 2 2 1.0000 0.0000
warezmaster 902 944 0.9555 0.0075
perl 2 2 1.0000 0.0000
satan 716 735 0.9741 0.1836
nmap 73 73 1.0000 0.0000
rootkit 12 13 0.9231 0.2500
neptune 4626 4657 0.9933 0.0008
loadmodule 2 2 1.0000 0.0000
imap 1 1 1.0000 0.0000
back 339 359 0.9443 0.3416
ftp_write 3 3 1.0000 0.0000
teardrop 5 12 0.4167 0.2857
land 7 7 1.0000 0.0000
Sum 18593 18793

Re-substitution error=0.0181 PCC=98.94%
Note- *1-Precision

Table 14: Comparison with SVM-based IDS for 5-class
over Corrected KDD dataset

Type
of
Traffic

SVM-based IDS Accuracy of
Our Algorithm
(%)Correctly

Detected
Miss
Detected

Accuracy
(%)

Normal 60166 427 99.29 90.07
DoS 228769 1084 99.53 99.99
Probe 4064 102 97.55 98.75
U2R 45 183 19.73 78.57
R2L 4664 11525 28.81 91.10
Overall 297708 13321 95.72 97.57

Table 15: Comparison with SVM-based IDS for attack de-
tection over Corrected KDD dataset

Attack
Name

Attack
present

Detection

SVM-based IDS Our
Algorithm

apache2 794 536 793
mailbomb 5000 4459 4999
processtable 759 578 759
mscan 1053 981 1053
saint 736 724 692
httptunnel 158 15 156
ps 16 3 13
sqlattack 2 2 2
xterm 13 5 10
sendmail 17 2 16
named 17 3 15
snmpgetattack 7741 0 6457
snmpguess 2406 1 2360
xlock 9 2 8
xsnoop 4 0 3
worm 2 0 0
Total 18729 39.04% 92.56%

6 Conclusion and future works
In this paper we provide a clustering based classification
method and applied it in network anomaly detection. We
have developed a subspace based incremental clustering
method which forms the basis for the classification method.
A training algorithm with a combination of unsupervised
incremental clustering and supervised classification algo-
rithm clusters a labeled training dataset into different clus-
ters which are then represented by their profiles. These pro-
files together with the class label behave as classification
rules. Prediction is done using a supervised classification
algorithm that matches testing objects with the cluster pro-
files for labeling them. The simple classification method
provided is effective in network anomaly detection as indi-
cated by the evaluation results on real life TUIDS intrusion
dataset and the benchmark intrusion datasets. The method
can be applied for other classification jobs as well.

At present, rules (profiles) are stored in a flat file. A de-
cision tree can be constructed based on the derived rules
to reduce search time. Investigation for dealing with test
instances that fit poorly with the supervised profiles may
increase the performance of the algorithm. Another pos-
sible area is rule refinement that may cause reduction in
number of attributes in each rule and also reduction of some
rules themselves. For instance, KDD 1999 data set contains
many similar training examples having different labels. In
such situation, similar rules may be derived to detect more
than one category of attacks.
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