
Informatica 37 (2013) 61–92 61

The Advantage of Careful Imputation Sources in Sparse Data-Environment of
Recommender Systems: Generating Improved SVD-based Recommendations

Mustansar Ali Ghazanfar and Adam Prugel-Bennett
School of Electronics and Computer Science, University of Southampton, Highfield Campus, SO17 1BJ, United Kingdom
E-mail: eng.musi@gmail.com, adp@ecs.soton.ac.uk,
Phone: +44 (023) 80594473; fax: +44 (023) 80594498

Overview paper

Keywords: SVD, recommender systems, imputation, collaborative filtering

Received: December 2, 2012

Recommender systems apply machine learning and data mining techniques for filtering unseen information
and can predict whether a user would like a given item. The main types of recommender systems namely
collaborative filtering and content-based filtering suffer from scalability, data sparsity, and cold-start prob-
lems resulting in poor quality recommendations and reduced coverage. There has been some work in the
literature to increase the scalability by reducing the dimensions of the recommender system dataset using
singular value decomposition (SVD); however, due to sparsity it results in inaccurate recommendations.
In this paper, we show how a careful selection of an imputation source in singular value decomposition
based recommender system can provide potential benefits ranging from cost saving, to performance en-
hancement. The proposed missing value imputation methods have the ability to exploit any underlying
data correlation structures and hence have been proven to exhibit much superior accuracy and performance
as compared to the traditional missing value imputation strategy—item average of the user-item rating
matrix—that has been the preferred approach in the literature to resolve this problem. By extensive experi-
mental results on three different dataset, we show that the proposed approaches outperform traditional one
and moreover, they provide better recommendation under new user cold-start problem, new item cold-start
problem, long tail problem, and sparse conditions.

Povzetek: Opisani so priporočilni sistemi, tj. sistemi, ki filtrirajo informacije s pomočjo metod strojnega
učenja.

1 Introduction

1.1 Recommender systems
There has been an exponential increase in the volume of
available digital information, electronic sources, and on-
line services in recent years. This information overload has
created a potential problem, which is how to filter and effi-
ciently deliver relevant information to a user. Furthermore,
information needs to be prioritised for a user rather than
just filtering the right information, which can create infor-
mation overload problems. Search engines help Internet
users by filtering pages to match explicit queries, but it is
very difficult to specify what a user wants by using simple
keywords. The Semantic Web, also provides some help
to find useful information by allowing intelligent search
queries; however it depends on the degree to which the web
pages are annotated. These problems highlight a need for
information extraction systems that can filter unseen infor-
mation and can predict whether a user would like a given
item. Such systems are called recommender systems [1, 2],
and they mitigate the aforementioned problems to a great
extent. Given a new item, recommender systems can pre-

dict whether a user would like this item or not, based on the
user preferences (likes—positive examples, and dislikes—
negative examples), observed behaviour, and information
(demographic or content information) about items/users.

An example of the recommender system is the Ama-
zon recommender engine [3], which can filter through
millions of available items based on the preferences or
past browsing behaviour of a user and can make per-
sonal recommendations. Some other well-known exam-
ples are Youtube (www.youtube.com) video recommender
service and MovieLens (www.movielens.com) movie rec-
ommender system, which recommend videos and movies
based on the person’s opinions. Recommender systems
helps E-commerce sites in increasing their sales by mak-
ing useful recommendation—items a customer/user would
most likely to consume [4]. In these systems, the history of
user’s interactions with the system is stored, which shape
user’s preferences. The history of the user can be gathered
by explicit feedback, where the user rates some items in
some scale, or by implicit feedback, where the user’s inter-
action with the system is observed—for instance, if a user
purchases an item then this is a sign that they like that item,

62 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

their browsing behaviour, etc.
There are two main types of recommender systems: col-

laborative filtering (CF) and content-based filtering rec-
ommender systems. Collaborative filtering recommender
systems [5, 6, 7, 8, 9, 10] recommend items by taking
into account the taste (in terms of preferences of items) of
users, under the assumption that users will be interested in
items that users similar to them have rated highly. Exam-
ples of these systems include the GroupLens system [9],
and Ringo (www.ringo.com). Collaborative filtering can
be classified into two sub-categories: memory-based CF
and model-based CF. Memory-based approaches [6] make
a prediction by taking into account the entire collection of
previous rated items by a user. Examples of these systems
include GroupLens recommender systems [9, 8]. Model-
based approaches use rating patterns of users in the train-
ing set, group users into different classes, and use ratings of
predefined classes to generate recommendation for an ac-
tive user1 on a target item2. Examples of these systems in-
clude item-based CF [11], Singular Value Decomposition
(SVD) based models [12, 13, 14, 15], bayesian networks
[16], clustering models [17, 18, 19, 20, 21, 22], and Kernel-
mapping recommender [23].

Content-based filtering recommender systems [24, 25,
26] recommend items based on the content information of
an item, under the assumption that users will like similar
items to the ones they liked before. In these systems, an
item of interest is defined by its associated features, for
instance, NewsWeeder [24], a newsgroup filtering system
uses the words of text as features. The textual description
of items is used to build item profiles. User profiles can be
constructed by building a model of the user’s preferences
using the descriptions and types of the items that a user
is interested in, or a history of user’s interactions with the
system is stored (e.g. user purchase history, types of items
they purchased together, etc.). The history of the user can
be gathered by explicit feedback or implicit feedback. Ex-
plicit feedback is noise free but the user is unlikely to rate
many items, whereas, implicit feedback is generally noisy
(error prone), but can collect a lot of training data [27]. In
general, a trade-off between implicit and explicit user feed-
back is used. Creating and learning user profiles is a form
of classification problem, where training data can be di-
vided into two categories: items liked by a user, and items
disliked by a user. Furthermore, hybrid recommender sys-
tems have been proposed [28, 29, 30, 31, 32], which com-
bine individual recommender systems to avoid certain lim-
itations of individual recommender systems.

Recommendations can be presented to an active user in
the followings two different ways: by predicting ratings
of items, a user has not seen before and by constructing
a list of items ordered by their preferences. The task of
predicting an unknown rating is trivial, where an algo-
rithm receives an unknown user-item pair and related users
(user-based CF [8]), items (item-based CF [11]), item and

1The user for whom the recommendations are computed.
2The item a system wants to recommend.

user content features (content-based filtering recommender
systems [33]), demographic features (demographic recom-
mender systems [30]), or all of the aforementioned parame-
ters (hybrid recommender systems [29]); and then predicts
how much the user would like the given item in some nu-
meric or binary scale. Different heuristics are used for pro-
ducing an ordered list of items, sometimes termed as top-N
recommendations [12]; for example, in collaborative filter-
ing recommender system this list is produced by making
the rating predictions of all items an active user has not yet
rated, sorting the list, and then keeping the top-N items the
active user would like the most.

1.2 Problem statement

A Recommender system (RS) consists of two basic entities:
users and items, where users provide their opinions (rat-
ings) about items. We denote these users by U = {u1, u2,
· · · , uM}, where the number of users using the system is
|U| = M , and denote the set of items being recommended
by I = { i1,i2, · · · , iN}, with |I| = N . The users will
have given ratings of some but not all of the items. We de-
note these ratings by (ri,u|(i, u) ∈ D), whereD ⊂ I×U is
the set of user-item pairs that have been rated. We denote
the total number of ratings made by |D| = T . Typically
each user rates only a small number of the possible items,
so that |D| = T � |I × U| = N ×M . It is not unusual
in practical systems to have T/(N ×M) u 0.01. The set
of possible ratings made by users can be thought of as ele-
ments of anM×N rating matrixRwith elements ri,j . The
recommender system’s task is to infer the elements inR for
which we do not have any data. As prediction accuracy of
a recommender system depends heavily on the available
number of examples, hence it would suffer in case where
the rating data is sparse.

The continuous increase of the users and items demands
the following properties in a recommender system: (1) ac-
curacy (2) scalability (3) maximum coverage (4) robustness
with sparsity [34, 35, 36, 37, 38]. A number of approaches
have been proposed to remedy the sparsity and scalabil-
ity problems associated with the CF, ranging from super-
vised classification techniques [39] to unsupervised clus-
tering techniques [17], to dimensionality reduction tech-
niques spanning a number of algorithms such as singular
value decomposition [12], low rank approximation using
matrix factorisation techniques [40], and principal compo-
nent analysis [41]. Remaining properties can be satisfied
by a hybrid approach resulting in increased coverage while
eliminating the sparsity problem.

Singular value decomposition methods have proved to be
successful in increasing the scalability of the CF [12, 42];
however approximating missing values by the item aver-
age, which has been heavily used in the literature, is not
a reasonable approach. Although, it reduces sparsity and
increases coverage, it will lead to lower recommendation
accuracy. To efficiently deal with the sparsity problem,
we have to address the basic question: “Why are the data

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 63

missing”? The following assumptions can be made about
the missing data: missing completely at random (MCAR),
missing at random (MAR), and not missing at random
(NMAR) [43]. MCAR assumes that the data is missing
for completely random reasons, and that the probability
of observing the value of a rating does not depend on the
observed or unobserved values of the dependent variable.
Most of the CF algorithms assume that missing data is
MAR [44], which means that probability of observing a
rating does not depend on the value of the rating. NMAR
occurs when the missingness is related to the unobserved
dependent variable, i.e. if probability of observing the rat-
ing of an item depends on the value of the rating. NMAR
assumes that there is a relationship between the missing-
ness and what would have been observed.

To make a clear distinction between these categories,
assume that Gi,j is an indicator function, which takes a
value of 1 if the subject i is observed at time j and 0
otherwise. If a study is conducted at n time-points, then
the dependent variable and missing data indicator vectors
can be represented by y1×ni = {yi,1, yi,2, · · · , yi,n} and
G1×n
i = {Gi,1, Gi,2, · · · , Gi,n} respectively. The specific

values in the missing data indicator vector, Gi,j , is equal to
1 when yi,j is observed and 0 otherwise. Based on the G,
the dependent variable, y, can be divided into two classes:
observed, yo, and unobserved or missing, ym. MCAR as-
sumes that missing data indicator Gi are independent of
both yoi and ymi . MAR assumes that missing data indicator
Gi are independent of ymi ; however, they are related to the
observed dependent variable vector, i.e. yoi . An example
of MAR is to drop some subjects from a study when their
value falls below a certain threshold. For instance, in an
election survey if a subject has age less than 18 then they
are drop out of the survey. NMAR assumes that there is a
relationship between the value of ymi and the missingness,
Gi,j . MAR assumption is not true in recommender sys-
tems; for example, in MovieLens recommender system rat-
ing distribution is skewed towards the higher ratings, which
indicates that users are much more likely to watch and rate
movies they think they will like rather than entering rating
for the movies they do not like, resulting in higher bias to-
wards observing ratings with high value. Other researchers
have claimed that this bias can results in erroneous recom-
mendations [44].

The main claim of this work is that imputation meth-
ods to deal with the missing values, if effectively used
prior to applying SVD in recommender systems, can pro-
vide potential benefits ranging from cost saving, to per-
formance enhancement. The proposed missing value im-
putation methods have the ability to exploit any underly-
ing data correlation structures and hence are proven to ex-
hibit much superior accuracy and performance compared
to the traditional missing value imputation strategy that
has been the preferred approach in the literature to resolve
this problem. This work, presents a comparative study
of the missing values in the user-item matrix of a recom-
mender system and their subsequent impact upon the accu-

racy and cost has been investigated. The empirical study
has shown that the results are dataset dependent; how-
ever rather than using the traditional approach to fill the
user-item rating matrix or merely ignoring the missing val-
ues, which have heavily been used in the literature, ro-
bust and advanced approaches can give considerable per-
formance benefits in the (1) SVD based recommendations
(2) iterative SVD (3) and CF applied over the reduced
dataset. We evaluate our algorithms on the MovieLens
(www.grouplens.org/node/73) (100K ratings and 1M rat-
ings) and FilmTrust (http://trust.mindswap.org/FilmTrust)
datasets.

The rest of the paper has been organised as follows.
Section 2 discusses the related work in detail. Section 3
presents the motivations and advantages of using the pro-
posed algorithm. Section 4 sheds light on the background
concepts related to the SVD. Section 5 outlines the pro-
posed algorithms. Section 6 describes approaches used to
approximate the missing values in the sparse user-item rat-
ing matrix. Section 7 describes the data set and metrics
used in this work. Section 8 presents results comparing
the performance of the proposed algorithms with the tradi-
tional one. Section 9 discusses when and how much im-
putation is sufficient to achieve good accuracy. Section 10
gives a detailed discussion of the work, and finally Sec-
tion 11 concludes the work.

2 Related work
The Singular Value Decomposition (SVD)-based approach
for solving the recommendation problem was first intro-
duced by [39]. [12] presented a detailed analysis of the
behaviour of SVD-based recommender systems. Vari-
ous algorithms combining the SVD-based approach with
the item-based CF have been advocated [45, 46, 47, 48];
for example, [46] combined SVD with the item-based CF
and claimed that their approach outperformed the conven-
tional item-based CF. An example of using the SVD-based
approach with demographic data has been presented in
[13], where the authors applied SVD over the user-item
rating matrix and demographic data of users and items,
and claimed that a system consisting of a linear combi-
nation of SVD-based demographic correlation and SVD-
based (item-based) CF, increases the accuracy of the rec-
ommender system. [42] suggested an incremental SVD
model building approach and claimed that it is more scal-
able than the conventional SVD-based recommender sys-
tems, while producing recommendations with same accu-
racy. All of the aforementioned approaches used the item
average of the data matrix to approximate the missing val-
ues, which may destroy the covariance structure of the data,
resulting in inaccurate recommendations.

Another way of applying SVD is presented in [49],
where the authors applied Principal Component Analysis
(PCA)3 over a so-called ‘gauge-set’ of items—set of items

3PCA is a closely related concept to SVD, which reduces the dimen-

64 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

rated by every user in the system. Although it may reduce
sparsity, getting this dataset is hard in real-life scenarios,
and also it may lead to potential loss of information as we
are ignoring ratings not in the gauge-set. Sometimes, case
deletion strategy [41] is used for dealing with the missing
values where all variables with missing values are omitted
in the data matrix resulting in loss of information, which
is not desirable. Some other well-known approaches to ap-
proximate the missing values are filling by zero and scaling
the known entries as suggested by [50].

The missing values have been handled by the Expected
Maximisation (EM) algorithm [51] by [52], [53], [54],
[41], [55] and [14]. In this approach, the predictions gener-
ated by the current model are replaced by the previous one
and the procedure is repeated until some stopping criteria
are reached; for example, the error between two successive
models becomes less than a threshold. The problem with
this approach is that the final error and the convergence is
highly dependent on the method used to approximate the
initial values. [53] showed the convergence behaviour of
the EM algorithm by approximating the missing entries by
zeros [50] and using the gauge-set [49]. Furthermore, they
proposed an approach by starting with a large rank approx-
imation and gradually reducing the rank of SVD in each
iteration of EM.

Netflix prize competition [56] has made extensive use
of low rank approximation—matrix factorisation [57, 58,
59, 40, 60, 61] and SVD based scheme—for example in
[62], the authors proposed a CF approach based on the
global cost function. They proposed an accurate SVD
based model that integrates implicit feedback. They also
proposed a framework for integrating neighbourhood based
and SVD based approaches and claimed that it is more ac-
curate than other approaches. In [63], the authors removed
global effect from the dataset by normalising it using differ-
ent heuristics. Afterwards they simultaneously derived in-
terpolation weights for all neighbours by solving an optimi-
sation problem. They claimed that this approach is scalable
and gives more accurate results than conventional neigh-
bourhood based approach over Netflix dataset. In [54] the
author proposed a model to maximise the log-likelihood
of the available ratings using EM algorithm. These ap-
proaches often lead to over-fitting [64] and need extensive
parameters tuning which may not be pragmatic or desired
in certain cases.

Various SVD based approaches have been combined for
improving the prediction accuracy; for example, in [58],
the author proposed a solution for Netflix prize by blend-
ing 107 individual results, and won the Netflix 2007 prize.
A similar approach is presented in [65], where the au-
thor proposed a linear combination of SVD based predic-
tor, KMeans clustering, combining SVD with K-NN, post
processing SVD with ridge regression, and others (total 72
predictors) and claimed that it gave 7.04% improvement in
terms of Root Mean Square Error (RMSE) over Netflix’s

sionality by projecting high dimensional data along a smaller number of
orthogonal dimensions.

Cinematch4 on Netflix prize competition. Another example
is proposed in [66], where the authors used a linear com-
bination of SVD, association rules, and other approaches
for making accurate predictions. In [59], the authors com-
bined (using ensemble methods) different variants of ma-
trix factorisation, such as, regular matrix factorisation, and
non-negative matrix factorisation, and claimed that com-
bined approach gave 7% improvement, in terms of RMSE ,
over the Netflix CineMatch recommender system. Though,
theoretically, we can increase accuracy of a recommender
system by these methods, but practically it is not pragmatic
[67]. Furthermore, these approaches completely miss other
metrics, such as, coverage, and scalability proposed in [68].
In this work, we have focused on the SVD-based recom-
mender systems [12, 13, 14, 47, 48] rather than matrix fac-
torisation techniques.

The most similar work with ours is that undertaken
by [14], where the authors used an item-item imputation
technique in addition to the user-average over the Netflix
dataset. Our work; however, differs from theirs in a num-
ber of areas, as follows: (1) they only used an item-item
imputation while we are using 18 different approaches to
analyse the behaviour of SVD and EM algorithms; (2) they
only used one dataset; however, we are using three differ-
ent datasets and furthermore, we find out that the results are
highly dataset-dependent; (3) they claimed that the item-
item imputation scheme is outperformed by the average,
which is in contrast with our findings; and (4) we are ap-
plying CF over the reduced dataset; however, they did not
apply it. In summary, their focus was on the efficient im-
plementation of Lanczos, power iteration, and other algo-
rithms rather than imputation; however, we are analysing
the behaviour of the SVD-based algorithms under different
recommender system conditions—cold-start, long tail, and
sparsity problems.

The imputation has been used in collaborative filtering
domain. The idea of using imputation in collaborative fil-
tering domain was proposed by [16], where the authors
used some default votes to decrease the sparsity of the user-
item rating matrix. The author claimed that using the de-
fault votes in the user-based CF outperforms the conven-
tional user-based CF in terms of accuracy. This idea has
further been used by many researchers in various ways to
approximate the missing values in the user-item rating ma-
trix; for example, [28] used a Naive bayes classifier trained
on the content profiles of users, [69] and [70] used infor-
mation filtering agents or “Filterbot”, [71] used a linear
combination of user- and item-based CF, [72] used a re-
cursive CF algorithm, and [73, 74] used several methods.
The problem with these approaches is that they are not very
scalable. Our approach is different from these because we
are doing imputation in SVD domain and CF is applied
over the dataset reduced by employing SVD. Furthermore,
imputation has been used in other domains; for example,
for Epistatic miniarray profiles [75].

Hybrid recommender systems have widely been used in

4Cinematch is the Netflix proprietary recommender system.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 65

the literature; for example, Pazzani [30] used a machine
learning approach to build a classifier based on the demo-
graphic data about a user. The author used Winnow to
extract features from user’s home page to build the user
model. Fab [76] employed a meta-level hybrid system
[29], where first a content-based filtering using Rocchio’s
method [77] was applied to maintain a term vector model
that describe the user’s area of interest. This model was
then used by CF to gather documents on basis of interest of
community as a whole. LIBRA [33] a book recommender
system, downloaded content information about book (meta
data) from Amazon, and built user models using a Naive
bayes classifier. In [31], the author proposed an on-line
hybrid recommender system for news recommendation by
dynamically adjusting weights to content-based filtering or
CF.

Content-based recommender systems have also been
combined with CF for reducing the sparsity of the dataset
and producing accurate recommendations; for example in
[36], the authors proposed a unique cascading hybrid rec-
ommendation approach by combining the rating, feature,
and demographic information about items, and claimed
that their approach outperforms other algorithms in terms
of accuracy and coverage under sparse dataset. In [35],
the authors combined Naive bayes classifier with CF us-
ing switching hybrid approach, and claimed that their
algorithm provides better performance than other algo-
rithms. Information filtering agents have been integrated
with CF in [78, 69], where the author proposed a frame-
work for combining the CF with content-based filtering
agents. They used simple agents, such as spell-checking,
which analyse a new document in the news domain and rate
it to reduce the sparsity of the dataset. Again, the problem
with these approaches is that, they are not very scalable.

Various hybrid recommender systems have been pro-
posed using ontology and CF [79, 80, 81, 82, 83] to over-
come the sparsity problem of the user-item rating matrix.
For example in [79], the authors used domain specific on-
tologies to enhance the similarity between the items in
the item-based CF. They linearly combine the similari-
ties between items based on the user-item rating matrix
and structure semantic knowledge about items to gener-
ate recommendations, and claimed that this semantically
enhanced approach outperform item-based CF particularly
given sparse dataset. The problems with these approaches
in that they require laborsome knowledge engineering tech-
niques to capture the domain specific knowledge and on-
tologies, which may not be pragmatic given millions of
items that is common with E-commerce domains.

3 Motivation and advantages of the
proposed algorithm

The motivation of our aim is to develop an efficient al-
gorithm for producing accurate recommendations under
sparse datasets at low cost. From this line of the research,

we propose algorithms that satisfies the following proper-
ties:

3.1 Overcome sparsity problem

In many commercial recommender systems like Amazon;
it is not unusual, even for active customer to provide
ratings well under < 1% of all the available products.
Furthermore, an increase in the number of items in the
database will decrease the density of each user with these
items. The performance—accuracy and coverage—of con-
ventional collaborative filtering algorithms suffer the most
under sparse conditions, because they rely on the similar
users and items. In the worse case, we might find very few
or no similar user (or item) as the correlation coefficient
between two users (or items) can be defined if they have
some ratings in common. If there are only a few common
items, the correlation coefficient is poorly approximated,
and thus less reliable recommendations are produced. The
proposed algorithms do not suffer from sparsity because,
they (1) use a suitable imputation source to approximate all
the missing values (2) apply SVD over the dense user-item
rating matrix, which captures the important latent relation-
ship between users and items, leading to reduced sparsity
and 100% coverage.

3.2 Accurate recommendations

An important task for a recommender system is to find good
items and to ameliorate the quality of the recommendation
for a customer. If a customer trusts and leverages a recom-
mender system, and then discovers that they are unable to
find what they want then it is unlikely that they will con-
tinue with the system. Consequently, the most important
task for a recommender system is to accurately predict the
rating of the non-rated user/item combination and recom-
mend items based on these predictions. Our algorithms
give more accurate recommendations as compared to the
traditional SVD-based approaches and collaborative filter-
ing.

3.3 Low on-line cost

The proposed SVD takes O(1) time to generate a predic-
tion which, is less than typical approaches. The complexity
of the item-based and user-based CF, applied over the orig-
inal user-item rating matrix, is O(MN2) and O(NM2)
respectively5. When we reduce the user-item rating ma-
trix to k dimensions using SVD, then the complexity re-
duces to O(kN2), and O(kM2), in case of user-based and
item-based CF respectively. This reduced complexity will
decrease the memory requirement and on-line processing
time.

5We assume that SVD and the similarities between items and users are
computed in off-line fashion.

66 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

3.4 Search efficiency: scalability
To engage visitors in a web-site or turn casual surfers into
customer, a recommendation algorithm has to make rec-
ommendations quickly and accurately. In a database, with
millions of ratings, it becomes very difficult to find the sim-
ilar users or items using memory based approaches. By
employing the imputed SVD, the dimension of the origi-
nal user-item matrix can be reduced, and recommendations
can be generated directly or CF can be applied over the re-
duced dimensions, making this approach suitable for high
dimensional dataset.

3.5 Overcome cold-start problems
Generally, while testing recommender systems, a dataset is
used where some sets of ratings are treated as unseen while
the other ratings are used for learning. The unseen data
are then used to test the performance of the algorithm. To
obtain accurate results, datasets are usually selected with
users that have made a relatively high number of ratings.
However, in real applications, the datasets are often highly
skewed; for example, a large number of users may have
made only a small number of ratings and a large number
of items may have received very few ratings. These are im-
portant scenarios in practical systems as making reasonable
recommendations to new users can be crucial in attracting
more users. There are two important cold-start scenarios as
described below [84]:

– New user cold-start problem: When a new user enters
the system, initially the system does not have enough
data for that user, and hence the quality of the recom-
mendations would suffer, a potential problem called
the new user cold-start problem [34].

– New item cold-start problem: When a new item is
added to a system, then initially it is not possible to
get a rating for that item from a significant number of
users, and consequently the CF recommender systems
would not be able to recommend that item effectively.
This problem is called the new item cold-start problem
[34].

The Proposed imputation methods provide better recom-
mendations than the conventional approach under the cold-
start scenarios.

3.6 Overcome long tail problem
Newly introduced or unpopular items having only a few
ratings can create a potential problem for a recommender
system. Many recommender systems; for example, the CF
ones, ignore these items or cannot produce reliable recom-
mendations for these items. This problem is called the long
tail problem [17]. As the majority of the items in a recom-
mender system generally falls into this category [17], there
is a need to develop algorithms which can filter, person-
alise, and accurately recommend from the huge amount of

items available in the long tail. We show that the proposed
imputation methods provide better recommendations than
the conventional approach under the long tail scenario.

4 Background

Singular Value Decomposition (SVD) [85, 86] is a matrix
factorisation technique that takes an m× n matrix A, with
rank r and decomposes it into three component matrices as
follows:

SVD(A) = U × S × V T. (1)

U and V (V T is for the transpose of V) are orthogonal ma-
trices with dimensions m×m, and n×n respectively, and
S, called the singular matrix, is a m × n diagonal matrix
consisting of non-negative real numbers. These matrices
reflect the decomposition of the original matrix into lin-
early independent vectors (factor values). The set of initial
r diagonal values of S (s1, s2, · · · , sr) are all positive with
s1 ≥ s2 ≥ s3, · · · ,≥ sr. The first r columns of U are
eigenvectors of AAT and represent the left singular vectors
of A. Similarly, the first r columns of V are eigenvectors
of ATA and represent the right singular vectors of A. The
best low-rank approximation of matrix A is obtained by re-
taining the first k diagonal values of S, by removing r − k
columns from U , and by removing r − k rows from V ,
which can be represented as follows:

Ak = Uk × Sk × V T
k . (2)

By keeping only the k largest singular values of S, the ef-
fective dimensions of the SVD matrices U , S, and V be-
comem×k, k×k, and k×n respectively. The best-k rank
approximation of matrix A with respect to the Frobenius
norm can be represented by:

||A−Ak||2F =
∑
i,u

(aiu −
∑
k

Uuk × Sk × V T
ki) (3)

SVD can be applied over the user-item rating matrix, of di-
mensions M ×N , generated by a recommender system. It
assumes that there is some latent structure—overall struc-
ture that relates to all or most items (or users)—in the ma-
trix that is partially obscured by variability in ratings as-
signed to items (or assigned by users). This latent struc-
ture can be captured by transforming the matrix in low di-
mensions. After transformation, users and items can be
represented by a vector in the k-dimensional space. The
matrix product Uk.

√
Sk

T
represents M (pseudo) users and√

Sk.V
T
k represents N (pseudo) items in the k-dimensional

space. For example, in a movie domain, each element of√
Sk.V

T
k (i) (1 ≤ i ≤ N) can be a feature of movie i,

such as whether it is a horror movie, whether it is rated
PG-13 or not, etc. Similarly, the corresponding element of
Uk.
√
Sk

T
(u) (1 ≤ u ≤ M) shows whether the user likes

these feature in movies. A rating assigned by a pseudo-
users u on item i is denoted by r′i,u. The prediction r̂i,u

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 67

for the uth user on the ith item can be computed by the
following equation:

r̂i,u = Uk.
√
Sk

T
(u).

√
Sk.Vk

T(i). (4)

If we normalise the user-item rating matrix by subtracting
the respective user average (ri) from a rating, then a pre-
diction is given by the equation:

r̂i,u = ri + Uk.
√
Sk

T
(u).

√
Sk.Vk

T(i). (5)

5 Proposed algorithms

5.1 Imputed SVD (Algorithm 1)
We used various imputation methods, F (discussed in the
next section), for approximating the missing values in the
user-item rating matrix R and then applied SVD for reduc-
ing the dimensions of the matrix. The pseudo code to gen-
erate improved recommendations is given in Algorithm 1.
In step 7, which serves as a pre-processing step, we fill in
the missing values in the initial sparse user-item rating ma-
trix by an imputation source. In step 8, we normalise the
filled rating matrix by subtracting the respective user aver-
age from the filled rating matrix. In step 9, we reduce the
dimensions of the filled normalised rating matrix by ap-
plying SVD. In the IMPUTEDERROR procedure, from steps
12 to 26, we find the optimal number of dimensions (k)
by changing the dimension from 1 to 50 and observing the
corresponding MAE.

5.2 Collaborative filtering applied over the
reduced dataset (Algorithm 2)

We can apply the user- and item-based CF over the matrix
components generated by the IMPUTE procedure. Algo-
rithm 2 outlines the steps required to apply CF over the
reduced data matrix. The similarity between two items can
be found by Adjusted cosine or cosine measure [34]. We
used Adjusted cosine similarity because it gave us more ac-
curate results. The similarity between two items ix and iy
can be found by measuring the cosine of angle computed
over k users as follows:

sim(ix, iy) =

k∑
u=1

r′ix,u.r
′
iy,u√√√√ k∑

u=1

r′2ix,u

k∑
u=1

r′
2
iy,u

, (6)

where r′ix,u and r′iy,u are the ratings assigned by user u
on items ix and iy respectively. The ratings shown by r′

are obtained from the matrix product
√
Sk

T
.Vk, which rep-

resents the rating given by k (pseudo) users on N items6.
6We do not need to subtract the respect user average while measuring

the similarity as the matrix has already been normalised prior to applying
SVD.

Algorithm 1 : ImpSvd; Impute the matrix, compute
SVD, and generate recommendations
Input: R, the user-item rating matrix; f , an imputation
method
Output: error∗, the minimum MAE; k∗, the optimal num-
ber of dimensions for SVD

1: procedure SVDRECOMMENDATION(R, f)
2: (U, S, V)=IMPUTE(R, f)
3: (error∗, k∗)=IMPUTEDERROR(U, S, V)
4: return (error∗, k∗)
5: end procedure

6: procedure IMPUTE(R, f)
7: Fill in the missing values in the user-item rating

matrixR by an imputation method f . Call the resulting
dense matrix Rf .

8: Normalise the dense matrix (Rf) and call it RN .
9: Apply SVD over the normalised matrix RN and

find three components of the matrix as shown in equa-
tion 1. Call these matrices U , S, and V .

10: return (U, S, V)
11: end procedure

12: procedure IMPUTEDERROR(U, S, V)
13: error∗ ← 10
14: k∗ ← 1
15: for k ← 1, 50 do
16: (Uk, Sk, Vk)=DIMREDUCE(U, S, V, k)
17: Compute Uk.

√
Sk

T
and
√
Sk.Vk

T

18: Make predictions using equation 5
19: Compute MAE for all predictions, call this

errornew
20: if errornew < error∗ then
21: error∗ ← errornew
22: k∗ ← k
23: end if
24: end for
25: return (error∗, k∗)
26: end procedure

27: procedure DIMREDUCE(U, S, V, k)
Perform dimensionality reduction step:

28: Find Sk by setting Si,i = 0 for i > k
29: Find Uk by removing r − k columns from U
30: Find Vk by removing r − k rows from V
31: return (Uk, Sk, Vk)
32: end procedure

68 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

We used the significance weighting schemes as proposed
by [87] while measuring the similarity between users (or
items).

The similarity between two users can be found by the
Pearson correlation or the cosine of angle [88]. We used
the cosine of angle, which gave us more accurate results
than the Pearson correlation. The similarity between two
users can be found by the cosine of angle, computed over
k items, as follows7:

sim(ua, ub) =

k∑
i=1

r′i,ua
.r′i,ub√√√√ k∑

i=1

r′2i,ua

k∑
i=1

r′
2
i,ub

, (7)

where r′i,ua
and r′i,ub

are the ratings assigned on item i
by users ua and ub respectively. The ratings shown by r′

are obtained from the matrix product Uk
√
Sk

T
, which rep-

resents the ratings given by M users on k (pseudo) items.
In the case of item-based CF, the prediction for an ac-

tive user ua on target item it is made by using the adjusted
weighted sum formula as follows:

r̂it,ua
= rua

+

l∑
i=1

sim(i, it)× r′i,ua

l∑
i=1

|sim(i, it)|

, (8)

where l represents the l most similar items against a target
item, found after applying equation 6.

In the case of the user-based CF, the prediction for an ac-
tive user ua on target item it is made by using the adjusted
weighted sum formula as follows:

r̂it,ua = rua +

l∑
u=1

sim(u, ua)× (r′it,u − r̄u)

l∑
i=u

|sim(u, ua)|

, (9)

where l represents the l most similar users against an active
user, found after applying equation 7.

Individual predictions made by the user- and item-based
CF can be combined linearly. We expect that combining
these two approaches will result in an increase in the ac-
curacy, as both of them focus on different kinds of rela-
tionships. Let r̂ubi,u and r̂ibi,u represent the prediction gener-
ated by the user- and item-based CF respectively. The final
prediction is a linear combination of these predictions as
follows:

r̂i,u = α× r̂ubi,u + β × r̂ibi,u, (10)

where parameters α and β can be found over the validation
set. We call this algorithm ImpSvdhybridCF .

7In this case, we do not normalise the user-item rating matrix prior to
applying SVD.

Algorithm 2 : ImpSvdCF; Apply SVD over the reduced
dataset
Input: R, the user-item rating matrix; f , an imputation
method; flag, a variable to decide between the user- and
item-based CF
Output: error∗, the minimum MAE; k∗ and neigh∗, the
optimal number of dimensions and neighbours for CF

1: procedure CFRECOMMENDATION(R, f , flag)
2: (U, S, V)=IMPUTE(R,f)
3: Start grid search over dimensions, k and neigh-

bourhood size, neigh to find the optimal number of
dimensions, k∗ and neighbourhood size, neigh∗

4: (Uk, Sk, Vk)=DIMREDUCE(U, S, V, k)
5: if flag = 1 then
6: r̂ibi,u = ImpSvdibCF (Uk, Sk, Vk, neigh)
7: else
8: r̂ubi,u = ImpSvdubCF (Uk, Sk, Vk, neigh)
9: end if

10: Store the minimum MAE, error∗; the optimal
number of dimensions, k∗; and the optimal number of
neighbours, neigh∗

11: End grid search
12: return (error∗, k∗, neigh∗)
13: end procedure

14: procedure ImpSvdibCF (Uk, Vk, Sk, l)
15: Find the matrix product

√
Sk.Vk

T

16: Find the similarity between two items using equa-
tion 6

17: Isolate l most similar items to the target item
(neighbours of the target item) found using equation 6

18: Make a prediction, r̂ibi,u, using equation 8
19: return r̂ibi,u
20: end procedure

21: procedure ImpSvdubCF (Uk, Vk, Sk, l)
22: Find the matrix product Uk.

√
Sk

T

23: Find the similarity between two users using equa-
tion 7

24: Isolate l most similar users to the active user
(neighbours of the active user) found using equation 7

25: Make a prediction, r̂ubi,u, using equation 9
26: return r̂ubi,u
27: end procedure

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 69

5.3 Iterative SVD: Applying SVD combined
with EM algorithm (Algorithm 3)

Algorithm 3 : ItrSvd; Apply SVD in EM fashion
Input: R, the user-item rating matrix; f , an imputation
method; ϑ, threshold value to terminate the EM algorithm
Output: t, the number of iterations in the EM algorithm;
error∗, the MAE observed after the EM algorithm con-
verges

1: procedure ITERATIVERECOMMENDATION(R, f , ϑ)
2: t← 0
3: error(t) ← 0
4: repeat
5: (U, S, V) = IMPUTE(R, f)
6: (Uk∗ ,Vk∗ ,Sk∗)=DIMREDUCE(U, S, V, k∗) ##
k∗ is the optimal number of dimensions learned
through the validation set

7: Compute Uk∗
√
Sk∗

T
,
√
Sk∗Vk∗

T

8: Call the current SVD modelMk∗

9: Make predictions using equation 5
10: Compute the MAE forMk∗ , call it errornew
11: t← t+ 1
12: error(t) ← errornew
13: f ←Mk∗

14: until |error(t) − error(t−1)| < ϑ
15: error∗ ← error(t)

16: return t, error∗
17: end procedure

The ItrSvd (Algorithm 3) uses the combination of SVD
and Expected Maximisation (EM) [51] to estimate the
missing values. As SVD calculations require the filled ma-
trix, missing values are replaced by an imputation method
prior to the k most effective eigenvalues being selected. In
each iteration of the EM algorithm, the missing values are
replaced by the corresponding values in the previous esti-
mated model in the expectation step, i.e.

R
(t)
iu =

{
Riu if iu ∈ D ,
[
∑
k Uk × Sk × V T

k]
(t−1)
iu

otherwise,
(11)

and in the maximisation step the aim is to find the model
(M(t)) parameters that minimises∑

iu

(R
(t)
iu −Miu)2, (12)

where Miu = [
∑
k Uk × Sk × V T

k]
iu

. The algorithm
keeps alternating between expectation and maximisation
(SVD computation) steps, until it converges (the change
in the MAE between two iterations becomes less than a
pre-determined threshold (0.001)). This algorithm usually
gives more accurate results after convergence; however, its
drawback is that it is highly sensitive to the noise in the
dataset and it only considers the global data correlation,
which means that in a locally correlated dataset, it will lead
to higher estimation error.

6 Proposed approaches to
approximate the missing values in
the user-item rating matrix

Our main focus is on careful selection of imputation
sources for approximating the missing values in the user-
item rating matrix that can lead to different results. Our
claim is that, sensible approaches used for filling the miss-
ing values, prior applying the SVD, can lead to significant
performance increase. The imputation approaches used are
discussed below:

– Filling by zero (zeros): We fill the missing values in
the user-item rating matrix by zero. This approach is
very simple, and computational efficient, which make
it attractive. This approach does not take into account
the underlying correlation structure of the data affect-
ing the data variance that is generally high. Subse-
quently, if we have a large number of missing values,
then this imputation approach can results in inaccurate
recommendations.

– Filling by random number (Rand): We fill the miss-
ing values in the user-item rating matrix by a random
number generator function that generates a random
number in the range of 1 to 5 in the case of Movie-
Lens and 1 to 10 in the case of FilmTrust dataset. Its
advantages and disadvantages are the same as those of
Zero.

– Filling by normal distribution (NorU , NorI): We fill
the missing values in the user-item rating matrix by
normal distribution N (µ, σ2). Here we denote NorU
to represent the case where the corresponding user av-
erage and standard deviation of ratings are used as
µ and σ respectively. Similarly, we denote NorI to
represent the case where the corresponding item aver-
age and standard deviation of ratings (given by other
users) are used as µ and σ respectively.

– Filling by uniform distribution (UniformDist): We fill
the missing values in the user-item rating matrix by
uniform distribution U(a, b), where a = 1, b = 5
and a = 1, b = 10 for the MovieLens and FilmTrust
dataset respectively.

– Filling by item average (ItemAvg): In this approach
an unknown rating is replaced by the average rating
given by all the users in the training set. If no one has
rated that item it is replaced by zero. This approach
serves as a baseline for our experimental evaluation,
as it has been the preferred approach to resolve this
problem; for example it has been used in [12, 13, 46].

– Filling by user average (UserAvg): In this approach
an unknown rating for an active user is replaced by
the average rating given by the active user in the train-
ing set. If the active user has rated no item, then it is

70 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

replaced by zero. This approach is very simple how-
ever, it can distort the shape of the distribution and
can reduce the variance of the data. We use the term
conventional methods for the ItemAvg and UserAvg
imputation sources.

– Filling by the average of user and item averages
(UserItemAvg): In this approach an unknown rating
is replaced by averaging the user’s average rating and
item’s average rating.

– Filling by user-based CF (UBCF): In this approach an
unknown rating is predicted by using user-based CF8.
In user-based CF there are three main steps to make
a prediction: (1) find all the users who have rated the
target item, (2) find the similarity of the users with the
active user, and isolate these users also called neigh-
bours of the active user, (3) make prediction by ad-
justed weighted sum of the ratings provided by neigh-
bours. Despite their simplicity they give accurate pre-
dictions.

– Filling by item-based CF (IBCF): In this approach, an
unknown rating is predicted by using item-based CF.
In Item-based CF there are three main steps to make
a prediction: (1) find all the items rated by the active
user, (2) find the similarity of these items with the tar-
get item, and isolate the items also called neighbours
of the target item, (3) make prediction by adjusted
weighted sum of the ratings provided by the active
user on the neighbouring items. It has been argued
[11] that item-based CF outperforms user-based CF.

– Filling by the average of user- and item-based CF
(UBIBCF): In this approach, an unknown rating is re-
placed by averaging the predictions generated by user-
based and item-based CF.

– Filling by SVM classifier (SVMClass): In this ap-
proach an unknown rating is replaced by using the re-
sults obtained by applying the SVM classifier over the
training set. We normalise the data in scale of 0−1 and
used LibSVM [89] for binary classification. We used
linear kernel rather than radial basis function (RBF),
as other researchers have found that if the number of
features are very large compared to the number of in-
stances, there is no significant benefit of using RBF
over linear kernel [90]. Furthermore, tuning param-
eters in RBF and polynomial kernels is very compu-
tation intensive given a large feature size. For multi
class problem, several methods have been proposed,
such as one-verse-one (1v1), one-verse-all (1vR), Di-
rected Acyclic Graph (DAG), and unbalanced deci-
sion tree (UDT) [91]. We did not found any signif-
icant difference among the results obtained by these
methods, hence we show results in case of 1v1 only.
More details to use SVM for recommender systems

8If algorithm fails to predict a rating, then it is replaced by the ap-
proach given in 6. The same is true for other algorithms

can be found in our previous work [92]. We have cho-
sen SVM, as they give good performance for text cate-
gorisation problems; for example, in [93], the authors
claimed that they outperform KNN, Naive bayes, and
other classifiers in text categorisation tasks.

– Filling by Naive bayes classifier (NBClass): In this
approach an unknown rating is replaced by using the
results obtained by applying the Naive bayes classifier
over the training set. The details of building and using
Naive bayes classifier for recommender system can be
obtained from our previous work [35, 92].

– K nearest neighbours (KNN): In this approach an un-
known rating is replaced by using the results obtained
by applying the K Nearest Neighbours (KNN) using
the Weka collection of machine learning algorithms
[94]. KNN estimates missing values by searching for
the K nearest neighbours (users) and then taking the
weighted average of these K neighbours’ ratings. In
our work, the proposed scheme is similar to the KNN;
however, it differs in that the contribution of each
neighbour is weighted by its similarity to the active
user. As the degree of contribution will be determined
by the choice of weighting system, hence we tested
our scheme with two weighting systems. In the first
approach (shown by KNN in the results) we weight
neighbours by 1− dist, where dist is the distance be-
tween two neighbours. In the second approach (shown
by WKNN in the results), we weight neighbours ac-
cording to the following scheme employed by [75]:

weight(i, j) =
(dist2

1− dist2 + ε

)2
,

where ε = 10−6 is added to avoid dividing by zero.
This function is similar to the Gaussian kernel func-
tion, which gives more weight to closer neighbours
than distant neighbours. WKNN has proven to give
good results in [75].

– Filling by decision tree (C4.5): In this approach, an
unknown rating is replaced by using the results ob-
tained by applying the Decision Tree (C4.5) using the
Weka library. Although the process of constructing
the tree tries to minimise the error rate using the train-
ing data for evaluation, it will probably not perform
well while classifying the test data. The reason is that
it can easily be over-fitted to the training data [64].
Therefore, in order to generalise its performance, we
pruned the tree by learning the pruning confidence
over the training set. We used Laplace smoothing for
predicted probabilities and kept the minimum number
of instances per leaf to 2.

– Filling by SVM regression (SVMReg): In this ap-
proach, an unknown rating is replaced by using the
results obtained by applying the SVM regression over
the training set. We used linear kernel and trained the

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 71

cost parameters. We used nu-SVR version of the SVM
regression using the LibSVM [89] library.

– Filling by linear regression (LinearReg): In this ap-
proach, an unknown rating is replaced by using the re-
sults obtained by applying the linear regression (with
default parameters) using the Weka library. This
method tries to lower the data variance of missing
value estimates, by exploiting the underlying localised
or global correlation structure of the data.

– Filling by logistic regression (LogisticReg): In this ap-
proach, an unknown rating is replaced by using the
results obtained by applying the logistic regression
(with default parameters) using the Weka library.

– AdaBoost (AdaBoost): In this approach, an unknown
rating is replaced by using the results obtained by
applying the Ada Boost over C4.5 decision tree ap-
proach, using the Weka library. It can be less suscep-
tible to the over-fitting than most learning algorithms;
however it is sensitive to noisy data.

7 Experimental evaluation

7.1 Datasets

We used the MovieLens (consisting of 100K ratings shown
by SML and 1M ratings shown by ML) and FilmTrust
(FT) datasets for evaluating our algorithm. The Movie-
Lens data set has been used in many research projects
[11, 13, 95, 92, 87]. We created the FilmTrust dataset by
crawling (on 10th of March 2009) the FilmTrust website.
The FilmTrust dataset is shown by FT1. We removed all
movies and user from the FT1 dataset with less than 5 rat-
ings and the resulting dataset is shown by FT5. The charac-
teristics of the MovieLens and FilmTrust dataset are shown
in Table 1. The sparsity of a dataset is calculated as follows:(

1− non zero entries
all possible entries

)
. Figure 1 and 2 show the distribution

of ratings in datasets. We observe that in the MovieLens
dataset, the rating distribution is skewed towards rating of
4, whereas, in the FilmTrust dataset it is skewed towards
ratings between 9 to 10.

7.2 Feature extraction and selection

We downloaded information about each movie in the SML
and FT datasets, from IMDB9. After stop word (frequently
occurring words that carry little information 10) removal
[96] and stemming (removing the case and inflections in-
formation from a word and mapping it to the same stem11),

9We matched the movie titles, provided by the SML and FT datasets,
against the titles in the IMDB (www.imdb.com). The details of the match-
ing algorithm are beyond the scope of this paper.

10We used Google’s stop word list
www.ranks.nl/resources/stopwords.html.

11We used Porter Stemmer [27] algorithm for stemming.

1 2 3 4 5
0

5

10

15

20

25

30

35

Rating Scale

F
re

q
u

e
n

c
y
 o

f
R

a
ti
n

g
s
 (

%
)

1 2 3 4 5
0

5

10

15

20

25

30

35

Rating Scale

F
re

q
u

e
n

c
y
 o

f
R

a
ti
n

g
s
 (

%
)

Figure 1: Rating distribution of the MovieLens datasets.
The upper plot is for ML dataset and the lower plot is for
SML dataset. We observe that, the rating distribution is
skewed towards rating of 4.

we constructed a vector of ratings, keywords, tags, gen-
res, directors, actors/actresses, producers, writers, and user
reviews given to a movie in IMDB. We used TF-IDF
(Term Frequency-Inverse Document Frequency) approach
for determining the weights of words in a document (i.e.
movie). In our case, we have 5 classes for the Movie-
Lens and 10 classes for the FilmTrust dataset. These vec-
tor of features are used to train the classification and re-
gression approaches discussed in Section 6. We used DF-
Thresholding feature selection technique to reduce the fea-
ture space by eliminating useless noise words—words hav-
ing little (or no) discriminating power in a classifier, or hav-
ing low signal-to-noise ratio. We leverage WordNet using
Java WordNet Interface (http://projects.csail.mit.edu/jwi/)
for overcoming the synonym problem between features
while finding the similarities among features. The details
of training a classifier using these features can be found in
our previous work [92].

It must be noted that the text categorisation and recom-
mender system share a number of characteristics. A Vector
Space Model is the most commonly used document rep-
resentation technique, in which documents are represented
by vectors of words. Each vector component represents
a word feature and approaches, such as Boolean weights,
TF − IDF , normalised TF − IDF [97] etc. can be used
for determining the weight of a word in document. The fea-
ture space in a typical attribute-value representation can be
very large (e.g. 10 000 dimensions and more). A word-by-
document matrix is used to represent a collection of doc-
uments, where each entry symbolises the occurrence of a
word in a document. This matrix is typically very sparse,
as not every word appears in every document. The recom-
mender systems share the same characteristic. In [98] the
authors argue that each user can be viewed as a document
and each item rated by a user can be represented by a word

72 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

Table 1: Characteristics of the datasets used in this work. The MovieLens dataset is shown by SML (100K ratings) and
ML (1M ratings), and the FilmTrust dataset is shown by FT1 (original FilmTrust dataset) and FT5 (containing users and
movies with at least 5 ratings). Average rating represents the average rating given by all users in the dataset.

Characteristics Dataset
ML SML FT1 TF5

Number of users 6040 943 1214 1016
Number of movies 3706 1682 1922 314
Number of ratings 1000209 100000 28645 25730
Rating scale 1 (bad)-5 (excellent) Same as ML 1.0 (bad)-10.0 (excellent) −−

(Integer scale) (Integer scale) (Floating point scale) −−
Sparsity 0.955 0.934 0.988 0.919
Max number of ratings
given by a user 2314 737 244 133
Max number of ratings
given to a movie 3428 583 880 842
Average rating 3.581 3.529 7.607 7.601

1 2 3 4 5
0

10

20

30

40

50

Rating Scale

F
re

q
u

e
n

c
y
 o

f
R

a
ti
n

g
s
 (

%
)

1 2 3 4 5
0

10

20

30

40

50

Rating Scale

F
re

q
u

e
n

c
y
 o

f
R

a
ti
n

g
s
 (

%
)

Figure 2: Rating distribution of the FilmTrust datasets. The
upper plot is for FT1 dataset and the lower plot is for FT5
dataset. The rating scale is digitised as follows: a rating
between 0 to 2.0 is represented by 1, a rating between 2.1
to 4.0 is represented by 2, a rating between 4.1 to 6.0 is
represented by 3, a rating between 6.1 to 8.0 is represented
by 4 , a rating between 8.1 to 10.0 is represented by 5.
We observe that the rating distribution is skewed towards
ratings between 8.1 to 10

appearing in a document. Our assumption is slightly dif-
ferent from the one used in [98], we view each user as a
document; however we get (content) features against each
item rated by a user. Each item is represented by a vector
of bags of words and the user profile is represented by a
big vector obtained by concatenating the vectors of bags of
words of each item rated by a user. In this way, the user
profile captured by a recommender system is very similar
to the vector space model in text categorisation. Hence, our
assumption is that the basic text categorisation algorithms
can be applied to recommender system problem and that
the results should be comparable.

7.3 Metrics
Several metrics have been used for evaluating recom-
mender systems, which can broadly be categorised into
predictive accuracy metrics, classification accuracy met-
rics, and rank accuracy metrics [68]. The predictive accu-
racy metrics measure how close is the recommender sys-
tem’s predicted value of a rating, with the true value of that
rating assigned by the user. These metrics include mean ab-
solute error, root mean squared error, and normalised mean
absolute error, and have been used in research projects such
as [19, 16, 18, 12, 11, 99]. The classification accuracy met-
rics determine the frequency of decisions made by a recom-
mender system, for finding and recommending a good item
to a user. These metrics include precision, recall, and F1
measure, and have been used in [12, 99]. The last category
of metrics, rank accuracy metrics measure the proximity
between the ordering predicted by a recommender system
to the ordering given by the actual user, for the same set
of items. These metrics include half-life utility metric pro-
posed by Brease [16].

Our specific task in this paper is to predict scores for
items that have already been rated by actual users, and
to check how well this prediction helps users in selecting
high quality items. considering this, we have used Mean
Absolute Error (MAE), Receiver Operating Characteristic
(ROC) sensitivity, precision, recall, and F1 measure.

7.3.1 Mean absolute error (MAE)

The Mean Absolute Error (MAE) measures the average ab-
solute deviation between the rating predicted by a recom-
mendation algorithm and the true rating assigned by the
user. It is computed as follows:

MAE =
1

|Dtest|
∑

ri,u∈Dtest

|r̂i,u − ri,u|,

where ri,u and r̂i,u are the actual and predicted values of
a rating respectively, and Dtest is the set of rating records

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 73

Table 2: Classification of items in a document

Selected Not Selected Total
Relevant Irs Irn Ir
Irrelevant Iis Iin Ii

Total Is In I

in the test set. A rating record is a tuple consisting of a
user ID (Identifier), movie ID, and rating,< uid,mid, r >,
where r is the rating a recommender system has to predict.
It has been used in [16], [12], [11], [42], [46], [71], [72],
[13], [36] and [35]. The aim of a recommender system is
to minimise the MAE score.

7.3.2 Receiver operating characteristic (ROC)
sensitivity

ROC is the extent to which an information filtering system
can distinguish between good and bad items. ROC sensi-
tivity measures the probability with which a system accept
a good item. The ROC sensitivity ranges from 1 (perfect)
to 0 (imperfect) with 0.5 for random. To use this metric
for recommender systems, we must first determine which
items are good (signal) and which are bad (noise). The
guidelines of using this metric can be found in our previ-
ous work [92].

7.3.3 Precision, recall, and F1 measure

Precision, recall, and F1 measure evaluate the effectiveness
of a recommender system by measuring the frequency with
which it helps users selecting/recommending a good item
[68]. The most appropriate way to measure the precision
and recall in the context of recommender systems, is to
predict the top-N items for the known ratings, which can be
done by splitting each user’s ratings into training and test
set, training the model on the training set, and then predict-
ing the top-N items from the test set. Here the underlying
assumption is that, the distribution of relevant and irrele-
vant items in each user’s test set, is the same as the true
distribution for that user across all items. This has been
used in [39].

Information retrieval [85] area, defines “objective” mea-
sure for precision, recall and related metric, where the rele-
vance is independent to the user and is only associated with
the query. However in context of recommender systems,
the term “objective relevance” does not fit well—as every
user have different taste, opinions, and reason to rate an
item, hence, relevance is inherently “subjective” in recom-
mender systems. The first step in computing the precision
and recall is to divide items into two classes: relevant and
irrelevant, which is the same as in ROC-sensitivity.

Precision gives us the probability that a selected item
is relevant. A precision of 60% means that 6 of of every
10 recommendations for a user will be relevant. A user is
more likely to understand the meaning of x% difference in

0 5 10 15 20 25 30 35 40 45 50
0.74

0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

Number of Dimensions (k)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

ItemAvg

UserAvg

UBIBCF

UBCF

IBCF

SVMReg

Figure 3: Determining the optimal number of dimensions
in the imputed SVD over the training set (SML dataset).
The error bars, lying between 0.001 and 0.004 for all ap-
proaches, are not shown for reasons of clarity.

precision rather comprehending 0.05%-point difference in
the MAE [68]. Mathematically, it is defined as follows:

Precision =
Irs
Is
.

Recall gives us the probability that a relevant item is se-
lected [68]. Mathematically, it is defined as follows:

Recall =
Irs
Ir
.

Precision and recall should be measure together, as it has
been claimed that they are inversely proportional to each
other, and furthermore, they depend on the size of the resul-
tant vector returned to the user. F1 measure [68] combines
the precision and recall into a single metric and has been
used in many research projects [12, 99]. F1 is computed as
follows:

F1 =
2× Precision×Recall
Precision+Recall

.

We calculated precision, recall, and F1 measures for each
user, and reported the average results over all users.

7.4 Evaluation methodology
We performed the striated 5 fold cross validation and re-
ported the average results with standard deviation. Each
distinct fold contains 20% random ratings of each user as
the test set and the remaining 80% as the training set. We
further subdivided our training set into a validation set and
training set for measuring the parameters sensitivity. For
learning the parameters, we conducted 5-fold cross valida-
tion on the 80% training set, by selecting the different test
and training set each time, and taking the average of results.

74 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

0

10

20

30

40

50

0

20

40

60

80

100

0.745

0.75

0.755

0.76

0.765

0.77

0.775

Number of Dimensions (k)Neighbourhood Size

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

Figure 4: Determining the optimal parameters in user-
based CF (for SML dataset with IBUBCF imputation
source), through grid search over the training set. The
“Number of Dimensions (k)” represents the number of di-
mensions in the reduced space (representing the k pseudo
items) and “Neighbourhood Size” represents the number of
most similar users against the active user.

8 Results and discussion

8.1 Learning the optimal parameters
The purpose of these experiments is to determine, which of
the parameters affect the prediction quality of the proposed
algorithms, and to determine their optimal values.

8.1.1 Finding the optimal number of dimensions

Two factors are important while finding the optimal num-
ber of dimensions. First, the number of dimensions must
be small enough to make the resulting system scalable and
second it must be big enough to capture the important latent
information between the users or items. Figure 3 shows
how the MAE changes as a function of the number of di-
mensions (k) in the case of SML dataset. We show results
only for the conventional approaches and the ones giving us
good results. We observe that, in the case of UBCF, IBCF,
and UBIBCF, the MAE keeps on decreasing, reaches its
minimum between k = {30− 40}, and then starts increas-
ing again. We choose k = 36 for these imputation methods.
We further observe that the MAE is minimum at k = 18,
k = 8, and k = 10 in the case of SVMReg, UserAvg, and
ItemAvg respectively. Similarly, we tuned all approaches
for the optimal dimensions for other datasets.

8.1.2 Finding the optimal number of neighbours and
dimensions for user-based CF

The neighbourhood size is dataset dependent and further-
more change in the distribution and sparsity of the dataset
will change the neighbourhood size. The work in [13] finds
the optimal number of dimensions by keeping the neigh-
bourhood size fixed to a value, changing the dimensions,

0

10

20

30

40

50

0

10

20

30

40

50

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

Number of Dimensions (k)Neighbourhood Size

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

Figure 5: Determining the optimal parameters in item-
based CF (for SML dataset with IBUBCF imputation
source), through grid search over the training set. The
“Number of Dimensions (k)” represents the number of di-
mensions in the reduced space (representing the k pseudo
users) and “Neighbourhood Size” represents the number of
most similar items against the target item.

and observing the corresponding MAE. The dimension that
gives the minimum MAE is recorded to be the optimal
one. Then the optimal neighbourhood size can be found
by keeping the dimension parameter fixed to the optimal
one. This sound a reasonable strategy; however, it does not
show how the MAE changes with all possible combinations
of both parameters—number of neighbours and dimension.
We claim that grid search can effectively be used to find the
optimal value of neighbourhood size and dimensions.

We performed a series of experiments by changing the
dimension each time from 2 to 50 with a difference of
2. For each experiment, we changed the neighbourhood
size from 5 to 100 with difference of 10, keeping the di-
mension parameter fixed, and observed the corresponding
MAE. Figure 4 shows that the MAE is minimum at the
neighbourhood size of 15. This is in contrast with the
neighbourhood size in the classical user-based CF [11],
where the MAE decreases with the increase in the neigh-
bourhood size, reaches at its minimum for a specific neigh-
bourhood size ranging from {50 − 70}, and then starts in-
creasing again. The reason can be that filling the user-item
rating matrix with an imputation source and then apply-
ing SVD may change the sparsity and distribution of the
dataset. We observe in the dimension scale, keeping the
neighbourhood size fixed to 15, that the MAE decreases
with the increase in the rank of the lower dimension space,
reaches at its peak at k = 46, and after that it either in-
creases or stays constant. The grid coordinates, which gave
the lowest MAE, are recorded to be the best parameter. In
the case of UBIBCF imputation source, they found to be 15
for the neighbourhood size and 46 for the dimension. Sim-
ilarly, we tuned the parameters for all approaches for other
datasets.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 75

Table 3: Learning parameter sets α and β over the train-
ing set through cross validation. α and β show the relative
impact of user-based and item-based CF in a prediction re-
spectively.

Params MAE
α β ML SML FT1 FT5
0.1 0.9 0.710 0.740 1.483 1.449
0.2 0.8 0.709 0.739 1.476 1.440
0.3 0.7 0.708 0.738 1.471 1.434
0.4 0.6 0.706 0.736 1.470 1.430
0.5 0.5 0.707 0.737 1.471 1.429
0.6 0.4 0.708 0.737 1.475 1.431
0.7 0.3 0.707 0.738 1.481 1.435
0.8 0.2 0.709 0.739 1.489 1.442
0.9 0.1 0.712 0.741 1.499 1.452

8.1.3 Finding the optimal number of neighbours and
dimensions for item-based CF

We varied the number of dimensions from 2 to 50 with a
difference of 2, and the number of neighbours from 5 to
50 with a difference of 5. Figure 5 shows that the MAE is
minimum for the neighbourhood size of 5. After that, an
increase in the neighbourhood size increases the MAE. In
the dimension scale, keeping the neighbourhood size fixed
to 5, we note that the MAE decreases with the increase in
the rank of the lower dimension space, reaches at its peak
at k = 44 and after that it either increases or stay constant.
In the case of UBIBCF imputation source, the optimal pa-
rameters are found to be 5 for neighbourhood size and 44
for dimension. Similarly, we tuned the parameters for all
approaches for other datasets.

8.1.4 Finding the optimal values of parameters α and
β

Parameters α and β (refer to Section 5.2) determine the
relative weights of user-based and item-based CF in the
final prediction. The 9 parameter sets were generated by
producing all possible combination of parameters values,
ranging from 0.1 to 1.0 with differences of 0.112. Table
3 present the parameter sets learned. The parameters sets
α = 0.6, β = 0.4; α = 0.6, β = 0.4; α = 0.6, β = 0.4;
and α = 0.5, β = 0.5 gave the lowest MAE in the case of
ML, SML, FT1 and FT5 dataset respectively. It is worth
noting that the values of parameters are found different for
the MovieLens and FilmTrust dataset. We note that the
item-based CF has more weight in the final prediction.

12We assume that α+ β = 1 without the loss of generalisation.

8.2 Performance evaluation of different
imputation sources (Algorithm 1,
ImpSvd)

The results obtained by ImputedSVD (Algorithm 1) under
different imputation sources are shown in Table 4. Note
that, we only show the best results obtained by varying k
from 1 to 50. The table shows that the imputation methods
SVM regression, UBCF, IBCF, and UBIBCF give more ac-
curate results than others. The % decrease in MAE over the
baseline method ItemAvg is found to be: (1) 4.79%, 5.61%,
and 6.57% in case of UBCF, IBCF, and UBIBCF respec-
tively for ML dataset (2) 5.16%, 5.55%, 5.94%, and 7.23%
in case of SVM regression, UBCF, IBCF, and UBIBCF re-
spectively for SML dataset (3) 17.0%, 14.70%, 14.52%,
and 15.52% in case of SVM regression, UBCF, IBCF, and
UBIBCF respectively for FT1 dataset (4) 5.86%, 2.70%,
2.56%, and 4.58% in case of SVM regression, UBCF,
IBCF, and UBIBCF respectively for FT5 dataset. The rank-
ing of the algorithms (with respect to the MAE) with the
respective p-value in case of pair t test is found to be: (1)
UBIBCF (p < 0.001) > IBCF (p < 0.05) > UBCF
(p < 0.05) for ML dataset (2) UBIBCF (p < 0.001) >
IBCF (p < 0.001) > UBCF (p < 0.001) >SVMReg
(p < 0.05) for SML dataset (3) SVMReg (p < 0.001)
> UBIBCF (p < 0.001) > IBCF (p < 0.001) >UBCF
(p < 0.001) for FT1 dataset (4) SVMReg (p < 0.001)
> UBIBCF (p < 0.005) > IBCF (p < 0.001) >UBCF
(p < 0.005) for FT5 dataset. Furthermore, the proposed
imputation sources give 5% to 10% improvement over the
baseline approach, in terms of ROC-sensitivity, precision,
recall, and F1 scores (results not shown due to space lim-
its). These results indicate that proposed approaches accu-
rately (1) predict an unknown rating for a user, (2) recom-
mend the top-N items a user would like the most.

The FilmTrust dataset is a good example of the real
world recommender system’s characteristics. It has imbal-
anced data, i.e. a user may have 1 rating and other may
have more than 100 ratings and the same is true for items as
well. It captures well the new user cold-start and new item
cold-start problems. What is evident from table 4 is that
approximating missing values in the user-item rating ma-
trix with the baseline approach gives the worst results. We
observe that the SVMReg approach outperform others in
FilmTrust dataset. The reason is that, the FilmTrust dataset
is well suited to regression algorithms, as it has floating
point scale (refer to Section 7.1). It is worth noting that, in
the case of FT1 dataset, the UserAvg imputation approach
gives accurate (or comparable) results as compared to the
other approaches. We believe that it is due to the distri-
bution of the dataset—in the FilmTrsut dataset, majority
of the users have rated the popular set of movies and their
rating tends to match the average user rating. In the case
of FT5 dataset, the performance of approaches, even con-
ventional ones, improves simply because we have removed
users and items with less clear profiles. We note that, in
FT5 case, again the baseline approach gives the worse re-

76 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

Table 4: Best MAE observed in different imputation sources. The best results have been shown in bold. K represents the
number of dimensions, which gave the most accurate results.

Imp. Sr. Best MAE Dimension (k)
ML SML FT1 FT5 ML SML FT

Zeros 2.425± 0.002 2.321± 0.002 4.354± 0.020 3.898± 0.031 26 12 2
Rand 1.092± 0.002 1.072± 0.005 2.214± 0.019 2.064± 0.021 14 4 2
ItemAvg 0.730± 0.002 0.774± 0.002 1.700± 0.011 1.483± 0.012 22 10 10
UserAvg 0.759± 0.002 0.778± 0.002 1.452± 0.016 1.433± 0.005 22 8 4
UserItem 0.724± 0.002 0.754± 0.003 1.527± 0.016 1.442± 0.014 30 12 14
Avg
Uniform 0.911± 0.002 0.905± 0.002 2.061± 0.031 1.933± 0.023 10 4 2
Dist
NorU 0.790± 0.002 0.810± 0.002 1.505± 0.018 1.491± 0.010 4 2 2
NorI 0.766± 0.002 0.800± 0.002 1.796± 0.019 1.562± 0.020 2 2 2
UBCF 0.695± 0.002 0.731± 0.001 1.450± 0.016 1.442± 0.015 40 36 4
IBCF 0.689± 0.002 0.728± 0.003 1.453± 0.010 1.445± 0.013 40 36 6
UBIBCF 0.682± 0.002 0.718± 0.002 1.436± 0.014 1.415± 0.017 40 36 6
KNN −− 0.804± 0.005 1.485± 0.017 1.479± 0.019 −− 18 4
WKNN −− 0.793± 0.002 1.481± 0.007 1.474± 0.008 −− 18 4
NBClass −− 0.775± 0.005 1.475± 0.016 1.468± 0.017 −− 26 8
SVMClass −− 0.763± 0.004 1.455± 0.014 1.445± 0.016 −− 18 6
C4.5 −− 0.781± 0.003 1.495± 0.012 1.485± 0.015 −− 22 10
SVMReg −− 0.734± 0.004 1.411± 0.015 1.396± 0.019 −− 18 6
Linear −− 0.783± 0.003 1.447± 0.014 1.437± 0.018 −− 16 4
Reg
Logistic −− 0.781± 0.004 1.443± 0.015 1.434± 0.017 −− 14 4
Reg
AdaBoost −− 0.772± 0.006 1.476± 0.014 1.468± 0.018 −− 26 8

Table 5: The best MAE observed in different imputation sources in the case of item-based CF applied over the reduced
dataset. The best results have been shown in bold.

Imputation Source Best MAE
ML SML FT1 FT5

ItemAvg 0.741± 0.002 0.781± 0.0018 1.702± 0.017 1.475± 0.018
UserAvg 0.767± 0.002 0.788± 0.004 1.496± 0.015 1.442± 0.016
UBCF 0.721± 0.002 0.739± 0.003 1.483± 0.018 1.434± 0.011
IBCF 0.701± 0.002 0.738± 0.002 1.459± 0.013 1.462± 0.014
UBIBCF 0.691± 0.002 0.723± 0.004 1.432± 0.017 1.418± 0.018
SVMReg −− 0.744± 0.002 1.417± 0.019 1.404± 0.019

Table 6: The best MAE observed in different imputation sources in the case of user-based CF applied over the reduced
dataset. The best results have been shown in bold.

Imputation Source Best MAE
ML SML FT1 FT5

ItemAvg 0.742± 0.002 0.776± 0.002 1.731± 0.017 1.465± 0.018
UserAvg 0.773± 0.002 0.786± 0.002 1.483± 0.014 1.439± 0.015
UBCF 0.709± 0.002 0.734± 0.003 1.465± 0.015 1.422± 0.017
IBCF 0.706± 0.002 0.732± 0.002 1.446± 0.017 1.445± 0.018
UBIBCF 0.692± 0.002 0.722± 0.003 1.445± 0.019 1.419± 0.019
SVMReg −− 0.743± 0.002 1.416± 0.018 1.401± 0.019

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 77

Table 7: Best MAE, ROC-Sensitivity, Precision, Recall, and F1 observed in the case of hybrid recommender systems
proposed in algorithm 3. The SMVReg is used for FilmTrust dataset and the UBIBCF is used for the remaining datasets
as imputation source, prior applying the SVD. The optimal parameters are learned over the training set using grid search.
Precision, Recall, and F1 have been measured over top 20 recommendations.

DataSet MAE ROC Precision Recall F1
ML 0.684± 0.002 0.790± 0.002 0.518± 0.005 0.595± 0.003 0.524± 0.004
SML 0.717± 0.002 0.695± 0.006 0.543± 0.005 0.555± 0.003 0.513± 0.005
FT1 1.409± 0.013 0.566± 0.008 0.591± 0.008 0.568± 0.007 0.549± 0.007
FT5 1.394± 0.016 0.578± 0.008 0.598± 0.011 0.574± 0.008 0.556± 0.012

sults.

8.3 Performance evaluation of CF applied
over the reduced dataset (Algorithm 2,
ImpSvdCF)

Table 5 and 6 show that the proposed approaches give more
accurate results than the conventional ones, when we apply
CF over the reduced dataset.

It is worth noting that the results (in general) obtained
by applying CF over the reduced dataset do not give any
advantage over the results obtained by applying the SVD.
However, in the case of FilmTrust dataset, some of the pro-
posed approaches (UBCF, IBCF, UBIBCF) give (insignifi-
cantly) better results when CF is applied over the reduced
dataset. It might be due to the reason that the FilmTrust
dataset is very sparse, which implies the the latent struc-
ture between movies and users might not be captured by
applying the SVD, and can be found by applying CF over
the reduced dataset. Another thing to note is that, the re-
sults obtained in the case of proposed approaches are (al-
most) equivalent to the ones obtained in the proposed Im-
puted SVD. Furthermore, in general, user-based CF per-
forms better than the item-based CF in case of FT1, FT5,
and SML dataset, whereas, item-based CF performs better
than user-based CF in case of ML dataset.

8.4 Performance evaluation of hybrid
recommender system (Algorithm 2,
ImpSvdhybridCF)

User-based and item-based CF can be combined linearly.
Table 7 shows that by linearly combining the UBCF and
IBCF, in case of UBIBCF imputation source, gives the im-
proved results with MAE less than 0.684, 0.717, 1.409, and
1.394 in case of SML, ML, FT1, and FT5 datasets respec-
tively. The reason of improvements in the results is that
user-based and item-based CF focus on different kind of
relationship in the dataset. In certain cases, user-based CF
may be useful in identifying different kind of relationship
that item-based CF will fail to recognize; for example, if
none of the items rated by an active user are closely related
to the target item it, then it is beneficiary to switch to user-
oriented perspective that may find set of users very similar
to the active user, who rated it.

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 6: Comparing the proposed approaches with others
in the case of iterative SVD (fixed dimension case), over
SML dataset. X-axis shows the number of iterations and
y-axis shows the corresponding MAE observed. The pro-
posed approaches converge much quicker as compared to
the conventional ones. The error bars (< 0.001 for all ap-
proaches) are not shown for reasons of clarity.

8.5 Performance evaluation of iterative SVD
(Algorithm 3, ItrSvd)

There are two options to find the optimal number of di-
mensions in the ItrSvd algorithm; (1) learning the opti-
mal number of dimensions in the first iteration using the
validation set and keeping them fixed for all the iterations,
and (2) learning the optimal number of dimensions in each
iteration using the validation. In the following, we repre-
sent the former case with fixed dimension and the latter one
with variable dimension. We first show results for the fixed
dimension and then proceed to the variable dimension case.

Figure 6 shows how the MAE changes with the number
of iterations in SML dataset. We observe that the conven-
tional approaches converge much slower as compared to
the proposed ones. Figure 6 shows that in case of the base-
line approach the MAE keeps on decreasing until it con-
verges after 10 iterations. The minimum MAE observed
after 10 iterations is 0.738. The MAE in case of the pro-
posed approaches is shown at the lower plot of the fig-
ure. We observe that the MAE is much lower as com-

78 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 7: Comparing the proposed approaches with others
in the case of iterative SVD (fixed dimension case), over
FT1 dataset. X-axis shows the number of iterations and
y-axis shows the corresponding MAE observed. The con-
ventional approach converges much quicker than the oth-
ers; however, the MAE observed after convergence is much
higher than the proposed ones. The error bars (lying be-
tween 0.001 and 0.004 for all approaches) are not shown
for reasons of clarity.

1.38

1.4

1.42

1.44

1.46

1.48

1.5

1.52

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 8: Comparing the proposed approaches with others
in the case of iterative SVD (fixed dimension case), over
FT5 dataset. X-axis shows the number of iterations and
y-axis shows the corresponding MAE observed. The pro-
posed approaches converge much quicker as compared to
the conventional ones. The error bars (lying between 0.001
and 0.004 for all approaches) are not shown for reasons of
clarity.

0.64

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

Figure 9: Comparing the proposed approaches with others
in the case of iterative SVD (fixed dimension case), over
ML dataset. X-axis shows the number of iterations and
y-axis shows the corresponding MAE observed. The pro-
posed approaches converges much quicker as compared to
the conventional ones. The error bars (< 0.001 for all ap-
proaches) are not shown for reasons of clarity.

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

Dim=1

Dim=3

Dim=6

Dim=7

Dim=Fixed (15)

Figure 10: how the MAE changes with the increase in the
number of dimensions for SVM regression approach, over
SML dataset. X-axis shows the number of iterations and
y-axis shows the corresponding MAE observed. Fixed di-
mensions represent the case, where the optimal numbers
of dimensions are learned in the first iteration through the
training set and kept fixed for all iterations. We observe
that the results are highly dependent on the dimension pa-
rameter. The error bars (< 0.001 for all approaches) are
not shown for reasons of clarity.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 79

0.7

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0 2 4 6 8 10 12 14

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Number of Iterations

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 11: Comparing the proposed approaches with oth-
ers in the case of iterative SVD (variable dimension case)
over SML dataset. X-axis shows the number of iterations
and y-axis shows the corresponding MAE observed. The
proposed approaches converge much quicker as compared
to the conventional ones. The error bars (< 0.001 for all
approaches) are not shown for reasons of clarity.

pared to the conventional approaches, even in the first it-
eration and it converges much faster than conventional ap-
proaches. The IBCF and UBIBCF converges after 2 − 3
whereas the UBCF and SVMReg converges after 5 − 6 it-
erations, and then the MAE starts increasing, which may
be due to the over-fitting. We further observe that approx-
imating the missing values using CF gives better results as
compared to the SVM regression.

The performance of the baseline approach is even worse
for FT1 dataset. Figure 7 shows that in the case of ItemAvg,
the MAE is 1.7 at first iteration, keeps on decreasing until it
reaches at its minimum to 1.66 after 3−4 iterations. The al-
gorithm converges after 3 to 4 iterations and then the MAE
starts increasing again. IBCF and SVMReg approaches
show the similar behaviour, where the MAE reaches at its
minimum after 4 − 5 iterations, and then starts increasing
again. The remaining approaches do not show any im-
provement in the MAE with an increase in the number of
iterations. We note that the SVMReg imputation approach
gives more accurate results with MAE = 1.40.

The results in the case of FT5 dataset are shown in Fig-
ure 8. The results of the baseline approach are surprisingly
good where the MAE keeps on decreasing, until it con-
verges after 10− 12 iterations. The lowest MAE observed
after 12 iterations is still higher than the ones obtained in
first iteration of the proposed approaches. The MAE in
the case of UBCF and UBIBCF imputation approaches, in-
creases with the increase in the number of iterations, which
might be due to over-fitting. The MAE in the case of re-
maining imputation approaches decreases with the increase
in number of iterations, reaches at its minimum at 2− 3 it-
erations and then starts increasing. Again, the SVMReg

imputation approach gives more accurate results.
The results in case of ML dataset are shown in Fig-

ure 9. We observe that they show the similar behaviour
as in the case of SML dataset. Based on the experimental
results, we can conclude that the proposed approaches pro-
duce anytime [100] recommendations and converge much
faster than the conventional ones. It is worth noting that
computing SVD is very computation expensive (regardless
it is done off-line), which implies finding the solution in
the iterative SVD using the baseline approach is not prag-
matic, and hence proposed approaches should be used to
save time and memory.

The optimal number of dimensions can be learned at
each iteration using the training set, though it is very ex-
pensive however, it may increase accuracy. To check
how the MAE changes with the dimension parameter, we
show results in the case of SVMReg imputation approach
over SML dataset for different number of dimensions.
“Dim=Fixed (15)” represents the case, where we learn the
optimal number of dimensions through the training set and
then these dimensions are kept fixed for all iterations. We
also consider other cases, where we (randomly) choose di-
mension parameter to be 1, 3, 5, and 7. Figure 10 shows
that the MAE is highly dependent on the dimension pa-
rameter. To further investigate the results, we perform ex-
periments where the optimal numbers of dimensions are
learned at each iteration. We only did experiments with
SML and FT datasets, as we found it very expensive for ML
dataset, both in terms of memory requirements and compu-
tation cost.

There were no clear improvement (and patterns) in re-
sults to be discussed in the case of FT5 dataset, may be due
to the reason that we do not have enough data to learn the
optimal parameters. We discuss the results in the case of
SML data set, though they show the similar behaviour for
FT1 dataset. We choose SML dataset as it has heavily been
used in the literature and it is easy to reproduce the results.
The results13 are shown in Figure 11.

Figure 11 shows that learning the optimal number of di-
mensions at each iteration decreases the MAE of all ap-
proaches in general. Furthermore, all approaches except
the SVMReg show the same behaviour as shown by the
fixed iteration case. The MAE in the case of SVMReg ap-
proach keeps on decreasing with the increase in the number
of iterations, reaches at its minimum at iteration 6, and then
either stays stable or increases again. We further observe
that the SVMReg outperform others, which is not true in
fixed iteration case.

Table 8 compares the performance—in terms of MAE—
of different approaches under the iterative SVD. The opti-
mal number of dimensions are learned in the first iterations
and kept fixed. We observe that the proposed approaches
produce better results than the baseline approach. We fur-
ther observe that, in the case of MovieLens dataset, the

13Note that we used the training data to estimate the best parameters
and used an independent test set to give the unbiased estimate of the gen-
eralisation error.

80 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

0.7

0.75

0.8

0.85

0.9

0.95

0.982 0.984 0.986 0.988 0.99 0.992 0.994 0.996

M
e

a
n

 A
b

s
o

lu
te

 E
rr

o
r

(M
A

E
)

Sparsity Level

ItemAvg

UserAvg

UBCF

IBCF

UBIBCF

SVMReg

Figure 12: How sparsity affects the performance of differ-
ent approaches, for SML dataset. Algorithm 1 was used to
make recommendations.

UBIBCF and IBCF approaches outperform others; whereas
in the case of FilmTrust dataset, the SVMReg and UBCF
perform the best. The performance comparisons in terms
of ROC-sensitivity and F1 measure are given in Appendix.

8.6 Performance evaluation under different
sparsity levels

To check the performance of the proposed approaches un-
der sparsity, we increased the sparsity level of the train-
ing set by dropping some randomly selected rating records.
Whereas, we kept the test set same for each sparse train-
ing set. We used algorithm 1 to make recommendations.
Figure 12 shows how different approaches perform under
sparse conditions. The figure shows that the performance
of the conventional approaches suffer more than the pro-
posed ones. The reason is that under sparse conditions, the
item and user averages might be misleading resulting in er-
roneous recommendations.

It must be noted that under very sparse conditions (spar-
sity≥ 0.994), SVMReg outperforms the rest. It is because,
with an increase in the sparsity, we do not have comprehen-
sive user/item rating profile that can be used to make pre-
dictions for other unknown items. However, we can cap-
ture user profile in terms of the important features in which
a user is interested, resulting in improved user profile and
predictions. We also note that, the remaining approaches
give the equivalent results. Hence, under very sparse condi-
tion, the SVMReg can be used provided enough resources
are available, and the conventional approaches can be used
otherwise.

8.7 Performance evaluation under
cold-start scenarios

8.7.1 New user cold-start scenario

For testing the performance of approaches under new user
cold-start scenario, we selected 50 random users, and kept
their number of ratings in the training set to 2, 5, 10, 15,
and 20. The corresponding MAE; represented by MAE2,
MAE5, MAE10, MAE15, and MAE20 is shown in Table 9.
Table 9 shows that the conventional approaches suffer the
most under this scenario. It is worth noting that, when
a user has rated less than (or equal to) 10 movies, then
UserItemAvg gives the best results; however, as a user rates
more items, the CF and SVMReg give reliable recommen-
dation as shown by the table.

8.7.2 New item cold-start scenario

For testing the performance of approaches under new item
cold-start scenario, we selected 50 random items, and kept
the number of users in the training set who have rated
the these item to 2, 5, 10, 15, and 20. The correspond-
ing MAE; represented by MAE2, MAE5, MAE10, MAE15,
and MAE20 is shown in Table 10. Table 10 shows that
the SVMReg gives the best performance when an item
has been rated by less than (or equal) to 10 items, and
UBCF gives the best performance otherwise. We note that
the IBCF does not perform very well as compared to the
UBCF, the reason is we do not have comprehensive item
rating profiles for finding other similar items. The reason
for the good results in the case of SVMReg is the same as
discussed in Section 8.6.

8.8 Performance evaluation under long tail
scenario

To test the performance of the proposed algorithms under
long tail scenario, we created the artificial long tail sce-
nario by randomly selecting the 80% of items in the tail.
The number of ratings given in the tail part were varied be-
tween 2, 4, 6, 8, and 10. The results, shown in Table 11,
demonstrated the similar behaviour as in the case of new
item case.

8.9 Performance evaluation under different
training and test sizes

We performed experiments with different sizes of the test
and train set by randomly dividing the rating records into
X% training set and a (100−X)% test set. A value ofX =
20% for SML dataset indicates that 100 000 ratings have
been divided into 20 000 train cases and 80 000 test cases.
Table 12 shows that the proposed approaches outperform
others at each value of X . We note that the SVMReg gives
the best performance for smaller training set sizes. The
reason is the same as discussed in Section 8.6.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 81

Table 8: Comparing the MAE observed in different imputation approaches under the iterative SVD (fixed dimension
case). Only the conventional approaches and the approaches which gave the best results are compared. The best results
have been shown in bold.

Imputation Source Best MAE
ML SML FT1 FT5

ItemAvg 0.685± 0.002 0.738± 0.002 1.661± 0.003 1.438± 0.012
UserAvg 0.697± 0.002 0.734± 0.002 1.451± 0.003 1.430± 0.005
UBCF 0.672± 0.002 0.723± 0.002 1.450± 0.003 1.442± 0.013
IBCF 0.664± 0.002 0.722± 0.003 1.448± 0.003 1.442± 0.017
UBIBCF 0.659± 0.002 0.715± 0.002 1.436± 0.003 1.418± 0.013
SVMReg −− 0.721± 0.003 1.401± 0.003 1.390± 0.015

Table 9: Comparing MAE observed in different imputation approaches under new-user cold start scenario, for SML
dataset. Only the conventional approaches and the approaches, which gave the best results are compared. The best results
have been shown in bold.

Imp. Sr. Best MAE
MAE2 MAE5 MAE10 MAE15 MAE20

ItemAvg 0.908± 0.041 0.887± 0.042 0.885± 0.041 0.883± 0.041 0.882± 0.041
UserAvg 1.087± 0.049 0.928± 0.044 0.903± 0.043 0.878± 0.043 0.877± 0.042
UserItemAvg 0.901± 0.041 0.855± 0.040 0.850± 0.040 0.843± 0.040 0.839± 0.040
UBCF 1.080± 0.049 0.886± 0.043 0.865± 0.043 0.841± 0.042 0.825± 0.041
IBCF 1.082± 0.050 0.896± 0.043 0.868± 0.043 0.844± 0.043 0.817± 0.042
UBIBCF 1.071± 0.049 0.891± 0.043 0.862± 0.042 0.837± 0.043 0.816± 0.041
SVMReg 0.962± 0.050 0.912± 0.044 0.873± 0.043 0.841± 0.042 0.836± 0.042

Table 10: Comparing MAE observed in different imputation approaches under new-item cold start scenario, for SML
dataset. Only the conventional approaches and the approaches which gave the best results are compared. The best results
have been shown in bold.

Imp. Sr. Best MAE
MAE2 MAE5 MAE10 MAE15 MAE20

ItemAvg 1.010± 0.064 0.876± 0.052 0.854± 0.054 0.840± 0.056 0.838± 0.056
UserAvg 0.876± 0.059 0.874± 0.057 0.872± 0.058 0.870± 0.058 0.867± 0.057
UserItemAvg 0.865± 0.056 0.833± 0.054 0.832± 0.052 0.824± 0.055 0.822± 0.054
UBCF 0.911± 0.061 0.829± 0.052 0.810± 0.053 0.800± 0.059 0.790± 0.053
IBCF 0.840± 0.059 0.834± 0.059 0.829± 0.060 0.818± 0.056 0.813± 0.058
UBIBCF 0.858± 0.060 0.824± 0.053 0.812± 0.057 0.802± 0.0056 0.795± 0.055
SVMReg 0.822± 0.062 0.815± 0.052 0.809± 0.056 0.804± 0.057 0.802± 0.057

Table 11: Comparing the MAE observed in different imputation methods under the long tail scenario, for the SML
dataset. The best results are shown in bold font.

Imp. Sr. Best MAE
MAE2 MAE4 MAE6 MAE8 MAE10

ItemAvg 1.090± 0.003 0.891± 0.003 0.879± 0.003 0.867± 0.003 0.861± 0.003
UserAvg 0.881± 0.003 0.878± 0.003 0.869± 0.003 0.866± 0.003 0.865± 0.002
UserItemAvg 0.884± 0.003 0.882± 0.003 0.871± 0.003 0.863± 0.003 0.861± 0.003
UBCF 0.881± 0.003 0.874± 0.003 0.847± 0.003 0.838± 0.003 0.819± 0.002
IBCF 0.886± 0.003 0.875± 0.003 0.861± 0.003 0.860± 0.003 0.856± 0.003
UBIBCF 0.882± 0.003 0.869± 0.003 0.844± 0.003 0.836± 0.003 0.824± 0.002
SVMReg 0.879± 0.002 0.865± 0.002 0.842± 0.002 0.833± 0.002 0.817± 0.002

82 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

Table 12: Comparing MAE observed in different imputation approaches under varying training set sizes, for SML
dataset. Only the conventional approaches and the approaches which gave the best results are compared. The best results
have been shown in bold.

Imp. Sr. Best MAE
X = 20% X = 40% X = 60% X = 80%

ItemAvg 0.838± 0.004 0.809± 0.005 0.788± 0.005 0.774± 0.002
UserAvg 0.839± 0.003 0.818± 0.005 0.792± 0.005 0.778± 0.002
UserItemAvg 0.798± 0.003 0.784± 0.005 0.767± 0.005 0.754± 0.002
UBCF 0.807± 0.004 0.766± 0.005 0.746± 0.006 0.732± 0.003
IBCF 0.804± 0.004 0.762± 0.005 0.740± 0.006 0.730± 0.003
UBIBCF 0.802± 0.005 0.760± 0.005 0.733± 0.006 0.721± 0.003
SVMReg 0.796± 0.005 0.756± 0.006 0.748± 0.007 0.736± 0.003

Table 13: A comparison of the proposed algorithm with existing in terms of cost (based on [13]) and accuracy metrics.
The SMVReg is used for FilmTrust dataset and the UBIBCF is used for the remaining datasets as imputation source, prior
applying the SVD. t represents the number of iterations in the EM algorithm.

Algorithm Off-line Cost On-line Cost Best MAE
ML SML FT1 FT5

User-based CF O(NM2) O(NM) 0.706 0.746 1.442 1.416
with DV
Item-based CF O(N2M) O(N2) 0.705 0.744 1.433 0.418
Baseline SVD O(M) O(1) 0.730 0.774 1.700 1.483
Baseline Item O(M) O(N2) 0.741 0.781 1.702 1.522
-Based SVD
ImpSvd O(M2N)+

O(N2M) +O(N3) O(1) 0.682 0.718 1.411 1.396
ImpSvdibCF O(M2N)+

O(N2M) +O(N3) O(N2) 0.691 0.723 1.417 0.404
ImpSvdubCF O(M2N)+

O(N2M) +O(N3) O(NM) 0.692 0.722 1.416 0.401

ImpSvdhybridCF O(M2N)+
O(N2M) +O(N3) O(NM) 0.684 0.717 1.409 1.394

ItrSvd t ∗O(M2N)+
O(N2M) +O(N3) O(1) 0.659 0.715 1.401 1.390

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 83

8.10 A comparison of the proposed
algorithms with others

8.10.1 Direct comparison

We compared our algorithms with four different algo-
rithms: user-based CF with default voting propose in [16]
(shown by User-Based CF with DV in Table 13), item-
based CF propose in [11] (shown by Item-Based CF in Ta-
ble 13), a simple SVD based approach proposed in [12]
(shown by Baseline SVD in Table 13), an item-based CF
approach applied over the reduced user-item rating matrix,
proposed in [46] (shown by Baseline Item-Based SVD in
Table 13). Furthermore, we tuned all algorithms for the
best mentioning parameters. For the proposed algorithms,
we used UBIBCF and SVMReg as imputation sources in
MovieLens and FilmTrust dataset respectively.

Table 13 shows the cost of the proposed algorithms
and others with the corresponding lowest MAE. The table
shows that the proposed algorithms are scalable and prac-
tical as they have on-line cost less than or equal to the cost
of other algorithms; however they give much lower MAE.
It must be noted that, the baseline algorithms do not per-
form very well as compared to the user-based and item-
based CF applied over the original user-item rating matrix,
which is in contrast with the work proposed in [13]14. The
proposed ItrSvd algorithm performs the best out of all of
them; however, it would incur the biggest off-line cost (de-
pending on the number of iterations required to converge),
and must be used given the availability of sufficient re-
sources. The same is true for the ImpSvdhybridCF , which
gives more accurate results compared to baseline or simple
CF; however, it would incur the greater cost. The ImpSvd
algorithm comes the next, and can be used if we want the
lowest off-line cost (as SVD is applied only once), fast on-
line performance, and prefer (good) accuracy.

8.10.2 Indirect comparison

In this section, we compare our results with other algo-
rithms indirectly, i.e. we take the results15 from the respec-
tive papers without re-implementing them, which might
make the comparison less than ideal. The test procedures
used in these papers are different from ours. We used a
standard approach of testing using 5 fold-cross validation.

A comparison in terms of Normalised MAE (NMAE)16

of the algorithms is given in Table 14. In Table 14, the URP
represents the algorithm proposed in [101], Attitude repre-
sents the algorithm proposed in [102], MatchBox is pro-
posed in [103], MMMF represents the maximum margin

14It might be due to the reason that, the author in [13] did not use any
significance weighting schemes, and used weighted sum prediction for-
mula [87] in the item-based CF.

15The results for the weak generalisation case were taken, as this pro-
cedure resembles with our test procedure.

16NMAE has been used in [102, 107], and is computed by normalizing
the MAE by a factor. The value of the factor depends on the range of
the ratings; for example for the MovieLens dataset, it is 1.6. For further
information, refer to [107].

Table 14: Comparing the NMAE (Normalized MAE) ob-
served in different algorithms for the ML dataset. The pro-
posed algorithms outperforms URP [101], Attitude [102],
MatchBox [103], and MMMF [104]. They give the com-
parable results to Item [105], E-MMF [106], and NLMF
[107]. Our results and the best results have been shown in
bold.

Algorithm NMAE
URP 0.4341± 0.0023
Attitude 0.4320± 0.0055
MatchBox 0.4206± 0.0055
MMMF 0.4156± 0.0037
ItrSvd 0.4118± 0.0025
Item 0.4096± 0.0029
E-MMF 0.4029± 0.0027
NLMF Linear 0.4052± 0.0011
NLMF RBF 0.4026± 0.0020

matrix factorisation algorithm proposed in [104], Item has
been proposed in [105], E-MMF represents the ensemble
maximum margin matrix factorisation technique proposed
in [106], and NLMF represents the non-linear matrix fac-
torisation technique (with linear and RBF versions) as pro-
posed in [107].

Table 14 shows that the NLMF, E-MMF, and Item per-
form better than the rest. The proposed hybrid algorithm
gives comparable results to them with NMAE = 0.4118. It
is worth mentioning that Item [105], E-MMF [106], and
NLMF [107] employ extensive parameters learning, for in-
stance the E-MMF is an ensemble of about 100 predictors,
which makes this algorithms unattractive. From this table,
we may conclude that the proposed algorithm is compara-
ble to the state-of-the-art algorithm for the ML dataset.

9 When and how much imputation
is required

As it is costly to do imputation by the proposed approaches,
hence we investigate when it is beneficial to switch to
the conventional approaches, which are cheap to compute.
Next, we shed light on the following two questions: (1)
when is imputation required? and (2) how much imputa-
tion is required?

9.1 When to do imputation by the proposed
approaches

To answer this question, we look into the sparsity of users’
and items’ profiles. We only do imputation by the proposed
approaches when a user’s (or item’s) profile is Θsparse%
sparse, where Θsparse = {10, 20, · · · , 100}. A value of
ΘSparse = 10 shows that the proposed approaches are used
to fill in the missing values if the sparsity of a profile is less
than 10% = 0.1, and the UserItemAvg approach is used

84 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

10 20 30 40 50 60 70 80 90 100
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

0.775

0.78

0.785

Training Set: Sparsity of Profiles in percentage (Θ
sparse

)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

10 20 30 40 50 60 70 80 90 100
0.71

0.72

0.73

0.74

0.75

0.76

0.77

Test Set: Sparsity of Profiles in percentage (Θ
sparse

)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

UBIBCF

IBCF

UBCF

SVMReg

UBIBCF

IBCF

UBCF

SVMReg

(a) When is imputation required?

10 20 30 40 50 60 70 80 90 100
0.735

0.74

0.745

0.75

0.755

0.76

0.765

0.77

Training Set: Sparsity of Profiles in percentage (Θ
dense

)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

UBIBCF

IBCF

UBCF

SVMReg

10 20 30 40 50 60 70 80 90 100
0.715

0.72

0.725

0.73

0.735

0.74

0.745

0.75

0.755

0.76

Test Set: Sparsity of Profiles in percentage (Θ
dense

)

M
e
a
n
 A

b
s
o
lu

te
 E

rr
o
r

(M
A

E
)

UBIBCF

IBCF

UBCF

SVMReg

(b) How much imputation is required?

Figure 13: Figures showing when and how much imputation is required for the SML dataset. Θsparse shows the sparsity
of users’ (or items’) profiles in percentage. Θdense shows the percentage up to which users’ (or items’) profiles are filled
using the proposed approaches. The optimal number of dimensions have been kept the same as shown in Table 4.

otherwise. Figure 13(a) shows that the MAE is minimum
at Θsparse = 100. For the subsequent experiments, we
choose to do imputation when Θsparse = 100.

9.2 How much imputation is required

Users’ (or items’) profiles can be filled up to Θdense% of
the missing values in their profiles. To investigate how
much imputation is necessary, we performed experiments
with different values of Θdense and observed the corre-
sponding MAE. A value of Θdense = 10 shows that 10%
missing values of a profile are filled using the proposed ap-
proaches and UserItemAvg is used for the remaining 90%
missing values. Figure 13(b) shows that after Θdesne = 60,
the change in the MAE becomes very small. Hence, 60%
imputation is sufficient to achieve good accuracy.

10 Discussion
What is evident from the experimental results is that the
approximation of missing values in the sparse user-item
rating matrix has an important role in SVD based recom-
mendations. The literature proposes using item average to
approximate the missing values in the sparse user-item rat-
ing matrix. We show that this is not a feasible solution in
terms of accuracy. Moreover, the convergence is very slow
in the case of conventional iterative SVD. Approaches such
as CF or SVM should be used for this purpose.

We note that the imputation approaches based on the

content-based filtering are not very accurate as compared
to the collaborative filtering ones in the recommender sys-
tem domain, though content-based filtering has success-
fully been applied to text categorisation and it gives accu-
rate results as well. The reason is that the text categorisa-
tion and recommender system problems are quite different
from each other. First, a user rates the same item differ-
ently under different context [108] and the reason of rating
might be complex. Similarly, the positive feedback [109]
given by a user, e.g. purchased an item is dependent on the
context; for example, a user might purchase an item as a
gift, hence we cannot predict that they will purchase other
similar items. second, the user feedback [26] in a recom-
mender system is noisy, the observations, did not buy an
item, or did not watch a movie do not necessarily mean that
the user is not interested in that item or movie. It can be
the case, that user like that item or movie but has not pur-
chased or watched it. Third, the evaluation criteria for both
is different, recommender system usually provides a list of
top items a user would like to consume, whereas text cat-
egorisation classify a given document to set of pre-defined
categorisation. Furthermore, in text categorisation a docu-
ment belongs to a single or a very few categories, whereas a
user in recommender system might be interested in a large
number of different items. Fourth, a user might change
their taste over time and this temporal change in profile is
not shared by the text categorisation tasks. Making accu-
rate recommendation given the noisy input is different and
more difficult as compared to the text categorisation task.

We captured the user profiles in terms of the important

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 85

features, i.e. a user likes a certain types of movies such
as horror, romantic etc. However, this assumption was
not very correct as well. As most of the users love to
watch movies that makes them simply feel good rather than
strictly following the the same types of movies. Further-
more, taking into account the temporal property of datasets
might improve the results.

It is worth noting that the SVM regression gives much
better performance than other classification and regression
approaches, though we have imbalanced dataset. Schemes
dealing with the imbalanced data may increase the perfor-
mance of SVM regression even further. In the case of SVM
classification, we overcome this problem by assigning dif-
ferent penalties to classes according to the prior knowledge
of users. The prior knowledge of a user is the fraction of
the total number of ratings belonging to a class to the to-
tal number of ratings provided by the user in the training
set. Over sampling and under sampling [64] can be used
to check the performance of SVM regressions, which is a
subject of future research.

Based on the experimental results, we can underline five
interesting points: (1) the results of different approaches
are dataset dependent and no approach is a panacea.
Due to dataset characteristic—data distribution, scale, and
sparsity—one approach might be very good for one dataset
while might fail to produce good results for the second
dataset, (2) collaborative filtering and SVM provide more
accurate and much more computationally tractable results
under all experiments: the iterative SVD, simple imputed
SVD, CF applied over reduced dataset, and in SVD under
sparse settings (3) although, conventional approaches are
straight forward to implement, they do not provide good
results. The same is true for many classification and re-
gression approaches, (4) the hybrid recommender system
algorithms provide more accurate recommendations than
the individual ones. Different recommendation algorithms,
if combined in a systemic way, have complementary role
for recommendation generation, (5) different imputation
schemes can be chosen depending the different circum-
stances and priorities—time and frequency of running the
off-line computation, required accuracy, required recom-
mendation time, and available resources (for example, the
content features and memory).

11 Conclusion and future work

Recommender systems play an important role in identify-
ing the interesting items for users and try to solve the prob-
lem of information overload. This paper makes significant
contributions to the state-of-the-art in two areas of recom-
mender systems, namely, SVD based recommendation al-
gorithms, and the hybrid recommendation algorithms.

There has been some work, in the literature to over-
come the scalability problem of recommender system us-
ing SVD; however due to sparsity it leads to poor quality
recommendation. We show how both scalability and accu-

racy problems can be eliminated by using a suitable impu-
tation source, as a pre-processing step, with SVD. We have
shown by empirical study that rather than merely using the
item average of user-item rating matrix as imputation, or
ignoring the missing values, which have been the preferred
approaches in the literature, flexible and robust imputation
approaches gives considerable benefits ranging from cost
saving to performance enhancement, and therefore, should
be used prior to applying SVD over user-item rating matrix.
We further show how the results of CF, when applied over
the dataset reduced by SVD, change with the imputation
source.

An important research issue in recommender system is
that the recommendations should be tailored to the user’s
current information seeking task [110]. In this paper, we
consider the two-dimensional Users× Items space, by rec-
ommending items to users based on the information only
about users and items. It has been claimed that taking the
additional context information (such as time, place, and the
company of a user) into account, either by extending the
user-item rating matrix into multiple dimensions or using
reduction-based recommendation approach, might increase
the performance of the recommender systems [111]. This
multi-criteria ratings data would be very sparse as com-
pared to the traditional user-item rating matrix, and draw-
ing supplementary information from the content or demo-
graphic data of user/item might help reducing the sparsity
of data matrix, which makes our imputation sources even
more attractive in these scenarios. Keeping these promis-
ing results as starting point, we are focusing on the multi-
dimensional dataset, where clustering algorithms can be
used for partitioning the data and imputed SVD can be ap-
plied to reduce the sparsity and dimensional of the resulting
partition.

Another avenue for future work would be to incorporate
external sources of information, such as ontology of items,
which may improve the results, particularly under sparse
conditions. Furthermore, we would like to explore in detail
the questions discussed in Section 9.

Acknowledgment
The work reported in this paper has formed part of the In-
stant Knowledge Research project which is jointly funded
by Mobile VCE, (the Virtual Centre of Excellence in Mo-
bile & Personal Communications, www.mobilevce.com),
UK Technology Strategy Board (TSB), and EPSRC (Engi-
neering and Physical Sciences Research Council).

12 Performance comparison of
different imputation approaches

Tables 15 and 16 compare the performance (in terms of
ROC-sensitivity and F1 measure respectively) of differ-
ent approaches under the iterative SVD. We observe that

86 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

Table 15: Comparing the ROC observed in different imputation approaches under the iterative SVD (fixed dimension
case). Only the conventional approaches and the approaches which gave the best results are compared. The best results
have been shown in bold.

Imputation Source Best ROC-sensitivity
ML SML FT1 FT5

ItemAvg 0.685± 0.003 0.651± 0.005 0.504± 0.012 0.569± 0.011
UserAvg 0.721± 0.002 0.683± 0.009 0.572± 0.011 0.571± 0.013
UBCF 0.724± 0.002 0.691± 0.005 0.546± 0.011 0.530± 0.012
IBCF 0.759± 0.002 0.724± 0.012 0.534± 0.011 0.544± 0.016
UBIBCF 0.747± 0.002 0.711± 0.004 0.517± 0.011 0.563± 0.009
SVMReg −− 0.695± 0.007 0.574± 0.013 0.583± 0.014

Table 16: Comparing the Top-N F1 (computed over top-20 recommendations) observed in different imputation approaches
under the iterative SVD (fixed dimension case). Only the conventional approaches and the approaches which gave the
best results are compared. The best results have been shown in bold.

Imputation Source Best F1
ML SML FT1 FT5

ItemAvg 0.445± 0.004 0.481± 0.005 0.486± 0.012 0.547± 0.008
UserAvg 0.463± 0.004 0.503± 0.007 0.540± 0.011 0.538± 0.014
UBCF 0.468± 0.004 0.514± 0.004 0.531± 0.012 0.520± 0.010
IBCF 0.487± 0.004 0.531± 0.009 0.505± 0.012 0.519± 0.012
UBIBCF 0.481± 0.004 0.528± 0.002 0.507± 0.012 0.534± 0.010
SVMReg −− 0.508± 0.005 0.556± 0.014 0.563± 0.014

the proposed approaches give better results than traditional
ones.

References
[1] P. Resnick and H. R. Varian, “Recommender sys-

tems,” Commun. ACM, vol. 40, no. 3, pp. 56–58,
1997.

[2] B. Mobasher, “Recommender systems,” KI, vol. 21,
no. 3, pp. 41–43, 2007.

[3] G. Linden, B. Smith, and J. York, “Amazon.com
recommendations: Item-to-item collaborative filter-
ing,” IEEE Internet Computing, vol. 7, pp. 76–80,
January 2003.

[4] J. B. Schafer, J. Konstan, and J. Riedi, “Recom-
mender systems in e-commerce,” in Proceedings
of the 1st ACM conference on Electronic com-
merce, ser. EC ’99. New York, NY, USA:
ACM, 1999, pp. 158–166. [Online]. Available:
http://doi.acm.org/10.1145/336992.337035

[5] D. Goldberg, D. Nichols, B. M. Oki, and
D. Terry, “Using collaborative filtering to weave
an information tapestry,” Commun. ACM, vol. 35,
pp. 61–70, December 1992. [Online]. Available:
http://doi.acm.org/10.1145/138859.138867

[6] U. Shardanand and P. Maes, “Social information
filtering: algorithms for automating word of mouth,”

in Proceedings of the SIGCHI conference on Human
factors in computing systems, ser. CHI ’95. New
York, NY, USA: ACM Press/Addison-Wesley Pub-
lishing Co., 1995, pp. 210–217. [Online]. Available:
http://dx.doi.org/10.1145/223904.223931

[7] L. Terveen, W. Hill, B. Amento, D. McDonald,
and J. Creter, “Phoaks: a system for sharing
recommendations,” Commun. ACM, vol. 40, pp.
59–62, March 1997. [Online]. Available: http:
//doi.acm.org/10.1145/245108.245122

[8] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom,
and J. Riedl, “Grouplens: an open architecture for
collaborative filtering of netnews,” in Proceedings of
the 1994 ACM conference on Computer supported
cooperative work, ser. CSCW ’94. New York, NY,
USA: ACM, 1994, pp. 175–186. [Online]. Avail-
able: http://doi.acm.org/10.1145/192844.192905

[9] J. A. Konstan, B. N. Miller, D. Maltz, J. L.
Herlocker, L. R. Gordon, and J. Riedl, “Grouplens:
applying collaborative filtering to usenet news,”
Commun. ACM, vol. 40, pp. 77–87, March 1997.
[Online]. Available: http://doi.acm.org/10.1145/
245108.245126

[10] D. M. Pennock, E. Horvitz, S. Lawrence, and C. L.
Giles, “Collaborative filtering by personality di-
agnosis: A hybrid memory and model-based ap-
proach,” in Proceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, ser. UAI ’00.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 87

San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2000, pp. 473–480.

[11] B. Sarwar, G. Karypis, J. Konstan, and J. Reidl,
“Item-based collaborative filtering recommendation
algorithms,” in Proceedings of the 10th international
conference on World Wide Web, ser. WWW ’01.
New York, NY, USA: ACM, 2001, pp. 285–295.
[Online]. Available: http://doi.acm.org/10.1145/
371920.372071

[12] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Application of dimensionality reduction in recom-
mender system–a case study,” in IN ACM WEBKDD
WORKSHOP. Citeseer, 2000.

[13] M. Vozalis and K. G. Margaritis, “Using svd and
demographic data for the enhancement of general-
ized collaborative filtering,” Information Sciences,
vol. 177, pp. 3017–3037, August 2007.

[14] M. Kurucz, A. Benczúr, and K. Csalogány, “Meth-
ods for large scale SVD with missing values,” in
Proceedings of KDD Cup and Workshop. Citeseer,
2007.

[15] M. A. Ghazanfar and A. Prügel-Bennett, “The ad-
vantage of careful imputation sources in sparse data-
environment of recommender systems: Generating
improved svd-based recommendations,” in IADIS
European Conference on Data Mining, July 2011.

[16] J. S. Breese, D. Heckerman, and C. Kadie, “Empir-
ical analysis of predictive algorithms for collabora-
tive filtering,” in Proceedings of the Fourteenth con-
ference on Uncertainty in artificial intelligence, ser.
UAI’98. San Francisco, CA, USA: Morgan Kauf-
mann Publishers Inc., 1998, pp. 43–52.

[17] Y.-J. Park and A. Tuzhilin, “The long tail of
recommender systems and how to leverage it,” in
Proceedings of the 2008 ACM conference on Recom-
mender systems, ser. RecSys ’08. New York, NY,
USA: ACM, 2008, pp. 11–18. [Online]. Available:
http://doi.acm.org/10.1145/1454008.1454012

[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Recommender systems for large-scale e-
commerce: Scalable neighborhood formation
using clustering,” in Proceedings of the Fifth Inter-
national Conference on Computer and Information
Technology, 2002.

[19] G.-R. Xue, C. Lin, Q. Yang, W. Xi, H.-J. Zeng,
Y. Yu, and Z. Chen, “Scalable collaborative filtering
using cluster-based smoothing,” in Proceedings of
the 28th annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, ser. SIGIR ’05. New York, NY, USA:
ACM, 2005, pp. 114–121. [Online]. Available:
http://doi.acm.org/10.1145/1076034.1076056

[20] A. M. Rashid, S. K. Lam, G. Karypis, and J. Riedl,
“Clustknn: a highly scalable hybrid model-&
memory-based cf algorithm,” in Proc. of WebKDD
2006: KDD Workshop on Web Mining and Web
Usage Analysis, in conjunction with the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2006), August
20-23 2006, Philadelphia, PA. Citeseer, 2006.

[21] F. Wang, T. Li, and C. Zhang, “Semi-supervised
clustering via matrix factorization,” in SDM, 2008,
pp. 1–12.

[22] M. A. Ghazanfar and A. Prügel-Bennett, “Fulfilling
the needs of gray-sheep users in recommender
systems, a clustering solution,” in 2011 Inter-
national Conference on Information Systems and
Computational Intelligence, January 2011. [Online].
Available: http://eprints.ecs.soton.ac.uk/21770/

[23] M. A. Ghazanfar, S. Szedmák, and A. Prügel-
Bennett, “Incremental kernel mapping algorithms
for scalable recommender systems,” in IEEE ICTAI,
2011, pp. 1077–1084.

[24] K. Lang, “NewsWeeder: learning to filter netnews,”
in Proceedings of the 12th International Conference
on Machine Learning. Morgan Kaufmann publish-
ers Inc.: San Mateo, CA, USA, 1995, pp. 331–339.

[25] R. van Meteren and M. van Someren, “Using
content-based filtering for recommendation,” in Pro-
ceedings of the Machine Learning in the New Infor-
mation Age: MLnet/ECML2000 Workshop. Cite-
seer, 2000.

[26] M. J. Pazzani and D. Billsus, “The adaptive web,”
P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds.
Berlin, Heidelberg: Springer-Verlag, 2007, ch.
Content-based recommendation systems, pp. 325–
341. [Online]. Available: http://dl.acm.org/citation.
cfm?id=1768197.1768209

[27] S. Alag, Collective Intelligence in Action. Manning
Publications, October, 2008.

[28] P. Melville, R. J. Mooney, and R. Nagarajan,
“Content-boosted collaborative filtering for im-
proved recommendations,” in Eighteenth national
conference on Artificial intelligence. Menlo Park,
CA, USA: American Association for Artificial Intel-
ligence, 2002, pp. 187–192.

[29] R. Burke, “Hybrid recommender systems: Survey
and experiments,” User Modeling and User-Adapted
Interaction, vol. 12, no. 4, pp. 331–370, November
2002.

[30] M. J. Pazzani, “A framework for collaborative,
content-based and demographic filtering,” Artif.
Intell. Rev., vol. 13, pp. 393–408, December 1999.

88 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

[Online]. Available: http://dx.doi.org/10.1023/A:
1006544522159

[31] M. Claypool, A. Gokhale, T. Mir, P. Murnikov,
D. Netes, and M. Sartin, “Combining content-based
and collaborative filters in an online newspaper,” in
In Proceedings of ACM SIGIR Workshop on Recom-
mender Systems. Berkeley, California: ACM, 1999.

[32] R. Burke, “Integrating knowledge-based and
collaborative-filtering recommender systems,” in
In AAAI Workshop on AI in Electronic Commerce.
AAAI, 1999, pp. 69–72.

[33] R. J. Mooney and L. Roy, “Content-based book rec-
ommending using learning for text categorization,”
in Proceedings of the fifth ACM conference on Digi-
tal libraries, ser. DL ’00. New York, NY, USA:
ACM, 2000, pp. 195–204. [Online]. Available:
http://doi.acm.org/10.1145/336597.336662

[34] G. Adomavicius and A. Tuzhilin, “Toward the next
generation of recommender systems: A survey
of the state-of-the-art and possible extensions,”
IEEE Trans. on Knowl. and Data Eng., vol. 17,
pp. 734–749, June 2005. [Online]. Available:
http://dx.doi.org/10.1109/TKDE.2005.99

[35] M. A. Ghazanfar and A. Prügel-Bennett, “An
Improved Switching Hybrid Recommender System
Using Naive Bayes Classifier and Collaborative
Filtering,” in Lecture Notes in Engineering and
Computer Science: Proceedings of The Interna-
tional Multi Conference of Engineers and Computer
Scientists 2010. IMECS 2010, 17–19 March,
2010, Hong Kong, 2010, pp. 493–502. [Online].
Available: http://eprints.ecs.soton.ac.uk/18483/

[36] ——, “A scalable, accurate hybrid recom-
mender system,” in Proceedings of the 2010
Third International Conference on Knowledge
Discovery and Data Mining, ser. WKDD ’10.
Washington, DC, USA: IEEE Computer So-
ciety, 2010, pp. 94–98. [Online]. Available:
http://dx.doi.org/10.1109/WKDD.2010.117

[37] M. A. Ghazanfar, S. Szedmak, and A. Prugel-
Bennett, “Incremental kernel mapping algorithms
for scalable recommender systems,” in Proceedings
of the 2011 IEEE 23rd International Conference
on Tools with Artificial Intelligence, ser. ICTAI
’11. Washington, DC, USA: IEEE Computer
Society, 2011, pp. 1077–1084. [Online]. Available:
http://dx.doi.org/10.1109/ICTAI.2011.183

[38] M. A. Ghazanfar, A. PrüGel-Bennett, and
S. Szedmak, “Kernel-mapping recommender sys-
tem algorithms,” Inf. Sci., vol. 208, pp. 81–
104, Nov. 2012. [Online]. Available: http:
//dx.doi.org/10.1016/j.ins.2012.04.012

[39] D. Billsus and M. J. Pazzani, “Learning collabora-
tive information filters,” in Proceedings of the Fif-
teenth International Conference on Machine Learn-
ing, ser. ICML ’98. San Francisco, CA, USA: Mor-
gan Kaufmann Publishers Inc., 1998, pp. 46–54.

[40] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “In-
vestigation of various matrix factorization methods
for large recommender systems,” in Proceed-
ings of the 2nd KDD Workshop on Large-Scale
Recommender Systems and the Netflix Prize Com-
petition, ser. NETFLIX ’08. New York, NY,
USA: ACM, 2008, pp. 6:1–6:8. [Online]. Available:
http://doi.acm.org/10.1145/1722149.1722155

[41] D. Kim and B.-J. Yum, “Collaborative filtering
based on iterative principal component analysis,”
Expert Syst. Appl., vol. 28, pp. 823–830, May
2005. [Online]. Available: http://dx.doi.org/10.
1016/j.eswa.2004.12.037

[42] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “In-
cremental singular value decomposition algorithms
for highly scalable recommender systems,” in Pro-
ceedings of the 5th International Conference in
Computers and Information Technology. Citeseer,
2002, pp. 27–28.

[43] R. J. A. Little and D. B. Rubin, “Statistical analysis
with missing data,” 1987.

[44] B. Marlin, R. Zemel, S. Roweis, and M. Slaney,
“Collaborative filtering and the missing at random
assumption,” in Uncertainty in Artificial Intelli-
gence: Proceedings of the 23rd Conference (Sub-
mitted), vol. 47. Citeseer, 2007, pp. 50–54.

[45] M. G. Vozalis and K. G. Margaritis, “Applying
svd on item-based filtering,” in Proceedings of
the 5th International Conference on Intelligent
Systems Design and Applications, ser. ISDA
’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 464–469. [Online]. Available:
http://dx.doi.org/10.1109/ISDA.2005.25

[46] M. Vozalis and K. G. Margaritis, “Applying SVD
on generalized item-based filtering,” International
Journal of Computer Science and Applications,
vol. 3, no. 3, pp. 27–51, 2006.

[47] A. Martinez, J. Arias, A. Vilas, J. Garcia Duque, and
M. Lopez Nores, “What’s on tv tonight? an efficient
and effective personalized recommender system of
tv programs,” Consumer Electronics, IEEE Trans-
actions on, vol. 55, no. 1, pp. 286–294, 2009.

[48] A. B. Barragáns-Martínez, E. Costa-Montenegro,
J. C. Burguillo, M. Rey-López, F. A. Mikic-
Fonte, and A. Peleteiro, “A hybrid content-based
and item-based collaborative filtering approach to

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 89

recommend tv programs enhanced with singular
value decomposition,” Inf. Sci., vol. 180, pp.
4290–4311, November 2010. [Online]. Available:
http://dx.doi.org/10.1016/j.ins.2010.07.024

[49] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins,
“Eigentaste: A constant time collaborative filtering
algorithm,” Information Retrieval, vol. 4, pp. 133–
151, July 2001.

[50] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia,
“Spectral analysis of data,” in Proceedings of the
thirty-third annual ACM symposium on Theory of
computing, ser. STOC ’01. New York, NY, USA:
ACM, 2001, pp. 619–626. [Online]. Available:
http://doi.acm.org/10.1145/380752.380859

[51] C. Do and S. Batzoglou, “What is the expectation
maximization algorithm?” Nature biotechnology,
vol. 26, no. 8, pp. 897–899, 2008.

[52] J. Canny, “Collaborative filtering with privacy
via factor analysis,” in Proceedings of the 25th
annual international ACM SIGIR conference on
Research and development in information retrieval,
ser. SIGIR ’02. New York, NY, USA: ACM,
2002, pp. 238–245. [Online]. Available: http:
//doi.acm.org/10.1145/564376.564419

[53] N. Srebro and T. Jaakkola, “Weighted low-rank ap-
proximations,” in ICML, vol. 20, no. 2, 2003, p. 720.

[54] S. Zhang, W. Wang, J. Ford, F. Makedon, and
J. Pearlman, “Using singular value decomposition
approximation for collaborative filtering,” in Pro-
ceedings of the Seventh IEEE International Confer-
ence on E-Commerce Technology. Washington,
DC, USA: IEEE Computer Society, 2005, pp. 257–
264.

[55] S. Zhang, W. Wang, J. Ford, and F. Make-
don, “Learning from incomplete ratings using non-
negative matrix factorization,” in 6th SIAM Confer-
ence on Data Mining (SDM). Citeseer, 2006, pp.
548–552.

[56] J. Bennett and S. Lanning, “The netflix prize,” in
Proceedings of KDD Cup and Workshop, vol. 2007.
Citeseer, 2007.

[57] N. Srebro, J. D. M. Rennie, and T. Jaakkola,
“Maximum-margin matrix factorization,” Advances
in neural information processing systems, vol. 17,
pp. 1329–1336, 2005.

[58] R. Bell, Y. Koren, and C. Volinsky, “The Bel-
lKor solution to the Netflix prize, in: AT&T Labs–
Research: Technical report November,” 2007.

[59] M. Wu, “Collaborative filtering via ensembles of
matrix factorizations,” in Proceedings of KDD Cup
and Workshop. Citeseer, 2007.

[60] R. Salakhutdinov and A. Mnih, “Probabilistic ma-
trix factorization,” Advances in Neural Information
Processing Systems, vol. 20, pp. 1257–1264, 2008.

[61] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Scal-
able collaborative filtering approaches for large rec-
ommender systems,” J. Mach. Learn. Res., vol. 10,
pp. 623–656, June 2009.

[62] Y. Koren, “Factorization meets the neighborhood:
a multifaceted collaborative filtering model,” in
Proceedings of the 14th ACM SIGKDD interna-
tional conference on Knowledge discovery and data
mining, ser. KDD ’08. New York, NY, USA:
ACM, 2008, pp. 426–434. [Online]. Available:
http://doi.acm.org/10.1145/1401890.1401944

[63] R. M. Bell and Y. Koren, “Scalable collaborative
filtering with jointly derived neighborhood interpo-
lation weights,” in Proceedings of the 2007 Sev-
enth IEEE International Conference on Data Min-
ing. Washington, DC, USA: IEEE Computer Soci-
ety, 2007, pp. 43–52.

[64] I. H. W. Witten and E. Frank, Data Mining: Prac-
tical Machine Learning Tools and Techniques with
Java Implementations. Morgan Kaufmann, Octo-
ber 1999.

[65] A. Paterek, “Improving regularized singular value
decomposition for collaborative filtering,” in Proc.
KDD Cup and Workshop. Citeseer, 2007.

[66] M. Kurucz, A. Benczúr, T. Kiss, I. Nagy, A. Szabó,
and B. Torma, “Who rated what: a combination of
SVD, correlation and frequent sequence mining,” in
Proc. KDD Cup and Workshop, vol. 23. Citeseer,
2007, pp. 720–727.

[67] M. Piotte and M. Chabbert, “The pragmatic theory
solution to the netflix grand prize, in: Netflix prize
documentation,” 2009.

[68] J. L. Herlocker, J. A. Konstan, L. G. Terveen,
and J. T. Riedl, “Evaluating collaborative filtering
recommender systems,” ACM Trans. Inf. Syst.,
vol. 22, pp. 5–53, January 2004. [Online]. Available:
http://doi.acm.org/10.1145/963770.963772

[69] N. Good, J. B. Schafer, J. A. Konstan, A. Borchers,
B. Sarwar, J. Herlocker, and J. Riedl, “Combining
collaborative filtering with personal agents for better
recommendations,” in Proceedings of the sixteenth
national conference on Artificial intelligence and the
eleventh Innovative applications of artificial intelli-
gence conference innovative applications of artifi-
cial intelligence, ser. AAAI ’99/IAAI ’99. Menlo
Park, CA, USA: American Association for Artificial
Intelligence, 1999, pp. 439–446.

90 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

[70] S.-T. Park, D. Pennock, O. Madani, N. Good,
and D. DeCoste, “Naive filterbots for robust
cold-start recommendations,” ser. KDD ’06. New
York, NY, USA: ACM, 2006, pp. 699–705.
[Online]. Available: http://doi.acm.org/10.1145/
1150402.1150490

[71] H. Ma, I. King, and M. R. Lyu, “Effective miss-
ing data prediction for collaborative filtering,” in
Proceedings of the 30th annual international ACM
SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’07. New York,
NY, USA: ACM, 2007, pp. 39–46. [Online]. Avail-
able: http://doi.acm.org/10.1145/1277741.1277751

[72] J. Zhang and P. Pu, “A recursive prediction
algorithm for collaborative filtering recommender
systems,” in Proceedings of the 2007 ACM
conference on Recommender systems, ser. RecSys
’07. New York, NY, USA: ACM, 2007, pp.
57–64. [Online]. Available: http://doi.acm.org/10.
1145/1297231.1297241

[73] X. Su, T. M. Khoshgoftaar, X. Zhu, and R. Greiner,
“Imputation-boosted collaborative filtering using
machine learning classifiers,” in Proceedings of
the 2008 ACM symposium on Applied computing,
ser. SAC ’08. New York, NY, USA: ACM,
2008, pp. 949–950. [Online]. Available: http:
//doi.acm.org/10.1145/1363686.1363903

[74] X. Su, T. M. Khoshgoftaar, and R. Greiner, “A
mixture imputation-boosted collaborative filter,” in
Proceedings of the 21th International Florida Ar-
tificial Intelligence Research Society Conference
(FLAIRS’08), 2008, pp. 312–317.

[75] C. Ryan, D. Greene, G. Cagney, and P. Cunningham,
“Missing value imputation for epistatic MAPs,”
BMC Bioinformatics, vol. 11, no. 1, pp. 197+, 2010.

[76] M. Balabanović and Y. Shoham, “Fab: content-
based, collaborative recommendation,” Commun.
ACM, vol. 40, pp. 66–72, March 1997.
[Online]. Available: http://doi.acm.org/10.1145/
245108.245124

[77] T. Joachims, “A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization,” in Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, ser. ICML ’97. San Fran-
cisco, CA, USA: Morgan Kaufmann Publishers Inc.,
1997, pp. 143–151.

[78] B. M. Sarwar, J. A. Konstan, A. Borchers,
J. Herlocker, B. Miller, and J. Riedl, “Using
filtering agents to improve prediction quality in the
grouplens research collaborative filtering system,”
in Proceedings of the 1998 ACM conference on
Computer supported cooperative work, ser. CSCW

’98. New York, NY, USA: ACM, 1998, pp.
345–354. [Online]. Available: http://doi.acm.org/
10.1145/289444.289509

[79] B. Mobasher, X. Jin, and Y. Zhou, “Semantically
Enhanced Collaborative Filtering on the Web,” vol.
3209, pp. 57–76, Sep. 2003.

[80] S. M. David, D. C. D. Roure, and N. R. Shadbolt,
“Capturing knowledge of user preferences: Ontolo-
gies in recommender systems,” in In Proceedings
of the First International Conference on Knowledge
Capture (K-CAP 2001), Oct 2001. ACM Press, pp.
100–107.

[81] M. Szomszor, C. Cattuto, H. Alani, K. O’äôhara,
A. Baldassarri, V. Loreto, and V. D. P. Servedio,
“Folksonomies, the semantic web, and movie rec-
ommendation,” in Bridging the Gep between Seman-
tic Web and Web 2.0 (SemNet 2007), 2007, pp. 71–
84.

[82] I. Cantador, A. Bellogín, and P. Castells, “A
multilayer ontology-based hybrid recommendation
model,” AI Commun., vol. 21, pp. 203–210, April
2008.

[83] S.-S. Weng and H.-L. Chang, “Using ontology net-
work analysis for research document recommenda-
tion,” Expert Syst. Appl., vol. 34, pp. 1857–1869,
April 2008.

[84] A. I. Schein, A. Popescul, L. H. Ungar, and
D. M. Pennock, “Methods and metrics for cold-
start recommendations,” in Proceedings of the
25th annual international ACM SIGIR conference
on Research and development in information
retrieval, ser. SIGIR ’02. New York, NY, USA:
ACM, 2002, pp. 253–260. [Online]. Available:
http://doi.acm.org/10.1145/564376.564421

[85] M. W. Berry, S. T. Dumais, and G. W. O’Brien,
“Using linear algebra for intelligent information re-
trieval,” SIAM Rev., vol. 37, pp. 573–595, December
1995.

[86] D. Scott C., D. Susan T., L. Thomas K.,
F. George W., and H. Richard A., “Indexing by latent
semantic analysis,” Journal of the American society
for information science, vol. 41, no. 6, pp. 391–407,
1990.

[87] M. A. Ghazanfar and A. Prügel-Bennett, “Novel sig-
nificance weighting schemes for collaborative fil-
tering: Generating improved recommendations in
sparse environments.” in DMIN. CSREA Press,
2010, pp. 334–342.

[88] J. Herlocker, J. A. Konstan, and J. Riedl, “An em-
pirical analysis of design choices in neighborhood-
based collaborative filtering algorithms,” Inf. Retr.,
vol. 5, pp. 287–310, October 2002.

The Advantage of Careful Imputation Sources in. . . Informatica 37 (2013) 61–92 91

[89] C.-C. Chang and C.-J. Lin, “Libsvm: A library
for support vector machines,” ACM Trans. Intell.
Syst. Technol., vol. 2, pp. 27:1–27:27, May 2011.
[Online]. Available: http://doi.acm.org/10.1145/
1961189.1961199

[90] C. Hsu, C. Chang, C. Lin et al., “A practical guide
to support vector classification,” 2003.

[91] A. Ramanan, S. Suppharangsan, and M. Niranjan,
“Unbalanced decision trees for multi-class classifi-
cation,” in IEEE - Second International Conference
on Industrial and Information Systems, ICIIS
2007. IEEE, August 2007, pp. 291–294. [Online].
Available: http://eprints.ecs.soton.ac.uk/21490/

[92] M. A. Ghazanfar and A. Prügel-Bennett, “Building
Switching Hybrid Recommender System Using Ma-
chine Learning Classifiers and Collaborative Filter-
ing,” IAENG International Journal of Computer Sci-
ence, vol. 37, no. 3, pp. 272–287, 2010.

[93] T. Joachims, “Text categorization with support vec-
tor machines: Learning with many relevant fea-
tures,” in Proceedings of the 10th European Confer-
ence on Machine Learning. London, UK: Springer-
Verlag, 1998, pp. 137–142.

[94] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten, “The weka data
mining software: an update,” SIGKDD Explor.
Newsl., vol. 11, pp. 10–18, November 2009.
[Online]. Available: http://doi.acm.org/10.1145/
1656274.1656278

[95] M. Vozalis and K. G. Margaritis, “On the en-
hancement of collaborative filtering by demographic
data,” Web Intelli. and Agent Sys., vol. 4, pp. 117–
138, April 2006.

[96] I. H. Witten, G. W. Paynter, E. Frank, C. Gutwin,
and C. G. Nevill-Manning, “Kea: practical
automatic keyphrase extraction,” in Proceedings of
the fourth ACM conference on Digital libraries,
ser. DL ’99. New York, NY, USA: ACM,
1999, pp. 254–255. [Online]. Available: http:
//doi.acm.org/10.1145/313238.313437

[97] K. Aas and L. Eikvil, “Text categorisation: A sur-
vey.” 1999.

[98] T. Zhang and V. S. Iyengar, “Recommender systems
using linear classifiers,” J. Mach. Learn. Res., vol. 2,
pp. 313–334, March 2002.

[99] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl,
“Analysis of recommendation algorithms for e-
commerce,” in Proceedings of the 2nd ACM
conference on Electronic commerce, ser. EC ’00.
New York, NY, USA: ACM, 2000, pp. 158–167.
[Online]. Available: http://doi.acm.org/10.1145/
352871.352887

[100] M. A. Ghazanfar and A. Prügel-Bennett, “Novel
heuristics for coalition structure generation in
multi-agent systems,” in The 2010 International
Conference of Computational Intelligence and
Intelligent Systems. ICCIIS’10, 30 June–2 July
2010, London, U.K., 2010. [Online]. Available:
http://eprints.ecs.soton.ac.uk/18788/

[101] B. Marlin, “Modeling user rating profiles for col-
laborative filtering,” Advances in neural information
processing systems, vol. 16, pp. 627–634, 2004.

[102] ——, “Collaborative Filtering: A Machine Learning
Perspective,” Master’s thesis, University of Toronto,
2004.

[103] D. H. Stern, R. Herbrich, and T. Graepel, “Match-
box: large scale online bayesian recommendations,”
in Proceedings of the 18th international conference
on World wide web, ser. WWW ’09. New York, NY,
USA: ACM, 2009, pp. 111–120. [Online]. Avail-
able: http://doi.acm.org/10.1145/1526709.1526725

[104] J. D. M. Rennie and N. Srebro, “Fast max-
imum margin matrix factorization for collabo-
rative prediction,” in Proceedings of the 22nd
international conference on Machine learn-
ing, ser. ICML ’05. New York, NY, USA:
ACM, 2005, pp. 713–719. [Online]. Available:
http://doi.acm.org/10.1145/1102351.1102441

[105] S. Park and D. Pennock, “Applying collaborative fil-
tering techniques to movie search for better rank-
ing and browsing,” in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge
discovery and data mining. ACM, 2007, pp. 550–
559.

[106] D. DeCoste, “Collaborative prediction using ensem-
bles of maximum margin matrix factorizations,” in
Proceedings of the 23rd international conference on
Machine learning, ser. ICML ’06. New York, NY,
USA: ACM, 2006, pp. 249–256. [Online]. Avail-
able: http://doi.acm.org/10.1145/1143844.1143876

[107] N. D. Lawrence and R. Urtasun, “Non-linear
matrix factorization with gaussian processes,” in
Proceedings of the 26th Annual International
Conference on Machine Learning, ser. ICML ’09.
New York, NY, USA: ACM, 2009, pp. 601–608.
[Online]. Available: http://doi.acm.org/10.1145/
1553374.1553452

[108] L. Baltrunas, “Exploiting contextual information
in recommender systems,” in Proceedings of the
2008 ACM conference on Recommender systems,
ser. RecSys ’08. New York, NY, USA: ACM,
2008, pp. 295–298. [Online]. Available: http:
//doi.acm.org/10.1145/1454008.1454056

92 Informatica 37 (2013) 61–92 M.A. Ghazanfar et al.

[109] D. Oard and J. Kim, “Implicit feedback for recom-
mender systems,” in Proceedings of the AAAI Work-
shop on Recommender Systems, 1998, pp. 81–83.

[110] S. M. McNee, “Meeting user information needs
in recommender systems,” Ph.D. dissertation, UNI-
VERSITY OF MINNESOTA, USA, 2006.

[111] G. Adomavicius, R. Sankaranarayanan, S. Sen, and
A. Tuzhilin, “Incorporating contextual information
in recommender systems using a multidimensional
approach,” ACM Trans. Inf. Syst., vol. 23, pp.
103–145, January 2005. [Online]. Available: http:
//doi.acm.org/10.1145/1055709.1055714

